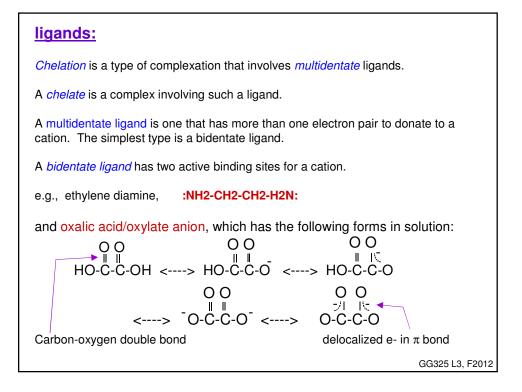
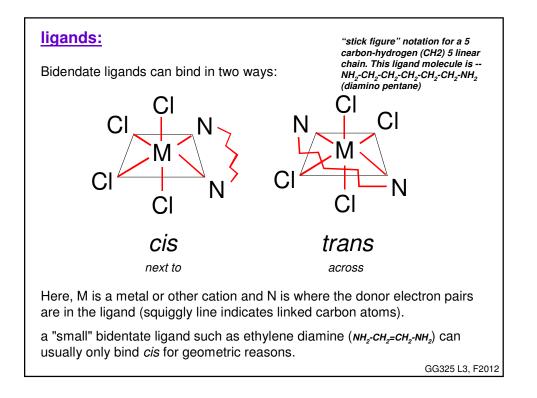
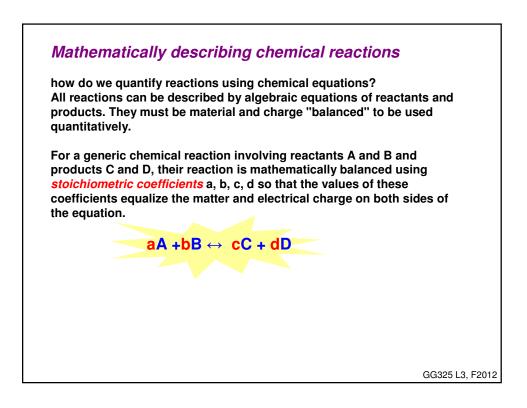


<section-header><section-header><equation-block><equation-block><equation-block><text><equation-block><text><text>





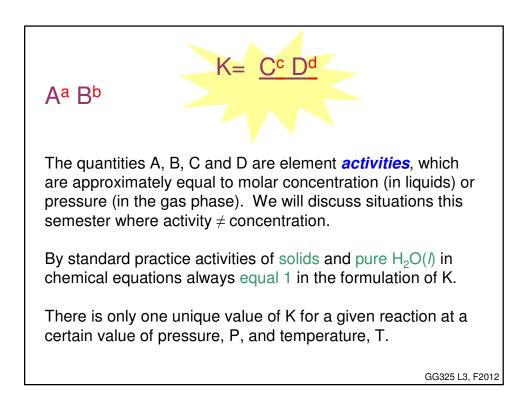


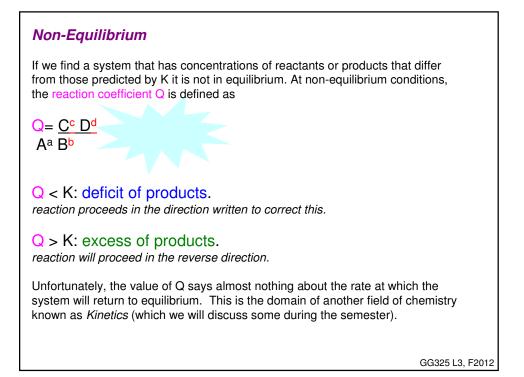
ligands: Other common natural ligands are Cl⁻ (chloride) and :NH₃ (ammonia). These, along with water, are known as *unidentate*. <u>Unidentate ligands</u> offer electrons from a single site to a complex. In an aqueous Fe⁺³ solution with both Cl⁻ and :NH₃, many complexes are possible involving these two ligands and H₂O. The charge on the complex remains unchanged relative to Fe⁺³ with H₂O and NH₃ ligands, but each Cl⁻ ligand brings one negative charge. All of the following complexes are possible in this solution: [FeCl₆]⁻³ [FeCl₃(NH₃)₃]⁰ [FeCl₆]⁻³ [FeCl₂(NH₃)₄]⁺ As you might expect, the relative proportions of these complexes will vary with pH since NH₃ + H⁺ ↔ NH₄⁺ (ammonium is not a good ligand) At low pH [FeCl₆]⁻³ would be favored

