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Abstract 

Sheeting joints are rock fractures that open parallel to the topographic surface at shallow depths. They 

affect landscape development, groundwater systems, and slope stability. There are many hypotheses for 

how they form; the most common attributes them to the removal of vertical overburden through erosion. An 

alternative hypothesis posits that they open as a result of tension induced by high surface-parallel 

compressive stresses acting along convex topographic surfaces. This thesis tests both hypotheses using an 

approach based on curvature analysis that classifies topography as one of six topographic shapes: bowls, 

valleys, planes, saddles, ridges, and domes. The Fletcher Granite Quarry in Massachusetts was selected to 

test these hypotheses because well-documented sheeting joints are present, a detailed map indicates the 

locations of 50 sheeting joints, and stress measurements indicate high levels of horizontal compressive 

stress. A map from 1943 was digitized to obtain the data required to analyze the topographic curvature, 

as the topography in the region has been substantially altered due to human activity since the locations of 

sheeting joints in the area were recorded. The curvature analysis shows that 68.2% of the sheeting joints at 

Fletcher Granite Quarry were located on topographic surfaces that were convex in at least one direction 

at the time the joints were mapped. This supports the hypothesis of high surface-parallel compressive 

stresses as the primary mechanism for the formation of sheeting joints. 
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Chapter 1. Introduction 

The topographic surface of the Earth affects many Earth processes, which in turn shape the world we live 

in. One such process is the formation of rock fractures that occur at or near the topographic surface, known 

as sheeting joints. The formation of these surficial fractures can trigger mass wasting events (e.g ., Stock et 

al., 201 2), affect landscape development, and control shallow groundwater systems. In this thesis I address 

how sheeting joints relate to the topographic surface at the Fletcher Granite Quarry, Massachusetts. This 

interaction can be quantified by evaluating the principal curvatures of the surface (Gauss, 1 827); these 

curvatures will describe the shape of a surface at any point on the surface. Although the region of interest 

at the Fletcher Granite Quarry is relatively small, -7 km 2, the methods used in this thesis can be applied to 

any location where sheeting joints are found . 

1 .1 Sheeting Joints 

Sheeting joints, or exfoliation joints, are surficial fractures, or joints, that form sub-parallel to the 

topographic su rface at shallow depths. They appear similar to the layers of an onion (Fig. 1 ). Individual 

sheets of rock between these joints are characteristically lenticular or tabular in form, and can extend in a 

plane for at least 200 meters (Jahns, 1943; Martel, 2006). Sheeting joints can occur within a meter of the 

topographic su rface and can 

form at depths greater than 1 00 

meters (Martel, 2006; Jahns, 

1943). With depth, joint spacing 

increases and curvature 

decreases, creating sheets that 

are progressively thicker, more 

horizontal, and less irregular. 

Sheeting joints most commonly 

occur where the topography is 

convex, but have also been 

Figure 1. Photograph from the bottom of the Fletcher Granite Quarry, 
Massachusetts. Sheeting joints are nearly horizontal because they are 
deep below the original surface, and are labeled with an "S." 

(Holzhausen, 1989). 



observed in areas where the topography is concave in at least one direction (Martel, 2006). Sheeting 

joints are entirely independent of structures within the country rock, and transect foliation, dikes, and 

xenoliths (Jahns, 1943). Observations of sheeting joints favor an open-mode origin, as they typically show 

no sign of slip (Holzhausen, l 989). Sheeting joints typically have walls that are in contact but they can 

have apertures of several centimeters (e.g., Matthes, 1930). The ends of sheeting joints commonly end in a 

pattern of echelon fractures (Martel, 2006). Sheeting joints also exhibit hackles, plumose structures, 

elliptical ribs, and other structures (Holzhausen, 1989) associated with opening-mode fractures. Sheeting 

joints are one of the youngest structures in granitic country rock; and commonly mimic topography that 

formed within the last few million years. Sheeting joints have also developed during mining operations 

(Holzhausen, 1989). High regional horizontal compressive stresses have been measured or deduced in 

many locations where sheeting joints have been observed, including at sites inspected by Jahns (1943) at 

or near the Fletcher Granite Quarry. The mean horizontal compressive stress at the quarry was later 

measured by Holzhausen (1989) as -31 MPa at an average depth of 60 meters. The presence of high 

lateral compressive stresses in many locations with sheeting joints indicates that these stresses contribute to 

sheeting joint formation. 

1.2 Purpose 

A clearer understanding of how sheeting joints form should be helpful in establishing their role in 

developing landscapes, as well as for reducing risks to people and property. Yosemite National Park, for 

example, could benefit in both of these areas. Sheeting joints dominate the landscape throughout the park, 

which is home to some of the most iconic scenery in the United States. In the past, sheeting joints weakened 

the bedrock, allowing glaciers and flowing water to shape the solid granite. Now they decorate 

landmarks such as Half Dome and Matthes Crest (Huber, 1989). Sheeting joints are also a major 

contributor to rockfalls in the park (Stock et al., 2012) posing a hazard to visitors. The National Park 

Service is actively involved in rockfall research to mitigate these hazards (Stock and Collins, 2014). 

General research on sheeting joints can help mitigate hazards associated with rockfalls by facilitating the 

identification of areas that might be prone to rockfall. 
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Although much research has been done on sheeting joints, their exact cause and the mechanics behind their 

formation is still foggy. The purpose of this thesis is to test the hypotheses of Martel (2006, 2011 a) and 

Jahns (1943) using quantitative data in order to help establish the likely mechanism for the formation of 

sheeting joints at the Fletcher Granite Quarry. 

1.3 Hypotheses for Sheeting Joints 

Sheeting joints were first described over two centuries ago, and numerous hypotheses attempt to describe 

their formation. The most widely cited states that relief of overburden is the primary mechanism that causes 

sheeting joints. Jahns ( 1943) invoked this hypothesis to account for the formation of sheeting joints at the 

Fletcher Granite Quarry. However, removal of vertical confining pressure alone cannot produce a tension 

that would open sheeting joints (Martel, 2006). A theoretical model for sheeting joint formation put forth 

by Martel (2006, 2011 a) explains how high horizontal compressive stresses can induce a vertical tension 

that would promote sheeting joints. Mechanically, this hypothesis relies on stresses within the rock parallel 

to the surface interacting with the topography to create a tension large enough to open up a fracture in 

the rock (Martel, 2011 a). Hypotheses such as the cooling of granite, solar insolation, chemical alteration, 

and fire and frost have been largely discounted (Farmin, 1937; Jahns, 1943). This thesis deals with two 

main hypotheses that describe the formation of sheeting joints: (a) lateral compressive stress acting along a 

convex surface, and (b) relief of overburden by erosion. 

1.3.1 Lateral Compressive Stress Hypothesis 

The lateral compressive stress hypothesis posits that the conditions necessary for the formation of sheeting 

joints can be achieved if the following inequality is satisfied (Martel, 2011 a): 

a11k1 + a22k2 > pgcos~, (1) 

where a 11 and a 22 are tensile (positive) or compressive (negative) stresses parallel to the topographic 

surface and in the directions of the principal curvatures k1 and k2 respectively, p is the rock density, g is 

gravity, and f3 is the slope of the surface. This inequality can be used to quantitatively test the compressive 

stress hypothesis. If the sum of the products of the stress terms and the curvatures is greater than the stress 
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gradient due to gravity, then sheeting joints should be abundant. If not, then sheeting joints should be 

sparse or entirely absent (Martel, 2011 a). The mechanism proposed by Martel (2011 a) can be 

demonstrated by a free body diagram of a thin convex element (Fig. 2). The element can be thought of as 

a representation of the outermost surface of an outcrop of rock. The compressional stresses acting on the 

rock parallel to the convex surface produce an outward radial force within the rock. Preventing this layer 

from separating from the outcrop is the tensile strength of the rock, which is relatively small, as well as 

gravity. If the radial outward force overcomes radial inward force due to gravity, then the system will no 

longer be in equilibrium and the surface layer of rock will separate at the base of the layer; creating a 

sheeting joint (Martel, 2011 a). The mechanics of this approach are based on the equation of static 

equilibrium and utilize a local reference frame built upon orthogonal curvilinear coordinates (Fig. 3) 

(Martel, 2011 a). The static equilibrium equation relates stresses acting on a body of any rheology, and 

applying the components of our problem to it produces the equation (see Martel, 2011 a for a full 

derivation): 

ar 
azlz=O 

Traction-free upper surface 
\ Horizontal 

~ 

Compression 

" Compression 

Figure 2. Cross section of a thin convex element 
with a traction free surface, with tensile stress (T) 
at the base. Bold arrows indicate tractions 
acting on the element. R is the radius of 
curvature of the surface of the element, p is the 
tangent slope. (Martel, 2011 a). 

