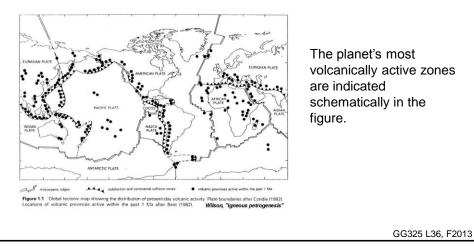
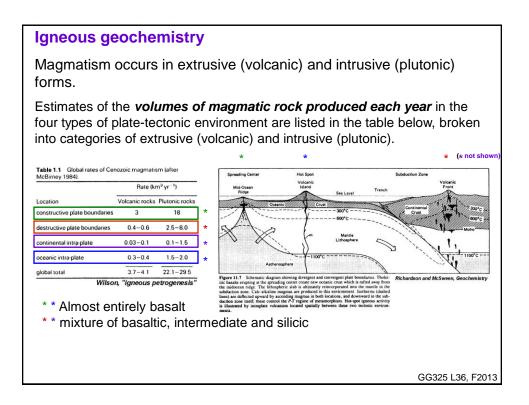
Lecture 36

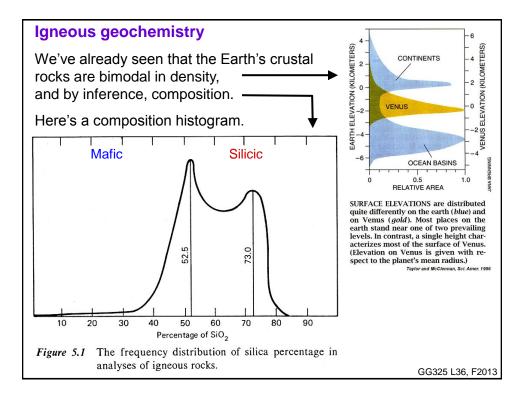
Igneous geochemistry

Reading - White Chapter 7

Today

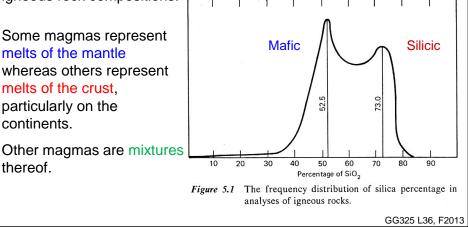

1. Overview


2. solid-melt distribution coefficients


GG325 L36, F2013

Igneous geochemistry

The chemistry of igneous systems provides clues to a number of important whole-earth processes, including the processes and timing of planetary differentiation, the production and destruction of the lithosphere, and the relationships between magmatic styles, composition and plate-tectonic environment.



Igneous geochemistry

The magmas that ultimately produce the crust are commonly referred to as mafic (rich in Mg and Fe, poor in Si) and silicic (the opposite).

But, the bimodality is far from perfect.

A range of compositions and processes form more of a *continuum* of igneous rock compositions.

Early Igneous geochemistry History

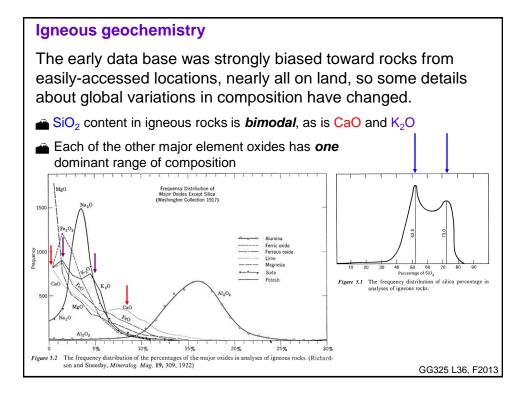
By the early 1900s, a great deal was already known about the chemical compositions of igneous rocks.

However, an understanding of <u>why</u> certain compositions occurred in certain places had to wait until the advent of plate tectonics theory in the 1960s.

The first large compendium of major-element analyses of igneous rocks from around the world was published in 1917.

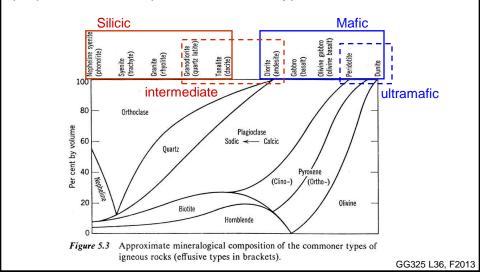
Using 5159 samples, it demonstrated that most igneous rocks are mixtures of just 10 major elements (O, Si, Al, Mg, Fe, Ca, Ti, Na, K, P), plus minor (usually <1%) amounts of Mn and H_2O .