GG325 L3, F2012

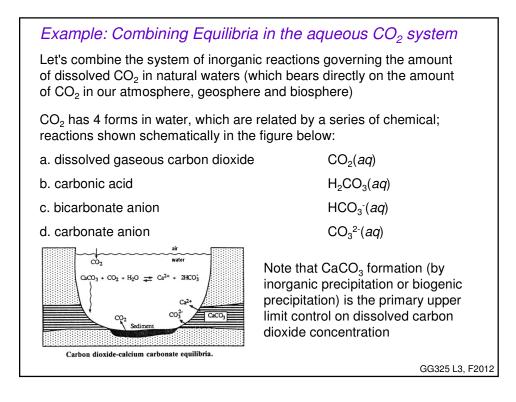
Equilibrium

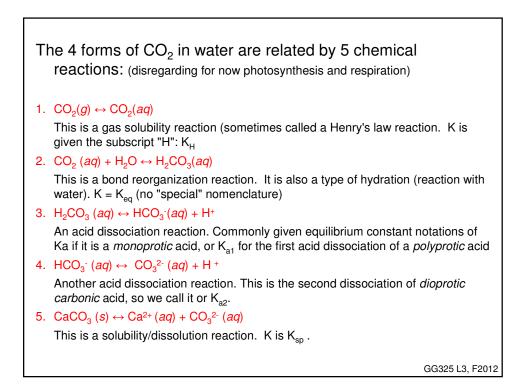
Chemical reactions involve reorganization of atoms and molecules to form new materials. It is useful to have a numeric description of reactions that will help us predict if and how much it will occur under various circumstances.


For almost any environmental condition there is a **unique mix** of reactants and products in an assemblage of molecules that doesn't change with time because an energetically favorable balance is achieved.

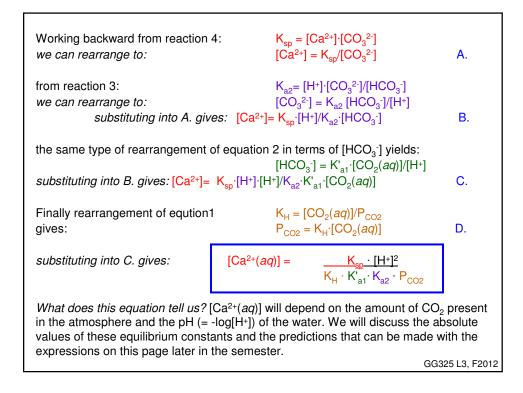

This condition is *chemical equilibrium*, wherein the relative proportions of reactants and products are expressed with an

proportions of reactants and products are expressed wi


equilibrium constant (K): $K = \frac{C^{c} D^{d}}{A^{a} B^{b}}$


GG325 L3, F2012

Using equilibrium constants							
What do the absolute values of K mean?							
Consider two solubility reactions (solid \leftrightarrow dissolved (<i>aq</i>) solute). For this type of reaction K is denoted with the subscript "sp" = K_{sp} .							
$NaCl(s) \leftrightarrow Na^+(aq) + Cl^-(aq)$ has a large K_{sp} - Products are favored, therefore halite is very soluble in water.							
$BaSO_4(s) \leftrightarrow Ba^{2+}(aq) + SO_4^{2-}(aq)$ has a small K_{sp} - Reactants are favored, so barite is sparingly soluble.							
Chemical equations and Equilibrium constants can be combined algebraically.							
(1)	$\mathbf{A} + \mathbf{B} \leftrightarrow \mathbf{A}\mathbf{B}$ $\mathbf{A}\mathbf{C} \leftrightarrow \mathbf{A} + \mathbf{C}$	K ₁ =	[<u>AB]</u> [A] [B]				
(2)	$\mathbf{AC} \leftrightarrow \mathbf{A} + \mathbf{C}$	K ₂ =	[A] [C] [AC]				
(1 + <mark>2</mark>)	AC + B ↔ AB + 0	C K ₃ =	[AB] [C] [AC] [B]	K ₃ =K ₁ •K ₂			
					GG325 L3, F2012		



Many texts use the simplifying assumption that reactions "2" and "3" (on the prior slide) can be combined. This is because so little $H_2CO_3(aq)$ is found in natural waters.

Because of this last point, the reaction sequence is shortened to

1. $CO_2(g) \leftrightarrow CO_2(aq)$	K _H				
2. $CO_2(aq) + H_2O \leftrightarrow HCO_3^-(aq) + H^+$	K' _{a1}				
3. $HCO_3^{-}(aq) \leftrightarrow CO_3^{2-}(aq) + H^+$	K _{a2}				
4. $CaCO_3(s) \leftrightarrow Ca^{2+}(aq) + CO_3^{2-}(aq)$	κ _{sp}				
Let's mathematically combine them to determine an expression for the CaCO ₃ solubility in a natural water (in terms of $[Ca^{2+}(aq)]$).					
The water is open to gas exchange with the atmosphere and we assume there are no other reactions affecting Ca ²⁺ , H ⁺ or Σ CO ₂ (<i>aq</i>) (carbon dioxide in all of its aqueous forms).					
	GG325 L3, F2012				

