GG325 -- GEOCHEMISTRY Fall 2014

Homework set #2 (Due Friday, 4 Oct)

- **1.** Plot the pE and pH changes associated with each of the five steps (e.g., O_2 reduction is the first step, nitrate reduction is the next step, etc..) in the model calculations in of Fig 11.12 of lecture 9-10 notes (page 21) on a pE=PH diagram. Be sure to label your axes and to also include the two lines for the upper and lower water stability limits.
- 2. Upon what half reaction is the rigorous definition of pE based?
- **3.** The acid-base reaction for the dissociation of acetic acid is $CH_3COOH + H_2O : H_3O^+ + CH_3COO^$
 - a) Break the reaction above into two half-reactions involving hydrogen ions, H⁺
- **b)** Next, break the redox reaction for iron and hydrogen (below) into two redox half-reactions.

$$Fe^{2+} + H^+ \leftrightarrow Fe^{3+} + 2H_2$$

Compare the acid- base reaction to the redox reaction by drawing an analogy between the roles of H⁺ and e⁻ in the two reactions.

- **4.** What determines the oxidizing and reducing limits for the thermodynamic stability of water (and thus, the exogenic hydrosphere)? *Hint:* Write chemical equations for the two reactions that are involved in the decomposition of water outside of its stability limit (the oxidation of water and reduction of water).
- **5. a)** Calculate $[Fe^{3+}]$, pE and pH at the point in the figure where Fe^{2+} , $Fe(OH)_2$ and $Fe(OH)_3$ are in equilibrium, for maximum Fe concentration in solution of 10^{-5} M
- **b)** Calculate the pE at the point on the Fe²⁺ Fe(OH)₃ boundary line where pH =5 in a solution with a soluble iron concentration of 10⁻⁴ M? note, the diagram is for 10⁻⁵ M so you can just read off of it.

 K_{sp} for the reaction Fe(OH)₃ (s) + 3H⁺ \leftrightarrow Fe³⁺ + 3H₂O is 9.1x10³ pE = 13.2 + log [Fe³⁺]/[Fe²⁺] for the reaction Fe²⁺ = Fe³⁺ + 1e⁻

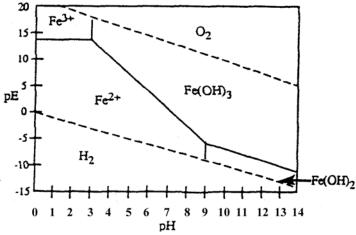


Figure 4.4 Simplified pE-pH diagram for iron in water. The maximum soluble iron concentration is 1.00×10^{-5} M.

GG325 -- GEOCHEMISTRY Fall 2014

Homework set #2 (Due Friday, 4 Oct)

- **6. a)** What is the chemical role of SO_4^{2-} in the following reaction? SO_4^{2-} (aq) + $[CH_2O]_n \leftrightarrow HS^-$ (aq) + CO_2 + H_2O
 - b) How are microorganisms involved in this reaction?
- 7. Thermodynamics of Redox reactions
- **a.** Find ΔG for the reaction:

$$Pb^{2+} + Mn \leftrightarrow Pb + Mn^{2+}$$

- **b.** Which side of the reaction is favored? (HINT: use the data in Table 3.3 from White, reproduced on the next page of this assignment)
- 8. More thermodynamics of Redox reactions
- **a.** Find ΔG° for the reaction:

$$Cu^{2+} + e^{-} \rightarrow Cu^{+}$$

- **b.** What is the pe° for this reaction?
- **9.** Why is sulfate reduction further down in diagrams of the "redox ladder" than nitrate reduction?
- **10.** (White Chapter 14 digital problem 2)

Write the chemical formula and sketch the structure of 2-hydroxy-propanoic acid (lactic acid).

GG325 -- GEOCHEMISTRY Fall 2014

Homework set #2 (Due Friday, 4 Oct)

Table 3.3. $E_{\mbox{$H^{\circ}$}}$ and $p\epsilon^{\circ}$ for some Half-cell Reactions

Half Cell Reaction	E _H °	pe°
$Li^+ + e^- \rightleftharpoons Li$	-3.05	-51.58
$Ca^{2+} + 2e \rightarrow Ca$	-2.93	-49.55
$Th^{4+} + 4e- \rightleftharpoons Th$	-1.83	-30.95
U+4 +4e-	-1.38	-23.34
$Mn^{2+} + 2e^{-} \rightleftharpoons Mn$	-1.18	-19.95
$Zn^{2+} + 2e^{-} \rightleftharpoons Zn$	-0.76	-12.85
$Cr^{3+} + 3e - \rightleftharpoons Cr$	-0.74	-12.51
$Fe^{2+} + 2e^{-} \rightleftharpoons Fe$	-0.44	-7.44
$Eu^{3+} + e^{-} \rightleftharpoons Eu^{2+}$	-0.36	-6.08
$Pb^{2+} + 2e^{-} \rightleftharpoons Pb$	-0.13	-2.2
$CO_{2(g)} + 4H^+ + 4e^- \rightleftharpoons CH_2O^* + 2H_2O$	-0.71	-1.2
$2H^+ + 2e^- \rightleftharpoons H_{2(g)}$	0	0
$N_{2(g)} + 6H^+ + 6e^- \rightleftharpoons 2NH_3$	0.093	1.58
Cu ²⁺ + 2e ⁻	0.34	5.75
$UO_{2}^{2+} + 2e^{-} \rightleftharpoons UO_{2}$	0.41	6.85
$S + 2e^- \rightleftharpoons S^{2-}$	0.44	7.44
Cu ⁺ + e ⁻ ⇌ Cu	0.52	8.79
$Fe^{3+} + e^{-} \rightleftharpoons Fe^{2+}$	0.77	13.02
$NO_3^- + 2H^+ + e^- \rightleftharpoons NO_2^- + H_2^-O$	0.80	13.53
$Ag^+ + e^- \rightleftharpoons Ag$	0.80	13.53
$Hg^{2+} + 2e^{-} \rightleftharpoons Hg$	0.85	14.37
$MnO_{2(s)} + 4H^+ + 2e^- \rightleftharpoons Mn^{2+} +$	1.23	20.8
2H ₂ O		
$O_2 + 4H^+ + 4e^- \rightleftharpoons 2H_2O$	1.23	20.8
$MnO_{4}^{-} + 8H^{+} + 5e^{-} \rightleftharpoons Mn^{2+} + 4H_{2}O$	1.51	25.53
Au ⁺ + e ⁻ ⇌ Au	1.69	28.58
$Ce^{4+} + e^{-} \rightleftharpoons Ce^{3+}$	1.72	29.05
$Pt^+ + e^- \rightleftharpoons Pt$	2.64	44.64

 $^{^{*}\}text{CH}_{2}\text{O}$ refers to carbohyrate, the basic product of photosynthesis. Table is from Chapter 3 of White