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ABSTRACT 

Deconvolution of microseism noise from seismic time series can be 

used to improve the detection of arrivals with very low signal-to-noise 

ratio. If deconvolution is carried out by inverse filtering (i.e. one 

step ahead prediction-error filtering) the problem of determining the 

best deconvolution operator length may be resolved by monitoring the 

final prediction error statistic of Akaike. This statistic is an 

estimate of the prediction error variance and is a minimum for the 

optimum length operator. The operator so obtained is well suited for 

estimation of the microseism spectra • 

This techni~ue has been used successfully for analysis of simulta­

neous three-component seismometer and hydrophone data for the detection 

of refra~ted arrivals at the Col'LUUbia ocean bottom seismon1eter from 

explosions up to 1,350 km distant, and for the estimation of microseism 

spectra at the time of each shot • 
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INTRODUCTION 

The detection of signals in noise is a recurrent problem in 

seismology and is particularly difficult when the frequency content 

1 

Of the signal is unknown. Enhancement Of the signal-to-noise ratio of 

digital time series may be achieved by prediction-error or inverse 

filtering, provided the noise is stationary. If the optimum least­

squares predictor for the noise is convolved with a time series containing 

both noise and signals, the error in prediction will be an uncorrelated 

(white noise) sequence except when a signal is present. When a signal is 

encountered errors will tend to be large since the signal cannot be 

predicted from the noise. The superiority of this approach over simple 

band-pass filtering has been illustrated by Claerbout (1964). 

One of the greatest difficulties in prediction-error filtering is 

determining the optimum operator length for a given finite length of 

data. Obv~ously the prediction-error operator must be sufficiently 

long to reflect all predictable qualities Of the noise process. However, 

since operator coefficients must be estimated from the finite length 

Of data, there will be large uncertainties in the estimates of coef­

ficients for a very long operator. Usually the operator length is 

increased until the mean square error in prediction (the prediction error 

variance) falls below some tolerable level. This is equivalent to 

extending the operator until a reasonable fraction of the energy of the 

process has been explained (Galbraith, 1971). Such an approach implies 

that the longer the operator the better its performance, an approach 

which ignores the limitations imposed by the finite data length • 

In the case of one step ahead prediction-error filtering, the 
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optimum operator length can be found by monitoring the final prediction 

• error (FPE) statistic of Akaike (1969a). This is an estimate of the 

prediction-error variance expected when a predictor, calculated from one 

observation of a process, is applied to an independent observation Of 

• the same process. Choosing the operator length for which the FPE is a 

minimum gives the best mean-square compromise between bias and variance 

errors in the operator • 

• The same compromise between bias and variance is required in any 

spectral estimation procedure. Since the one step ahead prediction-error 

operator is identical to an autoregressive model for the data, autoregres-

• sive spectral estimates may be obtained directly from the operator with 

mininrum FPE (for which the optimization problem has already been solved). 

In geophysical applications autoregressive spectral estimation has become 

• knawn as ma.xinru.m entropy estimation (Lacoss, 1971; Ulrych, 19T2), but 

apparently such estimates have not used any optimization procedure to 

determine the best model size • 

• The purpose Of this thesis is to demonstrate the application of the 

minimum FPE criterion to seismology by applying the technique to the 

problem Of signal detection and the estimation of noise spectra. Such an 

• application of the FPE procedure has not been suggested in the literature 

before. 

The signal detection problem was experienced during a seismic 

• refraction survey of the crust and upper mantle Of the northwest Pacific 

carried out in 1969 with the Columbia ocean bottom seismometer (OBS) as 

reciever. Details of OBS, which is located in 3.9 km of water about 

• -
200 km west of San Francisco, has been given by Sutton et al (1965) and 

• 
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Auld et al (1969). During the survey a long refraction line was run from 

the instrwnent to a point 2,400 km to the west, using charges of up to 

2,000 lb. Storm conditions caused microseism noise to be some 12 to 20 db 

higher than expected. Few refracted arrivals could be detected beyond 

800 km range, even after a considerable variety of band pass filters had 

been used to analyse the analogue recordings. This range was insui'­

ficient to delineate the anticipated low velocity zone in the upper mantle, 

one of the principle aims of the study, so the data were digitized to 

apply more sophisticated filtering techniques. The work described here 

is the pilot analysis of records from three shots to determine the 

feasibility of routine deconvolution of microseism noise from any record 

with poor signal-to-noise ratio • 
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THEORY 

Univariate Time Series 

If' a seismic trace Yt is second order stationary it may be 

generated by passing a purely random se~uence xt through a linear 

system with impulsive response bt· The process has the moving average 

representation 

' 
b = 1 

0 

The se~uence xt is white noise with zero mean and variance cr2, 

i.e • 

( 1). 

