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Chapter 2: Energy, Entropy and Fundamental
Thermodynamic Concepts

2.1 The Thermodynamic Perspective
e defined geochemistry as the application of chemical knowledge and techniques to solve
geological problems.  It is appropriate, then, to begin our study of geochemistry with a re-
view of physical chemistry.  Our initial focus will be on thermodynamics.  Strictly defined,

thermodynamics is the study of energy and its transformations.  Chemical reactions and changes of
states of matter inevitably involve energy changes. By using thermodynamics to follow the energy,
we will find that we can predict the outcome of chemical reactions, and hence the state of matter in
the Earth.  In principle at least, we can use thermodynamics to predict at what temperature a rock
will melt and the composition of that melt, and we can predict the sequence of minerals that will
crystallize to form an igneous rock from the melt.  We can predict the new minerals that will form
when that igneous rock undergoes metamorphism, and we can predict the minerals and the com-
position of the solution that forms when that metamorphic rocks weathers.  Thus thermodynamics
allows us to understand (in the sense that we defined understanding in Chapter 1) a great variety of
geologic processes.

Thermodynamics embodies a macroscopic viewpoint, i.e., it concerns itself with the properties of a
system, such as temperature, volume, heat capacity, and it does not concern itself with how these
properties are reflected in the internal arrangement of atoms.  The microscopic viewpoint, which is
concerned with transformations on the atomic and subatomic levels, is the realm of statistical me-
chanics and quantum mechanics.  In our treatment, we will focus mainly on the macroscopic (ther-
modynamic) viewpoint, but we will occasionally consider the microscopic (statistical mechanical)
viewpoint when our understanding can be enhanced by doing so.

In principle, thermodynamics is only usefully applied to systems at equilibrium.  If an equilibrium sys-
tem is perturbed, thermodynamics can predict the new equilibrium state, but cannot predict how,
how fast, or indeed whether, the equilibrium state will be achieved.  (The field of irreversible ther-
modynamics, which we will not treat in this book, attempts to apply thermodynamics to non-
equilibrium states.  However, we will see in Chapter 5 that thermodynamics, through the principle
of detailed balancing and transition state theory, can help us predict reaction rates.)

Kinetics is the study of rates and mechanisms of reaction.  Whereas thermodynamics is concerned
with the ultimate equilibrium state and not concerned with the pathway to equilibrium, kinetics
concerns itself with the pathway to equilibrium.  Very often, equilibrium in the Earth is not
achieved, or achieved only very slowly, which naturally limits the usefulness of thermodynamics.
Kinetics helps us to understand how equilibrium is achieved and why it is occasionally not
achieved. Thus these two fields are closely related, and together form the basis of much of geo-
chemistry.  We will treat kinetics in Chapter 5.

2.2 Thermodynamic Systems and Equilibrium
We now need to define a few terms.  We begin with the term system, which we have already

used.  A thermodynamic system is simply that part of the universe we are considering.  Everything
else is referred to as the surroundings.  A thermodynamic system is defined at the convenience of the
observer in a manner so that thermodynamics may be applied.   While we are free to choose the
boundaries of a system, our choice must nevertheless be a careful one as the success or failure of
thermodynamics in describing the system will depend on how we have defined its boundaries.
Thermodynamics often allows us this sort of freedom of definition.  This can certainly be frustrat-
ing, particularly for someone exposed to thermodynamics for the first time (and often even the sec-
ond or third time).  But this freedom allows us to apply thermodynamics successfully to a much
broader range of problems than otherwise.  
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A system may be related to its environment
in a number of ways.  An isolated system can
exchange neither energy (heat or work) nor
matter with its surroundings.  A truly iso-
lated system does not exist in nature, so this
is strictly a theoretical concept.  An adiabatic
system can exchange energy in the form of
work, but not heat or matter, with its sur-
roundings, that is to say it has thermally insu-
lating boundaries. Though a truly adiabatic
system is probably also a fiction, many geo-
logic systems are sufficiently well insulated
that they may be considered adiabatic.
Closed systems may exchange energy, in the
form of both heat and work with their sur-
rounding but cannot exchange matter.  An
open system may exchange both matter and
energy across it boundaries.  The various
possible relationships of a system to its envi-
ronment are illustrated in Figure 2.1.

Depending on how they behave over time,
systems are said to be either in transient or
time-invariant states.  Transient states are

those that change with time.  Time-independent states may be either static or dynamic.  A dynamic
time-independent state, or steady-state, is one whose thermodynamic and chemical characteristics do
not change with time despite internal changes or exchanges of mass and energy with its surround-
ings.  As we will see, the ocean is a good example of a steady-state system.  Despite a constant in-
flux of water and salts from rivers and loss of salts and water to sediments and the atmosphere, it
composition does not change with time (at least on geologically short time scales).  Thus a steady-
state system may also be an open system.  We could define a static system is one in which nothing
is happening.  For example, an igneous rock or a flask of seawater (or some other solution) is static
in the macroscopic perspective.  From the statistical mechanical viewpoint, however, there is a
constant reshuffling of atoms and electrons, but with no net changes.  Thus static states are gener-
ally also dynamic states when viewed on a sufficiently fine scale.

Let’s now consider one of the most important concepts in physical chemistry, that of equilibrium.
One of the characteristics of the equilibrium state is that it is static from a macroscopic perspective,
that is, it does not change measurably with time.  Thus the equilibrium state is always time-in-
variant.  While a reaction AÆB may appear to have reached static equilibrium on a macroscopic
scale this reaction may still proceed on a microscopic scale but with the rate of reaction AÆB being
the same as that of BÆA.  Indeed, a kinetic definition of equilibrium is that the forward and reverse
rates of reaction are equal.

The equilibrium state is entirely independent of the manner or pathway in which equilibrium is
achieved.  Indeed, once equilibrium is achieved, no information about previous states of the system
can be recovered from its thermodynamic properties.  Thus a flask of CO2 produced by combustion
of graphite cannot be distinguished from CO2 produced by combustion of diamond.  In achieving a
new equilibrium state, all records of past states are destroyed.

Time-invariance is a necessary but not sufficient condition for equilibrium.  Many systems exist in
metastable states.  Diamond at the surface of the Earth is not in an equilibrium state, despite its time-
invariance on geologic time scales.  Carbon exists in this metastable state because of kinetic barriers
that inhibit transformation to graphite, the equilibrium state of pure carbon at the Earth’s surface.

Isolated System Adiabatic System

Surface free
to do work

Closed System Open System
Figure 2.1.  Systems in relationship to their sur-
roundings.  The ball represents mass exchange,
the arrow represents energy exchange.
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Overcoming these kinetic barriers gen-
erally requires energy.  If diamond is
heated sufficiently, it will transform to
graphite, or in the presence of sufficient
oxygen, to CO2.

The concept of equilibrium versus metas-
table or unstable (transient) states is illus-
trated in Figure 2.2 by a ball on a hill.  The
equilibrium state is when the ball is in the
valley at the bottom of the hill, because its
gravitational potential energy is minimized
in this position.  When the ball is on a
slope, it is in an unstable, or transient, state
and will tend to roll down the hill.  How-
ever, it may also become trapped in small
depressions on the side of the hill, which
represent metastable states.  The small hill bordering the depression represents a kinetic barrier.
This kinetic barrier can only be overcome when the ball acquires enough energy to roll up and
over it.  Lacking that energy, it will exist in the metastable state indefinitely.  

In Figure 2.2, the hill is at equilibrium when its (gravitational) potential energy lowest (i.e., at the
bottom of the hill).  This is a good definition of equilibrium in this system, but as we will soon see,
is not adequate in all cases.  A more general statement would be to say that the equilibrium state is
the one toward which a system will change in the absence of constraints.  So in this case, if we plane
down the bump (remove a constraint), the ball rolls to the bottom of the hill.  At the end of this
Chapter, we will be able to produce a thermodynamic definition of equilibrium based on the Gibbs
Free Energy.    We will find that the chemical equilibrium state occurs when the Gibbs Free Energy
of the system is lowest.

Natural processes proceeding at a finite rate are irreversible: under a given set of conditions; i.e.,
they will only proceed in one direction.  Here we encounter a problem in the application of ther-
modynamics: if a reaction is proceeding, then the system is out of equilibrium and thermodynamic
analysis cannot be applied.  This is one of the first of many paradoxes in thermodynamics.  This
limitation might at first seem fatal, but we get around it by imagining a comparable reversible reac-
tion.  Reversibility and local equilibrium are concepts that allow us to 'cheat' and apply thermo-
dynamics to non-equilibrium situations.  A “reversible” process is an idealized one where the reaction
proceeds in sufficiently small steps that it is in equilibrium at any given time (thus allowing the application
of thermodynamics).  

Local equilibrium embodies the concept that in a closed or open system, which may not be at
equilibrium on the whole, small volumes of the system may nonetheless be at equilibrium.  There
are many such examples.  In the example of mineral crystallizing from magma, only the rim of the
crystal may be in equilibrium with the melt. Information about the system may nevertheless be de-
rived from the relationship of this rim to the surrounding magma.  Local equilibrium is in a sense
the spatial equivalent to the temporal concept of reversibility and allows the application of thermo-
dynamics to real systems, which are invariably non-equilibrium at large scales.  Both local equilib-
rium and reversibility are examples of simplifying assumptions that allow us to treat complex situa-
tions.  In making such assumptions, some accuracy in the answer may be lost.  Knowing when and
how to simplify a problem is an important scientific skill.

2.2.1 Fundamental Thermodynamic Variables

In the next two chapters we will be using a number of variables, or properties, to describe ther-
modynamic systems.  Some of these will be quite familiar to you, others less so.  Volume, pressure,
energy, heat, work, entropy, and temperature are most fundamental variables in thermodynamics.

Unstable
Transient

Equilibrium
(Time-Invariant)

Metastable
(Time-Invariant)

Figure 2.2.  States of a system.
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As all other thermodynamic variables are derived from them, it is worth our while to consider a
few of these properties.

Energy is the capacity to produce change.  It is a fundamental property of any system, and it
should be familiar from physics.  By choosing a suitable reference frame, we can define an absolute
energy scale.  However, it is changes in energy that are generally of interest to us rather than abso-
lute amounts.  Work and heat are two of many forms of energy. Heat, or thermal energy, results
from random motions of molecules or atoms in a substance and is closely related to kinetic energy.
Work is done by moving a mass, M, through some distance, x = X, against a force F:

w Fdx
X

= -Ú0
2.1

where w is work and force is defined mass times acceleration:

F = –M 
dv
dt  2.2

(the minus signs are there because of the convention that work done on a system is positive, work done
by a system is negative).  This is, of course, Newton’s first law. In chemical thermodynamics, pres-
sure–volume work is usually of more interest.  Pressure is defined as force per unit area:

P = 
F
A 2.3

Since volume is area times distance, we can substitute equation 2.3 and dV = Adx into 2.1 and ob-
tain:

w
F

A
Adx PdV

x

x

V

V
= - = -Ú Ú

0

1

0

1

2.4

Thus work is also done as a result of a volume change in the presence of pressure.  
Potential energy is energy possessed by a body by virtue of its position in a force field, such as

the gravitational field of the Earth, or an electric field. Chemical energy will be of most interest to
us in this book.   Chemical energy is a form a potential energy stored in chemical bonds of a sub-
stance.  Chemical energy arises from the electromagnetic forces acting on atoms and electrons.   In-
ternal energy, which we denote with the symbol U, is the sum of the potential energy arising from
these forces as well as the kinetic energy of the atoms and molecules (i.e., thermal energy) in a sub-
stance.  It is internal energy that will be of most interest to us.

We will discuss all these fundamental variables in more detail in the next few sections.

2.2.1.1 Properties of State

Properties or variables of a system that depend only on the present state of the system, and not on
the manner in which that state was achieved, are called variables of state or state functions.  Extensive
properties depend on total size of the system.  Mass, volume, and energy are all extensive proper-
ties.  Extensive properties are additive, the value for the whole being the sum of values for the parts.
Intensive properties are independent of the size of a system, for example temperature, pressure, vis-
cosity.  They are not additive, e.g., the temperature of a system is not the sum of the temperature of
its parts.  In general, an extensive property can be converted to an intensive one by dividing it by
some other extensive property.  For example, density is the mass per volume and is an intensive
property.  It is generally more convenient to work with intensive rather than extensive properties.
For a single component system not undergoing reaction, specification of 3 variables (2 intensive, 1
extensive) is generally sufficient to determine the rest, and specification of any 2 intensive variables
is generally sufficient to determine the remaining intensive variables.

A final definition is that of a pure substance.  A pure substance is one that cannot be separated into
fractions of different properties by the same processes as those considered.
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2.3 Equations of State
Equations of state describe the relationship that exists among the state variables of a system.    We

will begin by considering the ideal gas law and then very briefly consider two more complex equa-
tions of state for gases.

2.3.1 Ideal Gas Law

The simplest and most fundamental of the equations of state is the ideal gas law† .  It states that
pressure, volume, temperature, and the number of moles of a gas are related as:

PV = NRT 2.5

where P is pressure, V is volume, N is the number of moles, T is thermodynamic, or absolute tem-
perature (which we will explain shortly), and R is the ideal gas constant* (an empirically deter-
mined constant, 8.314 J/mol-K, 1.987 cal/mol-K or 82.06 cc-atm/deg-mol).  This equation describes
the relation between two extensive (mass dependent) parameters, volume and the number of moles,
and two intensive (mass independent) parameters, temperature and pressure.  We earlier stated that
if we defined two intensive and one extensive system parameter, we could determine the remaining
parameters.  We can see from equation 2.5 that this is indeed the case for an ideal gas.  For example,
if we know N, P, and T, we can use equation 2.5 to determine V.

The ideal gas law, and any equation of state, can be rewritten with intensive properties only.  Di-
viding V by N we obtain the molar volume, V

–
 .  Substituting V

–
  for V and rearranging, the ideal gas

equation becomes:

V
RT

P
= 2.6

The ideal gas equation tells us how the volume of a given amount of gas will vary with pressure
and temperature.  To see how molar volume will vary with temperature alone, we can differentiate
equation 2.6 with respect to temperature holding pressure constant and obtain:

∂
∂

Ê

Ë
Á

�

¯
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∂

V

T

NRT P

T
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/
2.7

which reduces to:
  ∂V
∂T P

=
NR
P

2.8

It would be more useful to know to fractional volume change rather than the absolute volume
change with temperature, because the result in that case does not depend on the size of the system.
To convert to the fractional volume change, we simply divide the equation by V:

  
1
V

∂V
∂T P

=
NR
PV

2.9

Comparing equation 2.9 with 2.5, we see that the right hand side of the equation is simply 1/T, thus

  1

V

∂V

∂T P

=
1

T
2.10

The left hand side of this equation, the fractional change in volume with change in temperature, is
known as the coefficient of thermal expansion, a:

                                                
†  Frenchman Joseph Gay-Lussac (1778-1850) established this law based on earlier work of Englishman Robert
Boyle and Frenchman Edme Mariotte.