(2) 

Figure 3. Surface showing the local curvilinear 

reference frame. The a1, a2, and c:t3 directions 
correspond to the a111 a22 , and a33 stress 
components, respectively. The principal curvatures k 1 

and k2 are parallel to a1 and a2. (Martel, 2011 a). 
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where T is the stress component acting in the z 

direction, normal to the tangent plane at the 

surface. At the surface, where z is equal to zero, 

equation (2) yields the slope of the tension vs. 

depth curve (Fig. 4), shown as ¢ . Equation (2) 

shows the normal traction gradient at the surface 

of an outcrop. If <P is greater than zero then a 

tension perpendicular to the surface exists at 

I-

T>O 
Tension 

o~~~~-""'-oe-~~~~~~~~~~---1 

(b) 

0 z 

T<O 
Compressio 

Figure 4. Plot showing tension below a traction free 
surface (T) as a function of depth normal to the 
surface (z). The slope at z = 0 is shown to be 
positive and equal to ¢(Martel, 2011 a). 

shallow depths, this is a sufficient criterion for the nucleation of sheeting joints. For this criterion to be 

satisfied several conditions must exist: (a) the surface-parallel stress terms must be sufficiently compressive 

(negative), (b) the curvature terms must be sufficiently convex (negative), and (c) the sum of the stress-

curvature products must be greater than the product of the unit weight of rock, -2.64 x 104 Pa·m -1 for 

Fletcher granite (FletcherGranite.com, 2015), and the cosine of the surficial slope (Martel, 2011 a). This is 

consistent with the prevalence of sheeting joints in convex topography such as domes and ridges, as ¢ 

would be positive with a sufficient compressive stress parallel to the surface. It is also consistent with the 

sparsity of sheeting joints in concave topography such as valleys and bowls, where the product of the 

curvature of a concave (positive) surface and a surface-parallel compressive (negative) stress would cause 

¢to be negative. In the case of planar topography, the two curvature terms would be zero, causing ¢to 

be negative. The topography of a saddle is a unique case; it is concave and convex in perpendicular 

directions. As many curvature-stress products are possible, the magnitudes of the product terms will dictate 

if ¢is greater than zero, and hence if sheeting joints will likely form below a saddle. The lateral 

compressional stress hypothesis requires topography to be convex in at least one direction for sheeting 

joints to nucleate. As such, for the hypothesis to be validated sheeting joints must be concentrated on 

convex surfaces (e.g., domes, ridges, and saddles). 

5 



1.3.2 Relief of Overburden Hypothesis 

The relief of overburden hypothesis posits that the reduction of primary confining pressure that a rock has 

either solidified under or experienced by burial can act as the fundamental cause for nucleation of 

sheeting joints (Jahns, 1943). The process involves the unloading of rock weight due to erosion, relieving 

the compressive stresses on the underlying rock, which should cause the rock to expand. Advocates of this 

hypothesis equate the radial expansion of the exhumed rock mass with the development of fractures (i.e., 

sheeting joints) subparallel to the surface (Fermin, 1937; Jahns, 1943). 

The granites of New England experienced 

substantial amounts of erosion, with much of the 

erosion involving glaciation. This certainly holds 

true in the Fletcher Granite quarry region, 

where Jahns (1943) estimates that as much as 

34 meters of erosion has occurred locally during 

Quaternary time (Jahns, 1943). For the 

purposes of this thesis, the relief of overburden 

hypothesis will be supported if the highest 

concentration of sheeting joints is in areas that 

A 

Figure 5. Cartoon depicting the process that creates 
sheeting joints through relief of overburden. (A) 
Intrusion solidifies in equilibrium with country rock. (B) 
Erosion exposes the intrusion causing the rock to 
exfoliate due to the reduction of confining pressure 
(modified from Merk, 2010). 

have had the highest amount of erosion (e.g., valleys and bowls). 

1.4 Curvatures 

The shape of the topography at Fletcher Granite Quarry must be characterized quantitatively to test 

hypotheses regarding the formation of sheeting joints. This can be done by evaluating the principal normal 

curvatures of the topographic surface (Gauss, 1827); these curvatures describe the local shape of a 

surface at any point on the surface. For a three dimensional surface, two principal curvatures are needed: 

k1 and k2 • The infinitesimal arcs used to obtain the two principal curvatures lie on the surface, where it is 

intersected by two perpendicular planes; the normal to the surface is a line created by the intersection of 
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the two planes with each other. If a principal curvature value is positive, the surface is concave along the 

corresponding arc; if negative, the surface is convex. Different positive and negative values for curvatures 

k1 and k2 define different topographic shapes (Table. l ). Locally, differences in the shapes of the surface 

generate different combinations of principal curvatures. However, k1 will always denote the maximum 

principal curvature, while k2 will always denote the minimum curvature of the surface. In idealized cases 

k1 could be equal to k2 , as with spheres and planes. In the case of a plane, both principal curvatures are 

equal to zero. For natural topographic surfaces, principal curvatures invariably are not zero, but can be 

considered to be zero if the absolute value of the curvature falls below a set threshold value. Quantifying 

topography in this way supplies a measurable parameter that helps in determining the most likely 

mechanism for the formation of sheeting joints. 

1.5 Calculating Curvature 

Curvature is a quantitative way to describe the amount of deviation from a straight line. For a plane curve 

the curvature vector (K) is defined as the rate of change of the unit tangent (t) of the unit normal of the 

curve with respect to the change in distance($) along the curve (Martel, 2011 b): 

dt 
K=­

dS 
(3) 

To evaluate the curvature for a three dimensional surface, such as topography, a very similar approach is 

taken. To find the principal curvature magnitudes and directions, an orthogonal reference frame is set up 

so the z-axis is aligned with the unit normal of the tangent plane (Fig. 3), which contains both the x- and y-

axes. 
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k2 > 0 k 2 = 0 k2 < 0 

Bowl Valley Saddle 

0 .5 

k1 > 0 

0 0 -1 
1 1 1 ~1 0 0 

-1 -1 -1 -1 -1 

Plane Ridge 

0 

k1 = 0 k1 is always ~ k2 0 

-1 -1 
1 ~1 1 

0 
-1 -1 -1 -1 

Dome 

k1 is al ways ;::: k2 

Table 1. Topographic shapes formed by differing combinations of the principal curvatures k1 and k2 • 

The convex shapes formed by saddles, ridges, and domes are the most likely to develop sheeting joints 
according to the hypothesis of Martel (2011 a) . Adapted from Mitchell (201 O); images from Martel 
(2011 b). 
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The first partial derivatives for plane curves in the x-z and y-z planes are the slopes of the curves formed 

by the intersections of the x-z and y-x planes with the surface. Evaluated at the local coordinate origin, 

these derivatives are both equal to zero. A Hessian matrix (H) is composed of second order partial 

derivatives of the surface Z = Z{x,y) in terms of the local elevation (z) and the x and y directions. (Martel, 

2011 b): 

[ 

azz 
ax2 

[H] = o2z 

ayax 

(4) 

This matrix is symmetric (i.e., the off-diagonal terms are equal). The principal values of the Hessian matrix 

are the greatest and least normal curvatures k1 and k2 • Using matrix multiplication, the Hessian matrix (H) 

and the infinitesimal vector [X] together yield the slopes of the arcs in the x-z and y-z planes: 

l 
azz 
ax2 

[H][X] = azz 

ayax 

a
2

z ] [ oz 

1 
ax ay [dx] = ox 
azz dy az 
ayz ay 

The principal curvatures, given by the matrix [K], and the principle directions, given by the vector [X] 

satisfy the following equation of the surface: 

[
k1 

[H][X] = k[X] where k ~ O 

Principal curvatures of a surface are the eigenvalues of the Hessian matrix. The principle directions give 

(5) 

(6) 

the directions in which the surface slope changes most positively and least positively. The above process is 

straightforward where the local reference frame describing the surface is aligned with the global 

reference frame. This is always the case at high or low points in the topography (e.g., top of a summit, 

bottom of a depression) if the global x- and y-axes lie on a horizontal plane. When these two reference 

frames are not in alignment, which is the case at intermediate elevations, determining the principal 

curvatures requires a more sophisticated approach (e.g., Struik, 1961; Martel, 2011 b). 
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Chapter 2. Methods 

The Fletcher Granite Quarry in Massachusetts was selected for this thesis for several reasons: First, well 

documented sheeting joints are present and a detailed topographic map (Fig. 6) plots 50 of the locations 

where they were found (Jahns, 1943; Holzhausen, 1989). Second, the topography is diverse. Third, 

stresses have been measured at the quarry using overcoring strain gauges at depths as great as 60 

meters. The most compressive principal stress measured is 31.2 to 55.5 MP a and trends -47°; the least 

compressive principal stress is 16.2 to 27.0 MPa and trends -137° (Holzhausen, l 989). The topographic 

contour map of Jahns ( 1943) details the locations of sheeting joints and is the basis for the analysis done in 

this thesis (Fig. 6). His map was used because the topography at the Fletcher Granite Quarry was 

substantially altered by mining operations after Jahns completed his work. 

In order to utilize the work of Jahns, the hand-drawn topographic map was cleaned (Fig. 7) and contours 

from this base map were digitized in MATLAB. The elevation data from the digitized contour lines were 

then interpolated onto a regular rectangular grid. Initial interpolation results using built-in MATLAB 

interpolation functions caused a few problems, with two standing out. First, the correct size for the grid was 

somewhat difficult to pin down. Course grids (e.g., 50 x 50) processed quickly, but did not accurately 

represent the contour data (Fig. Sa). Very fine grids (e.g., l 000 x l 000 and above) were very detailed 

but substantially increased processing time. The differences between contour maps made from course­

gridded data and fine-gridded data were not readily apparent at this stage (Fig. 8), but when the final 

curvature data was plotted the lack of detail became very noticeable (Fig. l 0, Fig. 11 ). For the results 

described in this thesis, a grid of 800 by 800 was used as a compromise between processing speed and 

accuracy (Fig. Sb). Second, the MATLAB function 'griddata', which was originally used for interpolation, 

created some unwanted results; the interpolated contours were not staying true to the data in some areas. 