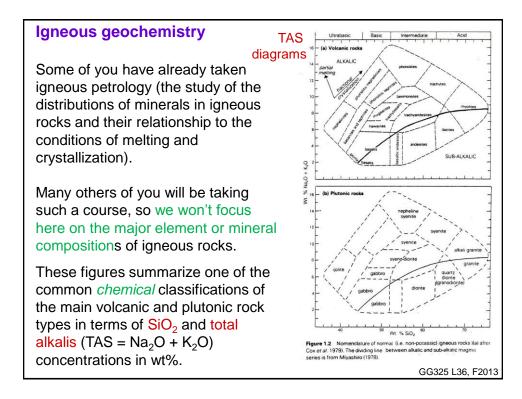
Major Elements


Chemical compositions of igneous rocks are usually reported as **weight** % (wt%) of each element as an **oxide**.

There are typically 9 major and 2 minor element oxides listed in a rock analysis.

This is true when Fe is reported as total FeO or total Fe_2O_3 .


Sometimes both oxidation states [Fe²⁺ (FeO) and Fe³⁺ (Fe₂O₃)] are analyzed and reported separately, as in the olivine thermometry homework problem we had earlier this semester.


Be sure to check this aspect when scrutinizing rock analysis data.

Igneous geochemistry

The major elements are found in different proportions in the main minerals of igneous rocks, and these minerals vary in proportion and composition with rock type.

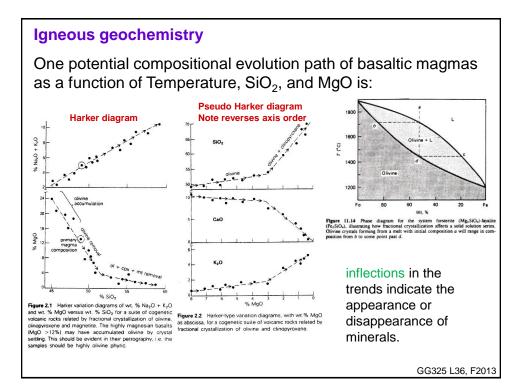
Mafic

SiO2 TiO2 Al2O Fe2O FeO MnO CaO Ma2C K2O H2O H2O H2O H2O Chen To K/Rb Rb/S #7Sr/

TABLE

Silicic

	l Oceanic alkali olivine basalt	2 Oceanic tholeiite basalt	3 Continental tholeiite basalt	4 Island arc dunite	5 Island arc andesite		6 Island arc rhyolite	Continental rift leucite nephelinite	8 Gabbro of continental layered matic pluton	9 Continental anorthosite	10 Continental batholith quar monzonite
2	50.48	49.20	52.05	39.53	58.60	SiO ₂	74.22	39.77	48.08	53.40	65.49
02	2.25	2.03	1.70	0.01	0.89	TiO ₂	0.28	3.82	1.17	0.77	0.65
01	18.31	16.09	12.43	0.93	15.38	Al ₂ O ₃	13.27	12.53	17.22	23.96	14.49
01	3.21	2.72	5.18	0.65	2.22	Fe2O3	0.88	6.02	1.32	0.91	2.11
C	6.03	7.77	10.08	7.62	6.71	FeO	0.92	8.62	8.44	3.02	2.90
0	0.21	0.18	0.24	0.12	0.18	MnO	0.05	0.27	0.16	-	0.10
0	4.21	6.44	3.95	48.83	3.22	MgO	0.28	4.45	8.62	1.88	2.45
C	7.21	10.46	7.33	Trace	7.02	CaO	1.59	11.88	11.38	9.85	4.29
0	4.80	3.01	2.76	Trace	3.84	Na ₂ O	4.24	4.86	2.37	4.17	2.80
O	1.93	0.14	2.07	-	1.46	K ₂ O	3.18	5.35	0.25	0.80	3.66
05	0.74	0.23	0.28		0.25	P2O5	0.05	1.35	0.10	0.18	0.21
0*	0.46	0.70	1.90	0.89	0.30	H ₂ O ⁺	0.80	0.60	1.01	0.69	0.56
0-	0.38	0.95	0.36	0.16	0.07	H2O-	0.23	0.32	0.05		0.05
er	1000000	2.00	0.000	1.41		Other				0.43	0.15
fotal:	100.22	99.92	100.33	100.15	100.14	Total:	99.99	99.84	100.17	100.06	99.91
SP	267	950	498	215	807	K/Rb	251	352	550	>1,000	232
Sr	0.09	0.02	0.04	0.025	0.038	Rb/Sr	1.0	0.058	0.022	<0.01	0.311
r/**Sr	0.7033	0.7034	0.7064	0.7091	0.7036	87 Sr/86 Sr	0.7054	0.7051	0.7076	0.7053	0,7086