* We will often refer to it merely as the gas constant.



W. M. White Geochemistry

Chapter 2: Fundamental Concepts of Thermodynamics

26 September 26, 2001

a ∫
∂
∂

Ê
ËÁ

�
�̄

1
V

V

T
P

2.11

For an ideal gas, the coefficient
of thermal expansion is simply
the inverse of temperature.

The compressibility of a sub-
stance is defined in a similar
manner as the fractional change
in volume produced by a
change in pressure at constant
temperature:
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2.12

Geologists sometimes use the isothermal bulk modulus, KT, in place of compressibility.  The isother-
mal bulk modulus is simply the inverse of compressibility: KT = 1/b.  Through a similar derivation
to the one we have just done for the coefficient of thermal expansion, it can be shown that the com-
pressibility of an ideal gas is b = 1/P.

The ideal gas law can be derived from statistical physics (first principles), assuming the molecules
occupy no volume and have no electrostatic interaction.  Doing so, we find, R = N0k, where k is Boltz-
mann’s constant (1.381 x 10-16 erg/K) and N0 is Avagadro's Number (the number of atoms in one
mole of a substance).  k is a fundamentally constant that relates the average molecular energy, e, of
an ideal gas to its temperature (K) as e = 3kT/2.

Since the assumptions just stated are ultimately invalid, it is not surprising that the ideal gas law is
only an approximation for real gases, it applies best in the limit of high temperature and low pres-
sure.  Deviations are largest near the condensation point of the gas.
The compressibility factor is a measure of deviation from ideality and is defined as

Z = PV/NRT 2.13
By definition, Z= 1 for an ideal gas.

2.3.2 Equations of State for Real Gases

2.3.2.1 Van der Waals Equation:

Factors we need to consider in constructing an equation of state for a real gas are the finite vol-
ume of molecules and the attractive and repulsive forces between molecules arising from electric
charges.  The Van der Waals equation is probably the simplest equation of state that takes account
of these factors.  The Van der Waals equation is:

P
RT

V b

a

V
=

-
- 2 2.14

Here again we have converted volume from an extensive to an intensive property by dividing by
N.

Let’s examine the way in which the Van der Waals equation attempts to take account of finite mo-
lecular volume and forces between molecules.  Considering first the forces between molecules,
imagine two volume elements v1 and v2.  The attractive forces will be proportional to the number
of molecules or the concentrations, c1 and c2, in each.  Therefore, attractive forces are proportional
to c1 x c2 = c2.  Since c is the number of molecules per unit volume, c=n/V, we see that attractive
forces are proportional to 1/V

–
 2.  Thus it is the second term on the right that takes account of forces

between molecules.  The a term is a constant that depends on the nature and strength of the forces
between molecules, and will therefore be different for each type of gas.

Table 2.1. Van der Waals Constants for Selected Gases

Gas a b
liter2-atm/mole2 liter/mole

Helium 0.034 0.0237
Argon 1.345 0.0171
Hydrogen 0.244 0.0266
Oxygen 1.360 0.0318
Nitrogen 1.390 0.0391
Carbon Dioxide 3.592 0.0399
Water 5.464 0.0305
Benzene 18.00 0.1154
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In the first term on the right, V
—

  has been replaced by V
—

  – b. b is the volume actually occupied
by molecules, and the term V

—
  – b is the volume available for movement of the molecules.  Since

different gases have molecules of differing size, we can expect that the value of b will also depend
on the nature of the gas.  Table 2.1 lists the values of a and b for a few common gases.

2.3.2.2 Other Equations of State for Gases

The Redlich-Kwong Equation (1949) expresses the attractive forces as a more complex function:

  P
RT

V b

a

T V V b
=

-
-

+1 2/ ( )
2.15

The Virial Equation is much easier to handle algebraically than the van der Waals equation and has
some theoretical basis in statistical mechanics:

  PV A BP CP DP= + + + +2 3 K 2.16
A, B, C, .... are empirically determined (temperature dependent) constants.

2.3.3 Equation of State for Other Substances

The compressibility and coefficient of thermal expansion parameters allow us to construct an
equation of state for any substance.  Such an equation relates the fundamental properties of the
substance: its temperature, pressure, and volume.  The partial differential of volume with respect to
temperature and pressure is such an equation:

dV
V

T
dT

V

P
dP

P T

= Ê
ËÁ

��̄ + Ê
ËÁ

��̄
∂
∂

∂
∂

2.17

Substituting the coefficient of thermal expansion and compressibility for ∂V/∂T and ∂V/∂P respec-
tively we have:

dV = V (adT – bdP) 2.18
Thus to write an equation of state for a substance, our task becomes to determine its compressibility
and coefficient of thermal expansion.  Once we know them, we can integrate equation 2.18 to
obtain the equation of state.  These, however, will generally be complex functions of temperature
and pressure, so the task is often not easy.

2.2 Temperature, Absolute Zero, and The Zeroth Law Of
Thermodynamics

How do you define temperature?  We discussed temperature with respect to the ideal gas law
without defining it, though we all have an intuitive sense of what temperature is.  We noted above
that temperature of a gas is measure of the average (kinetic) energy of its molecules. Another ap-
proach might be to use the ideal gas law to construct a thermometer and define a temperature scale.
A convenient thermometer might be one based on the linear relationship between temperature and
the volume of an ideal gas.  Such a thermometer is illustrated in Figure 2.3.  The equation de-
scribing the relationship between the volume of the gas in the thermometer and our temperature, t,
is:

V=V0(1 +gt) 2.19

where V0 is the volume at some reference point where t = 0 (Figure 2.3a) and g is a scale factor.  For
example, we might choose t=0 to be the freezing point of water and the scale factor such that t=100
(Figure 2.3b) occurs at the boiling point of water, as is the case in the centigrade scale.  Rear-
ranging, we have:

t
g

= -
Ê
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�
�̄

1
1

0

V

V
2.20
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 Then t = 0 at V = V0.  If V is less than the reference volume,
then temperature will be negative on our scale.  But notice
that while any positive value of temperature is possible on
this scale, there is a limit to the range of possible negative
values.  This is because V can never be negative.  The mini-
mum value of temperature on this scale will occur when V is
0.  This occurs at:

t
g0

1
= - 2.21

Thus implicit in the ideal gas law, which we used to make
this thermometer, is the idea that there is an absolute mini-
mum value, or an absolute zero, of temperature, which oc-
curs when the volume of an ideal gas is 0.  Notice that while
the value(–1/g) of this absolute zero will depend on how we
designed our thermometer, i.e., on V0, the result, that a
minimum value exists, does not.  We should also point out
that only an ideal gas will have a volume of 0 at the absolute
0.  The molecules of real gases have a finite volume, and such
a gas will have a finite volume at absolute 0.

The temperature scale used by convention in thermody-
namics is the Kelvin* scale.  The magnitude of units, called
kelvins (not degrees kelvin) and designated K (not ° K), on
this scale are the same as the centigrade scale, i.e., there are
exactly 100 kelvins between the freezing and boiling point of
water.  There is some slight uncertainty (a very much smaller
uncertainty than we need to concern ourselves with) concern-
ing the value of absolute zero (i.e., the value of g in 2.20 and
2.21).  The scale has been fixed by choosing 273.16 kelvins to
be the triple point of water (0.01° C).  On this scale, the abso-
lute zero of temperature occurs at 0±0.01 kelvins.  The Kelvin
scale should be used wherever temperature occurs in a ther-

modynamic equation.
Temperature has another fundamental property, and this is embodied in the zeroth law of thermo-

dynamics.  It is sufficiently obvious from everyday experience that we might overlook it.  It con-
cerns thermal equilibrium and may be stated in several ways: two bodies in thermal equilibrium have
the same temperature and any two bodies in thermal equilibrium with a third are in equilibrium with each
other.

2.3 Energy and The First Law of Thermodynamics
2.3.1 Energy

The first law may be stated various ways:
•heat and work are equivalent
•energy is conserved in any transformation;

                                                
* named for Lord Kelvin.  Born William Thomson in Scotland in 1824, he was appointed Professor at Glasgow
University at the age of 22.  Among his many contributions to physics and thermodynamics was the concept of
absolute temperature.  He died in 1907.

0

100

b

0

100

a

Figure 2.3.  An ideal gas ther-
mometer.
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•the change of energy of a system is independent of the path taken.‡

All are restatements of the law of conservation of energy:
Energy can be neither created nor destroyed.

Mathematically:    DDDDU=Q+W  or  dU=dQ+dW 2.22
Thermodynamics is concerned only with the internal energy of a system.  We don’t really care

whether the system as a whole is in motion, i.e., whether it has kinetic energy (we do care, how-
ever, about the internal kinetic energy, or heat).  For the most part, we also don’t care whether it
has potential energy, i.e., what its position in potential fields is, except to the extent that this influ-
ences the state of our system (e.g,, pressure in the atmosphere is a function of the altitude, and
hence would be of interest to us).  In addition, we are almost always concerned only with energy
changes, not with the absolute energy of a system.  In thermodynamics  DU, not U, is the interesting
quantity.

Energy may be transferred between a system and it surroundings in several ways: heat, work, ra-
diation, and advection (i.e., energy associated with mass gained or lost by the system).  Whenever
possible, we will want to chose our system such that it is closed and we don’t have to worry about
the latter.  In most, but not all, instances of geochemical interest, radiation is not important.  Thus in
geochemical thermodynamics, heat and work are the forms of energy flow of primary interest.

2.3.2 Work

We have seen that work is the integral of force applied through a distance.  Force times distance
has units of energy (mass-velocity2), thus work is form of energy.  The SI (Systeme International)
unit of energy is the Joule = 1 kg-m2/s2.

There are several kinds of work of interest to thermodynamics, the most important of which is
that involved in chemical reactions (later, when we consider oxidation and reduction reactions, we
will be concerned with electrochemical work).  One of the most important forms of work in classi-
cal thermodynamics is ‘PV’ work: expansion and contraction.  Expressing equation 2.4 in differen-
tial form:

dW = –Pext  dV 2.23
Pressure is force per unit area and therefore has units of mass-time-2-distance-1, volume has units of
distance3.  The product of P and V therefore has units of energy: mass-(distance/time)2.†   The nega-
tive sign arises because, by convention, we define energy flowing into the system as positive.  Work done
by the system is thus negative, work done on the system is positive.  This conforms to a 1970
I.U.P.A.C. (International Union of Pure and Applied Chemistry) recommendation.

While ‘PV’ work is not as important in geochemistry as in other applications of thermodynamics,
it is nevertheless of significant interest.  There is, of course, a great range of pressures within the

                                                
‡This may seem intuitively obvious to us, but it wasn’t to James Joule (1818-1889), English brewer and physi -
cist, who postulated it on the basis of experimental results.  It wasn’t obvious to his contemporaries either.  His
presentation of the idea of equivalence of heat and work to the British Association in 1843 was received with
“entire incredulity” and “general silence”.  The Royal Society rejected his paper on the subject a year later.   If
you think about it a bit, it is not so obvious — in fact, there is no good reason why heat and work should be
equivalent.  This law is simply an empirical observation.  The proof is a negative one: experience has found no
contradiction of it.  German physician Julius Mayer (1814-1878) formulated the idea of conservation of energy in
1842, but his writing attracted little attention.  It was Joule’s experiments with heat and work that conclusively
established the principle of conservation of energy.  By 1850, the idea of conservation of energy began to take
hold among physicists, thanks to Joule’s persistence and the support of a brilliant young physicist named Wil -
liam Thomson, who also had been initially skeptical.
†  The pascal, the SI unit of pressure, is equal to 1 kg/m-s2.  Thus if pressure is measured in MPa
(megapascals, 1 atm ª 1 bar = 0.1 MPa) and volume in cc (= 10-6 m-3), the product of pressure times
volume will be in joules.  This is rather convenient.
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Earth.  Systems rising within the Earth, such a magma or a hydrothermal fluid, will thus do work
on their surroundings, and systems sinking, such as sediments being buried or lithosphere being
subducted, will have work done on them.

We mentioned the concept of reversible and irreversible reactions, and stated that a reversible re-
action is one that occurs in sufficiently small steps that equilibrium is maintained.  In an expansion
or contraction reaction, equilibrium is maintained and the reaction is reversible, if the external pres-
sure is equal to the internal pressure.  The work done under these conditions is said to be reversi-
ble:

dWrev = –PdV 2.24

2.3.4 Path independence, Exact differentials, State functions, and the First Law

We said earlier that state functions are those that depend only on the present state of a system.
Another way of expressing this is to say that state functions are path independent.  Indeed, path in-
dependence may be used as a test of whether a variable is a state function or not.  This is to say that
if Y is a state function, then for any process that results in a change Y1 ÆY2, the net change in Y,
DY, is independent of how one gets from Y1 to Y2.  Furthermore, if Y is a state function, then the
differential dY is said to be mathematically exact.

Let’s explore what is meant by an exact differential.  Consider two properties of a system M and N
and a first order differential expression relating the two:

Mdx+Ndy = 0 2.25
Variables M and N may or may not be functions of x and y.  Equation 2.25 is said to be an exact dif-
ferential if there exists some function u of x and y relating them such that the expression:

du = Mdx + Ndy 2.26
is the total differential of u, i.e.,:

du
u

xx
dx
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y x
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¯
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An exact differential is the “normal” kind of differential, the kind one would obtain by differentiat-
ing the function u with respect to x and y.  A necessary, but not sufficient condition for 2.32 to be
an exact differential is that M  and N be functions of x and y.  Such a function has some specific
properties.  
Comparing 2.25 and 2.27, we see that: du = 0 2.28

The integral is u x y Mdx Ndy const( , ) = + =ÚÚ 2.29

Comparing 2.26 and 2.27, we see that:
∂u
∂x  = M     and    

∂u
∂y  = N

and
∂M
∂y   = 

∂2u
∂x∂y    and   

∂N
∂x  = 

∂2u
∂y∂x 

Therefore
∂M
∂y   = 

∂N
∂x  2.30

which is equivalent to:
dM

dy
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¯
� 2.31

This is known as the reciprocity relation or cross-differentiation identity.  It is an important and useful
property in thermodynamics, as we shall see.  Exact differentials have the property that they can be
integrated and an exact value obtained (e.g., Equ. 2.29).  This is true because they depend only on
the initial and final values of the independent variables (e.g., x and y in 2.27).
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Volume is a state function and we can express it as an exact differential in terms of other state
functions:

dV
V

T
dT

V

P
dP

P T

=
∂
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Ê
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¯
� +
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Ê

Ë
Á

�

¯
� (2.17)

Substituting the coefficient of thermal expansion and compressibility for ∂V/∂T and ∂V/∂P respec-
tively, equation 2.30 becomes:

dV VdT VdP= +a b (2.18)
According to equation 2.31, if V is a state function, then:

∂( )
∂

Ê

Ë
Á

�

¯
� = -

∂( )
∂

Ê

Ë
Á

�

¯
�

a bV

P

V

P
V V

2.32

You should satisfy yourself that equation 2.39 indeed holds for ideal gases and therefore that V is a
state variable.