An attempt at remedying this was to try different methods of interpolation within 'griddata' (e.g., 'nearest', 

'linear', and 'v4'). The 'v4' method provided the best results; however some areas still did not come close to 

matching the original digitized contours (Fig. Sa). Another interpolation function was used that utilizes 

Green's function for splines in tension, 'spline2d', to try for a better fit (Wessel, 1998). This function allows 

the user to apply tension to the contour lines to improve the fit (much the same way a spline was used in 
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Figure 6. Original topographic map of Fletcher 
Granite Quarry used as base map for digitizing 
contours. Contour interval is 20 feet (Jahns, 1943). 
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Figure 7. Cleaned version of the Jahns ( 1 943) map. 
Green symbols show strike and dip direction of 
sheeting joints. Contour interval is 20 feet. 

shipbuilding). However, it did not produce a drastic improvement in accuracy for the problem areas. It was 

decided a tension value of 0.1 gave satisfactory results as far as the interpolation (Fig. Sb). 

The interpolated grid was then filtered to smooth out the topography and remove any small scale features 

that would cause errors in calculating curvatures; curvatures are calculated using second order derivatives 

that are very sensitive to small irregularities in the topography. For the final curvature analysis, only 

features that were large enough to effect the formation of sheeting joints were left unfiltered; these were 

features with a wavelength of at least 30 meters or so. Filtering was accomplished by setting high- and 

low-band-pass filters, which are based on radial Gaussian functions centered on low- and high-pass 

frequency values. Discrete Fourier transforms of the topographic data are multiplied by each filter, and 

the topographic surface is reconstructed using the inverse of the filtered discrete Fourier transform data set 

(for more detail, see Perron, 2008). Frequency values are determined based on the inverse of the 
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Figure 8. Topographic contour maps prepared from (a) 50 by 50 interpolated grid using the 'griddata' 
function, and (b) 800 by 800 interpolation grid using the 'spline2d ' function with a tension value of 0.1. 
Colored contours ore interpolated; black contours are digitized from the original Jahns ( 1943) map. 
Dashed red circles indicate areas where the interpolated contours do not stay true to the original contours. 

wavelength being addressed. This step required quite a bit of trial and error exploration, as the 

topography of the quarry is rather subdued. The final results shown in this thesis have a high-frequency 

limit of 3.5 x 1 0·2 m· 1 and a low-frequency limit of 1 .0 x 1 0-3 m· 1, with corresponding wavelengths of -30 

meters and 1000 meters, respectively. 

Principal normal curvatures (k1 and k2 ) of the topography were then evaluated using the codes of Mortel 

(2011 ). Local topographic forms were classified as one of six features: domes, ridges, saddles, planes, 

valleys, and bowls (Table 1 ). These determinations were made based on the magnitudes and sign of k1 

and k 2 ; k 1 being the most positive curvature and k 2 being the least positive curvature. At each point on 

the topographic surface, the curvatures were compared to values that define each topographic shape. A 

tolerance level could be set to define the curvature levels that were not rounded off to zero. An overly 

large (e.g., Fig. 9) tolerance level caused topography to be classified as excessively planar, while an 

overly small tolerance (e.g., Fig. 10) caused topography to be classified as excessively dome, saddle and 
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bowl shaped. An acceptable amount of tolerance was determined to be 0 .0035 m· 1; principle curvatures 

with absolute values less that this were set to zero. Several problems were encountered during this stage. 

First, the interpolation functions yielded unexpected short wavelength artifacts parallel to the long axis of 

the map (Fig. 9). Their extent raised concerns about the accuracy of the calculated curvatures and the 

classification of the topographic shapes (Fig. 9). The artifacts seemed to be worst when the 'spline2d' 

function was used, but were present when using 'griddata ' as well. All attempts to remove the vertical 

artifacts were unsuccessful, and in the end it was only possible to minimize them by adjusting the filter, 

tension, and tolerance values. This was done mostly by trial and error, as the appearance of the artifacts 

seemed to be arbitrary. Second, the low quality of coarse grid sizes became very evident, making the 

topographic shape map pixelated (Fig. 10). This was remedied by interpolating onto a finer grid and 

rerunning the curvature code. Third, the correct amount of filtering had to be determined. Excessive 

filtering washed out most of the topographic shapes and filled them in as planar, and in some cases 

completely distorted the map. This problem was compounded as certain frequencies caused the artifacts 
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to improve or worsen. The most robust results were obtained with a combination of filters whose magnitude 

corresponded closely to the relative wavelength of topographic features present at the Fletcher Granite 

Quarry. This meant using frequency filters that fit the topography, and were not overly small (e.g., 1x10-10 

m-1 ) or overly large (e.g., 1x102 m-1 ), otherwise artifacts worsened. Also keeping the high-pass and low-

pass filters within two or three orders of magnitude of each other reduced the presence of a rtifacts. Slight 

departures from the final filter values, even an order of magnitude, caused increases in vertical artifacts. 

The last step was to overlay the sheeting joint locations that were mapped by Jahns ( 1943) onto the map 

produced by curvature analysis to aid in the comparison between the sheeting joints and the local shape of 

the topographic surface. For each location that had sheeting joints, the topographic shape of the surface 

was noted and recorded (Table 2). Percentages were then calculated for the sheeting joints located on 

each topographic shape, of which there were 45 after exclusions. Five sites were excluded due to the 

ambiguity of the interpolation (Fig. 8) and the small wavelengths of the unfiltered topography there. 

Excluding these sites improved the reliability of the analysis. 
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Chapter 3. Results 

The results of the principal curvature analysis are shown in Fig. l 2 and Fig. l 3. A large portion of the map 

is classified as locally planar (34%), shown in cyan (Fig. l 4A). Most of these areas occur along the edges 

of the map where contour lines on the original map were either lacking or widely spaced. One area 

classified as planar (red circle, Fig. 8) is made up of small -wavelength, low-amplitude features that 

created problems during interpolation. These features were filtered out, making the area appear locally 

planar. Jahns ( 1943) mapped sheeting joints at five locations within this area, and these were excluded 

from analysis. An additional point was excluded as it is located in an area that is perforated by vertical 

artifacts, making the classification of the topographic shape there ambiguous (small dashed circle, Fig. 8). 

The topographic shapes classified as ridges, saddles, and valleys all have about an equal percentage of 

occurrences ( 17% , 19%, and 18%, respectively) and make up the majority of the map. Bowls and domes 

have an equal percentage of occurrences (6%) and make up the smallest proportion of the map. Of the 
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Topographic Shape Dome Ridge Saddle Plane Valley Bowl 

Percentage of 6 17 19 34 18 6 
Topographic Shape (%) 

# of Sheeting Joints 4 8 18 (19) 1 (5) 8 (9) 5 

Percentage of 
9.1 18.2 40.9 2.3 18.2 11.4 

Sheeting Joints (%) 

Table 2. Distribution of sheeting joints at Fletcher Granite Quarry, and the topographic shape in which they 
are located. Numbers in parenthesis indicate values prior to exclusions. Percentages calculated using total 
values for locations and sheeting joints. Figure 11 was used to tabulate number of sheeting joints for each 
topographic shape. 

remaining 44 locations where sheeting joints were mapped, all but 14 of them are located at domes, 

ridges, or saddles (Table 2, Fig. 14b). A total of 68.2% of the sheeting joints are located on surfaces that 

are convex in at least one direction, and only 31.8% of the sheeting joints are located elsewhere. A high 

percentage (40.9%) of the sheeting joints are located on topography classified as saddle shaped (Fig. 

14b). Of the 14 locations where sheeting joints are deemed to be in a valley, a bowl, or a plane, five 

were within the Morris Brothers and H.E. Fletcher quarries (Fig. 6), and likely formed before the quarries 

were excavated. In Figure 6 the red line indicates what was thought to be a very broad saddle. Six total 

sheeting joints were mapped in this area. Of those, two are located in an area classified as a saddle, and 

two in an area classified as a ridge. The other two points are located in a planar area that is excluded. 
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Figure 14. Histograms showing (a) the total number of pixels classified for each topographic shape, and (b) 
the total number of sheeting joints located on each topographic shape, from Table 2. 
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Chapter 4. Discussion and Conclusion 

This thesis tested two hypotheses that identify a mechanism for the formation of sheeting joints. Curvature 

of the topographic surface was used as the metric with which to test each hypothesis, as it can favor the 

rejection or it can support each by determining if sheeting joints are preferentially located on convex or 

concave surfaces. 

4 . 1 Discussion 

The percentage of the map area taken up by each individual topographic shape, as determined from the 

classification of the principle curvatures, does not does not seem to reflect the percentage of sheeting joints 

on that surface. In other words, valleys, ridges and saddles all take up similar percentages of the map, but 

roughly twice as many sheeting joints are located on topography classified as saddles compared to 

valleys and ridges (Fig. 14). In fact, almost half of the sheeting joints present at Fletcher Granite Quarry 

are located on saddle shaped topography. The planar topographic shape accounted for a large portion 

of the map (43%), but also had the smallest percentage of sheeting joints (2.3%). The percentage of 

sheeting joints in bowls is somewhat deceptive, as five of the joints located in bowl shaped topography 

were quarries. If this is taken into account, more sheeting joints are located on dome shaped topography 

(9.1 %) than bowl shaped topography (0%, if the quarries are disregarded)(Table 2). 

