

Where is all the water on Earth?

Almost all H_2O on Earth is in the oceans, with ice sheets and glaciers pulling a very distant second. The fresh water we use to nourish the world's human population is in reservoirs that amount to <0.5% of the hydrosphere!

Table 10.8 Inve the Hydrosphere	entory of V	Water in	TABLE 1.1 In Earth's Surface	ventory of Wat	er at the
Reservoir	Volume, 10 ⁶ km ³	Percent of Total	Reservoir	Volume, 106 km ³ (10 ¹⁸ kg)	Percent of Total
Oceans	1370	97.25	Oceans Mixed layer Thermocline Abyssal	1400. 50. 460. 890.	95.96
Icesheets and glaciers	29	2.05	Ice caps and glaciers	43.4	2.97
Deep groundwater (750-4000 m)	5.3	0.38	Groundwater	15.3	1.05
Shallow groundwater (<750 m)	4.2	0.3	Lakes	0.125	0.009
Lakes	0.125	0.01	Rivers	0.00017	0.0001
Soil Moisture	0.065	0.005	Soil Moisture	0.065	0.0045
Atmosphere*	0.013	0.001	Atmosphere total ^a	0.0155	0.001
Rivers	0.0017	0.0001	Terrestrial Oceanic	0.0045 0.0110	
Biosphere	0.0006	0.00004	Biosphere	0.00200	0.00010
Total	1408.7	100	Total	1459	

Notice that *both tables cite the same data source* (Berner and Berner, 1987), yet they give different total volumes of water in the hydrosphere and some of its sub-reservoirs.

For instance, groundwater, the atmosphere and the biosphere all contain less water in the "Faure" version than in the "Berner and Berner" version. This is due to slightly different reading of the same data by each.

GG325 L15, F2013

Other important properties of water:

Property	Effects and Significance
Excellent Solvent	Transport of nutrients and waste products, making biological processes possible in aqueous medium
Highest dielectric constant of any common liquid	High solubility of ionic substances and their ionization in solution
Higher surface tension than any other liquid	Controlling factor in physiology; governs drop and surface phenomena
Transparent to visible and longer-wavelength fraction of ultraviolet light	Colorless, allowing light required for photosynthesis to reach considerable depths in bodies of water
Maximum density as a liquid at 4°C	Ice floats; vertical circulation restricted in stratified bodies of water
Higher heat of evaporation than any other material	Determines transfer of heat and water molecules between the atmosphere and bodies of water
Higher latent heat of fusion than any other liquid except ammonia	Temperature stabilized at the freezing point of water
Higher heat capacity than any other liquid except ammonia	Stabilization of temperatures of organisms and geographical regions

	Reservoirs	s of the hydrologic Cy	ycle
The exch	<i>complete exoge</i> anges between	<i>nic</i> cycle for water on Earth invol these reservoirs (plus the biosph	ves iere)
	Reservoir	"Туре"	
	super-surface		
	gas (water vapor) liquid (droplets) solid (ice)	atmosphere	
	surface water:		
	oceans	Geographically fixed "Holding Tanks"	
	lakes	Holding Tanks	
	rivers, streams	"Migrating reservoirs" (follows land topography and/or internal structure)	
	estuaries	Migrating reservoirs	
	glaciers	Migrating reservoirs	
	sub-surface water:		
	groundwater	Migrating reservoirs	
Wate	er takes on vari	able compositions as a function	on of how long
it sta	ays in a reservo	bir and how well mixed it is.	
	-		GG325 L15, F2013

	Inputs		Outputs
River inflow	50	River Outflow	20
Rain fall	10	Groundwater Outflow	10
		Evaporation	30
Total In	60	Total Out	60

Residence Ti	me:		
Why does thi higher TDS a residence tim	s matter to us? Nate nd <i>more variable co</i> ne in a reservoir.	ural Waters tend to gain pmpositions with longer	
Inorganic com	positions reflect <i>loca</i>	<i>l inputs</i> from <i>solids</i> and	
gasses that a	re present.		
Organic comp	ositions reflect the Ic	cal biosphere	
Organic comp	ositions reflect the Ic	cal biosphere	1
Organic comp Area Rain	ositions reflect the <i>Ic</i> Residence Time T _{res} of H ₂ O in the atmosphere is 11 days	TDS low (1-20 mg/L)	-
Organic comp Area Rain Rivers	ositions reflect the Ic Residence Time Tres of H2O in the atmosphere is 11 days days to months (location specific)	TDS low (1-20 mg/L) moderate (50-200 mg/l)	-

Heat in the Atmosphere-Hydrosphere System

What makes H₂O move about within the hydrosphere?

99.98% of the Earth's surficial heat comes from the sun.

Water moves through the cycle due to variable heat inputs/losses across the globe, setting up thermal gradients that cause convection within some reservoirs, and fueling evaporation and precipitation from their surfaces.

Not all locales on the Earth receive the same amount of light on a given day in the year due to vagaries in the earth's rotation relative to the sun:

The atmosphere is heated mostly from below

The surface bodies of water are heated mostly from above

GG325 L15, F2013

Heat in the Atmosphere-Hydrosphere System - Reminder Most heat added to the Earth comes from "above" the hydrosphere and atmosphere system (i.e., from the Sun) But a small amount of heat also comes from below it: This is a combination of external heat stored by the hydrosphere, heat from internal heat sources and heat dissipation from surficial forces (i.e., tidal friction). If we sum the relative energy fluxes to the surficial earth, we find: Solar Radiation 99.98% Internal Heat 0.018% 0.002% Tidal Energy source: Berner and Berner, Global Environment GG325 L15, F2013

Heat in the Atmosphere-Hydrosphere System

The atmospheric positive feedback loop:

The more H_2O (and CO_2) in Earth's atmosphere, in general, the more IR is held by the planet. The more longwave radiation the planet holds, the hotter it gets and the more H_2O evaporates. If left unchecked, the Earth could become very hot through this.

The atmospheric positive feedback loop:

But... as H_2O evaporates, more of it will also recondense into clouds further up in the atmosphere, thus increasing the albedo and diminishing the total incident sunlight at the surface (this negative feedback is believed to help cool the planet and counteract the positive feedback noted above).

How these two interact to affect global climate is unclear; a great deal of uncertainty regarding the extent, location and magnitude of global warming effects comes from this. We will discuss these details later in the semester.

For now, just remember that IR retention by greenhouse gasses helps make the atmosphere churn.

GG325 L15, F2013

Convection in Geographically fixed "Holding Tank" Reservoirs "Holding Tank" reservoirs are a special part of the hydrologic cycle because they are places where water has a significant residence time, a term we will define in a moment. "Holding Tanks" experience internal motion (and some stratification) driven by density gradients. In fresh water bodies, density is largely a function of temperature, with composition usually a distant second In salt water bodies, temperature and composition both play major roles in density and stratification... We distinguish between surface and internal motions in bodies of water because they occur at different rates and result in layers in the water bodies that don't always readily exchange chemicals.

