Lecture 31

Planetary Accretion – the raw materials and the final compositions

Reading this week: White Ch 11 (sections 11.1 -11.4)

Today

1. Boundary conditions for Planetary Accretion

GG325 L31, F2013

Growth and Differentiation of Planet Earth

It is difficult to separate the planetary processes of

- a. accretion and
- b. differentiation (into core, mantle, crust, atmosphere/hydrosphere)

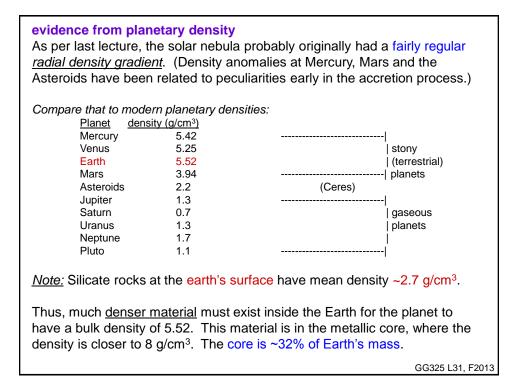
because a number of features suggest they overlapped in time.

Thus, we will work at this problem from both ends over the next few lectures, using as many of the *Boundary Conditions* for earth's early history as we can <u>to infer a likely sequence of events</u>.

Today we examine constraints on planetary compositions at the "beginning" and "end" of the accretion sequence.

Growth and Differentiation of Planet Earth

compositional:


relative proportions of refractory, silicate, metal and volatile components on earth compared to the Sun and C1-3 chondrites

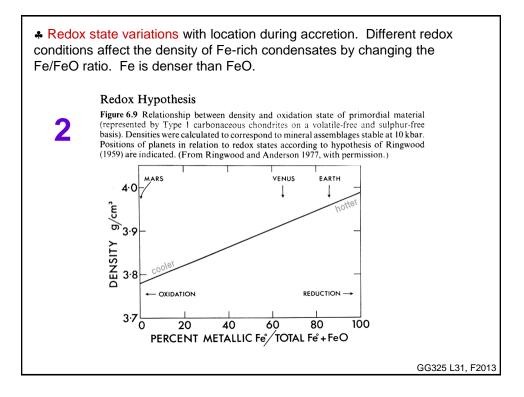
A how and when these components were segregated into our present core, mantle, crust and atmosphere.

- redox conditions during accretion.
- A density of earth and its neighboring planets.

physical:

* rates of accretion and thermal history of planetesimals

The density variations between Earth and the other stony planets have been ascribed to a combination of two factors:


Accretion of different proportions of metal and silicate condensates in different zones of the solar nebula. As discussed last lecture, this requires some sort of physical density (or magnetically controlled) segregation of materials rather early in the accretion sequence.

stony-Fe meteorites show separate blobs of Fe and silicate material, so some segregation is possible on a small scale in early solar system history.

Metal-Silicate Physical Fractionation Hypothesis

Table 6.3 Mean densities of terrestrial planets at 10 kbar, assuming that they are composed of varying proportions of metal phase ($\rho_{10} = 7.9 \text{ g/cm}^3$) and silicate phase ($\rho_{10} = 3.3 \text{ g/cm}^3$)

Planet	Mean density	Mean density at 10 kb	Percent nickel-iron phase
Mercury	5.44	5.3	65
Venus	5.24	3.96	28.8
Earth	5.52	4.07	32.5
Moon	3.34	3.40	5
Mars	3.94	3.73	20

How can redox state vary during accretion?

Essentially, with our old friend

 $H_2 + O_2 \leftrightarrow H_2O$ in the form

$$Fe + H_2O \leftrightarrow FeO + H_2$$

Reaction products are favored at lower temperature (such as is found at say, Mars relative to Earth)

The implication of both hypotheses (the redox state and metal-silicate segregation) is that we <u>must be very careful</u> in estimating both the oxidation state and the proportion of Fe metal to other elements in the material from which the Earth accreted.

