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ABSTRACT

Age-progressive seamount trails created by long-lived deep-mantle plumes have been used to estab-
lish absolute reference frames for plate motion. However, when plume drift is considered, changes
in seamount trail direction and age progression rate cannot be attributed to plate motion change
alone. A better understanding of these absolute motions are needed for studying the mantle dy-
namic processes that drive both plate tectonics and plume drift. For this study, improvements
to age-progressive curves of eleven Pacific hotspot chains are made independently of past plate
motion models. Our approach involves bathymetry processing to robustly predict a smooth and
continuous hotspot path by connecting high points in seamount bathymetry, with uncertainties
in the path based on seamount trail width and amplitude. Ages found using radiometric dating
techniques from seamount samples are projected onto the inferred hotspot trail. A best-fit model of
age as a function of along-track distance is determined, giving continuous age progressions for each
seamount chain with uncertainties in both age and path. Three di�erent types of paleolatitudes
are also examined by incorporating data from the magnetization of seamount drill core samples,
paleo-poles from marine magnetic anomaly skewness, and paleo-spin-axes from shifts in equatorial
sediments. Improved paleolatitude curves for the Hawaiian-Emperor and Louisville chains are de-
termined by combining these three di�erent types of data. Paleolatitude curves are also determined
for other chains where a su�cient amount of paleo-pole or paleo-spin-axis data are available. The
data analysis of these eleven Pacific seamount chains provide prime constraints for future plate and
plume motion models. For this study, we examine the data by accessing the change over time in
distance between coeval seamounts, which infers relative drifts between the hotspots at di�erent
times in the past. We find that the inter-hotspot distance change since 6 Ma have been linear,
given the (relatively large) errors, which prompted the development of a novel modeling approach.
We end with inverting these linear relative rates via our new modeling scheme and solve for recent
plume drifts for the time frame of 6 Ma to the present.
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CHAPTER 1
INTRODUCTION

In the study of plate tectonics, the hypothesis of deep-mantle plumes giving rise to hotspots at
the surface (Wilson 1963) has been used to establish absolute reference frames for plate motion.
With the initial assumption of fixed mantle plumes, changes in seamount trail geometries were
directly attributed to changes in plate motion. For instance, Morgan (1971) interpreted the ≥120
degree bend in the Hawaiian-Emperor seamount chain as a major change in Pacific plate motion
sometime between ≥40–50 Ma. Numerous absolute plate motion (APM) models have been derived
from these assumptions (e.g. Duncan and Clague 1985; Koppers et al. 2001; Wessel and Kroenke
2008). However, not long after the idea of using hotspot trails to infer absolute plate motions was
introduced, the very fixity of hotspots was questioned (e.g. Winterer 1973). Furthermore, early
laboratory experiments demonstrated that plume conduits can be deflected laterally on their way
to the surface from background mantle flow (e.g. Skilbeck and Whitehead 1978). Later, mantle flow
models were used to predict plume drifts that could be compared with plate reconstruction mod-
els and seamount trail geometries (e.g. Steinberger 2000). Early paleolatitude data also provided
hints at latitudinal shifts (e.g. Kono 1980) by looking at the magnetization of rock samples, reveal-
ing the magnetic field inclination at the time of seamount formation. Further studies have since
strengthened this line of reasoning (e.g. Tarduno and Cottrell 1997; Tarduno et al. 2003; Tarduno
et al. 2009; Bono et al. 2019). Without the assumption of hotspot fixity, changes in seamount trail
geometries and age progressions must reflect a combination of plate and plume motions. While
not unique, models seeking to reconcile plate and plume drifts have therefore been proposed (e.g.
O’Neill et al. 2005; Doubrovine et al. 2012; Tetley et al. 2019).

The Pacific plate is the largest of the tectonic plates present on Earth today. It is relatively fast-
moving and a host to many hotspot chains, making it ideal for studying absolute plate and plume
motions. However, without any clear constraint on plume drifts, an accurate plate reconstruction
model cannot be determined by seamount chain geometries and ages alone. To what extent plate
motion or plume drift influenced these seamount chains is still a debated topic today, most notably
regarding the formation of the Hawaiian-Emperor bend (HEB), with recent developments coming
to very di�erent conclusions. For instance, Torsvik et al. (2017) argued that the plume drift needed
to form the bend without a major change in plate motion would not be consistent with mantle
flow models, while Bono et al. (2019) argued that paleolatitude and inter-hotspot separations be-
tween the Hawaiian-Emperor and Louisville chains are consistent with a rapid southward drift of
the Hawaiian hotspot during the formation of the Emperor seamounts. Finally, Woodworth and
Gordon (2018) argued for major plate reorganizations with much of the paleolatitude data better
explained by true polar wander (e.g. Goldreich and Toomre 1969; Tsai and Stevenson 2007). With
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this major unresolved problem in the field of plate tectonics, further study in the Pacific region is
needed to bring clarity to the issue. In this paper, we explore a more robust analysis of Pacific
seamount chain data with the aim of adding specific constraints on models for both plate and plume
drifts.