Source 1: Cen tossalt, Atlantic Ocean, depth 2,910, m. 20'40' S, 13' 16' W; data fi 4, Science, v. 144, p. 1332, and P. W. Gast, 1967, Basalts (Poldervan 0), v. 1, p. 325. 2: Cenozoid and C. G. Ea (Interscience ngel, 1964, Sci t Divisi

(Intercience Divusion), v. 1, p. 325. 3: Jurasic thebite basalt, Nametsi region, Karroo Basin, South Africz, data from K. G. Cox et al., 1965, *Phil. Toms. Roy. Soc. Lond., ser. A.*, v. 257, p. 71, and W. I. Manton, 1968, *J. Petrol.*, v. 9, p. 30. 4: Permian during, Dan ML, New Zenland: data from J. Reed, 1959, *New Zealand J. Geol. Geophys.*, v. 2, p. 16, and A. M. Stueker and V. R. Murthy, 1966, *Grochim. Cosmochim. Acta.*, v. 30, pp. 1247–1248, 5: Quaternaty proteins Andeling, Talansa, New Briniu: data from G. C. Lowder and I. S. E. Carmichael, 1970, *Bull. Geol. Soc. Am.*, v. 81, p. 27, and Z. E. Peterman et al., 1970, *Bull. Geol. Soc. Am.*, v. 81, p. 314.

Stipp, 1968 Bell and

Crossinni Costantiami, Carlin Carley Di, Ori Tal. Z. Quaternay Fuexicia nephelinite. War Carnetery Flow, Nyiragongo volcano, Congo, dat L. Powell. 1969. J. Petrul., v. 10, pp. 546, 549.
Sc. Nilled Order gabbor, Terraris Xasaguari intrusion. Greeniand; data from L. R. Wag 1967. Lyozerd Igneous Rocks, Freeman, p. 158, pp. 193–194.
Sc. abbrois anotholis, Presentibran Adionadac massifi. New York: data from A. F. Bu Soc. Am. Memoir 7, p. 30, and S. A. Heath and H. W. Fairbaim, 1969. N. Y. Stere Meyon IO: Creatocous Batte Quarta Monosonic Kain quarty, Boolder babbilds, Moeri, data from J. Sci, v. 255, p. 89, and B. R. Doe et al., 1968. Econ. Geol., v. 63, p. 898.

GG325 L36, F2013

Igneous geochemistry

We will instead focus mainly on evidence provided by the **trace** elements, which are covered in less detail in petrology courses.

Unlike major element analyses, trace element data are usually are reported as an element's relative concentration by mass (e.g., ppm, ppb).

By definition, *trace elements are present at concentrations less than about 0.1 wt%.*

GG325 L36, F2013

Igneous geochemistry

As we saw last week, trace elements provide key insights into the composition of the mantle.

We will look in the next few days at how they are used as tracers of the composition of mantle and crustal <u>source rocks</u> that melt to produce magmas.

Trace elements also yield important information about the processes and conditions of <u>melting</u> and <u>crystallization</u>.

Trace elements usually do not form the major rock-forming phases. Instead, they *partition* themselves among the different major phases as "contaminants", according to

ionic radius
 ionic charge
 electronegativity

lattice energy of substitution site

"Goldschmidt's Rules"

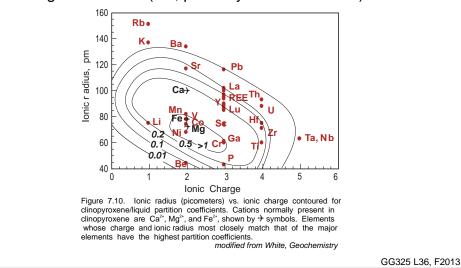
These outline the conditions for trace element partitioning between igneous phases.

lons will substitute readily for each other in a mineral lattice if...

- 1. Size: Their ionic radii differ by <15%.
- 2. Charge: They have the same charge or ±1 unit of charge difference (substitution with greater charge differences may occur but to a significantly lesser degree).

Of two ions with the charge and radius to occupy a lattice site...

3. The ion with the higher ionic potential (z/r) is favored because it will make stronger bonds.


A fourth rule was added more recently by Ringwood:

4. The ion with the most similar electronegativity to that of the major element being replaced will be favored because it destabilizes the crystal lattice the least.

GG325 L36, F2013

Trace element partitioning example

This diagram shows contours of the clinopyroxene-melt distribution (partition) coefficient for various ions as a function of charge and radius (i.e., primarily rules #1 and #2).

Trace element partitioning

Size is fairly intuitive control, since the substituting ion needs to fit into a mineral lattice: Too big or too small a won't be energetically stable.