Interestingly, $Fe/Si_{earth} \approx Fe/Si_{sun}$. So, if silicate-metal segregation was the main process, it *conveniently* produced **roughly equal proportions of metal and silicate in the Earth as in the sun (within 25%).**

GG325 L31, F2013

Chemical Evidence <u>Goldschmidt's Classification and the Geochemical Periodic Chart</u> It is useful at this point to briefly discuss the affinities of elements for the four general types of material thought to exist during accretion:

Siderophile: iron-"liking" elements (liking zero-valent Fe; i.e., metal)

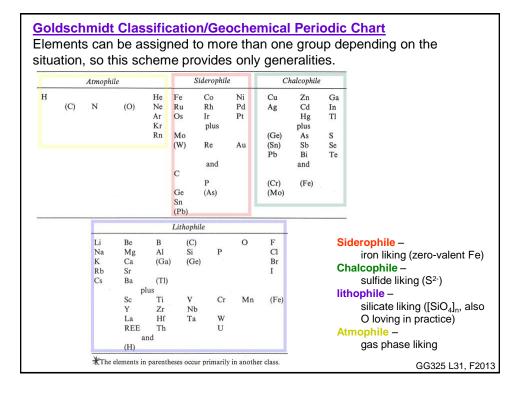
Chalcophile: sulfide-liking (S²⁻)

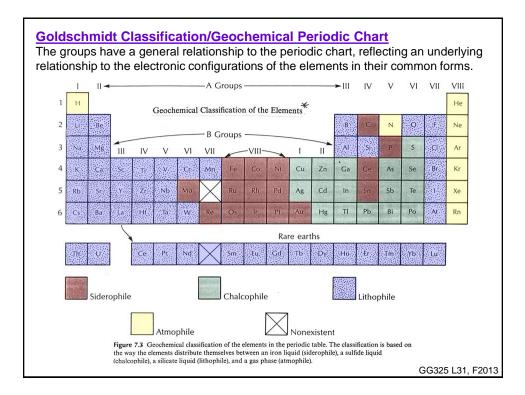
Lithophile: silicate-liking ([SiO₄]_n, also O-loving in practice)

Atmophile: gas-phase-liking

Chemical Evidence

Goldschmidt's Classification and the Geochemical Periodic Chart


This classification was proposed in the 1920s by geochemist <u>Victor</u> <u>Goldschmidt</u>.


It is qualitatively useful for describing the origin of the Earth from materials present in the early solar system—particularly once liquids (iron and silicate) had become important.

Goldschmidt compared the distributions of elements in silicate, metal-rich and gas phases in

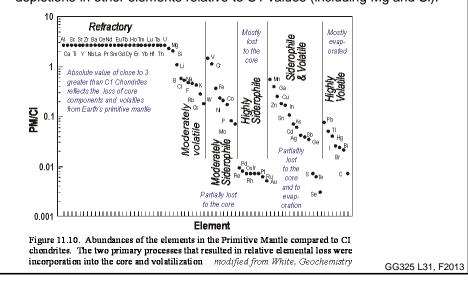
- 1. metal-ore smelter materials
- 2. meteorites,
- 3. the modern Earth.

He recognized a pattern in how elements were distributed with other elements.

Element Relationships: Earth and C1 Chondrites

Among three of the most important siderophile and lithophile elements, compositional data for the sun, chondrites and bulk Earth indicate that the *Earth has higher Fe/Si and Mg/Si than the chondrites.*

Table 3-6. Comparison between the chemical compositions of various meteorite classes and that of the bulk Earth: Despite the great change in the fraction of iron in oxide form from class to class (see last column), the relative abundances of the three major constituent metals (i.e., Si, Mg, and Fe) remain nearly unchanged in the high-iron chondrites. As can be seen, the Earth is richer in magnesium and iron relative to silicon than are meteorites.