(2) 

where E(.) denotes the expected value Of' the ~uantity in parenthesis. 

Reduction of the time series to a white noise se~uence is termed 

deconvolution and may be achieved by use of an inverse or whitening 

filter. If a whitening filter for microseisms is used for deconvolution 

of a seismic trace Yt' the deconvolved trace will be white except in the 

region of an event unrelated to the microseism process • 

The Z transform (Robinson, 1967) of (1) is 

co 

Y(z) = (). bszs).X(z) 
~ 

• s=o 

• 

• 

• 

where z = e-iw. If ot is the sampling interval then w = 2nfot, the 

maximum fre~uency of representation being l/26t. 

The transfer function between the time series Yt and Xt is 

H( z) = Y( z) 
X(z) 

co 

= l b s z s = B( z ) 

s=o 

If bt is invertible (i.e. if bt is minimum delay) the inverse pro~ess 

has a transfer function between xt and Yt of H-1(z) where 

4 
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( 3) . 

( 4). 

where ar is the impulsive response of the inverse filter. Either Of the 

two sums in equation 4 may have a finite number Of terms, but not both. 

From equation 3, 
CXl 

X(z) = ( l arzr) .Y(z) 
r=o 

The inverse Z transform yields the autoregressive representation 

CXl 

xt = l aryt-r ' ao 
r=o 

1 ( 5). 

The relationship between the moving average and autoregressive 

parameters, bt and ~' is 

t = 1 if t 0 

l arbt-r = Qt { 
0 if ~ 0 r=o t 

(Robinson, 1967). 

An interpretation of the moving average and autoregressive 

representations is given in figures 1 and 2. In figure 1 the time 

series Yt is represented as the convolution of a "characteristic wavelet" 

with white noise. In figure 2 the inverse process is illustrated with 

Yt being decomposed by the "inverse wavelet" into white noise • . 

5 



• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

WHHE NOISE CHARACTERISTIC 
WAVELET 

HICADSEISM TRACE 

Figure 1. Representation Of a moving average process • 

11ICROSEISM TRACE INVERSE 
WAVELET 

WHITE NOISE 

Figure 2. Representation of an autoregressive process • 
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Equation 5 may be rewritten 

CXl 

Yt = - l arYt-r + Xt 
r=l 

For deconvolution we .wish to calculate the parameters ar. For a finite 

length N of data, linear regression analysis is applied to the finite 

model 

p 

Y t = - l ary t-r + ~ ( P) 
r=l 

where xt (p) is the unpredictable part of Yt when it is assumed .that 

ar = 0 for r > p. This gives estimates 

A A A A 

p 

Yt = - I aryt-r 
r=l 

Here a1 , 82' a3 , ••• , ap are estimates of a1 , a2 , a
3

, ••• , ap for which 

N 

. the sum of squares of errors I 
t = p+l 

The matrix equation to be solved is 
,.. 

ro rl r2 r p-1 al rl 

" 
rl ro rl rp-2 ~ r2 

" (6). r2 rl ro r a3 r3 p-3 

.,... 
rp-1 rp-2 rp-3 ro ap rp 

(Jones, 1964), where r k is the empirical covariance for lag k; 

7 



• 
8 

• 
(assuming E(yt) = 0). Equation 6 can be rewritten 

-Ra = r 

A 

where R is the covariance matrix, r is the vector of covariances and a 

is a vector of values of as. The solution for a is 

• ( 7) . 

A 

Note that a is calculated from the covariance which contains no phase 

information. There is an inherent assumption here that the time series 

• is minimum phase in nature (i.e. that a and b are minimum delay) 

(Robinson, 1967). However, a solution of the type shown in equation 

7 may be found regardless of the phase nature of the time series. 