Not all differential expressions are exact.  Work is not a state function, and it is easy to show that
its differential is not exact.  For PV work, dW = –PdV.  Substituting equation 2.17 for dV and rear-
ranging, we have:

dW P
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Evaluating ∂V/∂T and ∂V/∂P for the ideal gas equation and multiplying through by P, this be-
comes:

dW = 
RT
P   dP - RdT 2.34

but
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∂
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2.35

We cannot integrate equation 2.34 and obtain a value for the work done without additional knowl-
edge of the variation of T and P because the amount of work done does not depend only on the ini-
tial and final values of T and P; it depends on the path taken.  Heat is also not a state function, not
an exact differential, and also path dependent.  Path dependent functions always have inexact differ-
entials; path independent functions always have exact differentials.

On a less mathematical level, let’s consider how the work and heat will vary in a transformation
of a system, say from state 1 to state 2.  Imagine that we burn gasoline in an open container. In this
case, in the transformation from state 1 (gasoline) to state 2 (combustion products of gasoline) en-
ergy is given up by the system only as heat.  Alternatively, we could burn the gasoline in an en-
gine and recover some of the energy as work (expansion of the volume of the cylinder resulting in
motion of the piston).  The end states of these two transformations are the same, but the amount of
heat released and work done varied depending on the path we took.  Thus neither work nor heat
can be state functions.  Energy is a state function, is path independent, and is an exact differential.
Whether we burn the gasoline in an open container or an engine, the energy released will be the
same.  Herein lies the significance for thermodynamics of Joule’s discovery: that the sum of heat and
work is independent of the path taken even though, independently, work and heat are not.

2.4 The Second Law and Entropy
2.4.1 Statement

Imagine a well-insulated box (an isolated system) somewhere in the universe (Figure 2.4).  Imag-
ine that within the box are two gases, separated by a removable partition.  If we remove the parti-
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tion, what happens?  You know: the two gases mix completely.
The process is entirely spontaneous.  We have neither added en-
ergy to nor taken energy from the system, hence the first law
says nothing about this process.  Nor did removing the partition
“cause” the reaction.  This is apparent from the observation that
if we reinsert the partition, the gases do not unmix.  That you
knew that the gases would mix (and knew as well that they
would not unmix upon reinserting the partition) suggests there
is something very fundamental and universal about this.  We
need a physical law that describes it.  This is the second law.
 The Second Law may be stated in a number of ways:

It is impossible to construct a machine that is able to convey heat by
a cyclical process from one reservoir at a lower temperature to
another at a higher temperature unless work is done by some out-
side agency (i.e., air conditioning is never free). §

Heat cannot be entirely extracted from a body and turned into work (i.e., an engine can never run 100%
efficiently).

Every system left to itself will, on the average, change toward a condition of maximum probability.
Introducing a new state function S called entropy, we may state the second law as:

The entropy of the universe always increases.
In colloquial terms we could say:
You can't shovel manure into the rear end of a horse and expect to get hay out its mouth.

The second law codifies some of our everyday experience.  The first law would not prevent us
from using a horse to manufacture hay from manure.  It only says we can’t get more joules worth
of hay out than we put in as manure.  We would search in vain for any other physical law that
prohibited this event.  Yet our experience shows that it won’t happen.  Indeed, this event is so im-
probable that we find it comical.  Similarly, we know that we can convert gasoline and oxygen to
carbon dioxide and water in an internal combustion engine and use the resulting energy to drive a
vehicle down the road.  But adding CO2 and water to the engine and pushing the car backwards
down the street does not produce gasoline and oxygen, although such a result violates no other law
of physics.  The second law states that there is a natural direction in which reactions will tend to proceed.
This direction is inevitably that of higher entropy of the system and its surroundings.

2.4.2 Statistical Mechanics: A Microscopic Perspective of Entropy

Whereas energy is a property for which we gain an intuitive feel through every day experience,
the concept of entropy is usually more difficult to grasp.  Perhaps the best intuitive understanding
of entropy can be obtained from the microscopic viewpoint of statistical mechanics.  So for that rea-
son, we will make the first of several brief excursions into the world of atoms, molecules, and
quanta.  

Let’s return to our box of gas and consider what happens on a microscopic scale when we re-
move the partition.  To make things tractable, we’ll consider that each gas consists of only two
molecules, so there are four all together, two red and two black.  For this thought experiment, we’ll

                                                
§Rudolf Clausius (1822-1888), a physicist at the Prussian military engineering academy in Berlin, formulated what
we now refer to as the second law and the concept of entropy in a paper published in 1850.  Similar ideas were
published a year later by William Thomson (Lord Kelvin), who is responsible for the word “entropy”.  Clausius
was a theorist who deserves much of the credit for founding what we now call “thermodynamics” (he was re-
sponsible for, among many other things, the virial equation for gases).  However, a case can be made that Sadi
Carnot (1796-1832) should be given the credit.  Carnot was a Parisian military officer (the son of a general in the
French revolutionary army) interested in the efficiency of steam engines.  The question of credit hinges on
whether he was referring to what we now call entropy when he used the word “calorique”.  

Figure 2.4.  A gas-filled box
with a removable partition.
When the partition is removed,
the gases mix.  Entropy in-
creases during this process.
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keep track of the individual molecules, so we label them 1red, 2red,
1black, 2 black.  Before we removed the partition, the red molecules were
on one side and the black ones on the other.  Our molecules have some
thermal energy, so they are free to move around.  So by removing the
partition, we are essentially saying that each molecule is equally likely to
be found in either side of the box.

Before we removed the partition, there was only one possible arrange-
ment of the system: this is shown in Figure 2.5a.  Once we remove the
partition, we have 4 molecules and two subvolumes, and a total of 24 = 16
possible configurations (Fig. 2.5b) of the system.  The basic postulate of sta-
tistical mechanics is: a system is equally likely to be found in any of the states
accessible to it.  Thus we postulate that each of these configurations are
equally likely.  Only one of these states corresponds to the original one
(all red molecules on the left).  Thus the probability of the system being
found in its original state is 1/16.  That is not particularly improbable.
However, suppose that we had altogether a mole of gas (ª6 ¥ 1023 mole-
cules).  The probability of the system ever being found again in its origi-
nal state is then ª 2-1024, which is unlikely indeed.

Now consider a second example.  Suppose that we have two copper
blocks of identical mass at different temperatures and separated by a ther-
mally insulating barrier (Figure 2.6).  Imagine that our system, which is
the two copper blocks, is isolated in space so that the total energy of the
system remains constant.  What happens if we remove the insulating bar-
rier?  Experience tells us that the two copper blocks will eventually come
into thermal equilibrium, i.e., their temperatures will eventually be identi-
cal.

Now let’s look at this process on a microscopic scale.  We have already
mentioned that temperature is related to internal energy.  As we shall see,
this relationship will differ depending on the nature and mass of the mate-
rial of interest, but since our blocks are of identical size and composition,
we can assume temperature and energy are directly related in this case.

Suppose that before we remove the insula-
tion, the left block has 1 unit of energy and
the right one has 5 (we can think of these
as quanta, but this is not necessary).  The
question is, how will energy be distributed after we remove the in-
sulation?

In the statistical mechanical viewpoint, we cannot determine how the
energy will be distributed; we can only compute the possible ways it could
be distributed.  Each of these energy distributions is then equally
likely according to the basic postulate.  So let’s examine how it can
be distributed.  Since we assume that the distribution is completely
random, we proceed by randomly assigning the first unit to either
to left or right block, then the second unit to either, etc.  With 6
units of energy, there are already more ways of distributing it (26 =
64) than we have space to enumerate here.  For example, there are 6
ways energy can be distributed so that the left block has 1 unit and
the right one 5 units.  This is illustrated in Figure 2.7.  However,
since we can’t actually distinguish the energy units, all these ways
are effectively identical.  There are 15 ways, or permutations, we can

distribute energy so that the left block has 2 units and the right 4 units.  Similarly there are 15 per-
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Figure 2.5.  Possible
distribution of mole-
cules of a red and and a
black gas in a box be-
fore (a) and after (b)
removal of a partition
separating them.

Figure 2.6.  Two copper
blocks at different tem-
peratures separated by an
insulator.  When the insu-
lator is removed and the
blocks brought in con-
tact, the blocks come to
thermal equilibrium.  En-
tropy increases in this
process.
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mutations where the left block has
4 units and the right has 2 units.
For this particular example, the
rule is that if there are a total of E
units of energy, e of which are as-
signed to the left block and (E-e) to
the right, then there will be W(e)
identical permutations where W(e)
is calculated as:

W =
-

( )
!

!( )!
e

E

e E e
2.36†

Here we use W(e) to denote the function that describes the number of states accessible to the system
for a given value of e.  In this particular example, “states accessible to the system” refers to a given
distribution of energy units between the two blocks.  According to equation 2.36 there are 20 ways
of distributing our 6 units of energy so that each block has three.  There is, of course, only one way
to distribute energy so that the left block has all of the energy and only one permutation where the
right block has all of it.

According to the basic postulate, any of the 64 possible distributions of energy are equally likely.
The key observation, however, is that there are many ways to distribute energy for some values of
e and only a few for other values.  Thus the chances of the system being found in a state where each
block has three units is 20/64 = 0.3125, whereas the chances of the system being in the state with the
original distribution (1 unit to the left, 5 to the right) are only 6/64 = 0.0156.  So it is much more
likely that we will find the system in a state where energy is equally divided than in the original
state.

Of course, two macroscopic blocks of copper at any reasonable temperature will have far more
than 6 quanta of energy.  Let’s take a just slightly more realistic example and suppose that they have
a total of 20 quanta, and compute the distribution.  There will be 220 possible distributions, far too
many to consider individually, so let’s do it the easy way and use equation 2.36 to produce a graph
of the probability distribution.  Equation 2.36 gives the number of identical states of the system for a
given value of e.  The other thing that we need to know is that the chances of any one of these oc-
curring, which is simply (1/2)20.  So to compute the probability of a particular distinguishable dis-
tribution of energy occurring, we multiply this probability by W.  More generally the probability,
P, will be:

  
P ( )

!
!( )!

e
E

e E e
p qe E e=

-
- 2.37

where p is the probability of an energy unit being in the left block and q is the probability of it be-
ing in the right.  This equation is known as the binomial distribution*.  Since both p and q are equal
to 0.5 in our case (if the blocks were of different mass or of different composition, p and q would
not be equal), the product pe qE-e  is just pE and 2.37 simplifies to:

                                                
†  This is the equation when there are two possible outcomes.  A more general form for a situation where there
are m  possible outcomes (e.g., copper blocks) would be:

  W =
N!

n1!n2!ºnm!   
W =

N

n n nm

!
! ! !1 2 K

2.36a

where there are n 1  outcomes of the first kind (i.e., objects ass igned to the first block), n2 outcomes of the second,
etc. and N = Â ni (i.e., N objects to be distributed).

* If you have a spreadsheet program available to you, this equation may be a built-in function, which makes com-
puting graphs such as Figure 2.8 much easier.  In Microsoft Excel™, this is the BINOMDIST function.
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Figure 2.7.  There are 6 possible ways to distribute 6 energy
units so that the left block has 1 unit and the right block has 5.
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Since pE is a constant (for a given value of E
and configuration of the system), the prob-
ability of the left block having e units of en-
ergy is directly proportional to W(e).  It
turns out that this is general relationship, so
that for any system we may write:

   P (ƒ) = CW(ƒ) 2.39
where ƒ is some property describing the
system and C is some constant (in this case
0.520).  Figure 2.8a shows the probability of
the left block having e units of energy.
Clearly, the most likely situation is that
both will have approximately equal en-
ergy.  The chances of one block having 1
unit and the other 19 units is very small (2 ¥
10-5 to be exact).  In reality of course, the
number of quanta of energy available to
the two copper blocks will be on the order
of Avagadro’s number.  If one or the other
block has 10 or 20 more units or even 1010

more quanta than the other, we wouldn’t
be able to detect it.  Thus energy will al-
ways appear to be distributed evenly be-
tween the two, once the system has had
time to adjust.

Figure 2.8b shows W as a function of e,
the number of energy units in the left
block.  Comparing the two, as well as
equation 2.38, we see that the most prob-
able distribution of energy between the
blocks corresponds to the situation where
the system has the maximal number of
states accessible to it, i.e., to where W(e) is
maximum.

According to our earlier definition of
equilibrium, the state ultimately reached by
this system when we removed the con-
straint (the insulation) is the equilibrium
one.  We can see here that, unlike the ball

on the hill, we cannot determine whether this system is at equilibrium or not simply from its en-
ergy: the total energy of the system remained constant.  In general for a thermodynamic system,
whether or not the system is at equilibrium depends not on its total energy, but on how that energy is inter-
nally distributed.

