

Thermodynamics of Chemical Mixtures μ_i can also be used to look at the exchange of one component between multiple phases of a *closed system*. *Example 2:* Rb in plagioclase and clinopyroxene - two minerals typically found in a basalt $\mu_{Rb}^{plag} \cdot \Delta n_{Rb}^{plag} + \mu_{Rb}^{cpx} \cdot \Delta n_{Rb}^{cpx} = 0$ which rearranges to... $\mu_{Rb}^{plag} \cdot \Delta n_{Rb}^{plag} = -\mu_{Rb}^{cpx} \cdot \Delta n_{Rb}^{cpx} = 0$ and chemical exchange between these two phases should be balanced. Thus, $\Delta n_{Rb}^{plag} = -\Delta n_{Rb}^{cpx}$ which leads to $\mu_{Rb}^{plag} = \mu_{Rb}^{cpx}$ Which can be used to write something called a partition coefficient equation for Rb exchange between the minerals

<section-header><section-header><text><section-header><text><text><equation-block><text>

Non-Ideality in Chemical Mixtures Gasses do not behave ideally in most geologically relevant systems. Instead, they have an <u>effective pressure</u>, known as the *Fugacity*, **F** Typically $F_i < P_i$ Fugacity and pressure are related by a non ideality factor known as a <u>fugacity coefficient</u> γ_i $F_i = \gamma_i P_i$ Typically, γ_i gets lower as P_{total} increases (note: $\gamma_i = 1$ in an ideal gas; Many gasses behave close to ideally at low P).

GG325 L5, F2013

Non-Ideality in Chemical Mixtures We deal almost exclusively with F instead of P in geologic settings with high pressure, such as: igneous bodies in the mantle or crust metamorphism of crustal rocks high pressure geothermal fluids In these systems, the weight of the crust above where bond reorganization and phase change reactions are taking place creates very high *lithostatic pressures*. Experiments in the lab designed to mimic natural systems typically measure F. We will not discuss the specifics of gas phase non-ideality in this class. It is important only to know that F is a measure of effective P and that the divergence between F & P is a function of pressure.

Non-Ideality in Chemical Mixtures

Non-Ideality in ionic aqueous solutions

Solute activities (apparent concentrations) in aqueous solutions typically differ from their "real" concentrations due to solute-solute and solute-solvent interaction in solution.

Thus, we need to make similar modification to the chemical potential equation for ideal solutes as we made for ideal gasses in equations like:

$$\mu_i = \mu_i^* + RT \ln X_i$$

The effective concentration of a solute is known as *activity*. It is denoted as a_i . *Activity* is related to molarity or molality by an activity coefficient, γ_i , such that:

 $a_i = \gamma_i m_i$

GG325 L5, F2013

Non-Ideality in Chemical Mixtures

For instance, in a solution of $CaCl_2$ and $MgSO_4$ at high ionic strength, we find...

a. pure ions: Ca²⁺, Cl⁻, Mg²⁺, SO₄²⁻, HSO₄⁻ (and of course H⁺ and OH⁻). – *Remember, these "free" ions are actually hydrated*.

b. ion pairs: MgCl⁺, CaCl⁺, MgCl₂⁰, CaCl₂⁰, MgSO₄⁰, CaSO₄⁰ (Plus much lesser concentrations of these ion pairs from the ions of water dissociation: MgOH⁻, CaOH⁻, Mg(OH)₂⁰, Ca(OH)₂⁰, HCl⁰, HSO₄⁻ and H₂SO₄⁰).

Note:

An ion pair such as $Mg(CI)_2^0$ is different from the ionically bonded compound $Mg(CI)_2$. In the ion pair, the ions move together as a loosely-affiliated unit but they are not at a close enough interionic distance to be considered a compound.

GG325 L5, F2013

Non-Ideality in Chemical Mixtures

 γ_i is not predicted from thermodynamic theory of ideal solutions.

Instead, γ_i is parameterized empirically by matching ion behaviors in known non-ideal solutions.

The simplest parameterization is known as Debye-Hückel theory and is based on the simplest Coulombic electric field arguments.

 $-\log \gamma_{i} = A z_{i}^{2} I^{\frac{1}{2}}$

where z = ion charge, I = lonic Strength and A is a temperature dependent constant related to the solvent dielectric constant. A ~ 0.5 for water at 25°C.

GG325 L5, F2013