Charge is also intuitive, since charge must be balance within a lattice and if a charge imbalance is generated by a substitution, a second substitution must occur to correct for this.

Electronegativity is harder to visualize, but the disruption of replacing a greedy element with a giving element or vice versa is too much for a lattice to take.

example: we rarely see substitutions of like-charge and like-size pairs like Na⁺ - Cu⁺ and Ca⁺² and Cd⁺² due to electronegativity differences.

GG325 L36, F2013

GG325 L36, F2013

Trace element distribution

We can determine whether a particular substitution is favored or not by using the solid-melt distribution (partition) coefficient.

Recall the equation for the simple case of melt + one solid:

 ${}^{A}k_{d} = [\text{conc. of A}]_{\text{solid}}/[\text{conc. of A}]_{\text{melt}}$

For a multi-phase system (one melt + more than one solid; e.g., several minerals), we use the **bulk distribution coefficient:**

Bulk ${}^{A}k_{d} = {}^{A}K_{d} = D_{A} = \overline{k}_{A} = [modal conc. of A]_{solids}/[conc. of A]_{melt}$

 K_d and D_A values tell us about the tendency of an element to be proportioned between coexisting melt and solids.

 $D_A > 1$ The element is *compatible* (a.k.a. "captured").

 $D_A = 1$ The element is *neutral* (a.k.a. "camouflaged").

D_A < 1 The element is *incompatible* (a.k.a. "released")

GG325 L36, F2013

Trace element distribution

A *rigorous definition* of bulk k_d ("D") for a multiphase solid (a, b, c..., j) + one melt system is:

 $D = \alpha k_d^{a} + \beta k_d^{b} + \gamma k_d^{c} + \dots \chi k_d^{j} = \Sigma x_j k_d^{j}$

where $\alpha,\,\beta,\,\gamma,$ and χ are the proportions of the minerals that comprise the solid,

and k_d^a , k_d^b , k_d^c ,..., k_d^j are the mineral-melt partition coefficients for each of the different minerals, a, b, c,...j that are in equilibrium with the melt.

 X_{i} is the mole fraction of mineral a to j present.

in addition to ionic charge, radius, and electronegativity, the temperature and pressure of the system play a key role in trace element substitution, because as we've seen throughout the course, T and P determine *which* solids will be present in a given system.

Also, *structural controls* on crystal lattice energy are such that each type of lattice site has a specific *energy of ion substitution*.

For a given crystal lattice, that energy is a function of T and P.

GG325 L36, F2013

Trace element distribution

To summarize, the energy of substitution is minimized (made most favorable) for substitution by the "right" ion;

that is, the one with the best combination of

✓ size,

✓ charge,

✓ electronegativity.

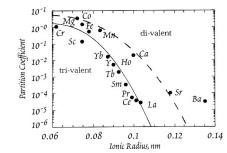
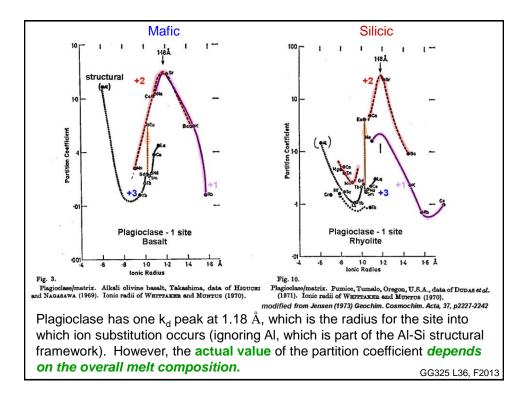
 \checkmark as a function of T and P

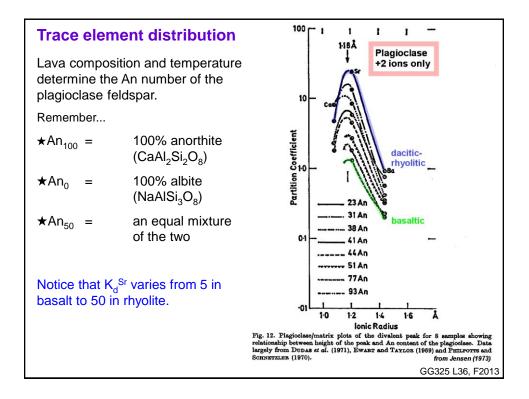
A substitution into a phase becomes less favorable (i.e., k_d goes down) the more any of these values vary from the ideal.