Clearly, it would be useful to have a function that could predict the internal distribution of energy
at equilibrium.  The function that does this is the entropy.  To understand this, let’s return to our
copper blocks.  Initially, the two copper blocks are separated by a thermal barrier and we can
think of each as an isolated system.  We assume that each is has an internal energy distribution that
is at or close to the most probable one; i.e., each is internally at equilibrium.  Each block has its
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Figure 2.8.  (a) Probability of one of two copper
blocks of equal mass in thermal equilibrium having
e units of energy when the total energy of the two
blocks is 20 units. (b) W , number of states available
to the system (permutations of energy distribution)
as a function of e.
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own function W (which we denote as Wl and Wr  for the left and right block respectively) that gives
the number of states accessible to it at a particular energy distribution.  We assume that initial en-
ergy distribution is not the final one, so that when we remove the insulation, the energy distribu-
tion of system will spontaneously change.  In other words:

W π Wl
i

l
f and W π Wr

i
r
f

where we use the superscripts i and f to denote initial and final respectively.
When the left block has energy e, it can be in any one of W l = W(e) possible states, and the right

block can be in any one of Wr  = W(E-e) states.  Both P and W are multiplicative, so the total number
of possible states after we remove the insulation, W, will be:

W = W ¥ W -( ) ( ) ( )e e E el r

To make P and W additive we simply take the log:

ln ( ) ln ( ) ln ( )W = W + W -e e E el r 2.40

and ln P = ln C + ln W 2.41

As additive properties, ln P and ln W are consistent with our other extensive state variables (e.g., E,
V).
 We want to know which energy distribution, i.e., values of e and E–e, is the most likely one, be-
cause that corresponds to the equilibrium state of the system.   This is the same as asking where the
probability function, P(e), is maximum.  Maximum values of functions have the useful property that they
occur at points where the derivative of the function is 0.  That is, a maximum of function ƒ(x) will occur
where dƒ(x)/d(x) = 0† .  Thus the maximum value of P(e) in Figure 2.8 occurs where dP/de = 0.  The
most probably energy distribution will therefore occur at:

  
∂
∂

=
P ( )e

e
0 or equivalently

  
∂

∂
=

ln ( )P e

e
0 2.42

(we use the partial differential notation to indicate that, since the system is isolated, all other state
variables are held constant).  Substituting equation 2.41 into 2.42, we have:
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(since C is a constant).  Then substituting 2.40 into 2.43 we have:

∂ W
∂
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so the maximum occurs at:
∂ W

∂
= -

∂ W -
∂

ln ( ) ln ( )l re

e

E e

e
2.45

The maximum then occurs where the function ∂ ln W/dE for the two blocks are equal (the negative
sign will cancel because we are taking the derivative ∂ƒ(-e)/∂e).  More generally, we may write:

∂ W
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∂ W

∂
ln ( ) ln ( )l

f
l
f
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E

E

E
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2.46

Notice two interesting things: the equilibrium energy distribution is the one where ln W is maximum
(since it proportional to P) and where the function ∂lnW/∂E of the two blocks are equal.  It would appear
that both are very useful functions.  We define entropy, S, as:

                                                
†  Either a maximum or minimum can occur where the derivative is 0, and a function may have several of both;
so some foreknowledge of the properties of the function of interest is useful in using this property.
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S = k ln WWWW 2.47¶

and a function b such that: b = 
∂ln W
∂E  2.48

where k is some constant (which turns out to be Boltzmann’s constant or the gas constant; the
choice depends on whether we work in units of atoms or moles).  The function S then has the prop-
erty that it is maximum at equilibrium and b has the property that it is the same in every part of the system
at equilibrium.  

Entropy also has the interesting property that in any spontaneous reaction, the total entropy of the system
plus its surroundings must increase.  In our example, this is a simple consequence of the observation
that the final probability, P(E), and therefore also W, will be maximum and hence never be less than
the original one.  Because of that, the final number of accessible states must exceed the initial num-
ber and:

ln ( ) ln ( ) ln ( ) ln ( )W + W ≥ W + Wl
f
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rearranging: [ln ( ) ln ( )] [ln ( ) ln ( )]W - W ≥ - W - Wl
f
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The quantities in brackets are simply the entropy changes of the two blocks.  Hence:
DSl ≥-DSr 2.50

In other words, any decrease in entropy in one of the blocks must be at least compensated for by an in-
crease in entropy of the other block.

For an irreversible process, that is, a spontaneous one such as thermal equilibrium between two
copper blocks, we cannot determine exactly the increase in entropy.  Experience has shown, how-
ever, that the increase in entropy will always exceed the ratio of heat exchanged to temperature.
Thus the mathematical formulation of the second law is:

dQ
T

dS£ 2.51

Like the first law, equation 2.51 cannot be derived or formally proven; it is simply a postulate that
has never been contradicted by experience.  For a reversible reaction, i.e., one that is never far from
equilibrium and therefore one where dQ is small relative to T,

dS
dQ

T
= 2.52

(see the box “the second law in the reversible case”).  In thermodynamics, we restrict our attention
to systems that are close to equilibrium, so equation 2.52 serves as an operational definition of en-
tropy.

2.4.2.1 Microscopic Interpretation of Temperature

Let’s now return to our function b.  The macroscopic function having the property of our new
function b is temperature.  The relation of temperature to b is

kT = 1/b 2.53

and
  

1
kT E

=
∂ W
∂
ln

2.54

Equation 2.53 provides a statistical mechanical definition of temperature.  We can easily show that T
is measure of the energy per degree of freedom.  Do to this though, we need one other relationship,
which we introduce without proof.  This is that W increases roughly with E as:

                                                
¶ This equation, which relates microscopic and macroscopic variables, is inscribed on the tombstone of Ludwig
Boltzmann (1844-1906), the Austrian physicist responsible for it.
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W µ ¶E
where ƒ is the number of degrees of freedom of the system (which in turn is proportional to the
number of atoms or molecules in the system times the modes of motion, e.g., vibrational, rota-
tional, translational, available to them).  Hence:

b =
∂ W
∂

µ
¶ln

E E
2.55

Substituting T = 1/b, then T
E

µ
¶k

2.4.2.2 Entropy and Volume

Our discussion of entropy might leave the impression that entropy is associated only with heat
and temperature.  This is certainly not the case.  Our first example, that of the gases in the box, is a
good demonstration of how entropy changes can also accompany isothermal processes.  When the
partition is removed and the gases mix, there is an increase in the number of states accessible to the
system.  Before the partition is removed, there is only one state accessible to the system (here “ac-
cessible states”  means distribution of red and black molecules between the two sides of the box), so
W = 1.  Suppose that after we remove the partition, we find the system in a state is one where there
is one molecule of each kind on each side (the most probable case).  There are four such possible
configurations, so W = 4.  The entropy change has thus been

DS = k(ln 4 – ln 1) = k ln 4 = 2k ln 2
From the macroscopic perspective, we could say that the red gas, initially confined to the left vol-
ume, expands into the volume of the entire box, and the black gas expands from the right half to the
entire volume.  Thus entropy changes accompany volume changes.

2.4.2.3 Summary

It is often said that entropy is a measure of the randomness of a system.  From the discussion
above, we can understand why.   Entropy is a function of the number of state accessible to a sys-
tem.  Because there are more states available to a system when energy or molecules are  “evenly”
or “randomly” distributed than when we impose a specific constraint on a system (such a the ther-
mal insulation between the blocks or the partition between the gases), there is indeed an association
between randomness and entropy.  When we remove the insulation between the copper blocks, we
allow energy to be randomly distributed between them.  In the example of the combustion of gaso-
line, before combustion all oxygen atoms are constrained to be associated with oxygen molecules.
After combustion, oxygen is randomly distributed between water and CO2 molecules.

More precisely, we may say that an increase in entropy of a system corresponds to a decrease in
knowledge of it.  In the example of our two gases in the box, before the partition is removed, we
know all red molecules are located somewhere in the left half of the box and all black ones some-
where in the right half.  After the partition is removed, we know only that the molecules are lo-
cated somewhere within the combined volume.  Thus our knowledge of the location of the mole-
cules decreases in proportion to the change in volume.  Molecules in ice are located at specific
points in the crystal lattice.  When ice melts, or evaporates, molecules are no longer constrained to
specific locations: there is a increase in entropy of H2O and a corresponding decrease in our
knowledge of molecular positions.  When we allowed the two copper blocks to come to thermal
equilibrium, entropy increased.  There were more possible ways to distribute energy after the
blocks equilibrated than before.  As a result, we knew less how energy was distributed after remov-
ing the insulation.

As a final point, we emphasize that the second law does not mean we cannot decrease the en-
tropy of a “system”.  If that were so, the organization of molecules we call life would not be possi-
ble.  However, if the entropy of a system is to decrease, the entropy of the surroundings must in-
crease.  Thus we can air condition a room, but the result is that the surroundings (the “outside”) are
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warmed by more than the air in the room is cooled.  Organisms can grow, but in doing so they in-
evitably, through consumption and respiration, increase the entropy of their environment.  Thus
we should not be surprised to find that the entropy of the manure is greater than that of hay plus
oxygen.

2.4.3 Integrating Factors and Exact Differentials

A theorem of mathematics states that any inexact differential that is function of only two variables
can be converted to an exact differential.  dW is an inexact differential, and dV is an exact dif-
ferential.  Since dWrev = -PdV, dWrev  can be converted to a state function by dividing by P since

dW

P
dVrev = - 2.56

and V is a state function.  Variables such as P which convert non-state functions to state functions
are termed integrating factors.  Similarly, for a reversible reaction, heat can be converted to the state
function entropy by dividing by T:

dQ

T
dSrev = 2.57

Thus temperature is the integrating factor of heat.  Entropy is a state function and therefore an exact
differential.   Therefore equation 2.57 is telling us that although the heat gained or lost in the trans-
formation from state 1 to state 2 will depend on the path taken, the ratio of heat gained or lost to tem-
perature will always be the same, regardless of path, for a reversible reaction.  

If we return to our example of the combustion of gasoline above, the second law also formalizes
our experience that we cannot build a 100% efficient engine: the transformation from state 1 to state
2 cannot be made in such a way that all energy is extracted as work; some heat must be given up as
well.  In this sense, the automobile radiator is necessitated by the second law.

We can combine the first and second laws as:

dU = TdS – PdV  2.58

Example 2.1. Entropy in Reversible and Irreversible Reactions

Air conditioners work by allowing freon contained in a closed system of pipes to evaporate in
the presence of the air to be cooled, then recondensing the freon (by compressing it) on the warm
or exhaust side of the system.  Let us define our “system” as only the freon in the pipes.  The sys-
tem is closed since it can exchange heat and do work but not exchange mass.  Suppose our system
is contained in an air conditioner maintaining a room at 20° C or 293 K and exhausting to outside
air at 303 K.  Let’s assume the heat of evaporation of the coolant (the energy required to transform
it from liquid to gas), is 1000 joules.  During evaporation, the heat absorbed by the coolant, dQ,
will be 1000 J.  During condensation –1000 J will be given up by the system.  The minimum en-
tropy change during these transformations is easy to calculate from equation 2.51:

Evaporation: dS ≥ 
dQ
 T   = 1000/293 = 3.413 J/k

Condensation: dS ≥ 
dQ
 T   = -1000/303 = -3.300 J/k

The minimum net entropy change in this cycle is the sum of the two or 3.413 - 3.300 = 0.113 J/T.
This is a “real” process and irreversible, so the entropy change will be greater than this.

If we performed the evaporation and condensation isothermally at the equilibrium condensation
temperature, i.e. reversibly, then this result gives the exact entropy change in each case.  In this
imaginary reversible reaction, where equilibrium is always maintained, there would be no net en-
tropy change over the cycle.  But of course no cooling would be achieved either, so it would be
pointless from a practical viewpoint.  It is nevertheless useful to assume this sort of reversible reac-
tion for the purposes of thermodynamic calculations, because exact solutions are obtained.
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This expresses energy in terms of its natural or characteristic variables, S and V.  The characteristic
variables of a function are those which give the simplest form of the exact differential.  This equa-
tion also relates all the primary state variables of thermodynamics, U, S, T, P, and V.  For this rea-
son, it is sometimes called the fundamental equation of thermodynamics.  We will introduce several
other state variables derived from these 5, but these will be simply a convenience.

2.5 Enthalpy
We have now introduced all the fundamental variables of thermodynamics, T, S, U, P and V .

Everything else can be developed and derived from these functions.  Thermodynamicists have
found it convenient to define several other state functions, the first of which is called enthalpy.  En-
thalpy is a composite function and is the sum of the internal energy plus the product PV:

     H ∫∫ U + PV 2.59

As is the case for most thermodynamic functions, it is enthalpy changes rather than absolute en-
thalpy that are most often of interest.  For a system going from state 1 to state 2, the enthaply
change is:  

H2 – H1 = U2 – U1 + P2V2 - P1V1 2.60

The First Law states: U2 – U1 = DQ + DW
so: H2 – H1 =  DQ + DW + P2V2 - P1V1

If pressure is constant, then: DH = DQP + DW + PDV 2.61

(we use the subscript P in DQP to remind us that pressure is constant).  In thermodynamics, PV
work is often the only kind of work of interest.  If the change takes place at constant pressure and P-V
work is the only work done by the system, then the last two terms cancel and enthalpy is simply equal to
the heat gained or lost by the system:

DH = DQP

or in differential form: dH = dQp 2.62
H is a state function because it is defined in terms of state functions U, P, and V.  Because enthalpy
is a state function, dQ must also be a state function under the conditions of constant pressure and
the only work done being PV work.

More generally, the enthalpy change of a system may be expressed as:
dH = dU + VdP + PdV 2.63

 or at constant pressure as:
    dH = dU + PdV 2.64
In terms of its characteristic variables, it may also be expressed as:

dH = TdS + VdP  2.65

The primary value of enthalpy is measuring the energy consumed or released in changes of state
of a system.  For example, how much energy is given off by the reaction:

H2 + O2 ® H2O
To determine the answer we could place hydrogen and oxygen in a well-insulated piston-cylinder
maintaining constant pressure.  We would design it such that we could easily measure the tempera-
ture before and after reaction.  Such an apparatus is known as a calorimeter.  By measuring the tem-
perature before and after the reaction, and knowing the heat capacity of the reactants and our calo-
rimeter, we could determine the enthalpy of this reaction. This enthalpy value is often also called
the heat of reaction or heat of formation and is designated DHr  ( or DHƒ).  Similarly, we might wish to
know how much heat is given off when NaCl is dissolved in water.  Measuring temperature before
and after reaction would allow us to calculate the heat of solution.  The enthalpy change of a system
that undergoes melting is known as the heat of fusion or heat of melting, DHm  (this quantity is
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sometimes denoted DHf; we will use the subscript m to avoid confusion with heat of formation);
that of a system undergoing boiling is known as the heat of vaporization, DHv . As equation 2.65
suggests, measuring enthalpy change is also a convenient way of determining the entropy change.

At this point, it might seem that we have wandered rather far from geochemistry.  However, we
shall shortly see that functions such as entropy and enthalpy and measurements of such things as
heats of solutions and heats of melting are essential to predicting equilibrium geochemical systems.