The presence of the short-wavelength vertical artifacts may have had some effect on the curvature 

analysis, and in turn this could have affected the classification of topographic shapes. However, the 

artifacts are concentrated around the edges of the map (which is expected to happen due to the way the 

curvatures are calculated), and also seem to have bled into areas classified as planar surfaces, most 

notable in the northern section of the map. Only a few sheeting joints are located in areas where the 

vertical artifacts noticeably effected the topographic shape classification (most of which are found within 

the planar area that was excluded for inaccuracies in the interpolation), but all of them have been 

excluded. Exclusion of these points effectively limits any influence the vertical artifacts may have had over 

the classification of the topographic shapes, as a specific cause for the vertical artifacts could not be 

determined within the timeframe of this thesis. 
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4.2 Conclusions 

The overwhelming majority (69%) of sheeting joints mapped by Jahns ( 1943) is located where the local 

topographic surface is convex in at least one direction (i.e. domes, ridges, and saddles), while half as 

many are found elsewhere. This finding supports the hypothesis of Martel (2006, 2011 a) that sheeting 

joints open as a result of tension induced by high surface-parallel compressive stresses acting on 

topographic surfaces that are convex in at least one direction. Only 14 locations where sheeting joints 

were mapped are classified as a concave, and only 9 of those are located in a natural bowl or valley. 

Bowls and valleys are features that logically have been more heavily eroded than their surroundings. If 

erosion of overburden were the primary mechanism behind the formation of sheeting joints then these 

areas should contain the highest concentration of sheeting joints, which is not the case. As such, the findings 

do not favor the mechanism proposed by Jahns ( 1943) that sheeting joints are primarily a response to the 

relief of overburden due to erosion. 

4.3 Future Research 

More research is needed to resolve the issues with short-wavelength vertical noise. Using another program 

to digitize and interpolate the contours could reduce or completely eliminate the vertical artifacts if the 

error lies somewhere within MATLAB. This approach was attempted, but processing limitations and bugs 

with porting the GIS data to MATLAB were encountered. With sufficient resources these issues could be 

resolved. A larger basemap could reduce artifacts around the borders of the mapping area and possibly 

prevent artifacts from encroaching into the region of interest. Additional research could be conducted to 

analyze the stresses in the rock around the Fletcher Quarry using the topographic data obtained from the 

digitized map and stress measurements from the Fletcher Granite Quarry (Holzhausen, l 979). This analysis 

could utilize a method based on Fast Fourier Transforms (Perron et al., 2008). Previous research using this 

approach has only taken into consideration either gravity (Haneberg, 1999) or regional geologic stresses 

(Holzhausen, 1979), but not both. A more complete analysis would account for both gravity and regional 

geologic stresses, and give a better picture of the forces involved in creating the sheeting joints found at 

Fletcher Granite Quarry. 
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Appendix: Codes 

Codes used for digitizing contours 

A digital image of the map is required to run this code, the formatting restrictions for this image can be 

found in the help pages for the 'imread' function in MATLAB. This code was run using MATLAB R20 l 4a 

Student Edition. 

function fletcher _digitize_image 
% FLETCHER_DIGITIZE_IMAGE - Takes an input file, such as a .tiff, 
% and allow points to be chosen from the image using ginput. These points will 
% be saved into a .txt file, which can later be assigned to variable to 
% plot the x and y values. 
% Input: Image file 

% Enter data file to be digitized. 
A = imread(input('Enter Input File: ')); 

% Create figure l and bring up the image 
figure( 1 ); 
image(A); 
axis equal 

% Use ginput to select points on the image to convert them to x and y 
% coordinates. 
[x,y] = ginput2('.r'); 

% Save the data to a txt file. 
A = input('Continue? ( l = Yes, 2 = No): '); 
if (A== l) 

save_contours(x, y); 
% Display the resulting points in figure 2. 
B = input('Load File? ( 1 = Yes, 2 = No): '); 
if (B == l ); 
load_ display; 
end 

end 

O/o--------------------------------------------------------------------------

function save_contours(x, y) 
% SAVE_CONTOURS - Save the x and y coordinates obtained to a txt file. 
% If no file exists, one will be created. If the file name already exits 
% the data will be appended to the preexisting txt file. 

% Combines x and y coordites into one matrix. 
points(:, l) = round(x); 
points(:,2) = round(y); 

% Asks for file name. 
file = input('Enter Save File: '); 
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% If statement prevents overwriting of previously obtained values. 
if exist(file, 'file') == 2 

save(file, 'points', '-append', '-ascii'); 
else 

save(file, 'points', '-ascii'); 
end 

O/o--------------------------------------------------------------------------

function load_display 
% LOAD_DISPLAY - This function will load a .txt file with x and y 
% coordinates seperated into two columns and plot them. 

% Loads file and assigns it to a variable. 
P = load(input('lnput Load File: ')); 

% Allows user to choose figure number 
f = input('Figure: '); 
% Pulls out x and y coordinates for plotting. 
x = P(:,l ); 
y = P(:,2); 

% Plot the x and y coordinates. 
figure(f); 
hold on 
axis ij; 
plot(x,y); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Plotting digitized contours 

It is necessary to combine all the files containing the digitized contour data in order to plot a full map. The 

function 'fletcher_joints' is a similar function that loads a .txt file containing the locations of individual points 

on the digitized map, in this case the locations of sheeting joints. This function can be used to create an 

overlay to check the accuracy of interpolation and filtering. This code was written and run using MATLAB 

2014a Student Edition. 

function fletcher _complete_map 
% FLETCHER_COMPLETE_MAP - Loads the contour data from 
% fletcher_digitize_image and plots the data as seperate polygons using 
% load_data2. 

figure( 1) 
axis equal 
hold on 
axis ij 

% Load Sheeting Joint Locations 
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fletcher _joints; 

load_data2('140cl .txt', 'k'); 
load_data2(' l 40c2.txt', 'k'); 
load_data2(' l 40c3.txt', 'k'); 
load_data2('160c.txt', 'k'); 
load_data2{'180c.txt', 'k'); 
load_data2{'180cl .txt', 'k'); 
load_data2(' 180c2.txt', 'k'); 
load_data2('180c3.txt', 'k'); 
load_data2(' 1 80c4.txt', 'k'); 
load_data2(' 180Poc 1.txt', 'k'); 
load_data2(' 1 80Poc2.txt', 'k'); 
load_data2{'200c 1.txt', 'k'); 
load_data2('200c2.txt', 'k'); 
load_data2('200Quc.txt', 'k'); 
load_data2('220c.txt', 'k'); 
load_data2{'220cl .txt', 'k'); 
load_data2('240c.txt', 'k'); 
load_data2('240c 1.txt', 'k'); 
load_data2('240c2.txt', 'k'); 
load_data2('260c.txt', 'k'); 
load_data2('260c 1.txt', 'k'); 
load_data2('260c2.txt', 'k'); 
load_data2('260c3.txt', 'k'); 
load_data2('260c4.txt', 'k'); 
load_data2('260c5.txt', 'k'); 
load_data2('260c6.txt', 'k'); 
load_data2('260c7.txt', 'k'); 
load_data2{'260c8.txt', 'k'); 
load_data2{'260c9.txt', 'k'); 
load_data2('260c 1 O.txt', 'k'); 
load_data2('260c 11.txt', 'k'); 
load_data2('260c l 2.txt', 'k'); 
load_data2('260c 13.txt', 'k'); 
load_data2('260cl 4.txt', 'k'); 
load_data2{'280c.txt', 'k'); 
load_data2('300c.txt', 'k'); 
load_data2('320cl .txt', 'k'); 
load_data2('320c2.txt', 'k'); 
load_data2('320c3.txt', 'k'); 
load_data2('320c4.txt', 'k'); 
load_data2{'320c5.txt', 'k'); 
load_data2('320c6.txt', 'k'); 
load_data2('320c7.txt', 'k'); 
load_data2('320c8.txt', 'k'); 
load_data2('Border.txt', 'k'); 
o/o--------------------------------------------------------------------------
function load_data2 (x, s) 

% LOAD_DATA - This function will load a .txt file with x and y 
% coordinates seperated into two columns and plot them. Inputs are file 
% name and figure number. 
% Example load_data2('text.txt', 1) 
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hold on 
axis ij 
axis equal 

% Loads file and assigns it to a variable. 
P = load(x); 

% Pulls out x and y coordinates for plotting. 
x 1 = P(:, 1 ); 
yl = P(:,2); 

% Scales the map to meters 
xscale = 0.68499; 
yscale = 0.6681; 
x2 = xl/xscale; 
y2 = y l /yscale; 

% Plot the x and y coordinates. 
plot(x2,y2, s); 
O/o--------------------------------------------------------------------------
function fletcher _joints 

% FLETCHER_JOINTS - Plots sheeting joint locations from Jahns 1943 map 
% of Fletcher Granite Quarry. 