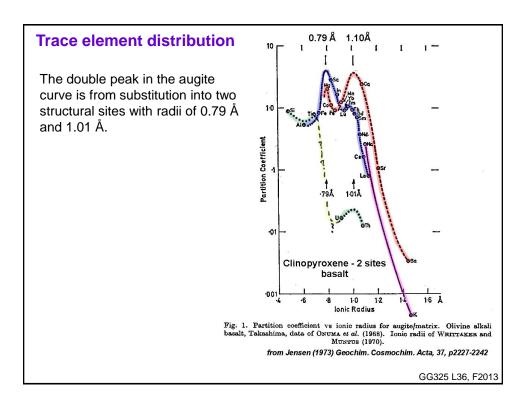
The incompatible elements have $k_d < 1$ in all the common mantle minerals (and D < 1 in mantle rocks) because their substitution energies are high in all of these minerals.

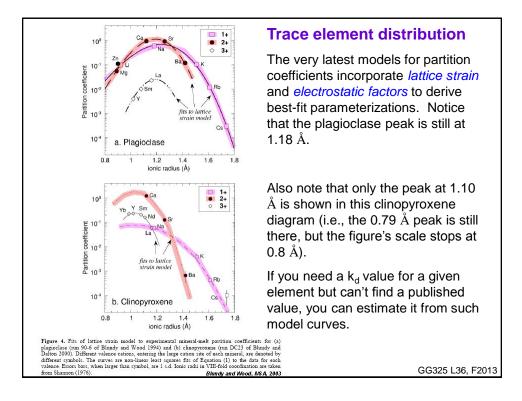
We can understand quite a lot about k_d differences by observing how k_d varies in a given mineral as a function of ionic size in an *iso-charged series* (same valence or oxidation number).

This helps us understand the structural controls on the distribution of ions between a mineral and a melt.


Figure 7.11. Partition coefficients for di- (dashed) and tri-valent ions between olivine and silicate liquid as a function of ionic radius. Points are experimentally determined partition coefficients, lines are partition coefficients predicted from equations 7.17 and 7.20 using $r_o = 58 \text{ pm}$, $\sigma = 0.25 \text{ MPa}$, K = 95.3 Mpa, and $\Delta C_0 = 55/\text{mol-K}$ modified from White Grochemistry


Here's an example for olivine and melt.


These types of diagrams are known as Onuma diagrams, after their originator.

Examples for plagioclase and clinopyroxene are given in the next three slides.

Compilations of measured values for mineral-melt distribution coefficients for many of the geochemically important elements are given in the next two slides (as well as in your reading).

There are two tables: one for mafic lavas and one for silicic lavas.

As we saw in the Onuma diagrams for plagioclase, the k_d values for a given mineral are often quite <u>different</u> in mafic vs. silicic melts.

These two tables are relatively complete, but the data are only for magmas at atmospheric pressure and the data are quite old.

Slightly different values apply at higher pressures, but we'll assume for the purposes of this course that we can use low- and moderately high-pressure values interchangeably.

Note: when melt solidifies rapidly, it forms a glassy "matrix" of an igneous rock. Slow cooling magmas tend to have little to none of this.

Trace element distribution coefficients

N /	lot	0
IV		п.