2.6 Heat Capacity
It is a matter of every day experience that the addition of heat to a body will raise its temperature.

We also know that if we bring two bodies in contact, they will eventually reach the same tem-
perature.  In that state, the bodies are said to be in thermal equilibrium.  However, thermal energy
will not necessarily be partitioned equally between the 2 bodies.  It would require half again as
much heat to increase the temperature of 1g of quartz by 1° C as it would to increase the tempera-
ture of 1g of iron metal by 1° C.  (We saw that temperature is a measure of the energy per degree of
freedom.  It would appear then that quartz and iron have different degrees of freedom per gram,
something we will explore below.)  Heat capacity is the amount of heat (in joules or calories) re-
quired to raise the temperature of a given amount (usually a mole) of a substance by 1 K.  Mathe-
matically, we would say:

C
dQ

dT
= 2.66

However, the heat capacity of a substance will depend on whether heat is added at constant vol-
ume or constant pressure, because some of the heat will be consumed as work if the volume
changes.  Thus a substance will have two values of heat capacity: one for constant volume and one
for constant pressure.

2.6.1 Constant Volume Heat Capacity

Recall that the first law states: dU = dQ + dW
If we restrict work to PV work, this may be rewritten as:

dU = dQ - PdV
If the heating is carried out at constant volume, i.e., dV= 0, then dU = dQ (all energy change takes
the form of heat) and:

C
dU

dTV

V

=
Ê
ËÁ

�
�̄ 2.67

The value of CV for an ideal gas is 3/2R where R is the gas constant, as is shown in the boxed dis-
cussion below.  Molecular gases, however, are not ideal.  Vibrational and rotation modes also
come into play, and heat capacity of real gases, as well as solids and liquids, is a function of tem-
perature.

For solids, motion is vibrational and heat capacities depend vibrational frequencies, which in turn
depend on temperature and bond strength (for stronger bonds there is less energy stored as poten-
tial energy, hence less energy is required to raise temperature), for reasons discussed below.  For
incompressible substances such as solids, the difference between CV and CP is generally small.

2.6.2 Constant Pressure Heat Capacity

Because there is some energy associated with the volume occupied by a substance (as a conse-
quence of compressing or relaxing bonds between atoms), the amount of heat required to raise the
temperature of that substance will depend on whether the heating is carried out at constant pressure
or at constant volume.  In most instances, heating is done at constant pressure.   Equation 2.61 states
that DH = DQp .  Substituting this expression in equation 2.66 we have:
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   C
H

TP

P

=
∂
∂

Ê
ËÁ

�
�̄ 2.68

Thus enthalpy change at constant pressure may also be expressed as:
dH = CPdT 2.69

In geochemistry, it will be mainly constant pressure heat capacity that will be of primary interest
to us, because in natural situations, volumes do not usually remain fixed.

2.6.3 Energy Associated with Volume Occupied and the Relationship between Cv and
Cp

Constant pressure and constant temperature heat capacities are different because there is energy
associated (work done) with expansion and contraction.  Thus how much energy we must transfer
to a substance to raise its temperature will depend on whether some of this energy will be con-
sumed in this process of expansion.  These energy changes are due to potential energy changes as-
sociated with changing the position of an atom or molecule in the electrostatic fields of its neigh-
bors.  The difference between Cv  and Cp reflects this energy associated with volume.  Let’s now de-
termine what this difference is.

We can combine relations 2.67 and 2.68 as:

C C
H

T

U

TP V

P V

- =
∂
∂

Ê
ËÁ

�
�̄ -

∂
∂

Ê
ËÁ

�
�̄ 2.70

From this, we may derive the following relationship:

C C
U

T

U

T
P

V

TP V

P V P

- =
∂
∂

Ê
ËÁ

�
�̄ -

∂
∂

Ê
ËÁ

�
�̄ +

∂
∂

Ê
ËÁ

�
�̄ 2.71

and further: C C
U

V
P

V

TP V

T P

- =
∂
∂

Ê
ËÁ

�
�̄ +

È

Î
Í
Í

ù

û
ú
ú
∂
∂

Ê
ËÁ

�
�̄ 2.72

It can also be shown that:
∂
∂

Ê
ËÁ

�
�̄ = -

U

V
T P

T

a
b

2.73

(∂U/∂V)T is the energy associated with the volume occupied by a substance and is known as the
internal pressure  (Pint , which we introduced earlier in our discussion of the van der Waals law, e.g.,
equation 2.17).  It is a measure of the energy associated with the forces holding molecules or atoms
together.  For real substances, energy changes associated with volume changes reflect potential en-
ergy increases associated with increase separation between charged molecules and/or atoms; there
are no such forces in an ideal gas, so this term is 0 for an ideal gas.  Substituting 2.73 into 2.72, we
obtain:

C C TVP v- =
a

b

2

2.74

Thus the difference between Cp and Cv will depend on temperature and pressure for real sub-
stances.  The terms on the right will always be positive, so that Cp will always be greater than Cv.
This accords with our expectation, since energy will be consumed in expansion when a substance is
heated at constant pressure, whereas this will not be the case for heating at constant volume.  For
an ideal gas, Cp–Cv  = R.

For gases, it is fairly straightforward to measure either Cp or Cv.  It is impractical to measure Cv

for solids and liquids.  Thus only experimentally determined values of Cp are available for solids
and liquids, and values of Cv  must be obtained from equation 2.74 when required.



W. M. White Geochemistry

Chapter 2: Fundamental Concepts of Thermodynamics

43 September 26, 2001

We found earlier that Cp is the variation of heat with temperature at constant pressure.  How does
this differ from the variation of energy with temperature at constant volume?  To answer this ques-
tion, we rearrange equation 2.71 and substitute Cv  for (∂U/∂T)V  and Va for (∂V/∂T)P.  After simplify-
ing the result, we obtain (on a molar basis):

∂
∂

Ê
ËÁ

�
�̄ = -

U

T
C PV

P

P a 2.75

For an ideal gas, the term PVa reduces to R, so that (∂U/∂T)P  = Cp – R.  Cp – R may be shown to be
equal to Cv , so the energy change with temperature for an ideal gas is the same for both constant
pressure and constant temperature conditions.  This is consistent with the notion that the difference
between Cp and Cv  reflects the energy associated with and changing distances between atoms and
molecules in the presence of attractive forces between them.  In an ideal gas, there are no such
forces, hence (∂U/∂T)P = (∂U/∂T)V .  

2.6.4 Heat Capacity of Solids: A Problem in Quantum Physics

As we shall see, knowledge of the heat capacity of substances turns out to be critical to determin-
ing properties such as enthalpy and entropy, and, ultimately, to predicting chemical equilibrium.
The heat capacity of a substance reflects the internal motion of its atoms.  There are 3 kinds of mo-
tion available to atoms and molecules: translational, vibrational and rotational£, but often one or
more of these modes will not be available and not contribute to the energy of a substance.  For
gases at low temperature, only rotational and translational motions are important (for a monatomic
gas, only translational modes are available), while only vibrational motions are important for solids
(translational modes are available to solids, which is why solids have finite vapor pressures, but
they are extremely improbable, which is why vapor pressures of solids are very small and can usu-
ally be neglected).  Twice as much energy is typically required to raise the temperature of a vibra-
tional mode by 1 K as for a translational mode.  This is because vibration involves both kinetic and
potential energy of two or more atoms.  Also, vibrational modes do not accept much energy at low
temperature.  This latter phenomenon is not predicted by classical physics; as a result 19th  century
physicists were puzzled by the temperature dependence of heat capacity.    In 1869 James Maxwell
referred to the problem as “the greatest difficulty yet encountered in molecular theory.”  The solu-
tion required a more radical revision to physics than Maxwell imagined: the heat capacity problem
turned out to be one of the first indications of the inadequacy of classical physics.  An understand-
ing of the dependence of heat capacity on temperature was only achieved in the  20th  century with
the aid of quantum physics.  A complete theoretical treatment of  heat capacity of real substances is

                                                
£ R. Clausius recognized the possibility that molecules might have these three kinds of motion in 1855.

Example 2.2: Measuring Enthalpies of Reaction
Sodium reacts spontaneously and vigorously with oxygen to form Na2O.  The heat given off by

this reaction is the enthalpy of formation DHƒ of Na2O.  Suppose that you react 23 g of Na metal
with oxygen in a calorimeter that has the effective heat capacity of 5 kg of water.  The heat capacity
of water is 75.3 J/mol K.  If the calorimeter has a temperature of 20°C before the reaction and a
temperature of 29.9°C after the reaction, what is DHƒ of Na2O?  Assume that the Na2O contributes
negligibly to the heat capacity of the system.

Answer:  The heat capacity of the calorimeter is
 75.3J/mol K ¥ 5000g ∏ 18g/mol = 20917 J/K.

The heat required to raise its temperature by 9.9 K is then
9.9 ¥ 20917 = 207.08 kJ

 which is the enthaply of this reaction.  Our experiment created 0.5 moles of Na2O, so DH is –414.16
kJ/mol.
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beyond the scope of this book.  However, even the few statements we will make will require us to
make another excursion into statistical mechanics, a closely related field to discover the Boltzmann
Distribution Law.  What we learn will be of considerable use in subsequent chapters.

2.6.4.1 The Boltzmann Distribution Law

Let’s return to the example of mineral sample A in heat bath B discussed earlier in thermal equilib-
rium and isolated from their surroundings (B being much larger than A).  The total energy of the
system is fixed, but the energy of A and B will oscillate about their most mean values.  The question
we ask is what is the probability that system A is in state a such that it has energy EA ?

We assume that the number of states accessible when energy is EA is some function of energy, i.e.,
W(a) = W(EA ) 2.76

Following the basic postulate, we also assume that all states are equally probable and that the prob-
ability of a system having a given energy is simply proportional to the number of states the system
can assume when it has that energy:

P = C W (2.39)
where C is a constant.  Thus the probability of A being in state a with energy EA is:

Pa = CA W(EA ) 2.77
Since the total energy of the two system is fixed, system B will have some fixed energy EB when A
is in state a with energy EA, and:

EB = E – EA

where E is the total energy of the system.  As we mentioned earlier, W is multiplicative, so the num-
ber of states available to the total system, A + B, is the product of the number of states available to A
times the states available to B:

WTotal = WA WB

If we stipulate that A is in state a, then WA is 1 and the total number of states available to the system
in that situation is just WB:   

WTotal = 1 ¥ WB = W(EB)

Thus the probability of finding A in state a is equal to the probability of finding B in one of the
states associated with energy EB, so that:

Pa = CBW(EB) = CBW(E – EA) = CBexp[ln W (E – EA)] 2.78
where E is the total energy of the system (i.e., E = EA + EB).  We can expand ln W (E-EA) as a Taylor
Series about E:

  
ln ( ) ln ( )

ln ( )
W - = W -

WÊ
ËÁ

�
�̄ +E E E E

d E

dEA A K 2.79

and since B is much larger than A, E >> EA, higher order terms may be neglected.
Substituting b for ∂lnW(E)/dE (Equ 2.48), we have:

W(E – EA) = exp(ln W(E) – EAb) = W(E)e–bEA

and Pa = CBW(E)e–bEA 2.80
Since the total energy of the system, E, is fixed, W(E) must also be fixed, i.e., constant, so:

Pa = Ce–bEA 2.81
Substituting 1/kT for b (Equ. 2.53), we have:

Pa = Ce–EA/kT
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We can deduce the value of the constant C by noting that ÂPi  = 1, i.e., the probabilities over all en-
ergy levels must sum to one (because the system must always be in one of these states).  Therefore:

ÂPi = CÂe–bEi = 1 2.82

so that C = 1/Âe–bEi 2.83
Generalizing our result, the probability of the system being in state i corresponding to energy ei is:

  

Pi

T

T

n

e

e

i

n
=

-

-Â
e

e

/

/

k

k 2.84

This equation is the Boltzmann distribution law*, and one of the most important equations in statisti-
cal mechanics.  Though we derived it for a specific situation and introduced an approximation (the
Taylor Series expansion), these were merely conveniences; the result is very general.  If we define
our “system” as an atom or molecule, then this equation tells us the probability of an atom having a
given energy value, ei.  This is the statistical mechanical interpretation of this equation.  The basic

tenet of quantum physics is that energy is quan-
tized: only discrete values are possible.  The
Boltzmann distribution law tells the probability
of an atom having the energy associated with
quantum level i.

The Boltzmann distribution law says that the
population of energy levels decreases ex-
ponentially as the energy of that level increases
(energy among atoms is like money among men: the
poor are many and the rich few).  A hypothetical
example is shown in Figure 2.9.

2.6.4.2 The Partition Function

The denominator of Equ. 2.84, which is the
probability normalizing factor or the sum of the
energy distribution over all accessible states, is
called the partition function and is denoted Q:

  
Q = -Âe i T

i

e / k 2.85

The partition function is a key variable in sta-
tistical mechanics and quantum physics.  It is re-
lated to macroscopic variables with which we
are already familiar, namely energy and en-
tropy.  Let’s examine these relationships.
We can compute the total internal energy of a

                                                
* We now understand and interpret this law in terms of quantum physics, but Boltzmann formulated
it 30 years before Planck and Einstein laid the foundations of quantum theory.  Ludwig Boltzmann’s
work in the second half of the nineteenth century laid the foundations of statistical mechanics and
paved the way for quantum theory in the next century.  His work was heavily attacked by other
physicists of the time, who felt physics should deal only with macroscopic observable quantities and
not with atoms, which were then purely hypothetical constructs.  These attacks contributed to in-
creasingly frequent bouts of depression, which ultimately led to Boltzmann's suicide in 1906.  Ironi-
cally and sadly, this was about the time that Perrin's experiments with Brownian motion, Millikan's
oil drop experiment, and Einstein's work on the photoelectric effect confirmed the discrete nature of
mass, charge, and energy, and thereby the enduring value of Boltzmann’s work.
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Figure 2.9.  Occupation of vibrational energy
levels calculated from the Boltzmann distribu-
tion.  The probability of an energy level associ-
ated with the vibrational quantum number n is
shown as a function of n for a hypothetical dia-
tomic molecule at 273 K and 673 K.
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system, U, as the average energy of the atoms times the number of atoms, n.  To do this we need to
know how energy is distributed among atoms.  Macroscopic systems have a very large number of
atoms (~1023, give or take a few in the exponent).  In this case, the number of atoms having some
energy ei is proportional to the probability of one atom having this energy.   So to find the average,
we take the sum over all possible energies of the product of energy times the possibility of an atom
having that energy.   Thus the internal energy of the system is just:

  
U n

n e
i i

i
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= =Â Â -

e
e e

P
i Q

/ k

2.86

The derivative of Q with respect to temperature (at constant volume) can be obtained from 2.85:
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Comparing this with equation 2.86, we see that this is equivalent to:
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It is also easy to show that ∂lnQ/∂T = 1/Q ∂Q/∂T, so the internal energy of the system is:
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For 1 mole of substance, n is equal to Avagadro’s number, N0.  Since R = N0k, equation 2.89, when
expressed on a molar basis, becomes:
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We should not be surprised to find that entropy is also related to Q.  This relationship, the deriva-
tion of which is left to you (Problem 2.12), is:

S
U

T
R Q= + ln 2.91

Since the partition function is a sum over all possible states, it might appear that computing it
would be a formidable, if not impossible, task.  As we shall see, however, the partition function can
very often be approximated to a high degree of accuracy by quite simple functions.  The partition function
and Boltzmann distribution will prove useful to us in subsequent chapters in discussing several geo-
logically important phenomena such as diffusion and the distribution of stable isotopes between
phases, as well as in understanding heat capacities.