% Loads sheeting join data and assigns it to the variable. 
joints = load('joints.txt') 
% Pulls out x and y coordinates for plotting. 
joints_x = joints(:, 1 ); 
joints_y = joints(:,2); 

% Scales the coordinates to maters 
xscale = 0.68499; 
yscale = 0.6681; 
joints_x2 = joints_x/xscale; 
joints_y2 = joints_y /yscale; 

% Plots the sheeting joint locations 
plot(joints_x2, joints_y2, 'o',. .. 

'MarkerSize', 8, ... 
'MarkerEdgeColor','w', ... 
'MarkerFaceColor','k') 

End 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Codes for interpolating digital contours 

Digitized contours can be loaded in and saved using this function. User can choose to interpolate using 

'griddata' or 'spline2d'. The code for 'spline2d' was obtained from Wessel ( 1998). Code was written and 

run using MATLAB 2014a Student Edition. 
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function [Xg, Yg, Zg, xval, yval, zval] = fletcher_interpolate_v4(N,t) 
% FLETCHER_INTERPOLATE - Loads in contour data taken using 
% fletcher_digitize_image, scales the data into meters, and interpolates it 
% onto a grid. A grid with the specified dimensions is created and passed 
% through spline2d (or griddata)with the contour data to be interpolated. 
% The grid is an N by N matrix of linear equally spaced points. The grid 
% can be any size, however a very fine grid will substantially increase 
% processing time, while a very course grid will not accurately represent 
% the contour data. Contour data is then interpolated over the grid with 
% the specified amount of tension. Tension values are between 0 and 1, with 
% zero having no tension and l the maximum amount of tension. Tension 
% values closer to 1 can cause distortion in the data, and as such do not 
% accurately represent the data. The fit is then determined by 
% fletcher_best_fit, which returns a value, Z. This value varies, but 
% generally a lower value indicates a better mathematical fit % to the 
% initial contour data. Values for x, y, and z are then saved to a file 
% specified by the user. 
% 
% INPUT: 
% N = grid size 
% t =tension 
% 
% OUTPUT: 
% Xg = interpolated X data 
% Y g = interpolated Y data 
% Zg = interpolated Z data 
% 
% 
% EXAMPLE: 
% [Xg, Yg, Zg, Z] = interpolate_fletcher(200,.6) 
% 
% FUNCTIONS USED: 
% spline2d 
% griddata 
% 
% VERSION: 4 (March, 5 2015) 
% MATLAB: 8.3.0.532 (R2014a) 
% AUTHOR: Zachary T. Olds 

O/o------------------------------ --------------------------------------------

% Load the data 
[xval 1, yval 1, zval 1] = load_ data; 

% Scale x and y values to meters 
[xval, yval] = thesis_scale_meters(xval l ,yval l ); 

% % Scale z values to meters 
zval = zval 1 * .3048; 

%Grid 
rangeX = linspace(min(xval),max(xval), N); 
rangeY = linspace(min(yval),max(yval), N); 
[Xg, Yg] = meshgrid(rangeX, rangeY); 

23 



% Interpolate via griddata 
% Zg = spline2d(Xg, Yg, xval, yval, zval, t); 
Zg = griddata(xval,yval,zval,Xg,Yg, 'v4'); 

% Graph Data 
graph_c(Xg, Yg, Zg); 
% mesh(Xg, Y g, Zg); 
% plot3(xval,yval,zval,'o') 

% Save Contour Data 
save_c(Xg, Y g, Zg); 

O/o--------------------------------------------------------------------------

function [xval, yval, zval] = load_data 
% Loads contour data from .txt files to xval, yval, and zval variables. 

% Load the Data 
% 140 Contour 
c 140 = [load(' l 40c l .txt'); 
load(' l 40c2.txt'); 
load(' l 40c3.txt')]; 
xl40 = cl40(:,l}; 
yl40 = cl40(:,2); 
[m,n] = size( cl 40); 
zl 40 = l 40*ones(m, 1 ); 

% 160 Contour 
c 160 = load(' 1 60c.txt'); 
x160 = cl60(:,l); 
y 160 = c 160(:,2); 
[m,n] = size( cl 60); 
zl 60 = 160*ones(m, 1 ); 

% 1 80 Contour 
cl 80 = [load(' l 80c.txt'); 
load(' 1 80c l .txt'); 
load(' 1 80c2.txt'); 
load(' 180c3.txt'); 
load(' 180c4.txt'); 
load(' 1 80Poc l .txt'); 
load(' l 80Poc2.txt')]; 
xl80 = cl80(:,l); 
yl 80 =cl 80(:,2); 
[m,n] = size(cl 80); 
z 1 80 = 1 80*ones(m, 1 ); 

% 200 Contour 
c200 = [load('200c l .txt'); 
load('200c2.txt'); 
load('200Quc.txt')]; 
x200 = c200(:, 1 ); 
y200 = c200(:,2); 
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[m,n] = size(c200); 
z200 = 200*ones(m, 1 ); 

% 220 Contour 
c220 = [load('220c.txt'); 
load('220c 1.txt')]; 
x220 = c220(:, 1 ); 
y220 = c220(:,2); 
[m,n] = size(c220); 
z220 = 220*ones(m, 1 ); 

% 240 Contour 
c240 = [load('240c.txt'); 
load('240c 1.txt'); 
load('240c2.txt')]; 
x240 = c240(:, 1 ); 
y240 = c240(:,2); 
[m,n] = size(c240); 
z240 = 240*ones(m, 1 ); 

% 260 Contour 
c260 = [load('260c.txt'); 
load('260c 1.txt'); 
load('260c2.txt'); 
load('260c3f.txt'); 
load('260c4.txt'); 
load('260c5.txt'); 
load('260c6.txt'); 
load('260c7.txt'); 
load('260c8.txt'); 
load('260c9.txt'); 
load('260c 1 O.txt'); 
load('260c 11.txt'); 
load('260c 1 2.txt'); 
load('260c 1 3.txt'); 
load('260c 14.txt')]; 
x260 = c260(:, 1 ); 
y260 = c260(:,2); 
[m,n] = size(c260); 
z260 = 260*ones(m, l ); 

% 280 Contour 
c280 = load('280c.txt'); 
x280 = c280(:, 1 ); 
y280 = c280(:,2); 
[m,n] = size(c280); 
z280 = 280*ones(m, 1 ); 

% 300 Contour 
c300 = load('300c.txt'); 
x300 = c300(:, 1 ); 
y300 = c300(:,2); 
[m,n] = size(c300); 
z300 = 300*ones(m, 1 ); 
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% 320 Contour 
c320 = [load('320cl .txt'); 
load('320c2.txt'); 
load('320c3.txt'); 
load('320c4.txt'); 
load('320c5.txt'); 
load('320c6.txt'); 
load('320c7.txt'); 
load('320c8.txt')]; 
x320 = c320(:, 1 ); 
y320 = c320(:,2); 
[m,n] = size(c320); 
z320 = 320*ones(m, 1 ); 

% Concatenate X Data Values 
xval = [x 140; x 160; x 180; x200; x220; x240; x260; x280; x300; x320]; 
% Concatenate Y Data Values 
yval=~l40;yl60;yl80;y200;y220;y240;y260;y280;y300;y320]; 

% Concatenate Z Data Values 
zval= ~140;z160;z180;z200;z220;z240;z260;z280;z300;z320]; 

O/o--------------------------------------------------------------------------

function [ xscaled, yscaled ] = thesis_scale_meters( xvalue, yvalue ) 
% THESIS_SCALE - Scales values collected by ginput and converts them to the 
% map scale of Jahns 1943, in units of miles. 

% Scale factor in feet 
xfeet = 7150.9433; 
yfeet = 9924.5283; 

% Convert to Meters 
xmeters = xfeet * .3048; 
ymeters = yfeet * .3048; 

% Data x and y axis 
xdata = max(xvalue); 
ydata = max(yvalue); 
% disp(['xdata = ', num2str(xdata)]) 
% disp(['ydata = ', num2str(ydata)]) 

% Meters 
xscale = xdata/xmeters; 
yscale = ydata/ymeters; 
% disp(['x scale value = ', num2str(xscale)]); 
% disp(['y scale value = ', num2str(yscale)]); 

% Scale x and y values 
xscaled = xvalue / xscale; 
yscaled = yvalue / yscale; 

O/o--------------------------------------------------------------------------
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function graph_c(Xg, Yg, Zg) 
% Makes a contour plot of the data in meters, with contour labels. 
% Example: graph_c(Xg, Yg, Zg) 

figure( 1) 
hold on 
axis equal; axis ij; 

% % Plot in feet 
% int = 1400:200:3200; 
% con= contour(Xg,Yg,Zg, int); 

% Plot in meters 
int = 40: 10:1 00; 
con = contour(Xg,Yg,Zg, int); 
xlabel('Meters'); 
ylabel('Meters'); 
clabel(con); 

% Cover contours in NaN area 
% xnan = [.04626, .7275, .7321, .04626]; 
% ynan = [ 1.211, 1.207, 1.881, 1.881 ]; 
% fill(xnan,ynan, 'w'); 
%1oad_data3('Border.txt'); 
hold off 

O/o--------------------------------------------------------------------------

function save_c(Xg, Y g,Zg) 
% Saves x, y, and z interpolated contour data to three seperate text files. 
% Example: save_c(Xg, Y g, Zg); 