• With a sokti::::n. for a the decOn-v-ol-.;ed trace et (an approximation 

of xt) can be found from 

A 

et = Yt - Yt 

• p 

or et = >. aryt-r 
~ 

r=o 

• The most difficult problem in deconvolution is determining the 

best value for the model length p for a given sample size N. If pis 

too small some predictable qualities of the time series will have been 

• ignored. If p is too large .• the finite sample will result in inaccurate 

estimates of a and will give inflated prediction-error variance when the 

model is applied to data outside the sample region. The final predic-

• tion error (FPE) statistic of Akaike (1969a) is an index of the perfor-

mance of the model which can be used to find the nest model length • 

• 
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If the model a has been calculated from one observation Of the process 

Yt, the FPE is an estimate of the one step ahead prediction error 

variance E(et2 ) of that model when it is applied to an independent 

observation of Yt· Obviously the optimum model length is the one for 

which the FPE is a minimum. 

The FPE is defined by 

FPE(p,n) = cr2(1 + .!:) 
N 

(8) 

where cr2 is as given in equation 2. cr2 is unknown but it can be 

estimated from 

(9) 

where S is the sum of squares of errors in prediction found in calcu­
p 

la ting the model. Note that 

where e is 

e (i.e. e' 

From 

N 

Sp = l ei 2 = e 'e 

i=p 

the column vector of values of et 

is a row vector). 

equations 8 and 9, 

FPE( p,N) 
Sp N+p 

=-( -) 
N N-p 

p is the number of parameters fitted; if the 

the time series before the analysis, then 

Sp . N-tp+l 
FPE(p,N) - - ( ) - N N-p-1 

and e' is the transpose of 

mean has been removed from 

( 10). 

9 
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A complete derivation of the FPE scheme has been given by Akaike (1970b) . 

To apply the FPE scheme in practice, models are fitted recursively 

for successively larger values of p until a definite minimum in the 

curve of FPE against p is found. The model with minimum FPE is the 

optimum (least squares sense) deconvolution operator. 

Multivariate Time Series 

The generalizations in notation to accomodate multivariate time 

series are relatively simple. If there are d simultaneous time series 

the basic equation for an autoregression representation (equati~n 5) 

becomes 

CD 

Xt = l ArYt-r ' Ao 
r=o 

where Xt and Yt are d by 1 vectors 

Yt 

and each Ar is a d by d matrix. 

I 

Ydt 

The "white" properties of Xt may be represented by 

(11) 

E(xt) = 0 (zero vector) ; E(xrxs) = Ors V ( 12) 

where V is a d by d matrix equivalent to a2 in the univariate case. 

" The estimates A of A are given by 

A = -R-1r (13) 

as in the univariate case (equation 7) but each element in the matrices 

is a d by d sub-matrix • 
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An efficient recursive scheme for solution of systems Of e~uations 

such as (13) has been derived independently by Robinson (1963) and 

Whittle (1963). This techni~ue avoids the inversion of R for each model 

fitted; models Of successively larger orders are fitted with inversion 

Of smaller d by d matrices only. 

The final prediction error (e~uation 8) is modified, for multi-

variate models to 

(Akaike, 1971) where !vi is the determinant of v. Vis not known but 

it can be estimated from 

1 
v =--s 

N-pd. p 
(14) 

(Jones, 1964) where S is ad by d matrix of residuals (= e'e) e~uivalent 
p 

to the univariate Sp Of e~uation 9. The FPE becomes 

FPE(p,N) = I Sp I ( 1 + pd )d 
(N-pd.)d N 

= ~ ( N-f'pd )d 
~ N-pd. 

If means are removed from the time series before the analysis, this 

becomes 

I Sp I ~N + (p+l)djd FPE(p,N) = -
~ N - (p+l)d 

( 15). 