For this study, we examined data from eleven Pacific hotspot chains. These chains are (with
abbreviations in parenthesis), Hawaiian-Emperor (HI), Louisville (LV), Rurutu (RU), Cobb (CB),
Kodiak (KO), Foundation (FD), Pitcairn (PC), Samoa (SA), Caroline (CR), Marquesas (MQ), and
Society Islands (SO). We use a robust model-independent approach for their analysis. The data
sets considered include seamount bathymetry (to constrain geometry), radiometric age samples
(to constrain age progressions), paleolatitudes from the magnetization of rock samples, paleo-poles
from marine magnetic anomaly skewness and paleo-spin-axes from equatorial sediment shifts (to
constrain latitudinal plume drifts). A summary of all these data sets is displayed in Figure 1.1.
Out of the eleven hotspot chains, three have recorded ages older than the ≥ 50 Ma HEB (i.e.,
HI, LV, and RU) and six are long-lived enough to allow us to infer paleolatitudes from coeval
paleo-poles and spin-axis-poles (i.e., HI, LV, RU, CB, KO, and FD). With these data, we present
objective and reproducible approaches to their analysis that provide prime constraints for future
modeling seeking to separate plate motions from plume drifts. We end with an analysis of the data
and our preliminary inferences for plume drift during the last 6 Myr.
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Figure 1.1: Summary of all data examined for this study. A grey-scale bathymetry grid of the
Pacific region is displayed with the Pacific plate boundaries (thick black line). Radiometric age
data for all eleven chains are displayed (colored circles) as well as rock magnetization samples
(colored crosses), paleo-magnetic poles (red-outlined ellipses) and paleo-spin-axes (black-outlined
ellipses). Age data, rock magnetization, and paleo-poles all follow the same color scale.
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CHAPTER 2
DATA ANALYSIS

2.1 Preparing Residual Bathymetry

In order to determine hotspot trail geometries, the seamounts that make up a chain are separated
from other seafloor features. To achieve this separation objectively, a balancing act must be per-
formed to remove as many unrelated features as possible while not removing the data of interest,
in this case the seamounts formed from the eleven hotspots.

Starting with a raw bathymetry grid of the Pacific region (Tozer et al. 2019) shown in Figure

2.1a, both seafloor subsidence (Müller et al. 2019; Hillier and Watts 2005) and sediment thickness
corrections (Whittaker et al. 2013) were applied. To further reduce the impact of long-wavelength
features on the ocean floor, a robust filtering scheme was used based on the regional-residual sepa-
ration methodology of Wessel (1998; 2016). The process involves using a median filter to eliminate
large length-scale bathymetric features (e.g., swells and oceanic plateaus), smoothing the median-
filtered grid with a secondary Gaussian filter to suppress minor artifacts left behind by the median
filter, and subtracting the resulting regional trend from the corrected seafloor. While this method
works to objectively and reproducibly remove unrelated features from the data, a few subjective
decisions had to be made throughout the process. One such decision included masking out large
bathymetric features in close proximity to seamount chains that otherwise would skew the filter
process. These features include (with abbreviations in parenthesis) the Hess Rise (HR), Hikurangi
Plateau (HP), Manihiki Plateau (MP), Mid-Pacific Mountains (MM), Ontong Java Plateau (OP),
and Shatsky Rise (SR) (Figure 2.1b).

The filter radius determines which features will remain or be removed once the regional trend
is subtracted from the seafloor. Wessel (2016) found that on average, a filter full width (6 sigma) of
420 km worked well for the Hawaiian chain. However, with seamount chains di�ering by size and
superimposed on a highly variable seafloor morphology, using a single filter width for the entire
Pacific seafloor will not be successful for all chains. To account for this variability we used a filter of
varying size based on an estimated age of the seafloor when seamount loading occurred, e�ectively
following a square-root of age curve (see Appendix A.1) designed to dampen the flexural wave-
lengths associated with lithospheric deformation (e.g. Watts 2001). For example, the filter around
the Hawaiian-Emperor chain was wider toward the south-east where the seamounts were loaded on
older crust (e.g., 80–90 Myr), becoming progressively narrower as it worked its way up the Emperor
chain. This fine-tuning allowed the filter to better capture and isolate seamounts whose nearby
seafloor is more e�ected by plate flexure. However, this method needed adjusting for the Emperor
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and Samoa chains because of their close proximity to a subduction zone. For the Emperor chain,
a minimum filter width of 380 km was assigned and for Samoa a constant filter width of 420 km
was used.

Each chain is encompassed by its own envelope drawn to comfortably include all seamounts in
the chain (Figure 2.1c). However, after corrections and filtering, smaller unrelated features still
remain within the envelopes (e.g., abyssal hill fabric or smaller, near-ridge seamounts unrelated
to hotspot formation). To further reduce these features, a base contour was applied, allowing us
to remove any features below the threshold. To determine an appropriate contour threshold, the
mean height (i.e., the ratio of volume over surface area) for each residual seamount chain as a
function of contour interval was examined. While there was no clear or unique inflection point in
the relationship between mean height and contour values, the 500 m contour was chosen based on
a slight leveling o� of mean height for that threshold as well as a visual inspection of the chains
viewed at a range of contour values. With these adjustments, the final residual bathymetry grid
was obtained (Figure 2.1d).