2.6.4.3 Energy Distribution in Solids

According to quantum theory, all modes of motion are quantized.  Consider, for example, vibra-
tions of atoms in a hydrogen molecule.  Even at absolute zero temperature, the atoms will vibrate at
a ground state frequency.  The energy associated with this vibration will be:

e0 = 
1
2  hn0 2.92

where h is Planck’s constant and n0 is the vibrational frequency of the ground state.  Higher quan-
tum levels have higher frequencies (and hence higher energies) that are multiples of this ground
state:

en = (n+
1
2 )hn0 2.93

where n is the quantum number (like all quantum numbers, it may only have integral values).  
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Now consider a monatomic solid, such as diamond, composed of N identical atoms arranged in a
crystal lattice.  For each vibration of each atom, we may write an atomic partition function, q.
Since vibrational motion is the only form of energy available to atoms in a lattice, the atomic parti-
tion function may be written as:

q e em T

m

n h T
= =- - +�

Â Âe n/ ( ) /k k

n

1

2 0

2.94

We can rewrite 2.94 as: q e eh T nh T= - -
�

Ân n0 02/ /k k

n

2.95

The summation term can be expressed as geometric series, 1 + x + x2 + x3 +..., where x = e–hn0 /kT.
Such a series is equal to 1/(1 – x) if x<1.  Thus 2.95 may be rewritten in simpler form as:
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At high temperature, hn0/kT<< 1, and we may approximate e–hn0 /kT in the denominator of Equ.
2.96 by 1 – hn0/kT, so that at high temperature:
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2.97

Using this relationship, and those between constant volume heat capacity and energy and between
energy and the partition function it is possible to show that:

CV = 3R 2.98
This is called the Dulong-Petit Limit  and it holds only where temperature is high enough so that the
approximation e–hn0 /kT = 1 –  hn0/kT holds.  For a solid consisting of N different kinds of atoms,
the predicted heat capacity is 3NR.  Observations bear out these predictions.  For example, at 25°C
the observed heat capacity for NaCl, for which N is 2, is 49.7 J/K, whereas the predicted value is
49.9 J/K.  Substances whose heat capacity agrees with that predicted in this manner are said to be
fully activated.  The temperature at which this occurs, called the characteristic or Einstein temperature,
varies considerably from substance to substance (for reasons explained below).  For most metals, it
is in the range of 100 to 600 K.  For diamond, however, the Einstein temperature is in excess of 2000
K.  

Now consider the case where the temperature is very low.  In this case, the hn0/kT >>1 and the
denominator of equation 2.99 therefore tends to 1, so that 2.99 reduces to:

q e h T@ - n 0 2/ k 2.99
The differential with respect to temperature of lnq is then simply:
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If we insert this into equation 2.90 and then into 2.80 and differentiate U with respect to tempera-
ture, we find that the predicted heat capacity is 0!  In actuality, only a perfectly crystalline solid
would have 0 heat capacity near absolute 0.  Real solids have a small but finite heat capacity.

On a less mathematical level, the heat capacities of solids at low temperature are small because the
spacings between the first few vibrational energy levels are large.  As a result, energy transitions
are large and therefore improbable.  Thus at low temperature, relatively little energy will go into
vibrational motions.

We can also see from equation 2.125 that the gaps between energy levels depend on the funda-
mental frequency n0.  The larger the gap in vibrational frequency, the less likely will be the transi-
tion to higher energy states.  The ground state frequency in turn depends on bond strength.  Strong
bonds have higher vibrational frequencies and as a result, energy is less readily stored in atomic vi-
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brations.  In general, covalent bonds will be stronger
than ionic ones, which in turn are stronger than me-
tallic bonds.  Thus diamond, which has strong cova-
lent bonds, has a low heat capacity until it is fully ac-
tivated, and full activation occurs at very high tem-
peratures.  The bonds in quartz and alumina (Al2O3)
are also largely covalent, and these substances also
have low heat capacities until fully activated.  Metals,
on the other hand, tend to have weaker bonds and
high heat capacities.

Heat capacities are more difficult to predict at in-
termediate temperatures and require some knowledge
of the vibrational frequencies.  One simple assump-
tion, used by Einstein‡, is that all vibrations have the
same frequency. The Einstein model provides reason-
able predictions of Cv at intermediate and high tem-
peratures, but does not work well at low tempera-
tures.  A somewhat more sophisticated assumption was used by Debye§ , who assumed a range of
frequencies up to a maximum value, nD, now called the Debye frequency, and then integrated the
frequency spectrum.  The procedure is too complex for us to treat here.  At low temperature, the
Debye theory predicts:
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2.101

where qD = hnD/k and is called the Debye temperature.
Figure 2.10 shows an example of the variation in heat capacity.  Consistent with predictions made

in the discussion above, heat capacity becomes essentially constant at T = hn/k and approaches 0 at
T = 0.  Together, the Debye and Einstein models give a reasonable approximation of heat capacity
over a large range of temperature, particularly for simple solids.

Nevertheless, geochemists generally use empirically determined heat capacities.  Constant pres-
sure heat capacities are easier to determine, and therefore more generally available and used.  For
minerals, which are relatively incompressible, the difference between Cv  and Cp is small and can of-
ten be neglected.  Empirical heat capacity data is generally in the form of the coefficients of polyno-
mial expressions of temperature.  The Maier-Kelley formulation is:

S
C T

dT
S SP

298 0

298

0= + + DÚ f C a bT
c

TP = + - 2 2.102

 where a, b, and c are the empirically determined coefficients.  The Haas-Fisher formulation is:

                                                
‡  Albert Einstein, though best know for his relativity theories, was also the founder, along with Max Planck, of
quantum physics.  His work on the quantum basis of heat capacity of solids was published in 1907.  Einstein was
born in 1879 in Ulm, Germany, and published some of his most significant papers while working as a patent clerk
in Bern, Switzerland.  He later joined the Prussian Academy of Sciences in Berlin.  A dedicated and active pacifist,
Einstein left Germany when Hitler came to power in 1933.  He later joined the Center for Advanced Studies in
Princeton, New Jersey.  He died in Princeton in 1955.
§  Peter Debye (1884-1966) was born in Maastricht, Netherlands (as Petrus Debije), but spent much of his early
career in Germany, eventually become director of the Kaiser-Wilhelm-Institut in Berlin.  While he was visiting
Cornell University in 1940, Germany invaded Holland and Debye simply remained at Cornell, eventually becom-
ing chairman of the Chemistry Department.  Debye made numerous contributions to physics and physical chem-
istry; we shall encounter his work again in the next chapter.

0 10.5

Cvib

1.5
kT/hn

Figure 2.10.  Vibrational contribution to
heat capacity as a function of kT/hn.
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C a bT
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2 1 2/  2.103

with a, b, c, f, and g as empirically determined constants.

2.6.5 Relationship of Entropy to Other State Variables

We can now use heat capacity to define the temperature dependency of entropy:
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The dependencies on pressure and volume (at constant temperature) are:
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2.6.6 Additive Nature of Silicate Heat Capacities

For many oxides and silicates, heat capacities are approximately additive at room temperature.
Thus, for example, the heat capacity of enstatite, MgSiO3, may be approximated by adding the heat
capacities of its oxide components, quartz (SiO2) and periclase (MgO).   In other words since:

SiO2 + MgO Æ MgSiO3

then Cp-En ª Cp-Qz + Cp-Pe

Substituting values: Cp-En ª 10.62 + 9.03 = 19.65 cal/mol-K
The observed value for the heat capacity of enstatite at 300 K is 19.62 cal/mol-K, which differs from
our estimate by only 0.1%.  For most silicates and oxides, this approach will yield estimates of heat
capacities that are within 5% of the observed values.  However, this is not true at low temperature.
The same calculation for Cp-En  carried out using heat capacities at 50 K differs from the observed
value by 20%.

The explanation for the additive nature of oxide and silicate heat capacities has to do with the na-
ture of bonding and atomic vibrations.  The vibrations that are not fully activated at room temper-
ature are largely dependent on the nature of the individual cation-oxygen bonds and not on the
atomic arrangement in complex solids.

2.7 The Third Law and Absolute Entropy
2.7.1 Statement of the Third Law

The entropies of substances tend toward zero as absolute zero temperature is approached.  Or as
Lewis and Randall expressed it:

If the entropy of each element in some crystalline state may be taken as zero at the absolute zero of
temperature, every substance has a finite positive entropy, but at absolute zero, the entropy may be-
come zero, and does so become in the case of perfectly crystalline substances.

2.7.2 Absolute Entropy

We recall that entropy is proportional to the number of possible arrangements of a system: S = k
ln W.  At absolute zero, a perfectly crystalline substance has only one possible arrangement, namely
the ground state.  Hence S = k ln 1 = 0.  

The implication of this seemingly trivial statement is that we can determine the absolute entropy
of substances.  We can write the complete differential for S in terms of T and P as:
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Substituting equations 2.106 and 2.107, we have:

dS
C

T
dT VdPP= - a 2.108

As we have just seen, Cp is a function of temperature, so we need to integrate equation 2.108 to ob-
tain the absolute entropy.  If we are also interested in the knowing the entropy at some pressure
other than the reference pressure (usually taken as 0.1 MPa = 1 atm), we integrate:
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1 1

a 2.109

The coefficient of thermal expansion is 0 at absolute 0; the choice of 1 atm for the heat capacity inte-
gration is a matter of convenience because CP  measurements are made at 1 atm.

Actually, the absolute entropies of real substances tend not to be zero at absolute zero, which is
to say they are not ‘perfectly crystalline’ in the third law sense.  A residual entropy, S0, which re-
flects such things as mixing of two or more kinds of atoms (elements or even isotopes of the same
element) at crystallographically equivalent sites, must also be considered.  This configurational en-
tropy is important for some geologically important substances such as feldspars and amphiboles.
Configurational entropy can be calculated as

S R m X Xconf j ij ij
ij

= - ÂÂ ln 2.110

where mj is the total number of atoms in the jth crystallographic site (in atoms per formula unit) and
Xi,j  is the mole fraction of the ith  atom (element) in the jth  site.  We will return to this equation when
we consider multicomponent systems.

2.8 Calculating Enthalpy and Entropy Changes
2.8.1 Adiabatic Changes

By definition, an adiabatic system is one where dQ = 0.  Since –dQ/T = dS (equation 2.52), it fol-
lows that an adiabatic change is one carried out at constant entropy.  For adiabatic expansion or com-
pression therefore, dU = –PdV.

2.8.2 Isobaric and Isothermal Changes in Enthalpy

From equation 2.62, we can see that the temperature derivative of enthalpy is simply the isobaric
heat capacity:
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and hence: dH = CP dT 2.111
Thus the change in enthalpy over some temperature interval may be found as:

Example 2.3: Configurational Entropy
Olivine is an example of a solid solution, which we will discuss at length in Chapter 3.  Fe and

Mg may substitute freely for each other in the octahedral site.  What is the configurational entropy
of olivine of the composition (Mg0. 8,Fe0.2 )2SiO4?

Answer: To solve this problem, we need to apply equation 2.110.  We will need only consider
the octahedral site containing Fe and Mg, because O and Si are the only kinds of atoms occupying
the tetrahedral and anion sites.  The values for X for these 2 sites will therefore be 1, and ln (1) = 0,
so there is no contribution to configurational entropy.

For the octahedral site, m = 2, X1 = XMg = 0.8 and X2  = XFe  = 0.2.  Therefore, the configurational
entropy will be:

Sconf = – 8.314¥2 0.8ln(0.8) + 0.2ln(0.2)   = 8.32 J mol–1 K-1
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 D = ÚH C dTPT
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Cp is often a complex function of temperature, so the in-
tegration is essential.

Isothermal enthalpy changes refer are those occurring
at constant temperature, for example, changes in en-
thalpy due to isothermal pressure changes.  Though
pressure changes at constant temperature are relatively
rare in nature, hypothetical isothermal paths are useful in
calculating energy changes.  Since enthalpy is a state
property, the net change in the enthalpy of a system de-
pends only on the starting and ending state, i.e., the en-
thalpy change is path-independent.  Imagine a system
consisting of a quartz crystal that undergoes a change in
state from 25°C and 1 atm to 500° and 400 atm.  How will
the enthalpy of this system change?  Though in actuality
the pressure and temperature changes may have oc-
curred simultaneously, because the enthalpy change is
path-independent, we can treat the problem as an iso-
baric temperature change followed by an isothermal
temperature change, as illustrated in Figure 2.13.  Know-
ing how to calculate isothermal entropy changes is useful for this reason.

We want to know how enthalpy changes as a function of pressure at constant temperature.  We
begin from equation 2.76, which expresses the enthalpy change as a function of volume and pres-
sure:
   dH = dU + VdP + PdV (2.63)  
Now we need a suitable substitute for the dU term.  The energy change, dU, as a function of vol-
ume and temperature change is:
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 Substituting 2.67 and 2.73 into 2.113, we have:

dU = CVdT + (T
a
b    – P)dV

For an isothermal change, the first term is 0.  But we want dU as a function of pressure rather than
volume change.   Since dV = -VbdP (definition of b), the dU term (at constant T) can be expressed
as:

dU = V(bP – aT)dP 2.114

Substituting equation 2.114 into 2.63, we obtain

dH = V(bP - aT)dP + VdP + PdV
Substituting -VbdP  for  dV:

dH = (PVb – TVa + V – PVb)dP

Collecting terms and rearranging: dH = V(1 – aT)dP 2.115

If changes are large, a, b, and V must be considered functions of T and P and an integration per-
formed over the pressure change.  The isothermal enthalpy change due to pressure change is thus
given by:

Pressure

T1, P1

Te
m

pe
ra

tu
re T2, P2

Figure 2.13.  Transformations on a tem-
perature-pressure diagram.  Changes in
state variables such as entropy and en-
thalpy are path independent. For such
variables, the transformation paths
shown by the solid line and dashed line
are equivalent.