Note that if d = l, e~uations 15 and 10 are identical, as expected • 
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The FPE procedure may be used to optimise prediction Of one or any 

subset of the total number of simultaneous time series. If' one wishes to 

predict r of the d time series, the FPE of e~uation 15 is replaced by the 

'FPE of controlled variables ' , FPEC 

FPED(r,p,N) =-- + (p+l)d] r 

- ( p+l)d 
(16) 

(Akaike, 1971) where sr,p is the submatrix of Sp with rows and columns 

corresponding to the r desired time series • 



• 
13 

TECHNIQUE 

• 
Analogue recordings of four simultaneous data channels from OBS 

were digitized at a nominal rate Of' 50 hertz. The data were from a short 

• period three-component array and a coil hydrophone. These data are 

referred to in the diagrams as SFZ (vertical), SFHl (first horizontal), 

SHI2 {second horizontal) and COIL respectively. For the analogue to 

• digital conversion the data were band-pass filtered with a pass band 

from 0.83 to 12.5 hz with 6 and 12 db per octave rolloff at the low and 

high frequency ends respectively. To eliminate unwanted high frequencies 

• the digital data were low-pass filtered using the trapezoidal filter Of' 
• 

Gersch (1973). The filter used had a corner at 10 hz and gain was down 

by 50 db at 12 hz. This allowed a reduction Of' data by a factor Of' two 

• (ta.king every secoud data point) with a resultant saving in storage and 

computation time. 

All analyses were carried out on an IBM 360/65 computer; FORTRAN 

• subroutines covering all aspects of the theory have been developed and 

are available on request. 

An autoregressive model was fitted to a sample of the microseism 

• noise immediately preceding the expected first arrival for each shot and 

used for deconvolution of the subsequent data. Typically the microseism 

sample was thirty seconds long and the model obtained was used for 

• deconvolution of the following eight seconds. Using the model for 

deconvolution this far ahead of the original data may not seem statistical-

ly sound, but there was little improvement in using models derived from 

• longer microseism samples. In no case was the total length of data 

(sample plus arrival region) more than 45 seconds long. Microseisms 

• 
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appeared to be reasonably stationary over periods of less than 50 seconds, 

but samples taken 60 or more seconds apart had spectra that differed 

significantly • 
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RESULTS 

The results of deconvolution are shown in figures 3 to 5. The 

figures show the original (low-pass filtered) data and the results of 

matrix deconvolution over the total data length (sample plus arrival 

region). Each trace has been normalized relative to its maximum 

amplitude. Marks on the time axis are 1 second apart. The bottom 

trace on each figure is a simple binary plot of the deconvolved SPZ 

data, with amplitude one when the deconvolved SPZ value is outside the 

99% confidence range and zero amplitude elswhere • 

The processing of shot 181 (Fig. 3) was carried out as a test of 

the procedure as the arrival was clear on the original data. Shot 181 

was a 10 lb charge detonated 48 km from OBS. The signal-to-noise ratio 

for the first arrivals has been considerably improved by deconvolution, 

but later arrivals are less well resolved. This is to be expected since 

the operator is designed for deconvolution of microseism noise rather 

than for separation of overlapping arrivals. The first arrival on SFZ 

is a P phase. This does not appear on the original horizontal traces 

since the incoming disturbance is at near vertical incidence. The 

appearance of this first arrival on the deconvolved horizontal traces 

is entirely due to leakage through cross terms in the operator. The 

first strong arrival on the horizontal traces is Sp' a shear arrival 

converted from the P phase at the base of the sediment column below 

OBS (Hussong, 1972). 

The original traces of shot 196, a 400 lb charge 335 km from OBS, 

show no arrival while the deconvolved traces show a clear arrival 

towards the end of the SPZ, SPHl and COIL traces (Fig. 4). This arrival 

15 
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appears as a burst Of energy on the SFZ 99% trace. Again, appearance Of 

the arrival on SHil is a result Of leakage through cross terms. SHI2 is 

almost uncorrelated with the other traces because of apparently random 

steps in the original data which appear as bursts of energy on the 

deconvolved SHI2 trace. Because of this poor correlation with other 

traces, cross terms for SIH2 are small and the arrival does not appear 

on the deconvolved SHI2 trace. The arrival would probably have been 

clearer on the other traces if SHI2 had been omitted from the analysis. 