	Fraction of mass as SiO ₂ , MgO, FeO, and	Relative atom abundance				Relative mass abundance				Fraction of iron in oxide
	iron metal*	Si	Mg	Fe	O†	Si	Mg	Fe	O†	form
		LOW-IR	ON CH	ONDRI	TES					
Enstatite										
chondrites	.92	100	92	60	325	100	80	119	185	.55
		HIGH-II	RON CH	ONDRI	TES					
Carbonaceous			to e more contrato M		Low	1				-
chondrites	.78	100	104	84	380	100	90	167	216	.90
Olivine-Pigeonite							1.14			and the second s
chondrites	.92	100	101	78	357	100	87	155	203	.72
Olivine-bronzite										
chondrites	.91	100	96	79	340	100	83	157	194	.56
Olivine-Hypersthene										
chondrites	.92	100	84	82	285	100	73	163	162	.01
		w	HOLE E	ARTH	Hi					-
Whole Earth	.94	100	131	126	359	100	114	250	199	.11

†Excludes oxygen associated with metals other than silicon, magnesium, and iron.

						Element Name	Compound Solid Gas		Rel. Abundance		Rel. Abundan In Chondrite
TABLE 4.3. Element abundances in the Earth and selected meteorites					1 2 3 4	HYDROGEN HELIUM LITHIUM BERYLLIUM	Li ₂ O BeO	H2 He	40,000,000,000 3,000,000,000 60 1	(1) (1) (3) (3)	trac 5
		Ordinary chondrites	Earth	Eucrites	- 5 6 7 8	BORON CARBON NITROGEN OXYGEN	B ₂ O ₃	CH4 NH3 H2O**	43 15,000,000 4,900,000 18,000,000	(2) (1) (1) (2)	2,00 50,00 3,700,00
Na % K ppm Rb ppm Cs ppm	moderately volatile	0.68 850 2.8 4 to 619	0.07 130 0.42 9	0.3 360 0.24	9 10 11 12 13	FLUORINE NEON SODIUM MAGNESIUM ALUMINUM	Na2O MgO Al2O3	HF Ne	2,800 7,600,000 67,000 1,200,000 100,000	(1) (1) (2) (3) (3)	70 trac 46,00 940,00 60,00
Ca % Sr ppm Ba ppm		1.21 11 4.1	0.95 12 5.3	12 7.49 85 35	14 15 16 17	SILICON PHOSPHORUS SULFUR CHLORINE	SiO ₂ P ₂ O ₅ FeS	H₂S HCl	1,000,000 15,000 580,000 8,900	(3) (3) (2) (1)	1,000,00 13,00 110,00 70
Sc ppm Y ppm		8.0 2.0 0.24	16.5 4.2 0.52	27 23	18 19 20 21	ARGON POTASSIUM CALCIUM SCANDIUM	K2O CaO Sc2O1	Ar	150,000 4,400 73,000 41	(1) (2) (3) (3)	trac 3,500 49,000
La ppm Th ppb J ppb		43 12	0.52 35 12	3.7 440 130	22 23 24	TITANIUM VANADIUM CHROMIUM	TiO ₂ VO ₂ CrO ₂		3,200 310 15,000	(3) (3) (3)	2,60 20 13,00
Based o	n Larimer (1971).			- 25 26 27 28	MANGANESE IRON COBAL NICKEL	MnO FeO,FeS CoO NiO	,Fe	11,000 1,000,000 2,700 58,000	(3) (3) (3) (3)	9,300 690,000 2,200 49,000
Based o	n Larimer (1971).			27 28 *Relative †(1) High (2) Mod (3) Very	COBAL	CoO NiO con atom ly lost; partly cap	s. tured;	2,700	(3)	2,20

More broadly, relative to C1 chondrite abundances, the Earth's <u>estimated</u> **primitive mantle** (i.e., after removal of Fe to the core but assuming no extraction of crust from the mantle) has (see also Lecture 31):

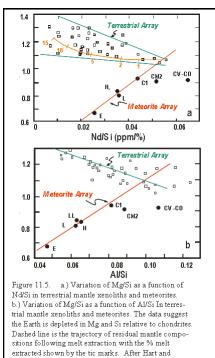
refractory elements (Al, Ca, U, Th, Si, Ba, rare earths,...) ≈ 3 x C1 values.
depletions in other elements relative to C1 values (including Mg and Si).