W. M. White Geochemistry

Chapter 2: Fundamental Concepts of Thermodynamics

52 September 26, 2001

D = -ÚH V T dP
P

P

( )1
1

2

a 2.116

2.8.3 Enthalpies of Formation, Vaporization and Fusion

We cannot measure the absolute enthalpy of substances, but we can determine the enthalpy
changes resulting from transformations of a system, and they are of great interest in ther-
modynamics.  For this purpose, a system of relative enthalpies of substances has been established.
Since enthalpy is a function of both temperature and pressure, the first problem is to establish stan-
dard conditions of temperature and pressure to which these enthalpies apply.  These conditions, by
convention, are 298.15 K and 0.1 MPa (25° C and 1 bar).  Under these conditions the elements are
assigned enthalpies of 0.  Standard state enthalpy of formation, or heat of formation, from the ele-
ments, DH°, can then be determined for compounds by measuring the heat evolved in the reactions
that form them from the elements (e.g., Example 2.2).  For example, the heat of formation of water is
determined from the energy released at constant pressure in the reaction: H2 + 1

2 O2 Æ H2O, which
yields a DH° of -285.83 kJ/mol, where water is in the liquid state.  The minus sign indicates heat is
liberated in the reaction, i.e., the reaction is exothermic (a reaction that consumes heat is said to be
endothermic).  If the same reaction is run to produce water vapor, the DH° turns out to be -241.81
kJ/mol.  The difference, 44.02 kJ/mol, is the heat consumed in going from liquid water to water
vapor, or the heat of vaporization.  The heat of melting (or fusion) is the enthalpy change in the melt-
ing of a substance.  Because reaction rates are often very slow, and some compounds are not stable
at 298 K and 1 MPa, it is not possible to measure the enthalpy for every compound.  However, the
enthalpies of formation for these elements can generally be calculated indirectly.

2.8.4 Entropies of Reaction

Since dH = dQp (2.62) and dSrev = 
dQ
T  (2.57)

then at constant pressure: dSrev = 
dH
T   2.118

Thus at constant pressure, the entropy change in a reversible reaction is simply the ratio of enthalpy
change to temperature.

Example 2.4: Enthalpies (or Heats) of Reaction and Hess’s Law
What is the energy consumed or evolved in the hydration of corundum (Al2O3) to form gibbsite

(Al(OH)3)?  The reaction is:
1
2 Al2O3 + 

3
2  H2O Æ Al(OH)3

Answer: We use what is known as Hess's Law, which states that the enthalpy of reaction is equal to
the enthalpy of the products minus the enthalpy of the reactants:

D = DÂH Hr i f i
i

n ,
0 2.117

where ni is the stoichiometric coefficient for the ith  species.  To use Hess’s Law we need the standard
state enthalpies for water, corundum and gibbsite.  These are: Al2 O3:  -1675.70 kJ/mol,  H2O: -285.83
and Al(OH)3: -1293.13.   The enthalpy of reaction is DHr = -1293.13 – (0.5 ¥ -1675.70) – (1.5 ¥ -285.83) =
-26.53 kJ.

This is the enthalpy of reaction at 1 bar and 298° K.  Suppose you were interested in this reaction
under metamorphic conditions such as 300° C and 50 MPa.  How would you calculate the enthalpy
of reaction then?
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Entropies are additive properties and entropies of reaction can be calculated in the same manner
as for enthalpies, i.e., Hess's Law applies:

D = DÂS Sr i f i
i

n ,
0 2.119

The total entropy of a substance can be calculated as:

S
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where S0 is the entropy at 0 K  (configurational, or ‘third law’ entropy) and DSF is the entropy
change associated with any phase change.   Compilations for S298  are available for many minerals.  
Table 2.2 lists some heat capacity constants for the power series formula as well as other thermody-
namic data for a few geologically important minerals.

Example 2.5: Calculating Isobaric Enthalpy Changes
How does the enthalpy of a 1 mol quartz crystal change if it is heated from 25° C to 300° C if the

temperature dependence of heat capacity can be expressed as Cp = a + bT – cT–2 J/K-mol, and a =
46.94, b = 0.0343, and c = 1129680?  Assume pressure is constant.

The first step is to convert temperature to kelvins: all thermodynamic formulae assume tempera-
ture is in kelvins.  So T1 = 298 K and T2 = 573 K.  To solve this problem, we need to use equation
2.112.  Substituting the expression for heat capacity into Equ. 2.112, we have:

D = + -( ) = + -- -Ú Ú Ú ÚH a bT cT dT a dT b TdT c T dT2
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Performing the integral, we have:
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Now that we have done the math, all that is left is arithmetic.  This is most easily done using a
spreadsheet.  Among other things, it is much easier to avoid arithmetical errors.  In addition, we
have a permanent record of what we have done.  We might set up a spreadsheet to calculate this
problem as follows:

Values Formulae & Results
a 46.94 H (a*Temp)+(b*Temp^2/2)+(c_/Temp)
b 0.0343 H1 19301.98 J /mol
c 1129680 H2 34498.98 J /mol
Temp1 2 9 8 DDDD H = 1 5 . 2 0 k J / M o l
Temp2 5 7 3

This example is from Microsoft Excel™.  One the left, we have written down the names for the vari-
ous constants in one column, and their values in an adjacent one.  Using the Create Names com-
mand, we assigned the names in the first column to the values in the second (to avoid confusion
with row names, we have named T1 and T2 Temp1 and Temp2 respectively; Excel automatically
added an underline to ‘c’, so this constant appears as c_ in our formula).  In the column on the
right, we have written the formula out in the second row, then evaluated it at T1 and T2 in the third
and forth rows respectively.  The last row, in bold, contains our answer, 15.2 kJ/mole, determined
simply by subtracting ‘H1’ from ‘H2’ (and dividing by 1000).  Hint: we need to keep track of units.
Excel won’t do this for us.
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2.9 Free Energy
We can now introduce two free energy functions, the Helmholtz Free Energy and the Gibbs Free

Energy.  The Gibbs Free Energy is one of the most useful functions in thermodynamics.

2.9.1 Helmholtz Free Energy

We can rearrange equation 2.58 to read dU - TdS = -PdV.  The -PdV term is the work term and the
TdS term is the heat function.  TdS is the energy unavailable for work.  Therefore dU - TdS is the
amount of internal energy in the system available for work, or the Free Energy. We define it as A, the
Helmholtz Free Energy:

Table 2.2: Standard State Thermodynamic Data for Some Important Minerals
Phase/

Compound
Formula D H f

o

(kJ/mol)
S°

(J/K-mol)
D G f

o

(kJ/mol)
V

(cc/mol)* a
Cp

b c
H2Og

H2 O(gas) -241.81 188.74 -228.57 24789.00 30.54 0.01029 0
H2Ol

H2 O(liquid) -285.84 69.92 -237.18 18.10 29.75 0.03448 0
CO2

CO2 -393.51 213.64 -394.39 24465.10 44.22 0.00879 861904
Calcite CaCO3 -1207.30 92.68 -1130.10 36.93 104.52 0.02192 2594080
Aragonite CaCO3 -1207.21 90.21 -1129.16 34.15 84.22 0.04284 1397456
a-Qz SiO2 -910.65 41.34 -856.24 22.69 46.94 0.03431 1129680

b-Qz SiO2 -910.25 41.82 -856.24 60.29 0.00812 0
Cristobal. SiO2 -853.10 43.40 -853.10 25.74 58.49 0.01397 1594104
Coesite SiO2 -851.62 40.38 -851.62 20.64 46.02 0.00351 1129680
Periclase MgO -601.66 26.94 -569.38 11.25 42.59 0.00728 619232
Magnetite Fe 3O 4 -1118.17 145.73 -1014.93 44.52 91.55 0.20167 0
Spinel MgAl2 O 4 -2288.01 80.63 -2163.15 39.71 153.86 0.02684 4062246
Hem Fe 2O 3 -827.26 87.61 -745.40 30.27 98.28 0.07782 1485320
Corundum Al2 O 3 -1661.65 50.96 -1568.26 25.58 11.80 0.03506 3506192
Kyanite Al2 SiO5 -2581.10 83.68 -2426.91 44.09 173.18 0.02853 5389871
Andauslite Al2 SiO5 -2576.78 92.88 -2429.18 51.53 172.84 0.02633 5184855
Sillimanite Al2 SiO5 -2573.57 96.78 -2427.10 49.90 167.46 0.03092 4884443
Almandine Fe 3Al2 Si 3O 12 -5265.5 339.93 -4941.73 115.28 408.15 0.14075 7836623
Grossular Ca3 Al2 Si 3O 12 -6624.93 254.68 -6263.31 125.30 435.21 0.07117 11429851
Albite NaAlSi3 O 8 -3921.02 210.04 -3708.31 100.07 258.15 0.05816 6280184
K-feldspar KAlSi 3O 8 -3971.04 213.93 -3971.4 108.87 320.57 0.01804 12528988
Anorthite CaAl2 Si 2O 8 -4215.60 205.43 -3991.86 100.79 264.89 0.06190 7112800
Jadeite NaAlSi2 O 6 -3011.94 133.47 -2842.80 60.44 201.67 0.04770 4966408
Diospide CaMgSi 2O 6 -3202.34 143.09 -3029.22 66.09 221.21 0.03280 6585616
Enstatite MgSiO3 -1546.77 67.86 -1459.92 31.28 102.72 0.01983 2627552
Forsterite Mg2 SiO4 -2175.68 95.19 -2056.70 43.79 149.83 0.02736 3564768
Clinozo Ca2 Al3 Si 3O 12(OH) -68798.42 295.56 -6482.02 136.2 787.52 0.10550 11357468
Tremolite Ca2 MgSi 8O 22(OH) 2 -12319.70 548.90 -11590.71 272.92 188.22 0.05729 4482200
Chlorite MgAl(AlSi 3)O 10(OH)

8

-8857.38 465.26 -8207.77 207.11 696.64 0.17614 15677448

Pargasite NaCa2Mg4Al3Si8O22(OH)2 -12623.40 669.44 -11950.58 273.5 861.07 0.17431 21007864
Phlogopite KMg3 AlSi 3O 10(OH) 2 -6226.07 287.86 -5841.65 149.66 420.95 0.01204 8995600
Muscovite KAl3 Si 3O 10(OH) 2 -5972.28 287.86 -5591.08 140.71 408.19 0.110374 10644096
Gibbsite Al(OH) 3 -1293.13 70.08 -1155.49 31.96 36.19 0.19079 0
Boehmite AlO(OH) -983.57 48.45 -908.97 19.54 60.40 0.01757 0
Brucite Mg(OH) 2 -926.30 63.14 -835.32 24.63 101.03 0.01678 2556424

Data for the standard state of 298.15 K and 0.1 MPa.  DH
o
f   is the molar heat (enthalpy) of formation from the

elements ;  S° is the standard state entropy; V is the molar volume; a, b and c are constants for the heat capacity
(Cp) computed as: Cp = a + bT – cT –2 J/K-mol.  Modified from Helgeson et al. (1978).
*cc/mol = J/MPa/mol.
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A ∫∫∫∫ U - TS 2.121

As usual, we are interested in the differential form (since we are more interested in changes than
in absolutes):

dA = dU - d(TS) = dU - SdT - TdS 2.122

or substituting 2.58 into 2.122: dA = – SdT – PdV 2.123

Example 2.6: Calculating Enthalpy and Entropy Changes
If the heat capacity of steam can be represented by a three-term power series:

Cp = a + bT + cT2

 with constants a = 36.37 J/K-mol, b = –7.84¥10-3 J/K2-mol, and c = 9.08¥10-6 J/K3-mol, and the en-
thaply of vaporization at 100°C is 40.6 kJ/mol, calculate the  S and H changes when 1 mol of liquid
water at 100° C and 1 atm is converted to steam and brought to 200° C and 3 atm.  Assume steam
behaves as an ideal gas (which, in reality, it is certainly not).

Answer: We need to calculate entropy and enthalpy associated with three changes: the conversion
of water to steam, raising the steam from 100° C to 200° C, and increasing the pressure from 1 atm to
3 atm.  Since both S and H are state variables, we can treat these three processes separately; our an-
swer will be the sum of the result for each of these processes and will be independent of the order
in which we do these calculations.

1. Conversion of water to steam.  This process will result in DH of 40.6 kJ.  For entropy, DS =
DH/T = 40.6/373 = 109 J/K. We converted centigrade to Kelvin, or absolute, temperature.

2.  Raising the steam from 100°C to 200°C (from 373 K to 473 K) isobarically.  Since heat capacity
is a function of temperature, we will have to integrate equation 2.81 over the temperature interval:

C dT a bT cT dT a dT b TdT c T dT aT
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T
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Evaluating this, we find that DH = (17.20 – 0.88 + 0.32) – (13.57 – 0.55 + 0.16) = 3.469 kJ.  The entropy
change is given by:
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Evaluating this, we find that DS = (224.01-3.71+1.02)– (215.37-2.93+.63) = 8.24 J/K.
3. Increasing pressure from 1 atm to 3 atm (0.1 MPa to 0.3 MPa) isothermally.  We can use equa-

tion 2.116 to determine the enthalpy change associated with the pressure change.  On the assump-
tion of ideal gas behavior, we can substitute 1/T for a.  Doing so, we find the equation goes to 0;
thus there is no enthalpy change associated with a pressure change for an ideal gas.  This is in ac-
cord with assumption about an ideal gas: namely that there are no forces between molecules, hence
no energy is stored as potential energy of attraction between molecules.