The four discrete points outside the 99% level for SFZ before the arrival 

are not significant; the SPZ trace was clipped in this region and 

several points had to be interpolated. No large errors occur on the 

other traces at these points. 

Shot 207 was a 2,000 lb charge detonated 1,350 km from OBS when 

microseism noise had become less severe. Two arrivals (arrowed) can be 

seen on the original SPZ trace (Fig. 5) but they are rather indistinct. 

Deconvolution sharpens both arrivals and increases the signal-to-noise 

ratio appreciably, giving better determination of arrival times. The 

first arrival is seen readily on the deconvolved traces as a change 

from white noise to a correlated sequenqe within each trace with associated 

correlation between the traces. The second arrival is even more obvious 

because Of its large amplitude. Leakage from SPZ and COIL is again 

responsible for the appearance of the arrivals on the horizontal traces . 

The apparent arrival times on the horizontal traces are slightly later 

than on the other two traces; this is probably a result Of the predictor 

reproducing the phase lag between horizontal and vertical motion of the 

microseisms. Microseisms at OBS generally propagate as Rayleigh or 
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interface waves (Latham and Nowroozi, 1968) so this lag is expected • 

Why this lag does not appear on the deconvolved trace of shot 1~6 is not 

clear. The first double peak on the SPZ 99% trace for shot 207 indicates 

a possible arrival before the other two, however this is not substanti­

ated by the data from the other channels. 

It is important to note that in all the a?01Te examples the 

inclusion of horizontal seismometer and qydrophone data has helped 

considerably in the detection of arrivals (with the possible exception 

of SIH2 for shot 196). The simultaneous occurrence of large prediction 

errors on several traces, even if they are the result of cross~talk, 

implies that some event very unlike the normal microseism process has 

occurred. This is much greater justification for picking an arrival 

than if the data for only one trace were available. All the arrivals 

suggested here were picked from large prediction error on at least three 

channels. 

For these analyses the autoregressive models were optimized for 

predictive deconvolution of all channels although the first arrivals 

were expected to be most apparent on the SPZ traces. Optimizing predic­

tion of SPZ alone at the expense of the other traces (using the FPEC of 

equation 16) did not imprOITe the detection capability of the system. 

As a by-product of the deconvolution procedure, spectral estimates 

of the microseisms were obtained, following the theory given in the 

appendix. Power spectra and coherency between each channel were estimated 

from each model obtained, but only the spectra for the short period 

vertical traces are given here. Figure 6 shows the microseism spectra 

for SPZ at the times of shots 181, 196 and 207. The spectra have been 
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normalized with respect to the maximlllll of 196. The data reflect the 

passage of an atmospheric storm center aver OBS. Shot 181 was detonated 

when storm conditions were beginning to be hazardous to the shooting 

ship. The storm was centered aver OBS at the time of shot 196 (which 

shows the highest noise level) and started to die out at shot 207. The 

very sharp spectral peaks at about 8 hz on all spectra are possibly 

caused by resonances in the sediment layers (Sutton et al, 1969). The 

reason for the variation in frequency of these peaks is unclear. It 

would be worthwhile to follow the variation of the microseism spectra 

with the path of the storm center, but study of microseisms was' not the 

principle aim of this work • 
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DISCUSSION .AND CONCLUSIONS 

The final prediction error scheme provides a much needed simplifi­

cation to the inverse filtering technique. The procedure can be used to 

detect arrivals with unknown frequency content which are extremely dif­

ficult to isolate by band-pass filtering. The results here suggest that 

it would be worthwhile to carry out such analyses for all the shots of 

the OBS long refraction experiment. Results from these analyses will be 

reported in a later paper (Odegard, 1973). 

One aspect of the work that is worthy of more attention is the 

effect of the cross terms in the autoregressive model. A complete study 

of the subject of multichannel deconvolution should include single 

channel deconvolution of all channels as well. In the initial stages 

23 

of this work it W8.s fmmd that the :rrrultichari_11el approach was significant­

ly superior to single channel deconvolution of the vertical data alone for 

the detection of arrivals. The single channel deconvolution of the other 

channels was not investigated • 

At present the FPE procedure can only be applied to predictive 

deconvolution with a unit prediction distance (i.e. one step ahead 

prediction-error filtering). In many instances a prediction distance 

of greater than unity yields superior results (Peacock and Treitel, 1969). 