		Oliv	ine	Ortho	pyroxene	Cline	pyroxene	Amp	ohibole	Play	gioclase	Phlogopite	G	arnet
		Range	Average	Range	Average	Range	Average	Range	Average	Range	Average	determination) Range	Average
3	Li					0.26	•	0.12, 0.19	•	0.20				
11	Na	0.012-0.024	0.02	0.075	•	0.27	•	0.72, 0.80	•					
12	Mg	4.5-8.0	6.1	4,7	•	2-5	•	2.8, 4.8	•					
13	AL	0.012	•	0.3		0.21-0.6	0.3			1.6-2.1	1.9 0.17			
19	K	0.0002-0.008	0.007	0.01, 0.02	•	0.002-0.27	0.03	0.33-0.86	0.60	0.02-0.36	0.17	2.7		
20	Ca	0.01-0.04	0.03	0.2, 0.4	•			1.1, 3.0	•					
21	Sc	0.14-0.22	0.17	1.2	•	1.7-3.2	2.7	2.2, 4.2	•			2.	6-5.4	4
22	Ti					0.8								
23	v	0.03	•	0.6	•	0.8-1.9	1.3 8.4							
24	Cr	1.1-3.1	2.1	10	•	4.7-20	8.4	0.10, 1.6	•			0.	06, 0.29	•
25	Mn	0.8-1.8	1.2	1.4	•	0.6-1.3	0.9			0.05	•			
26	Fe ²	1.2-3.0	1.9	1.8		0.6-1.0	0.8							
26	Fe3	Sector 7 an	1.2725	0.75	•	0.37-0.86	0.53	1000000					21012	
27	Co	2.8-5.2	3.8	2, 4	•	0.7-2.8	1.2	1.4, 1.8	•			0.	7-1.8	1.1
28	Ni	8-19	14	5	•	1.4-4.4	2.6	- 8267						
30	Zn	0.7	•			0.41	•	0.42, 0.69	•	0.000	12120			
31	Ga	0.04	•	0.7		0.30-0.58	0.40			0.85-1.3	1.0			
37	Rb	0.0002-0.011	0.006	0.02, 0.03	•	0.001-0.28	0.04	0.04-0.4	0.25	0.03-0.50	0.10	3.1		
38	Sr	0.0001-0.02	0.01	0.01, 0.02	:	0.07-0.43	0.14	0.19-1.02	0.57	1.3-2.9	1.8	0.08		
19	In	0.06		0.45	•	1.7	•	2.2, 3.1	•	10000				
	Cs	0.0004				0.002-0.018		0.05, 0.20	•	0.025	•	100		
6	Ba	0.0001-0.011	0.006	0.012, 0.014	•	0.002-0.39	0.07	0.10-0.44	0.31	0.05-0.59	0.23	1.1		- C
7	La	10000000	27	2022200000	2122	0.08	•	0.17-0.44	0.27	0.14		0.	03, 0.08	•
58	Ce	0.009	:	0.003-0.04	0.02	0.17-0.65	0.34	0.09-0.54		0.06-0.30	0.14	0.03 0.	05	•
0	Nd	0.007, 0.010		0.03, 0.06	0.00	0.32-1.3		0.19		0.02-0.20	0.08	0.03		
	Sm	0.003-0.015	0.009	0.01-0.10	0.05	0.43-1.8		0.34-1.46		0.02-0.20	0.08		07-1.25	0.6
	Eu	0.006, 0.010		0.02, 0.08	•	0.48-2.0		0.36-1.49	1.01	0.06-0.73	0.32	0.03 0.	3-1.5	0.9
4	Gd	0.012	-			0.82, 0.88		0.51-1.7	1.1	0.03-0.21	0.10	2.	1, 5.2	:
5	Tb	0.000 0.013		0.05		1.0		1.02-2.0	1.4	0.03		4.	1, 7.1	
6	Dy	0.009, 0.014	•	0.12, 0.29		0.56-1.46	1.1	0.64		0.01-0.20	0.09	0.03		
	Ho	0.000 0.015							12.1			13	, 24	1000
8	Er	0.009, 0.017	•	0.16, 0.46	•	0.53-1.3	1.0	0.48	•	0.02-0.24	0.08			
	Tm					1.1						0.03		
	Yb			0.11-0.67		0.48-1.3		0.46-1.42	0.97	0.006-0.30	0.07	4-	-53	30
	Lu			0.11		0.67, 1.0		0.44-1.31	0.89	0.03-0.24	0.08		57	35
2	Hf											0.	3, 0.6	
2	Pb					0.000.0.00	0.00			0.10-0.67	0.26			
0	Th	0.0004 0.0007				0.003-0.05	0.02							
2	U	0.0024, 0.0027				0.004-0.08	0.04			0.009	•			