% Saves x values 
A = input('Save Data? ( 1 = Yes, 2 = No): '); 
if (A== 1) 

file= input('Enter Save File for X Value:'); 
save(file, 'Xg', '-ascii'); 

file= input('Enter Save File for Y Value:'); 
save(file, 'Yg', '-ascii'); 

file = input('Enter Save File for Z Value: '); 
save(file, 'Zg', '-ascii'); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Curvature codes for calculating principal curvatures 

Code was obtained from Martel (2011 a) and is used by 'fletcher_curvature_v3' in order to obtain 

curvatures from a regular grid. For the full code see the supplement to Martel (2011 a). Code was run 

using MATLAB 2014a Student Edition. 
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function [X_, Y _,Z_,K,H,kl ,k2,a l ,bl ,g l ,a2,b2,g2,dzx,dzy] = curvcode4(X,Y,Z) 
% function [X_, Y _,Z_,K,H,kl ,k2,a l ,bl ,g l ,a2,b2,g2,dzx,dzy] = curvcode4(X,Y,Z) 
% Calculates Gaussian (K) and mean curvature (H), most positive and 
% least positive principal curvatures (kl and k2, respectively), and 
% the associated direction cosines for kl and k2 (al ,bl ,g l, and 
% a2, b2, and g2, respectively) for a surface based on regular grids. 
% This code uses the shape operator approach of Smith and Sequin. 
% http:/ /www.cs.berkeley.edu/%7Esequin/CS284/TEXT / diffgeom.pdf 
% 
% The following functions are required to run this code: 
% smthseq Main function to calculate curvatures 
% eig2d Returns eigenvalues and eigenvectors for 2D matrices 
% This is an alternative to MATLAB's 'function eig 
% These functions should be in the same directory (folder) as curvcode4 
% 
% Input parameters 
% X = grid of eastings (east coordinates), 
% Y = grid of northings (north coordinates), 
% Z = grid of elevations. 
% X,Y, and Z should have the same dimensions 
% 
% Input parameters 
% X = regular grid of eastings (east coordinates) 
% Y = regular grid of northings (north coordinates) 
% Z = regular grid of elevations 
% Note: X,Y, and Z should have the same dimensions 
% 
% Output parameters 
% X_ = regular grid of eastings (east coordinates) = X(2:m-1,2,n- l ); 
% Y _ = regular grid of northings (north coordinates) = Y(2:m- l ,2,n- l ); 
% Z_ = regular grid of elevations = Z(2:m- l ,2,n- l ); 
% K = Gaussian curvature (kl *k2) 
% H = Mean curvature (H) (kl + k2)/2 
% kl =most positive principal curvature 
% k2 = most negative principal curvature 
% al ,bl ,g l = direction cosines for kl with respect to the x,y ,z axes 
% a2,b2,g2 = direction cosines for k2 with respect to the x,y,z axes 
% % See online notes for GG303 for more on direction cosines 

% Examples 
% [X, Y] = meshgrid(-2:0. l :2,- 1:0.1: 1 ); 
% % Test 1: Parabolic cylinder parallel to x-axis 
% z = x:'2; 
% [X_, Y _,Z_,K,H,kl ,k2,a l ,bl ,g l ,a2,b2,g2,dzx,dzy] = curvcode4(X,Y,Z) 
% % Test 2: Parabolic cylinder parallel to y-axis 
% z = Y.A2; 
% [X_, Y _,Z_,K,H,k l ,k2,a 1,b l ,g 1,a2,b2,g2,dzx,dzy] = curvcode4(X,Y,Z) 
% % Test 3: Parabolic cylinder parallel with axis in xy plane 
% t = pi/ 4*ones(size(X)); 
% cost = cos(t); sint = sin(t); 
% X = (X.*cost + Y.*sint).A2; 
% [X_, Y_,Z_,K,H,kl ,k2,a 1,b 1,g 1,a2,b2,g2,dzx,dzy] = curvcode4(X,Y,Z) 
% % Test 4: Monkey saddle z = x.A3 - 3xy.A2; 
% Z = X:'3 - 3*x.*y.A2; 
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% [X_, Y _,Z_,K,H,kl ,k2,a l ,bl ,g 1,a2,b2,g2,dzx,dzy] = curvcode4(X,Y,Z) 
% Test 5: Egg carton z = cos(x).*cos(y); 
% Z = cos(X).*cos(Y); 
% [X_, Y _,Z_,K,H,k 1,k2,a 1,b 1,g 1,a2,b2,g2,dzx,dzy] = curvcode4(X,Y,Z) 

% Calculate grid spacing 
dx = X( 1,2) - X( l, l ); 
% Cautionary note!! In Matlab, row numbers increase from 
% the top of a page to the bottom, rather than the bottom to the top. 
% This can cause derivatives AND GRADIENTS in the y-direction to have an 
% unexpected sign or to appear flipped about the x-axis (horizontal axis) 
% if not handled with the Matlab convention in mind. 
dy = (Y(2, l) - Y( 1, l )); 

[m,n] = size(X); 
% Trim edge rows and columns from input matrices because good values 
% for second derivatives cannot be obtained there. 
X_ = X(2:m- l ,2:n- 1 ); 
Y _ = Y{2:m- l ,2:n- l ); 
Z_ = Z{2:m- l ,2:n- 1 ); 

% Find first and second partial derivatives of Z with respect to X and Y. 
[dzx,dzy,dzxx,dzyy,dzxy] = derivatives (Z,dx,dy); 

% Calculate curvatures and direction cosines for principal directions 
[K,H,k l ,k2,a 1,b 1,g 1,a 2,b2,g2] = smthseq( dzx,dzy ,dzxx,dzyy ,dzxy); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [dzx,dzy,dzxx,dzyy,dzxy] = derivatives (z,dx,dy) 
% function [dzx,dzy,dzxx,Dzyy,dzxy] = derivatives (z,dx,dy) 
% Calculates first and second derivatives of function z with respect to x 
% and y. The function uses a finite difference method on a 9-spot 
% (tic-tac-toe) pattern. The matrices of derivatives returned lack values 
% for the first and last rows of z and the first and last columns of z. 
[m,n] = size(z); 
dzx = zeros(m-2,n-2); 
dzy = dzx; 
dzxx = dzx; 
dzyy = dzx; 
dzxy = dzx; 

z 11 = z( 1:m-2,1 :n-2); 
z21 = z(2:m- 1, 1 :n-2); 
z31 = z(3:m , 1 :n-2); 

z 1 2 = z( 1 :m-2,2:n-1 ); 
z22 = z(2:m- l ,2:n-1 ); 

z32 = z(3:m ,2:n-1 ); 

zl 3 = z(l :m-2,3:n); 
z23 = z(2:m- l ,3:n); 

z33 = z(3:m ,3:n); 

dzx = ( z23 - z21 )/(2*dx); % Central difference method 
dzy = ( zl 2 - z32 )/(2*dy); % Central difference method 
dzxx = ( z23 - 2*z22 + z21 )/(dx.A2); 
dzyy = ( zl 2 - 2*z22 + z32 )/(dy.A2); 
dzxy = ( zl 3 - zl 1 - z33 + z31 )/(4*dx*dy); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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Code to filter topography 

This code was obtained from Martel (2011 a). It is used by 'fletcher_curvature_v3' to filter topography. 

This prevents curvature results from returning bad values due to high frequency, small wavelength features. 

function [X, Y,Zhp,Zlp] = fletcher _topo_filter _short_ v2 (X, Y,Z,flo,fhi) 
% function [X,Y,Zhp,Zlp] = topo_filter_short (X,Y,Z,flo,fhi) 
% Code to filter topographic data 
% Modified from codes example.m and mima.m of Perron, which are 
% sample scripts demonstrating use of DEM spectral analysis routines in 
% Perron, J.T. et al. (2008), Spectral signatures of characteristic spatial 
% scales and non-fractal structure in landscapes, J. Geophys. Res. 
% Figure and equation numbers refer to those in the JGR paper. 
% I have tended to adopt the notation of mima.m, which is a bit different 
% from that or example.m. 
% NOTE!!: I have stripped out the de-noising here from topo_filter 
% NOTE!!: Perron DOES NOT window the data in his de-noising routine 
% 
% GENERAL ORGANIZATION OF CODE 
% 00. Settings 
% 0. View data 
% 1 • Detrend data 
% 2. Prepare to pad and window data 
% 3. Transform data from spatial domain to spectral domain 
% 4. Plot spectra 
% 5. Design filter(s) 
% 6. Filter data (This is here example.m leaves off) 
% 7. Transform filtered data back to spatial domain (mima.m does this) 
% 8. De-window returned data (Perron's codes does not do this far) 
% 9. Retrend data 
% l 0. Save the filtered, re-trended data 

% 
% Output parameters 
% Xt,Yt = matrices of eastings and northings, trimmed to even dimensions 
% Zhp = filtered matrix of high-pass elevations (high frequencies passed) 
% Zip = filtered matrix of low-pass elevations (low frequencies passed) 
% 
% Input parameters 
% X,Y = matrices of eastings and northings, respectively 