It would be of great value to extend the definition of FPE so that the 

optimum operator length could be found for any prediction distance • 

Work on this problem is proceeding • 
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APPENDIX 

AUTOREGRESSIVE SPECTRAL ESTIMATION 

Traditional spectral analyses (Jenkins and Watts, 1968) have 

associated with them window functions which are chosen subjectively and 

are independent of the data; different windows result in different 

spectral estimates. Spectral estimation from a~toregressive (AR) models 

has a number of advantages over the traditional approach (Gersch, 1970; 

Lacoss, 1971), the most important of which is that such windowing is 

not involved. If the FPE procedure is used to choose the optimum AR 

model this technique becomes completely automatic without the need for 

any subjecti vi-ty. 

The energy spectral density of any process Yt is the Fourier 

transform of its cavariance functi on. From equation 1 the covariance 

for lag k is 

i.e. 

or 

co co 

rk = E (yty t-tk)= E ( I l bsxt-sbuxt+k-u) 
s=O u=O 

co co 

rk =J. ), bsbrcr26k+s-u 
s';:o u~O 

co 

rk = CJ2 l bsbs+k 
s=O 

The Z transform yields the spectral density S 

S( z) ·- l 
k=-co 

co 

" = (J2 l 
s=O 

+co 

l bsbs+k zk 
k=-co 
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Substituting u = s+k, 

co 

s(z) = cr2 l 
s=o u=o 

since bu = 0 for u less than zero • 

Hence 

or 

co 

S(z) =cr2 lbsz-s 
s=o 

From equation 4, B(z) = A-l(z), so 

or I \ 
(J2 

S\Z) 
(t) (t) l aszs l auzu 

s=o u==o 

(J2 
(t) 2 l aszs 

s=o 

With the autoregressive (AR) model a· obtained for minimum FPE we 

use 

(A-1) 

as a spectral estimate where cr2 is given by equation 9. 

The treatment for multivariate spectral estimation follows the 

above univariate case. The spectrum of a multivariate time series is 

(A-2) 
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where V is the variance-covariance matrix of errors in prediction defined 

in equation J2, and the prime indicates matrix transposition. ~n terms 

Of the AR parameters 

From the fitted multivariate model with minimum FPE we use 

(A-3) 

as an estimate of the spectrum, where V is given by equation 14. The 

computation is simplified by the fact that[A-1(z)] 1 is the complex 

conjugate transpose of A-1(z-1 ), so only one inverse need be calculated 

at each frequency (Gersch, 1970). 

Each value Of S(z) is ad by d matrix of auto and cross-spectral 

estimates. From S(z) it is simple to calculate transfer functions, 

coherency and phase relationships between the d simultaneous time series 

(Gersch, 1970) • 

Spectral estimation from AR models is identical to the maximum 

entropy technique reported in the geophysical literature (Lacoss, 1971; 

Ulrych, 1972), however none of the reported maximum entropy estimates 

use any objective criterion (such as minimum FPE) for choosing the mod.el 

length p. The importance of the FPE is illustrated in figure 7 ·where 

AR spectral estimates are compared with Parzen windowed periodograms • 

5J2 points of a short period vertical record Of microseism noise were 

used with a digitization rate of 30 hz. The FPE curve (Fig. 8 ) shows 

a minimum at a model length of 12. The spectral estimates from models 

of length 6 and 50 show high bias and variance r~spectively. Such 
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variation with the model length p is to be expected. With the inverse 

waveform, a, limited to a short time duration (p small), its transform 

A (and hence the spectrum) .will vary slowly with freq_uency. As p is 

increased the spectrum will vary more rapidly with freq_uency as shown 

in figure 7. Note that the optimum AR estimate lies completely within 

the 95% confidence range of the two Parzen estif!la.tes. The optimum AR 

estimate is probably more reliable than the Parzen estimates since it 

is not subject to the vagarities of windowing. 

A rigorous treatment of AR spectral estimation using the FPE has 

been given by Akaike (1969b). Further discussion and examples ,are given 

by Akaike (1970b) and Gersch and Sharpe (1973) • 
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