2.2 Inferred Hotspot Trails

Rather than relying on predicted paths from past APM models or tracing lines through the
seamounts by eye to infer the hotspot paths, an objective method is desired. The residual bathymetry
of each seamount chain determined by the methods outlined in Section 2.1 was used to determine
these paths. A 700 km full width 2D Gaussian filter was applied to smooth the residual grid. This
method of filtering di�ers from that used in Section 2.1 which sought to find and separate the
regional trend from the data, whereas here we chose to smooth the residual data and directly use
the result for determining our medial trail line. A smoothed bathymetry is desired because inferring
a hotspot trail using the raw seamounts creates a jagged line that is oscillating with distance at
wavelengths much too short for the resolutions we can predict, given the likely spatial and temporal
scales of plume-plate interactions (e.g. Ballmer et al. 2013). Next, a subjectively drawn starting
line that reasonably follows the peaks of the non-smoothed seamounts (Figure 2.2a) was used to
record perpendicular cross-profiles every 20 km along it (Figure 2.2b). With our starting line and
its perpendicular cross-sections of the smoothed bathymetry of the chains, we identified the peak
along the smoothed bathymetry for each cross-section and used these locations as revised center
points to infer a new hotspot path (Figure 2.2c) and its uncertainty (Figure 2.2d). An example
in cross-section view is shown in Figure 2.3.

This approach works best for seamount chains with significant data coverage throughout the entirety
of the chain. However, some chains, e.g., LV and RU, have large gaps between some seamounts
with little to no intervening data. These gaps create unrealistic excursions and discontinuities along
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Figure 2.1: Bathymetry grids of the Pacific region showing all eleven seamount chains. (a) Raw
relief data from Tozer et al. (2019) . (b) Result after applying seafloor subsidence and sediment
thickness correction and subtracting the regional trend found via median and Gaussian filters. For
simplicity, the result of a constant 420 km filter width is displayed here, however, a varying filter
width unique to each chain was the chosen method for this study. Masks to cover unrelated features
are displayed as grey polygons. (c) The residual bathymetry encompassed by each seamount chain
envelope. The residual bathymetry shown here is the result of using a varying filter width per chain
and not the constant 420 km filter displayed in Figure 2.1b. RU and SA are the only chains to
have overlapping envelopes. (d) The residual bathymetry after applying a 500 m contour threshold.
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the inferred path. To correct for these artifacts, the final estimated path was chosen as a weighted
average of the initial and tracked paths, with along-track profile heights used to assign the relative
weight. This method is shown in Figure 2.4. To further reduce any remaining short-wavelength
excursions in the path, a final 1D Gaussian filter was applied to smooth the weighted line. Widths
for the 1D Gaussian filters vary by chain, typically with a range of 150–300 km full widths with the
exceptions of RU, KO, and CR which have larger filter widths due to their higher age uncertainty.
The filter widths for the 1D Gaussian filter were initially set to 300 km but were later revised based
on inferences we drew from the along-track age progressions and their uncertainties, to be discussed
in Section 2.3. In contrast, the 700 km 2D Gaussian filter used to smooth the residual grid was
not changed after the inferences from the age progressions.

The geometric analysis of the seamount chains we have presented here is not a completely objective
methodology. The use of very di�erent filter widths or contour thresholds would give di�erent
medial trails. A di�erent starting line and di�erent sampling intervals for the cross-profiles may
also result in slightly di�erent medial trails. However, we explored such variability and found them
to be modest. Nevertheless, by quantifying these settings and applying them via clearly described
algorithms, the method is reproducible should other parameters be deemed more appropriate after
further study.

2.3 Chain Age Progressions

Traditionally, a systematic increase in seamount ages along a hotspot chain has been used as a key
observation in support of the modeling of absolute plate motions (e.g. Morgan 1971). In order to
provide these modeling constraints, discrete radiometric age data (e.g. Duncan and Clague 1985)
must be fit to separate continuous age progression curves for each chain. To achieve this, age
samples must be assigned a function of distance along the chain’s inferred hotspot path. Therefore,
sample locations were projected onto the closest point to the medial line from their actual position.
An example of this step for the Hawaiian-Emperor chain can be seen in Figure 2.5 as well as for
the remaining ten chains in Figure A.1.