The isothermal pressure dependence of entropy is given by equation 2.106.  We substitute 1/T for
a and RT/P for V and integrate from P1 to P2:
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The whole enthalpy and entropy changes are the sum the changes in these three steps:
DH = 40.6 + 3.5 + 0 = 44.1 kJ DS = 108.8 + 8.2 – 9.1 = 107.9 J/K
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2.9.2 Gibbs Free Energy

2.9.2.1 Derivation

The Gibbs Free Energy is perhaps misnamed.  By analogy to the Helmholtz Free Energy, it
should be called the Free Enthalpy (but enthalpy is an energy), because it is derived as follows:

G ∫∫∫∫ H - TS  2.123

and dG = d(H – TS) = dH – d(TS) 2.124

or dG = TdS + VdP – d(TS)

which reduces to: dG = VdP - SdT  2.125

Notice the similarity to the Helmholtz Free Energy; in that case we subtracted the TS term from the
internal energy; in this case we subtracted the TS term from the enthalpy.  The Gibbs Free Energy is
the energy available for non-PV work (such as chemical work).  It has two other important properties:
its independent variables are T and P, generally the ones in which we are most interested in geo-
chemistry, and it contains the entropy term (as does the Helmholtz free energy), and hence can be
used as an indication of the direction in which spontaneous reactions will occur.

Gibbs Free Energy Change in Reactions

If we integrate equation 2.125 at constant temperature we obtain:

DDDDG = DDDDH -TDDDDS  2.126

The free energy change of formation, DGf, is related to the enthalpy and entropy change of reac-
tion:
 DG H T Sf

o
f
o

f
o= D - D 2.127

Like other properties of state, the Gibbs free energy is additive.  Therefore:

DG Gr i f i
i

= DÂn , 2.128

Values for DGf at the standard state are available in compilations.  

2.9.3 Criteria for Equilibrium and Spontaneity

The Gibbs Free Energy is perhaps the single most important thermodynamic variable in geo-
chemistry because it provides this criterion for recognizing equilibrium.  This criterion is:

Products and reactants are in equilibrium when their Gibbs free energies are
equal.

Another important quality of the Gibbs Free Energy is closely related:

A chemical reaction will proceed in the direction of lower Gibbs free energy
(i.e., DDDDGr < 0).

The reverse is also true: a reaction will not proceed if it produces an increase in the Gibbs Free En-
ergy.  On an intuitive level, we can understand the Gibbs Free Energy as follows.  We know that
transformations tend to go in the direction of the lowest energy state (e.g., a ball rolls down hill).
We also have learned that transformations go in the direction of increased entropy (if you drop a
glass it breaks into pieces; if you drop the pieces they don't re-assemble into a glass).  We must con-
sider both the tendency for energy to decrease and the tendency for entropy to increase in order to
predict the direction of a chemical reaction.  This is what the Gibbs Free Energy does.
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2.9.4 Temperature and Pressure Dependence of the Gibbs Free Energy

One reason the Gibbs Free Energy is particularly useful is that its characteristic variables are tem-
perature and pressure, which are the ‘external’ variables of greatest interest in geochemistry.  Since
the Gibbs Free Energy is a state variable, we can deduce its temperature and pressure dependencies
from equation 2.125, which are:
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Equations 2.129 and 2.130 allow us to predict how the Gibbs Free Energy of reaction will change
with changing temperature and pressure.  Thus we can predict how the direction of a reaction will
change if we change temperature and pressure.  To obtain the Gibbs Free Energy of Reaction at some
temperature T´ and pressure P´, we integrate:

D = D + D - DÚ ÚG G V dP S dTT P T P rP

P

rT
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ref ref
ref ref

', ' ,

' '
2.131

where DG˚ is the ‘standard state’ Gibbs Free Energy change.  For solids we can often ignore the ef-
fects of temperature and pressure on DV so the first integral reduces to: DV(P-Pref).  For liquids, and
particularly for gases, effects of pressure and temperature of the volume change are important and
cannot be ignored.  The reference pressure is generally 0.1 MPa.  On the other hand, we usually
cannot ignore the temperature dependence of entropy. Hence we need to express DSrr as a function
of temperature.  The temperature dependence of entropy is given by equation 2.105.  Writing this in
integral form, we have:
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Hence a general expression for the entropy change of reaction as a function of temperature is:

Example 2.7: Using Gibbs Free Energy to Predict Equilibrium
Using the thermodynamic data given in Table 2.2 calculate DGr for the reaction:

CaAl2Si2O8 + 2Mg2SiO4 ® CaMgSi2O6 + MgAl2O4 + 2MgSiO3

(Anorthite  +  2 Forsterite   ® Diopside   +   Spinel   +   2 Enstatite)
at 298° and 1 MPa.  Which mineral assemblage is more stable under these conditions (i.e., which
side of the reaction is favored)?  Which assemblage will be favored by increasing pressure?  Why?
Which side will be favored by increasing temperature? Why?

Answer:  Since the data in Table 2.2 are listed in terms of DHf and DSf, it is most convenient to use
equation 2.162, to calculate our answer:

DG = DH -TDS
DH is calculated as: DHf,Di  + DHf,Sp +  2¥DHf,En – (DHf,An +  2¥DHf,Fo ).  DS is calculated in a similar
manner.  Our result is –6.08 kJ/mol.  Because DGr  is negative, the reaction will proceed to the right,
so that the assemblage on the right is more stable under the conditions of 298 K and 1 atm.

To find out which side will be favored by increasing pressure and temperature, we use equations
2.154 and 2.155 to see how DG will change.  For temperature, ∂DG/∂T = –DS.  DS for the reaction is
-36.37 J/K-mol, and ∂DG/∂T = 36.37.  The result is positive, so that DG will increase with increasing
T.  Hence the left side will be favored by increasing temperature.  Had we carried out the calcula-
tion at 1000˚ C and 0.1 MPa, a temperature appropriate for crystallization from a magma, we would
have found that the anorthite-forsterite assemblage is stable.  For pressure, ∂DG/∂P = –DV.  DV for
the reaction is -20.01 cc/mol (=J/MPa-mol).  Thus DG will decrease with increasing pressure, so that
the right side of the reaction will be favored.

Reassuringly, our thermodynamic result is consistent with geologic observation.  The assemblage
on the left, which could be called ‘plagioclase peridotite’ transforms to the assemblage on the right,
‘spinel peridotite’ as pressure increases in the mantle.
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Substituting this into 2.131, the second integral becomes:
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Example 2.8. Predicting the Equilibrium Pressure of a Mineral Assemblage
Using the thermodynamic reaction and data as in Example 2.7:

CaAl2Si2O8 + 2Mg2SiO4 ® CaMgSi2O6 + MgAl2O4 + 2MgSiO3

(Anorthite  +   Forsterite   ® Diopside   +   Spinel   +   2 Enstatite)
determine the pressure at which these two assemblages will be in equilibrium at 1000° C.  Assume
that the volume change of the reaction is independent of pressure and temperature (i.e., a and b  =
0).

Answer:  These two assemblages will be in equilibrium if and only if the Gibbs Free Energy of re-
action is 0.  Mathematically, our problem is to solve equation 2.131 for P such that DG1273,P  = 0.  

Our first step is to find DGr  for this reaction at 1000°C (1273 K) using equation 2.133. Heat capacity
data in Table 2.2 is in the form: Cp  = a + bT - cT-2.  Substituting for DCp, we have:
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Performing the double integral and collecting terms, substituting DT for T´ – Tref , this simplifies to:
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Equation 2.135 is a general solution to equation 2.133 when the Maier-Kelley heat capacity is used.
We found DSTref  to be –36.37 J/K-mol in Example 2.7.  Computing Da as (aDi +aSp  + 2aEn) – (aAn  +

2aFo), we find Da = 15.96 J/mol.  Computing Db and Dc similarly, they are -0.01732 J/K-mol and 1.66
¥ 106 J-K2/mol respectively.  Substituting values into equation 2.135, we find DGT = 36.74 kJ/mol.  

Since we may assuming the phases are incompressible, the solution to the pressure integral is:

D = D = D -ÚG V dP V P PP rP
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Equation 2.132 may now be written as:
0=DGT’,P’  = DG° + DGT +DVr(P´-Pref)

Let DG1273,0.1 =  DG° + DGT . DG° is -6.95 kJ/mol (calculated from values in Table 2.2), so DG1273,0.1

=29.86kJ/mol. DG1273,0.1 is positive, meaning that the left side of the reaction is favored at 1000° C and
atmospheric pressure, consistent with our prediction based on ∂G/∂T.

Solving for pressure, we have
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With DV = -20.01cc/mol, we obtain a value of 1.49 GPa (14.9 kbar).  Thus assemblages on the right
and left will be in equilibrium at 1.49 GPa and 1000°C.  Below that pressure, the left is stable, above
that pressure, the right side is the stable assemblage, according to our calculation.

The transformation from ‘plagioclase peridotite’ to ‘spinel peridotite’ actually occurs around 1.0
GPa in the mantle.  The difference between our result and the real world primarily reflects differ-
ences in mineral composition: mantle forsterite, enstatite and diopside are solids solutions containing
Fe and other elements.  The difference does not reflect our assumption that the volume change is in-
dependent of pressure.  When available data for pressure and temperature dependence of the volume
change is included in the solution, the pressure obtained is only marginally different: 1.54 GPa.
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2.10 The Maxwell Relations
The reciprocity relationship, which we discussed earlier, leads to a number of useful relation-

ships.  These relationships are known as the Maxwell Relations*.  Consider the equation:

dU = TdS – PdV (2.58)
If we write the partial differential of U in terms of S and V we have:

dU
U

S
dS

U

V
dV

V S

=
∂
∂

Ê
ËÁ

�
�̄ +

∂
∂

Ê
ËÁ

�
�̄ 2.136

From a comparison of these two equations, we see that:
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And since the cross differentials are equal, it follows that:
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The other Maxwell Relations can be derived in an exactly analogous way from other state func-
tions.  They are:

from dH (Equ. 2.65)
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from dA (Equ. 2.122) 
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from dG (Equ. 2.125)
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Problems

1.   For a pure olivine mantle, calculate the adiabatic temperature (∂T/∂P)s gradient at 1 atm and
1000°C.  Use the thermodynamic data in Table 2.2 for forsterite (Mg-olivine, Mg2SiO4) and
a = 44 x 10-6 K-1, and b = 0.8¥10-6.  
The following conversions may be useful: 1 cal = 4.184 joules, 1 liter-atm = 24.21 cal.

2.  For an ideal gas, show that:
∂
∂

= -
∂
∂

a bV

P

V

T

3.  A quartz crystal has a volume of 7.5 ml at 298 K and 0.1 MPa. What is the volume of the crystal
at 840K and 12.3 MPa if
 a.) a= 1.4654 ¥ 10-5 K-1 and b= 2.276 ¥ 10-11 Pa-1 and a and b are independent of T and P.

b.) a = 1.4310 ¥ 10-5 K-1 + 1.1587 ¥ 10-9 K-2T
b = 1.8553 ¥ 10-11Pa-1 + 7.9453 ¥ 10-8 P-1

4. One mole of an ideal gas is allowed to expand against against a piston at constant temperature of
0°C.  The initial pressure is 1 MPa and the final pressure is 0.04 MPa.  Assuming the reaction is re-
versible,

a. What is the work done by the gas during the expansion?
b. What is the change in the internal energy and enthalpy of the gas?
c. How much heat is gained/lost during the expansion?

5.  Lava lakes generally have a temperature of about 1100°C.  Assuming that basaltic magma travels
from its place of origin quickly enough so that negligible heat is lost to wall rocks, calculate the
temperature of the magma at a depth of 40 km.  The density of basaltic magma at 1200°C is 2.61
g/cc; coefficient of thermal expansion is about 1 x 10-4/K.  Assume a heat capacity of 0.2 cal/g-deg
and that pressure is related to depth as 1km = 0.33kb (kb is kilobars; assume 1bar = 1 atm.).
(HINT: “negligible heat loss” means the system may be treated as adiabatic.)

6  Show that the Cp of an ideal monatomic gas is 5/2 R.

7.  Show that: 
∂
∂

Ê
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�̄ =
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T
V

a
b

8.  Imagine that there are 30 units of energy to distribute among 3 copper blocks.  
a.) If the energy is distributed completely randomly, what is the probability of the first block hav-

ing all the energy?
b.)  If n1 is the number of units of energy of the first block, construct a graph (a histogram) show-

ing the probability of a given value of n1 occurring as a function of n1.  (HINT: use equation 2.37, but
modify it for the case where there are 3 blocks).

9.  Consider a box partitioned into equal volumes, with the left half containing 1 mole of Ne and
the right half containing 1 mole of He.  When the partition is removed, the gases mix.  Show, using
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a classical thermodynamic approach (i.e., macroscopic) that the entropy change of this process is DS
= 2R ln 2.  Assume that He and Ne are ideal gases and that temperature is constant.
 

10.  Find expressions for Cp and Cv  for a van der Waals gas.

11.  Show that: 
∂
∂

= -
∂
∂

lnQ

T Q

Q

T

1

12.  Show that S
U

T
R Q= + ln

Hint: Start with equations 2.47 and 2.36a using  the approximation that ln N! = N ln N – N.

13.  Helium at 298K and  1 atm has  S° = 30.13 cal/K-mole.  Assume He is an ideal gas.
a. Calculate V, H, G, a, ß, Cp, Cv, for He at 298K and 1 atm.
b. What are the values for these functions at 600K and 100 atm?
c.  What is the entropy at 600 K and 100 atm?

14. Given the following standard data:

Mg + 3/2 O2 + Si Æ MgSiO3 DH = -1497.4 kJ/mol

Si + O2 Æ SiO2               DH = -859.4 kJ/mol

2Mg + 2O2 + Si Æ Mg2SiO4 DH = -2042.6 kJ/mol

find DH in Joules for: Mg2SiO4 + SiO2 Æ 2MgSiO3

15.  Using the data in Table 2.2, calculate the enthalpy and entropy change of diopside as it is
heated at constant pressure from 600 K to 1000 K.

16.  Calculate the total enthalpy upon heating of 100g of quartz from 25° C to 900° C.  Quartz under-
goes a phase transition from a-quartz to b-quartz at 575° C.  The enthalpy of this phase transition is
DHtr  = 0.411 kJ/mol.  Use the  Maier-Kelly heat capacity data in Table 2.2.

17.  Calcite and aragonite are two forms of CaCO3 that differ only their crystal lattice structure.  The
reaction between them is thus simply:

Calcite ® Aragonite
Using the data in Table 2.2,

a.) Determine which of these forms is stable at the surface of the earth (25° C and 0.1 MPa).
b.) Which form is favored by increasing temperature?
c.) Which form is favored by increasing pressure?

18.  Use the data in Table 2.2 to determine the pressure at which calcite and aragonite are in equilib-
rium at 300°C.

19.  Suppose you found kyanite and andulusite coexisting in the same rock, that you had reason to
believe this was an equilibrium assemblage, and that you could independently determine the tem-
perature of equilibrium to be 400°C.  Use the data in Table 2.2 to determine the pressure at which
this rock equilibrated.