As we discussed last lecture, we use a "CHUR" model (chondritic uniform reservoir) as the bulk starting composition for Earth and the other planetary bodies on our solar system.

The refractory elements (~40 of them) match this model quite well.

If the "CHUR" model for bulk earth composition is correct, then the depletion for the other elements in Earth's mantle (in the previous slide) implies that these other elements were:

were "rearranged" within the Earth during differentiation (i.e., partially put in other sub-reservoirs, like the core and atmosphere),


Or

were partly lost (volatilized) to space during accretion.

We know that some "depleted" elements in this category, they are now partially in the core (**Siderophile** elements), crust (**lithophile**) and atmosphere (**Atmophile**).

So how can we get at the bulk Earth composition?

GG325 L31, F2013

modified from White, Geoch

Zindler (1986)

Direct samples of the mantle; e.g., <u>ultramafic</u> <u>xenoliths</u> occasionally brought to the surface by volcanic activity, indicate that the planet is <u>depleted</u> in Si relative to chondrites.

Meteorite Nd/Si and Al/Si variations reflect fractionation between refractory and silicate phases within the solar nebula.

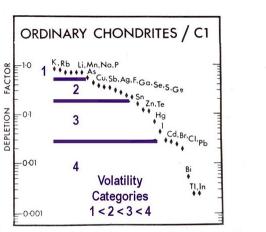
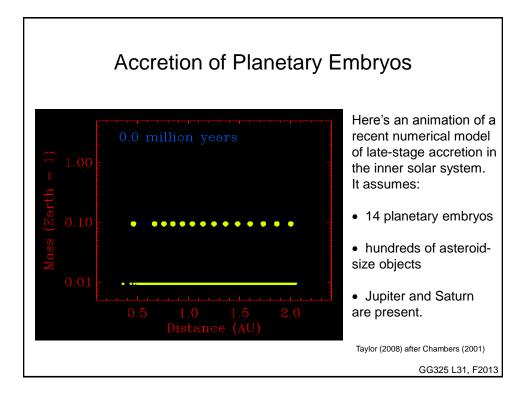
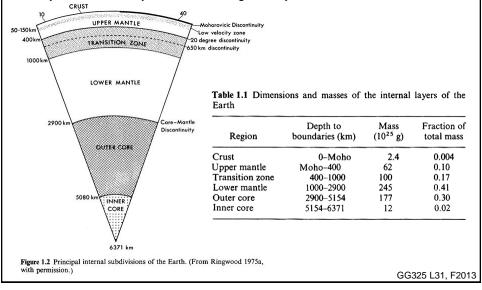
Correcting the mantle ("terrestrial") array of xenolith data for subsequent igneous processes yields an intersection with the meteorite array at higher Mg/Si, Nd/Si, and Al/Si than the average chondrite values, and gives us an estimate of the <u>original bulk</u> <u>mantle ratios</u> (i.e., before melt extraction began).

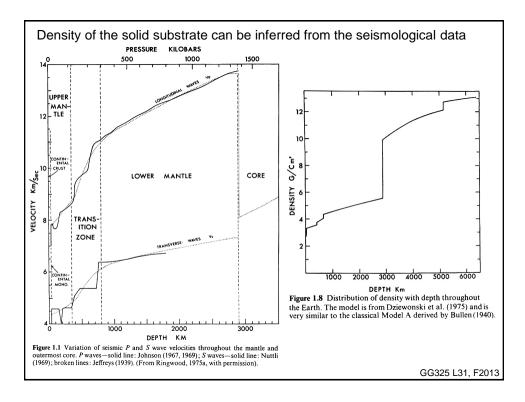
So, the Earth is relatively depleted even in slightly volatile elements, like Si.