Numerous prior studies have assessed the age progressions along hotspot chains (e.g. Duncan and
Clague 1985; Koppers, Gowen, et al. 2011; Koppers, Russell, et al. 2011; Doubrovine et al. 2012;
O’Connor et al. 2013; Wessel 2016; Jicha et al. 2018; Wessel and Conrad 2019), often using linear
regression or linear splines with knots. In this study, the chosen method for fitting the distance
along trail verses age data was a weighted continuous polynomial regression. However, a few steps
were taken before the regression was performed. To start, we gathered the most recently available
radiometric age data from seamounts on the Pacific plate (i.e. Clouard and Bonneville 2005; Sharp
and Clague 2006; Koppers, Gowen, et al. 2011; Koppers, Russell, et al. 2011; O’Connor et al. 2013;
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Figure 2.2: Geometric analysis of the south-east Hawaiian chain. (a) Residual bathymetry with
the subjectively drawn starting line (black line). (b) Residual bathymetry grid smoothed with a
700 km 2D Gaussian filter. Cross-profiles (yellow line) have a length of 400 km, drawn every 20
km along the chain and sampled every 2 km along each profile. (c) Medial trail line (red line)
inferred from connecting high points along the smoothed grid recorded by the cross-profiles. (d)
Across-track 95% confidence bands (purple lines) are determined based on seamount width and
amplitude.
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Figure 2.3: Cross-section view through the Koko Seamount which is part of the southern Em-
peror chain. The cross-section shows both the residual bathymetry (black line) and the smoothed
bathymetry (red line) after being processed by the 700 km 2D Gaussian filter. The start line
location (grey vertical line at zero distance) is compared to the improved medial point along the
cross-section (blue vertical line).
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Figure 2.4: Geometric analysis of the south-east Louisville chain. (a) Residual bathymetry of
the south-east Louisville chain with the subjectively drawn starting line (black line). (b) Residual
bathymetry grid smoothed with a 700 km 2D Gaussian filter. (c) The white line is weighted towards
the starting line in areas with little to no data. In areas with su�cient data the weighted line reverts
back to the original medial trail line.
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Jicha et al. 2018; Konrad et al. 2018; Heaton and Koppers 2019). Next, the data were binned
every 50 km along track to avoid the regression favoring sections where large numbers of data are
clustered. For the chains LV, RU, and SA, a couple of points were manually binned because of
their close proximity to one of the 50 km bin edges. A weighted average and weighted standard
deviation determined the binned points’ new positions and uncertainties. A non-weighted poly-
nomial regression was then performed on the binned data, with an F-test used to determine the
statistically significant polynomial parameter order. The standard deviation of the points along this
non-weighted regression was used to assign a minimum value for the uncertainty of each individual
data point. The justification for the altering of the measurement errors is that these analytical
errors do not properly represent the spread of ages commonly found when one seamount is sampled
many times. These small analytical errors can make the weighted regression favor sparser data
points with very small measurement errors over binned data representing a spread of many data
points. While the analytical precision in sample ages is typically small, each volcano could be active
for > 5 Ma (e.g. Koppers, Russell, et al. 2011), so when only sampled one or two times, the sample
age does not represent the spread of ages that can be found throughout the island or seamount.
Once these new errors are assigned, they were used to determine weights for the final regression
curve, where a weighted F-test was performed to determine the polynomial parameter order of the
weighted regression model.

Uncertainties from the age curve regressions can be used to determine spatial uncertainties for
the along-track hotspot trail. This conversion was done by calculating the inverse of the local
slope along the age curves (yielding relative plate speed) and multiplying these rates by the age
uncertainty in the curves. For each chain, an average of their one-sigma uncertainty throughout
the chain was calculated. The six-sigma averages for each chain gives insight into appropriate filter
width sizes used in Section 2.2. However, since an inferred hotspot trail is needed to produce the
age curves, this process was first done using preliminary hotspot trails using the same filter width
sizes for each chain. This exercise gave us an idea of what uncertainties to expect and we thereby
altered the filter widths accordingly to come up with the final medial trail lines. These medial trail
lines were then used to create the final age progression curves, two examples of which are displayed
in Figure 2.6 with the remaining chains displayed in Figure A.2.

One consequence of using this objective methodology for determining a seamount chain age progres-
sion is the possibility for inconsistencies between the zero age location determined by the regression
fit and what is known (or assumed) to be the true present-day hotspot location. This is most obvi-
ous for the Hawaiian hotspot, where the present-day hotspot location is believed to be well known.
Our initial second-order polynomial fit for HI failed to properly fit the younger ages, crossing the
distance-axis about 100 km up-trail from the known location of the hotspot. Since these younger
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ages (≥ 6≠0 Ma) have big implications in plate tectonics and the results of this study, and since we
have a more precise set of data for those ages, we decided to override the results of the regression
for HI and use an approach that better fits the data. The new approach taken for HI fits a cubic
spline that is split into two segments at 800 km, satisfying continuity of value and the first two
derivatives. The resulting curve better fits the young ages as found by Clague (1996) as well.

Figure 2.5: Radiometric age sample locations (white circles) for the Hawaiian-Emperor chain,
projected onto the inferred medial hotspot trail (red line) and colored according to sample age
(colored circles). Plots for the remaining chains are in Figure A.1.

2.4 Paleolatitudes

Three di�erent types of data are used to determine a hotspot’s latitude at a given time in the
past. One data type results from the magnetization of vertically oriented rock samples taken from
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(a)

(b)

Figure 2.6: Binned radiometric age data from the Hawaiian-Emperor and Louisville chain. (a) The
curve for Louisville was fit by a weighted polynomial regression. A weighted F-test was performed to
determine the models’ parameter order, which for Louisville represents a second-order polynomial
fit. The dashed line represents the portion of the chain where there is a large gap with little to
no seamount data. (b) The Hawaiian-Emperor chain fit by a split cubic spline at 800 km, which
is approximately the middle of the gap between the ≥ 6 Ma and ≥ 8 Ma data points. The circled
points represents an area of data that shows a break from the trend, however, unlike the younger
portion of the chain where we have a higher confidence in the age data and therefore split the
spline to better fit that section, in the circled section we have less confidence in the data and higher
spatial uncertainties and therefore do not alter the trend in that area.
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seamount drill cores. These samples reveal the magnetic field inclination with respect to magnetic
north at the time of formation and therefore the latitude of the hotspot when actively forming the
seamount (e.g. Tarduno et al. 2003; Bono et al. 2019), provided the field can be approximated by a
geocentric dipole that tracks the spin-axis (Tauxe 2006). This type of data is presently only avail-
able for the Hawaiian-Emperor and Louisville seamount chains. Since the samples lack azimuthal
orientation, no paleolongitude can be extracted.