% Z = matrix of elevations (this is what will be filtered) 
% flo = frequency at which the high-pass filter starts to increase 
% appreciably above zero 
% fhi = frequency at which the high-pass filter reaches l. 
% 
% What about the frequency limits? Wavelength is equal to the inverse of 
% frequency. The shortest wavelength that can be resolved by 2D data is 
% oriented diagonally, and is equal to sqrt(dx"2 + dy"2), or sqrt(2) for 
% our data (Fig. 4). The longest wavelength that can be resolved is 
% infinite in principle, but in practice we wouldn't feel comfortable 
% trying to detect any signal with a wavelength longer than our dataset. To 
% be even more conservative, the longest wavelength we trust should be a 
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% few times shorter than the width of the DEM. 
% 
% Example 
% clear 
% Double click on desired files 
% 
% Example 1 
% X=XTC_wide; Y = YTC_wide;Z = ZTC_wide; topo_filter; 
% flo = 1 e-3; fhi = 5e-3; 
% [Xtf, Ytf ,Zhp,Zlp] = topo_filter _short(XTC_ wide,YTC_ wide,ZTC_ wide,flo,fhi); 
% topo_shapes(Xtf,Ytf,Zlp,0.001) 
% Example 2 
% flo = 1 e-3; fhi = 5e-3; 
% [Xtf,Ytf,Zhp,Zlp] = topo_filter_short(XOB_wide,YOB_wide,ZOB_wide,flo,fhi); 
% topo_shapes(Xtf,Ytf,Zlp,0.001) 
% Example 3 - This looks preety good for T enaya Canyon 
% flo = 5e-3; fhi = 0.0125; 
% [Xtf, Ytf,Zhp,Zlp] = topo_filter_short(XTC_ wide, YTC_wide,ZTC_ wide,flo,fhi); 
% topo_shapes(Xtf,Ytf,Zlp,0.001) 
% Example 4 - This looks preety good for Olmsted Bowl 
% flo = 5e-3; fhi = 1/100; 
% [Xtf,Ytf,Zhp,Zlp] = topo_filter_short(XOB_ wide,YOB_ wide,ZOB_ wide,flo,fhi); 
% topo_shapes(Xtf,Ytf,Zlp,0.001) 

% 00. SETTINGS % 

%% A note on cell mode 

% This script uses Matlab's cell mode, which is why the section where your 
% cursor currently resides is highlighted. The easiest way to progress 
% through this tutorial is with the following commands, which are also 
% available under the "Cell" menu: 
% 
% Cmd + Enter: Evaluate all the commands in the current cell 
% or 
% Shift + Cmd + Enter: Evaluate current cell and advance to the next cell 
% 
% (On a PC, replace Cmd with Ctrl) 

%% Set up the Matlab desktop 

% First, take a moment to dock the Editor so you can see this script and 
% the command line at the same time. 

% Make new figures docked and white 
%set(O,'DefaultFigureWindowStyle','docked','DefaultFigureColor','w') 

% 0. View data % 

% Prelimary matters: point spacing on grid and grid dimensions 
x = X(l,:); 
y = Y(:, 1 ); 
dx = abs(x(2) - x( 1 )); dy = abs(y(2)-y( 1 )); % grid spacing. 
[Ny Nx] = size(Z); 
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% Taylor Perron's codes won't run unless both dimensions of Z are even. 
% A row or column needs to be trimmed if Nx or Ny is odd. 
% This is different from padding a matrix so its dimensions are a POWER of 
% two to optimize the performance of an FFT. 
if rem(Nx,2) == 1; 

X = X(:, 1:Nx-1 ); 
Y = Y{:, 1 :Nx-1 ); 
Z = Z(:, 1:Nx-1 ); 

end 
if rem(Ny,2) == 1; 

X = X( 1 :Ny- l ,:); 
Y = Y( 1 :Ny- l ,:); 
Z = Z(l :Ny-1,:); 

end 
%% 
x = X(l,:); 
y = Y(:,l); 
[Ny Nx] = size(Z); 

% Display a shaded relief map % COULD ALSO USE HILLSHADE2 
% figure{'Name','Fig. 2: Shaded relief','NumberTitle','off') 
figure( 1) 
hillshade(Z,x,y,'azimuth',45,'altitude',45,'plotit'); 
hold on 
title{'Shaded Relief Map'); 
xlabel{'Meters'); 
ylabel('Meters'); 
axis equal 
axis ij 
hold off 

% 1. Detrend data % 

% Remove the first-order (planar) trend from the data 
% This is to make data stationary in a least-squares sense 
% This is important because spectral methods assume data are stationary 

Zo = Z; % Save the original elevations for later 
[D,P] = detrend4(Z); % D is detrended data, P is best-fit plane 

% 2. Prepare to pad and window data % 

% Padding: the fast Fourier transform proceeds fastest if the dimensions of 
% the input matrix are integer powers of two, which we can achieve by 
% padding the DEM with zeros. 
% Windowing: the edges of our DEM are not perfectly periodic, the 
% spectrum can become contaminated by frequencies used to "fit" the edge 
% discontinuity. This occurs in pite of the de-trending. 
% One can mitigate this effect by multiplying the DEM by a 
% function that tapers to zero at the edges. 
pad = 1; % 1 means pad the data with zeros to a power of 2, 0 no padding 
window = 1 ; % 1 means window the data prior to taking the FFT, 0 no window 
% 3. Calculate 2D FFT and power spectra for detrended DEM (D)% 

32 



% Note that the zero padding and windowing happen inside fft2D. 

[Pm fm Pv fv] = fftdem(D,dx,dy,pad,window); 

% A few words about the output from this step: 
% 
% The Discrete Fourier Transform (DFT) periodogram is calculated here. This 
% is different from the power spectral density, which is also commonly used 
0/o as an estimate of the power spectrum. 
% 
% Pm is the 2D power spectrum matrix, and fm is the corresponding matrix of 
% radial frequencies. Pv is a vector version of the power spectrum, and fv 
% is the corresponding vector of frequencies. Units of Pm and Pv are 
% [units of ZJ"2, which in our case is length"2 since Z is a matrix of 
% elevations. Units of fm and fv are [units of x]"-1, which for us is 
% l /length since x is distance. Fig. 3 shows an example of a simple surface 
% and its 2D power spectrum. 

% 
% What do the units mean? The periodogram is a measure of how much of the 
% original elevation field's variance falls within a given frequency range. 
% You can check that the sum of the periodogram is roughly equal to the 
% variance in Z. (It will be somewhat less due to the zero padding.) 
% 
% 4. Calculate 2D FFT and power spectra % 
% Note that the zero padding and windowing happen inside fft2D. 

%% 4a. l D Power Spectrum 

% Plot the l D version of the spectrum (Fig. 5). We'll plot the 2D spectrum 
% a few steps later, but for now it's easier to visualize in l D. 
% sl d = figure('Name','Fig. 5: l D Spectrum','NumberTitle','off'); 
figure(2) 
subplot(2, l, 1) 
[axf axw] = SpecPlotl D(fv,Pv); 

% Do we see anything at a l Om wavelength? Yes, there is a broad peak. The 
% shorter-wavelength peaks are just pixel-scale noise. 
hold(axw,'on'); 
plot([l 0 1 O],get(axw,'ylim'),'k'); 

%% 4b. Background Spectrum 

% Now let's see what the spectrum looks like in 2 dimensions. If we just 
% looked at it as is, we wouldn't see much: as the l D spectrum shows, 
% longer-wavelength signals have much higher power, and would swamp any 
% shorter-wavelength detail. To make the 2D spectrum easier to view, we'll 
% remove the power-law background trend. Because there are so many more 
% points at higher frequencies, we'll bin the l D spectrum and fit the trend 
% to the binned values (Fig. 5). 

nbin = 20; % Number of bins 
B = bin( log 1O(fv),log1 O(Pv),nbin,O); % Bin the log-transformed data 

% Plot the binned values 
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hold(axf,'on'); 
plot(axf, 1 O."B(:, l ), l O."B(:,2),'ok','markerfacecolor','w'); 

% Fit a trend with the form P - 1 /f"n, and plot it 
fit = robustfit(B(:, 1 ),B(:,2)); 
plot(axf, 1O."B(:,1),1 O"fit( l )*( 1 O."B(:, l ))."fit(2),'k'); 

%% 4c. 2D Power Spectrum 

% Use this fit to normalize the 2D spectrum 
Pmn = Pm./( 1O"fit(1 )*fm."fit(2)); 

% Plot the normalized 2D spectrum (Fig. 6) 
%figure('Name','Fig. 6: 2D Spectrum','NumberTitle','off') 
figure(3) 
SpecPlot2D(fm,log 1 O(Pmn)); 

% Clean up workspace 
clear Pm fm Pv nbin B axf axw fit Pmn 

% 5. Filtering % 

%% High-pass filter 

% Now let's isolate the signal associated with the features of interest. 
% The 1 D and 2D spectra suggest that the peak associated with the mounds 
% begins at frequencies of -0.03 to 0.05 m"- 1 (wavelengths of 20 to 30m). 
% The mounds are only a few pixels wide, so we want to retain all 
% frequencies higher than about 0.04. We can accomplish this with a 
% high-pass filter. 