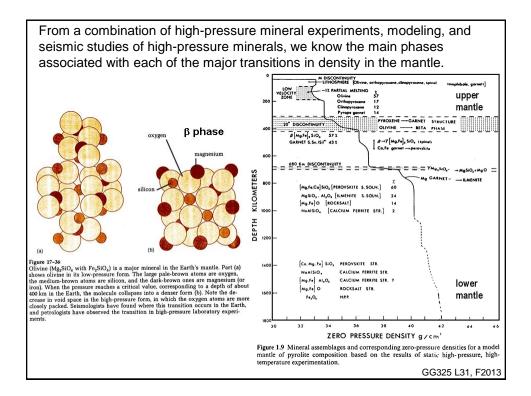
In fact, elemental abundances in **ordinary chondrites** (the slightly metamorphosed cousins of the carbonaceous chondrites) relative to C1 values imply some amount of volatility-based element fractionation occurred before large-scale accretion.

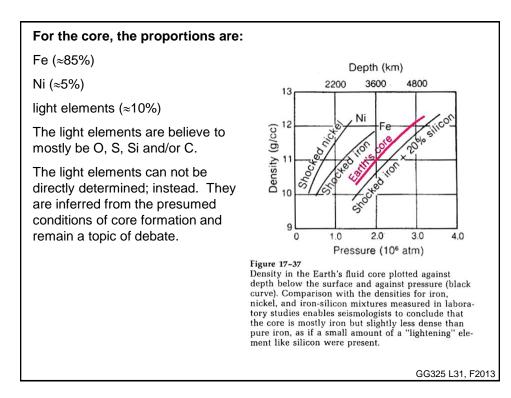
♣ So, some volatile elements were lost from chondrites <u>well before planetary</u> <u>differentiation</u> occurred. Thus, we must be very careful in estimating the volatile content of the starting material for the Earth from a specific type of chondrite, even for the moderately volatile elements.

no single type of chondrites serves as a good model for the Earth for all elements.

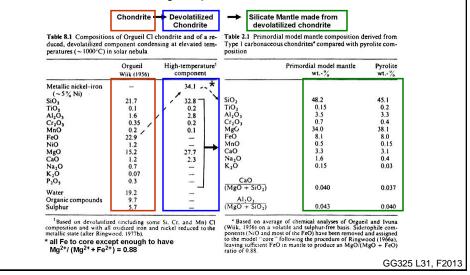





Figure 9.2 Comparison of abundances of volatile elements in ordinary chondrites with corresponding abundances in Cl chondrites. (From Ringwood and Kesson, 1977; with permission.)





Seismological studies of the interior demonstrate that today the Earth is radially zoned, with layers of increasing density toward the center.



We can approximate the bulk major-element composition of the primitive upper mantle pretty closely by taking a C1 chondrite, removing most of its volatile elements, and removing most of the Fe and Ni (i.e., segregating them to the core).

pyrolite is a slight modification of this major element composition. It is commonly used as a model for the starting composition of the mantle after core formation.

Continued differentiation of the Earth has caused the upper mantle to segregate into *compositional domains* (we'll talk more about this soon). Differences in seismic anisotropy between two commonly inferred rock compositions (peridotite and pyroxenite or eclogite, both occasionally brought to the surface as xenoliths in volcanic rocks) are useful in modeling their distribution in the upper mantle. Peridotite must be the most abundant rock type in the upper mantle. DEPTH OCEAN CONTINENT Km CRUST Seismic Anisotroppy HARZBURGITE OHC LHERZOLITE Sub Mineralogy spinel + PERIDOTITE . 5 Sub Oceanic Mantle olivine + PERIDOTITE . Continental 100 pyroxene ECIOGITE -. garnet SEGREGATION pyroxene ECLOGITE garnet I Mantle 0 200 UPPER PYROLITE + 10 % ANISOTROPY AV/Vm 300 Figure 1.4 Percent anisotropies (expressed as difference between maximum and minimum observed velocities, ΔV , divided by the mean velocity V_{a} , for peridotites, eclogites and the upper mantle. (From Ringwood, 1975a, with permission.) Figure 1.5 Chemically zoned model for the upper mantle. Harzburgite (olivine + orthopyroxene + chromite) and Iherzolite (olivine + orthopyroxene + clinopyroxene + spinel) are varieties of peridotite. (From Ringwood, 1975a, with permission.) GG325 L31, F2013