Another approach to determine paleolatitudes along a seamount chain is to rely on predicted values
based on the paleo-poles derived from marine magnetic anomaly skewness (Cande 1976). From a
set of magnetic anomalies crossing the same isochron but at di�erent locations, one can deter-
mine a best-fitting paleo-pole for the age of the isochron (e.g. Petronotis et al. 1994). Therefore, a
paleo-colatitude for coeval seamounts anywhere on the Pacific plate can be predicted by calculating
the angular distance between the paleo-pole and the coeval position along the seamount trail (see
Figure 2.7).

Similar to the poles inferred from magnetic anomalies, paleo-spin-axes can be inferred by ana-
lyzing latitudinal shifts in equatorial sedments. These sediments initially formed at the equator
but have since been carried northwards by plate motion (Parés and Moore 2005). Given an age for
these displaced sediments, a paleo-spin-axis can be determined (Woodworth and Gordon 2018) and
therefore a coeval seamount’s paleo-colatitude for any trail on the Pacific plate can be inferred.

A non-weighted continuous polynomial regression was used to fit a data set combining all three
types of paleolatitude data. An F-test was performed to determine the models’ parameter order,
however, in some cases the F-test was overridden because of clear violations to trends in the data.
HI, LV, and RU all used a third-order polynomial to describe their fit, while CB, KO, and FD
are fitted using linear trends. The latter three chains only contain predicted paleolatitudes derived
from the equatorial sediment paleo-spin-axes because they have not yet been sampled for rock
magnetization and are too young for any of the anomaly skewness paleo-poles to apply.

Our analysis on paleolatitudes thus far assumes no true polar wander (TPW) has taken place.
True polar wander argues that at times in the past there have been re-positionings of Earth’s
spin-axis (Goldreich and Toomre 1969). For instance, Woodworth and Gordon (2018) proposed an
episode of TPW during the time of Emperor chain formation which also was discussed by Torsvik
et al. (2017). If this were the case, paleolatitude shifts from ≥48 Myr and earlier may be attributed
to TPW rather than latitudinal drifts of the plumes. However, changes in inter-hotspot distances
between coeval seamounts cannot be explained by TPW and still imply relative drifts between
hotspots.
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Further analysis and use of our paleolatitude compilation remains beyond the scope of this study.
Without any data between 12 Myr to the present, we cannot confidently use paleolatitudes as a
constraint for our analysis of recent hotspot drifts. However, our data analysis of these paleolati-
tudes are still included for completeness and for their usefulness to future work on APM and plume
drifts models for earlier time periods.

Figure 2.7: Paleo-poles (red outlined ellipses) and paleo-spin axes (black outlined ellipses) with
their coeval positions along HI and CB (yellow triangles for the spin-axes and red circles for the
paleo-poles). Great circle distances between poles and seamounts are shown by the red lines for
the paleo-poles and black lines for the paleo-spin-axes. These distances are the inferred paleo-
colatitudes at the given ages and paleolatitudes are trivially computed.
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Figure 2.8: Paleolatitudes for the Hawaiian-Emperor chain and the present day hotspot latitude fit
by a third order polynomial regression. Present day hotspot latitudes are defined by the zero age
on the age progression curves. Similar figures for the remaining chains with paleolatitude data are
shown in Figure A.5.

2.5 Separations Between Coeval Seamounts

With all eleven seamount chains having a continuous hotspot path with across-track uncertainty
and continuous age progression with along-track uncertainty, any chain pair has a continuous range
of coeval points. With this information, we now have the ability to calculate the great circle distance
between any two coeval points of any two chains. This distance records the frozen-in separation
between the two hotspots at the specified time (Wessel and Kroenke 2009). This procedure was
repeated for each chain pair combination for the given age range, giving us observed inter-hotspot
distances with uncertainties between all 55 combinations provided by the eleven hotspot chains
examined in this study. Examples from three chain pairs with the longest age range (HI, LV, and
RU) are shown in Figure 2.9, with the complete set of 55 provided in Figure A.4.

Changes in inter-hotspot distances between coeval points along seamount chains over time in-
fer relative drifts between every pair of hotspots and act as important constraints on the modeling
of plume drifts (e.g. Wessel and Kroenke 2009; Wessel 2012; Bono et al. 2019). In this study, these
separations and uncertainties were derived from the hotspot trails and age progressions curves
presented in Sections 2.2 and 2.3 respectively. Since every point along each chain is given across-
track and along-track uncertainties, total uncertainty in inter-hotspot distances was determined by
the methodology of Andrews et al. (2006) for adding unequal elliptical uncertainties. Results from
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past studies (Wessel 2012) have suggested an inconsistency where the paleolatitude separations
between HI and LV surpassed their total inter-hotspot distances. In this study, we found a similar
inconsistency, however, it was more subtle and within the margins of error.