TABLE S	5.2b. Mineral/m	atrix parti	tion coeffici	ients of ele	ements in a	lacitic an	d rhyolitic ro	cks			Hender	rson, Inorg	anic Cl	hemistry'	, 1984
	Orthopyr	oxene	Clinop	yroxene	Ampl	ibole	Plagioo	lase	Alkali Fel	dspar	Biotite (1 or 2	Garne	t	Magnetite	
	Range	Average	Range	Average	Range /	Average	Range	Average	Range	Average	determinations)	Range	Average	Range	Average
3 Li	0.16, 0.21	•					0.27-066				0.39				
11 Na	0.03-0.1	0.06	0.09-0.14	0.11	0.08	•	1.2-3.1	1.5			0.10				
12 Mg	50-160	100					0.03-0.5	0.3	0.05-0.33	0.21	22				
19 K	0.0006, 0.002	•					0.08-0.33	0.19	0.64-2.2	1.4	2.6, 5.6	0.02			
20 Ca	0.55-2.3	1.4	8-12	10	1.8	•	1.8-4.9	3.4	0.10-3.8	1.9	0.62			0.3-0.5	0.4
21 Sc	6.0-7.7	6.9	18-28	22	20	•	0.01-0.20	0.07			11.3	10.2-20.2	16.0	3.3-4.5	3.9
23 V	4.4-10	6									100 C			Print days	1000
24 Cr	0.6-3	1.6	90	•			0.03-0.7	0.2			19			5-20	11
25 Mn	29, 34	•					0.03-0.31	0.18	0.03-0.52	0.18	6.0				
7 Co	2.1-3.6	2.9	6.0-11	8	45	•	0.04-0.5	0.15			29	1.7-3.6	2.6	19-35	28
80 Zn	0.8-1.0	0.9			7	•	0.26-0.60	0.38			20	101222		10-14	12
37 Rb	0.0005-0.29	0.09	0.09	•			0.02-0.46	0.09	0.11-0.80	0.38	3.3, 3.5	0.009	:		
88 Sr	0.009, 0.05	•					1.5-8.8	6†	3.6-26	9.4	0.12, 0.36	0.02	•		
39 Y	0.9	•							54		2222				
9 In								10000			3.9				
55 Cs	0.3					100	0.01-0.13	0.05			2.4				
56 Ea	0.003-0.03	0.02	0.02, 0.06	•	0.035	•	0.30-0.92	0.50	2.7-12.9	6.6	6.4, 8.7	0.017		0.05-0.08	0.07
57 La	0.50-0.90	0.65	0.5-0.8	0.6	0.85		0.24-0.49	0.32		12	0.32	0.28-0.54	0.39	0.24-0.88	
58 Ce	0.08-1.03	0.46	0.6-1.2	0.9	0.43-1.8		0.11-0.40	0.24	0.04		0.04, 0.38	0.350.93	0.62	0.28-1.15	
50 Nd	0.11-1.20	0.62	1.4-2.9	2.1	1.0-4.3	3.2	0.06-0.29	0.19	0.03	:	0.04	0.53-0.73	0.63	0.35-1.80	
S2 Sm	0.13-1.6	0.7	2.1-3.3	2.7	1.6-8.2	5.4	0.05-0.22	0.13	0.02		0.06, 0.39	0.76-5.5	2.2	0.39-1.85	
53 Eu	0.11-1.0	0.5	1.6-2.3	1.9	1:2-5.9	3.6	0.82-4.2	2.0	1.13	•	0.15, 0.33	0.17-1.37	0.7	0.28-0.96	0.58
54 Gd	0.17-2.2	1.1	2.0-4.8	3.1			0.11-0.24	0.16			0.08, 0.44	5.3-13.6	7.7		0.04
55 Tb	0.8-1.6	1.2	2.0-4.1	3.0	3.0		0.10-0.22	0.15		0200	0.39	7.2-19.6	12	0.36-1.50	
56 Dy 67 Ho	0.26-1.3	0.7	2.2-4.0	3.3	2.3-14	9	0.04-0.45	0.13	0.006	•	0.10	29		0.3-1.4	0.8
68 Er	0.43-0.73	0.61			24.11		0.02.0.00	0.05	0.007		0.17	18.4-35	28		
69 Tm	0.43-0.73				2.4-11	8	0.03-0.08	0.05	0.006	1.00	0.16	43		06.12	0.0
70 Yb	0.8-1.9 0.73-1.2	1.4	16.20	2.1				0.1		•	0.40 0.47	A	42	0.5-1.2	0.8
71 Lu	0.76-1.4	1.0	1.6-2.8 2.0-2.6	2.1	1.9-9	6.2 4.5	0.02-0.30 0.03-0.11	0.08	0.012		0.18, 0.67	26-67	43 38	0.2-0.6	0.4
72 Hf	0.04, 0.2	1.1	0.20-2.6	0.34	1.8-0	4.5	0.03-0.11	0.06			0.74	24-64	38	0.2-0.6	
73 Ta	0.2-0.7	0.5	0.20-0.55	0.34	0.3		0.02-0.17	0.07			2.10			0.2-0.6	0.3
82 Pb	0.4-0.7	0.5	0.1-0.8	0.4	0.5		0.02-0.09	0.05	0.84-1.4	1.0				0.0-1.8	1.3
90 Th	0.13-0.18	0.15	0.01-0.25	0.13	0.22		0.29-0.78	0.45	0.84-1.4	1.0	0.31			0.04-0.20	0.11
92 U	0.09	.15	0.01-0.25	•	0.22		0.01-0.09	0.04			0.31			0.04-0.20	0.11