% Plot the filter alongside the 1 D spectrum to illustrate its shape (Fig. 
% 5). Note how the filter transitions smoothly from 0 to 1 -- the shape is 
% half a Gaussian in linear frequency. 
figure(2) 
%figure(s 1 d) 
subplot(2, 1,2) 
semilogx(fv,Make2DFilt(fv, [flo fhi], 'highpass'),'b'); 
set(gca,'box','off','tickdir','out','ylim',[O 1.01 ]); 
xlabel('Radial frequency (m"{-1 })'); 
ylabel('Filter'); 

% Filter the DEM (D) and return the filtered DEM (Zhp) and filter matrix(F) 
[Zhp,F] = SpecFilt2D(D,dx,dy,[flo fhi],'highpass'); 

%% View filtered DEM 

% Display a shaded relief map of the high-pass-filtered data (Fig. 7) 
% hp = figure('Name','Fig. 7: High-pass-filtered DEM','NumberTitle','off'); 
figure(4); 
ShadePlot(x,y,Zhp); 
hold on 
axis equal 
axis ij 
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title('High-pass-filtered data'); 
xlabel{'Meters'); 
ylabel('Meters'); 
hold off 

%% Low-pass filter 

% What's left over is the low-pass-filtered topography (Fig. 8) 
Zip= Z - Zhp; 
%Ip = figure('Name','Fig. 8: Low-pass-filtered DEM','NumberTitle','off'); 
figure(5); 
ShadePlot(x,y,Zlp); 
hold on 
axis equal 
axis ij 
title('Shaded Relief Low Pass'); 
xlabel(' Meters'); 
ylabel('Meters'); 
hold off 

figure(6); 
hold on 
cc = contour(x,y,Zlp); 
hold on 
axis equal 
axis ij 
title('Contour Plot Low Pass'); 
xlabel('Meters'); 
ylabel('Meters'); 
clabel(cc); 
hold off 

% We could also do the low-pass filtering with the following: 
% floLP = flo; fhiLP = fhi; 
% Zip = SpecFilt2D(Z,dx,dy,[floLP fhiLP],'lowpass'); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Code to classify topography based on curvature 

This code was obtained from Martel (2011 a), and slightly modified to remove extraneous code and also 

add a few things relevant to this thesis. This code is used by 'fletcher_curvature_v3' to classify topography 

based on curvature results obtained from 'curvecode4'. Code was run on MATLAB 2014a Student Edition. 

function fletcher _topo_shapes_ v6(X, Y,Z,tol) 
% topo_shapes_fletcher_vl (X,Y,Z,tol) 
% function for superimposing contour plots on image plots 
% for evaluating shapes of topographic surfaces 
% 
% tol = tolerance for defining limits of planar surfaces, ridges, etc. 
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% Reducing tol shrinks the areas that can be ridges, valleys, or planes and 
% increases the regions that can be saddles 
% tol = 0.02 seems to work well 
% 
% Example 
%load thin_even_MP .mat 
%load thin_even_XP.mat 
%load thin_ even_ YP .mat 
0/oload new _torx 
%load new _tory 
% 
%flo = l e-3; fhi = 5e-3; 
%[Xtf, Ytf ,Zhp,Zlp] = topo_filter_short(thin_even_XP ,thin_even_ YP ,thin_even_MP ,flo,fhi); 
%topo_shapes_cairngorm_ v2(Xtf, Ytf ,Zlp,0.0015) 
O/o 
%figure(5) 
%hold on 
%plot(new_torx,new_tory,1

0
1
,

1LineWidth1,2,'MarkerEdgeColor','k','MarkerSize', l 0) 
%hold off 
% 
% 
%figure(6) 
%hold on 
%plot(new _torx,new _tory ,'o','Line Width',2, 'Ma rkerEdgeColor','k',' MarkerSize ', l 0) 
%hold off 

% Get Curvature values 
[X__, Y __,Z__,K,H,k l ,k2,a l ,bl ,g l ,a2,b2,g2,dzx,dzy] = curvcode4(X,Y,Z); 

% Set boundaries for small area 
M = find (X_( 1,:) > -10 & X_( 1,:) < 2250); % Change values to slightly less/more than xmin/xmax 
N = find (Y _(:, 1) > -10 & Y _(:, 1) < 3000); % Change values to slightly less/more than ymin/ymax 

% Find domes 
% Find elements where kl < -tol and k2 < -tol, and mark them with l's 
D = k 1 (N,M) < -tol & k2(N,M) < -tol; 
Dsum = sum(sum(D)); 
%[id,jd] = find(D); 
% Find ridges 
% Find elements where I kl I <= tol and k2 < -tol, and mark them with l's 
R = abs(kl (N,M)) <= tol & k2(N,M)< -tol; 
Rsum = sum(sum(R)); 
%[ir,jr] = find(R); 
% Find saddles 
% Find elements where kl > tol and k2 < -tol, and mark them with l's 
S = k 1 (N,M) > tol & k2(N,M) < -tol; 
Ssum = sum(sum(S)); 
%[is,js] = find(S); 
% Find planes 
% Find elements where I kl I <= tol and I k2 I <= tol, and mark them with l's 
P = abs(kl (N,M)) <= tol & abs(k2(N,M)) <= tol; 
Psum = sum(sum(P)); 
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%[ip,jp] = find(P); 
% Find valleys 
% Find elements where kl > tol and I k2 I <= tol, and mark them with l's 
V =kl (N,M) > tol & abs(k2(N,M)) <= tol; 
Vsum = sum(sum(V)); 
%[iv,jv] = find(V); 
% Find bowls 
% Find elements where kl < -tol and k2 < -tol, and mark them with l's 
B =kl (N,M) < -tol & k2(N,M) < -tol; 
Bsum = sum(sum(B)); 
%[ib,jb] = find(B); 

o/o--------------------------------------------------------------------------

% Plot Curvature Data 
figure( 1) 
elf 
imagesc(X_( l ,M),Y _(N, 1 ),6*D + 5*R + 4*S + 3*P + 2*V + 1 *B) 
shading interp; 
hold on 

% Select Colors, etc. 
alpha(0.8); % Sets transparency, with 1 = opaque, 0 = transparent (was .6) 
colormap(iet( 6 )); 

hcb=colorbar('YTicklabel',{' ','Bowl','Valley','Plane','Saddle *','Ridge *','Dome*',''}); 

cRange= caxis; % get the default color map for the data range 
caxis(cRange); 
hold off; 

O/o- -------------------------------------------------------------------------

% Plot Sheeting Joint Locations 
hold on 
%fletcher _joints; 
lsj = legend('Sheeting Joints Found','show'); 
set(lsj, ... 

'Position',[0.36131205389677 4 0.134244473838918 0.0860096807 527057 
0.0268062904174015], ... 

'LineWidth',2, ... 
'Color',[0.8627 0.8627 0.8627]); 

legend 1 = legend{'Sheeting Joints Found',' show'); 
set( legend 1,. .. 

'Position',[0.358742303529666 0.129780188124632 0.110238755642574 
0.0268062904174015], ... 

'LineWidth',2, ... 
'Color',(0.8627 0.8627 0.8627]); 

%---------------------------------------- --- --- --- -------------------------

% Plot Contour Lines With Smoothed Z Data 
[C hn= contour(X_(N,M),Y _(N,M),Z_(N,M),'k-1,'LineWidth', 1.0); 
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hlines=findobj(gca, 'type', 'line');% find all the separate lines on contour plot. 
set(hlines, 'Line Width', 1 ); % and set their width. 

% Then reset the color axis according to the range determined above: 
caxis(cRange); 

% Set axis parameters 
axis ij 
axis equal; 
axis([min(X( 1,M)),max(X(1,M)),min(Y(N,1)),max(Y(N,1 ))]); 
xlabel('Meters'); 
ylabel('Meters'); 
title('Curvature Results with Filtered Contours'); 

clabel(C,'manual'); 

o/o--------------------------------------------------------------------------

% Plot histogram of total amount of topographic features 

figure(2); 
cats= 1 :6; 
hist_total = [Dsum, Rsum, Ssum, Psum, Vsum, Bsum]; 
bar(cats, hist_total); 
xlabel('Category'); 
ylabel('Number of Occurrences'); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

Code for calculating curvatures, classifying topography, and plotting figures 
This script was put together to load in interpolated data, filter the topography using 
'fletcher_topo_filter_short_v2', and calculate the curvatures and plot figures using 
'fletcher_topo_shapes_v6'. Code was written and run using MATLAB 2014a Student Edition. 

% Load Interpolated Data 
% griddata Data 
% x = load('gd_800x.txt'); 
% y = load('gd_800y.txt'); 
% z = load('gd_800z.txt'); 

% spline2d Data 
x = load('s 1 _800x.txt'); 
y = load('s1_800y.txt'); 
z = load('s 1 _800z.txt'); 

% Run Smoothing 
% Set high and low filter values 
flo = 1 e-3; fhi = 3.5e-2; % This does well with the fine grid 

[X,Y,Zhp,Zlp] = fletcher_topo_filter_short_v2(x,y,z,flo,fhi); 

38 



% Calculate Curvatures 
pause 
close all 
% Set Value for Tolerance 
% tol = .0003; or .00035 % This seems to be an ideal tolerance 
tol = .00035; 
fletcher _topo_shapes_ v6(X, Y,Zlp,tol); 

% Cover area of No interest 
figure( 1) 
hold on 
xnan = [7 4.45, 1171, 1178, 7 4.45]; 
ynan = [1949, 1943, 3026, 3026]; 
fill(xnan,ynan, 'w'); 

% Text box with variable values 
figure 1 = figure( 1 ); 
annotation(figure l ,'textbox', ... 

[0.359030837004405 0.26625 0.1311 0.1050], ... 
'String',{'Low poss Frequency: ',num2str(flo),'High pass Frequency: ', ... 
num2str(fhi),'Tolerance: 0.00035'}); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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