The inter-hotspot distances between the three long-lived chains (see Figure 2.9) show comparisons
with the predictions of Doubrovine et al. (2012), herein called D2012, which predicts plume drifts
by modeling flow of the mantle. These predictions show both consistencies and inconsistencies
in certain places with the results from our data analysis. The decrease in inter-hotspot distance
between HI and LV for ≥ 75 ≠ 45 Myr observed in our data is consistent with the predictions of
D2012 which remain within the margins of error for our data. However, inconsistencies with HI
and LV occur during the last ≥ 40 Myr, where there is a 2¶ o�set between the data and the D2012
predictions. The HI and RU pairs show a similar o�set between the data and D2012 predictions
during the same time period as HI and LV. The D2012 model also predicts a decrease in inter-
hotspot distance between ≥ 80 ≠ 60 Myr whereas the data suggest a slight increase between HI
and RU. There is consistently very little relative drift between LV and RU in both the data and
D2012 predictions the last 20 Myr. However, the data available for the two chains in the given time
period are scarce and results should be taken with caution. For the ≥ 75 ≠ 45 Myr time period
there is ample data for both the LV and RU chains and the data suggest a prominent decrease
in inter-hotspot distance, whereas the D2012 predictions imply a much more gradual decrease for
the same time frame. Ideally, derived inter-hotspot separations should constrain models for plume
motions (such as D2012), as otherwise such errors will propagate into the plate motion parameters
and bias the results.

There is a prominent sharp decrease in inter-hotspot distance between HI and LV, and HI and
RU, for the last ≥ 5 Myr. This may be an artifact of the high precision of both seamount and age
data we have for the youngest portion of HI, whereas for LV and RU data in this region/time period
are scarce. It could also be an indication of southward motion of the HI plume during this period.
However, more data are available during this time period for most of the shorter-lived chains, and
therefore further analysis of those chains may be more suitable when examining relative drifts for
the more recent time periods, while chains like LV and RU may be better for the analysis of earlier
time periods.

2.6 Hotspot Drift Rates from 6 Ma - Present

There has been much focus on and interest in the inter-hotspot distances between the long-lived
chains (e.g. HI, LV, and RU, see Figure 2.9) in the Pacific (Wessel and Kroenke 2009; O’Connor
et al. 2013; Konrad et al. 2018; Bono et al. 2019). These long-lived chains show variable rela-
tive drifts between the hotspots, with periods of very little drift to periods that show more rapid
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(a)

(b)

(c)

Figure 2.9: Inter-hotspot distances among three chains (HI, LV, and RU). Dashed lines indicate
points along one of the chains in the pair with large gaps of little to no data (≥ 0 ≠ 10 Myr for
LV and ≥ 15 ≠ 45 Myr for RU). The red line represents predictions of the Doubrovine et al. (2012)
model.
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relative drifts, most notably the decrease in inter-hotspot distance between HI and LV prior to
≥ 45 Ma. However, analysis of inter-hotspot distances between pairs of shorter lived chains show
a near-linear trend in most cases (e.g. Figure 2.10 and Figure A.4). The linearity of trends
allows us to assume a constant relative drift rate between hotspot pairs starting between ≥15–5
Ma to the present depending on the longevity of the chain. For this study we have chosen to
look at these relative drift rates from the time of 6 Ma to the present. This time frame was
chosen because it approximately matches the age of the two shortest-lived chains, MQ and SO,
and also because of interest in a proposed change in Pacific plate motion starting at ≥ 6 Ma (e.g.
Cox and Engebretson 1985; Pollitz 1986; Wessel and Kroenke 2000, 2007; Austermann et al. 2011) .

Using the continuous inter-hotspot distance findings (see Appendix A.3), we lack the ability
to determine uncertainty and test for significance of the linear fit of these relative drifts. To ac-
count for this issue, inter-hotspot distances must be broken into discrete points that represent our
age data while also allowing each data point from one chain to have coeval points along the other
chain. To most fairly determine a linear fit and its significance for every chain pair’s inter-hotspot
distance, these distances were sampled at points where radiometric age data were projected onto
the inferred hotspot paths (see Figure 2.5 and Figure A.1). However, very rarely do we find
coeval points along two chains using these discrete projected data points. To objectively determine
coeval points on other chains from the projected data, we use the age progressions found from the
least-squares regression fits from Section 2.3. Therefore, given chain 1 and chain 2, the data used
to determine a linear fit to their inter-hotspot distances are the distances from the projected age
data of chain 1 to the coeval point on the continuous age-progressive line of chain 2 and vice versa.
An example of this method is shown in Figure 2.11. The inferred relative drift rates for each chain
pair are summarized in Table 2.1 with one-sigma uncertainties of these relative drifts summarized
in Table 2.2.