	Olivine	Орх	Срх	Plag	Spinel	Garnet	Amph	Trace element distribution
.i	0.041	0.11	0.59	0.45				
e	0.035		0.047	0.36				coefficients
	0.034	0.027	0.117	12 112	0.08	2012/02/02	0.00	Cochicicitis
1	0.00017		0.0028	0.18		0.002	0.35	
c	0.37	0.6	0.8	0.065	0.048	0.688		This table from White's book is compiled
1	0.3	2.6	1.81	0.04	38	1.48		· · · · · · · · · · · ·
a	0.024		0.74	0.86	4.6			from newer data, but includes fewer
e	0.097	0.25	1.4	0.51	0.1			
b	0.000044	0000000	0.0033	0.025		0.007	0.437	elements
r	0.000063	0.0068	0.157	2.7		0.0099	0.184	
	0.0098	0.014	0.62	0.013	1.000	5.42	0.634	
r	0.00068	0.004	0.195	0.001	0.06	2.12	0.3	
b	0.00005	0.015	0.0081	0.033	0.08	0.0538	0.197	
s	0.0015		0.0039	0.026				
a	0.0000034	0.0067	0.0022	0.33	11011011	0.0007	0.282	
a	0.0000088	0.0056	0.052	0.082	0.01	0.0164	0.058	
e	0.000019	0.0058	0.108	0.072		0.065	0.116	
r	0.000049	0.006		0.056			0.178	
ld		0.007	0.277	0.045		0.363	0.273	
m	0.000445	0.0085	0.462	0.033	0.0064		0.425	
Ξu		0.0078	0.458	0.55	0.0061	2.02	0.387	
Gd		0.011		0.034			0.725	
ſb	0.00324	0.011			0.0078		0.779	
Эy		0.015	0.711	0.03		4.13	0.816	
Io	0.00927	0.019	12121	12112121			0.783	
Er		0.021	0.66	0.02		3.95	0.699	
ſm		0.025		100000000000000000000000000000000000000		Angeleran		
ſb	0.0366	0.032	0.633	0.014	0.0076		0.509	
u		0.042	0.623			3.78	0.645	
If	0.001	0.021	0.223	121212	0.05	1.22	0.638	
la	0.00005	0.015	0.013	0.11	0.06	0.11		
°b	0.0076		0.01	1.07		0.0001		
h	0.000052	0.0056	0.014	0.19		0.0014	0.016	
J		0.015	0.013	0.34		0.0059		

Trace element distribution coefficients

You can find a great deal of data at the GERM (geochemical earth reference model) website (<u>http://earthref.org/</u>). Select "databases, and then choose partition coefficients. There are multiple ways to search (by element, rock type, mineral, etc., but this periodic chart search is the easiest to execute. *This link will be useful for your final exam.*

M Partition Coefficient (Kd) Database Home Page - Windows													-	1.7					
+ Ntp://earthref.org/cgi-bin/er.cgi?s=http://earthref.org/data	abases/main	.htm												*	×	5oogle			
EarthRef.org GERM MagIC SBN ERESE						~	log-in register feedback contact copy												
Geochemical Earth Refere	ence	Mod	lei														in F	Reservo	irs _
Databases Events Tools	Publico	itions	Lin	ks)															
GERM Partition Coefficient (
The Kd's Database contains partition coefficient results are sortable and may be downloaded in this extensive compilation.	t data fo the form	nat of	ypes o your o	ot roc hoice	ks and . Botl	d min h exp	erals erime	and fo ntal a	nd en	npiric	ement al dat	a are	inclu	h ded i	n				
Search Options	- Se	earch	the Pe	eriodia	: Tabl	e) —												
Advanced Search	P/G	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Search the Periodic Table	1	1 H																1 H	2 He
Search the Reference Database	2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
	3	11 Na	12 Mg											13 AI	14 Si	15 P	16 S	17 CI	18 Ar
Your Own References	4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
To upload one of your publications, please select an option and continue by clicking the Upload button. If	5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
you already are an EarthRef.org user you don't have to register again, otherwise click the Register button	6	55 Cs	56 Ba	Lan	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
	7	87 Fr	88 Ra	Act															
 Upload your publication reference Update an existing reference 	* Lantha		ides	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
Register) Upload)		Actinio	les	89 Ac	90 Th	91 Pa	92 U												

As mentioned above, the "bulk K_d ", D, is a weighted average of all the individual mineral-melt K_d s for the system.

Let's calculate bulk K_d values for Rb and Co for melting within the shallow mantle of a basalt composed of 45% olivine, 35% opx and 20% cpx using the data from the Henderson tables as an example.

We will use

 $\mathsf{K}_{\mathsf{d}} = \alpha \mathsf{K}_{\mathsf{d}}^{a} + \beta \mathsf{K}_{\mathsf{d}}^{b} + \gamma \mathsf{K}_{\mathsf{d}}^{c}$

	K _d ^{ol}	K _d ^{opx}	K _d cpx	Bulk K _d or D	
Rb	0.006	~0.03	0.14	0.45*0.006 + 0.35*0.03 + 0.2*0.04 =	0.021
Со	3.8	~3	1.2	0.45*3.8 + 0.35*3 + 0.2*1.2 =	3.0

Rb behaves incompatibly, Co behaves compatibly in this system.