Not every hotspot chain has adequate age data coverage for the time frame of 6 ≠ 0 Ma. The
Louisville trail contains just one age data point and very little seamount data in the chosen time
frame. Rurutu contains only two age data points and both are found at the younger end, at less
than 2 Ma. While Caroline also contains just two age data points, the coverage is more spread out,
with one sample at the younger end and one at the older end of the 6 ≠ 0 Ma time frame. Caroline
also has a more su�cient coverage of seamount data to constrain trail geometry. The remaining
chains (HI, CB, KO, FD, PC, SA, MQ, and SO) have three or more age data points and a clear
trail of seamounts in the 6 ≠ 0 Ma time frame. Therefore, the constant relative drift rates for LV
and RU are not included in further analysis of hotspot drifts during this time period.
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Figure 2.10: Change in inter-hotspot distances between the Samoa seamount chain and all ten other
chains from this study, inferring the relative drifts between Samoa and the other hotspots. The
present change in inter-hotspot distances is defined to be zero. Coeval positions between chain pairs
and their distances are derived from the inferred hotspot trails and age progressions determined in
Section 2.2 and Section 2.3. For similar plots of other hotspots see Appendix A.3.

Figure 2.11: A weighted linear least-squares regression fit to the inter-hotspot distance data of the
Hawaiian and Marquesas hotspot chains. Weights for the regression were based on the along-track
and across-track uncertainties of each chain estimated herein (e.g. Figure 2.2) and combined using
the methodology of Andrews et al. (2006). The red circles represents prediction of the Doubrovine
et al. (2012) model with a linear fit to those predictions (red line).
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Relative Drift Rates Between Hotspot Pairs (¶/Myr)
Hotspot LV RU CB KO FD PC SA CR MQ SO

HI 0.260 0.177 0.126 -0.097 0.076 0.111 0.138 0.068 0.093 0.092
LV 1.195 0.073 0.020 0.194 0.121 -0.087 0.372 0.343 0.251
RU -0.058 -0.158 0.148 -0.199 -0.034 0.217 0.267 -0.023
CB -0.023 -0.214 -0.062 0.196 0.342 -0.239 -0.035
KO -0.264 -0.139 0.073 0.142 -0.304 -0.155
FD 0.071 -0.169 0.433 -0.068 0.148
PC -0.206 0.147 0.047 0.137
SA 0.365 0.201 -0.309
CR 0.454 0.008
MQ 0.370

Table 2.1: Relative drift rates between all hotspot pairs. See Figure 2.11 for an example of
how these relative drifts were determined. For uncertainties see Table 2.2. Two hotspots moving
towards each other have a positively defined relative drift rate, therefore a decrease in separation
would give a positive relative drift rate.

One-Sigma Uncertainty of Relative Drifts (¶/Myr)
Hotspot LV RU CB KO FD PC SA CR MQ SO

HI 0.0419 0.066 0.013 0.0216 0.049 0.040 0.011 0.040 0.049 0.048
LV 1.068 0.092 0.084 0.057 0.006 0.017 0.139 0.046 0.047
RU 0.050 0.102 0.079 0.182 0.048 0.300 0.015 0.027
CB 0.132 0.131 0.058 0.008 0.049 0.054 0.036
KO 0.107 0.043 0.006 0.070 0.045 0.023
FD 0.086 0.027 0.134 0.075 0.077
PC 0.020 0.097 0.050 0.067
SA 0.024 0.024 0.035
CR 0.061 0.082
MQ 0.029

Table 2.2: The one-sigma uncertainty for each chain pair’s relative drift rate. Uncertainties were
determined by the standard deviation of the linear regression fit (see Figure 2.11).
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CHAPTER 3
MODELING OF HOTSPOT DRIFTS

The rates found in Section 2.6 (Table 2.1) are a set of constant relative drift rates between every
hotspot pair (LV and RU are excluded in the analysis) for the given time range (6 ≠ 0 Ma). With
these inferences from the observations of the linear change in distance between coeval points along
the seamount trails, a linear least-squares approach may be used to solve for our parameters of
interest, which are the longitudinal and latitudinal drift rates for each hotspot in the system, here
represented by v„i , v◊i for hotspots i = 1, n.

Figure 3.1: Hotspot i and j connected by their great circle. Both hotspots have a true drift
described by a vector with a given rate and azimuth (green arrows). The parallel components of
the drift rate vectors to the great circle distance (blue lines) show a single hotspot’s contribution
to that pair’s relative drift rate. The sum of the two blue lines gives the total relative drift rate
between hotspots i and j (red lines) which are the observations we call dij .

The sketch from Figure 3.1 gives a visual representation for our observation (the relative drift
rate, dij) and how it relates to the true drift of the two hotspots. While we cannot observe the
hotspot drift vectors directly, we can observe changes in inter-hotspot distances from seamount
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chains, allowing us to infer a relative drift rate between the pair. Each hotspot in the pair con-
tributes its parallel component along the great circle connecting the hotspots. However, we can
only observe the sum of these parallel components, therefore making us unable to determine how
much each hotspot contributes to the observed rate by looking at just the two hotspots alone.
Adding more hotspots and establishing prime constraints to the system, therefore, allows for a
linear least-squares solution that may resolve the drift vectors for each hotspot.

We must therefore describe the relative drift rates, dij , between hotspot i and j in terms of our
parameters, v„i and v◊i . We also must constrain the net translation and rotation of the hotspot
group, since any such absolute motions will not be reflected in our relative rate observations. Since
our system of hotspots used for this study spans a wide area of the Pacific plate, the equations that
describe the least-squares misfit and the constraints must work on the surface of a sphere. Here we
present a new method for inverting such data.

3.1 Least-Squares Equation

We start with an n hotspot system on the surface of a sphere, with surface coordinates defined by
longitude, „, and latitude, ◊, with „ increasing eastward and ◊ increasing northward from ≠90¶

at the south pole to 90¶ at the north pole. The transformation between spherical and Cartesian
components is given by the standard relationship
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The third column in C describes the r̂i position of hotspot i on the surface of the unit sphere:

r̂i = cos ◊i cos „ix̂ + cos ◊i sin „iŷ + sin ◊iẑ. (3.2)

Our model parameters are the components of a velocity vector, vi, that is required to be tangent
to the surface of the unit sphere, i.e.,

vi = v„i�̂i + v◊i ✓̂i. (3.3)

The rotation vector associated with vi is simply

!i = r̂i ◊ vi, (3.4)
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where ◊ denotes the usual cross product. Combining Equations 3.3 and 3.4 and using the right-
hand rule for cross-products we can write !i in terms of our parameters v„i , v◊i :

!i = r̂i ◊ (v„i�̂i + v◊i ✓̂i) = v„i r̂i ◊ �̂i + v◊i r̂i ◊ ✓̂i = ≠v◊i�̂i + v„i ✓̂i. (3.5)

The rotation and velocity vectors that describe a hotspot’s motion on the surface of a sphere is most
clearly expressed in a local spherical (�̂, ✓̂, r̂) coordinate system. However, converting these vectors
to a global Cartesian (x̂, ŷ, ẑ) coordinate system is later needed when forming vector operations
with other vectors in the same global Cartesian coordinate system. To simplify the derivation,
matrices are constructed to perform these coordinate system transformations.

Since hotspot motions are tangent to the Earth’s surface, vr © 0, therefore the third column
in C can be ignored. Furthermore, the conversion from velocity to rotation vector, i.e., Equation
3.5 can be written, ! = J · v, where

J =
C
0 ≠1
1 0

D

. (3.6)

The transformation matrix for surface vectors thus becomes

T = C · J =

S

WWU

≠ sin ◊ cos „ sin „

≠ sin ◊ sin „ ≠ cos „

cos ◊ 0

T

XXV . (3.7)

We find the polar axis of the great circle between hotspot i and j via

ûij = r̂i ◊ r̂j

|r̂i ◊ r̂j | . (3.8)

The misfit, E, that we seek to minimize involves the squared di�erence between the predicted and
observed relative drift rates and takes the form of a weighted sum for each hotspot pair:

E =
nÿ

i=1

nÿ

j=1

C
dij ≠ dÕ

ij

sij

D2
i ”= j, (3.9)

where n is the number of hotspots, dij is the observed (Table 2.1) and dÕ
ij is the predicted relative

drift rate between hotspot i and j, and sij is the one-sigma uncertainty in the observed relative
drift rate (Table 2.2). Predicted relative drift rates are given by the projected contributions from
the two hotspots’ drift onto the great circle:

dÕ
ij = ûij · (!i ≠ !j) = ûij · (Tivi ≠ Tjvj). (3.10)
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Equation (3.10) thus relates our observations to the unknown parameters.

3.2 No-Net-Translation Equation

Any net motion in the longitudinal and latitudinal directions can be thought of as a rotation around
a fixed distance pole shifting all the hotspot drifts by their longitudinal and latitudinal components
simultaneously. However, such related motions would cancel in our estimates for dij . Hence, in
order to constrain this net motion we must sum all the hotspot’s translational drifts, take the
average and set it equal to zero. Therefore, the no-net-translation constraint ensures the hotspot
group’s average drift rate is zero and is given by,

0 = 1
n

nÿ

i=1
!i = 1

n

nÿ

i=1
Ti · vi. (3.11)

3.3 No-Net-Rotation Equation

Similar to the no-net-translation constraint, we must also constrain any net rotation about the
centroid of all the hotspots. To get hotspot rotation rates about the centroid, we must calculate
the centroid on the surface of the unit sphere, ĉ, the polar angle of hotspot i to the centroid axis,
Âi, and the tangent vector to the small circle through r̂i, called t̂i:

ĉ =
qn

i=1 r̂i

|
qn

i=1 r̂i|
, (3.12)

Âi = cos≠1(ĉ · r̂i), (3.13)

t̂i = ĉ ◊ r̂i

|ĉ ◊ r̂i|
. (3.14)

The rotation rate of hotspot i about the centroid is

ÊÕ
i = vi · t̂i

sin Âi
. (3.15)

The no-net-rotation equation is therefore

1
n

nÿ

i=1
ÊÕ

i = 1
n

nÿ

i=1

t̂i

sin Âi
· vi = 0. (3.16)

Coupled with Equation 3.11 we ensure that our solutions will be free of any group translation
and rotation. Using the methods of Menke (2018) for constrained least-squares problems, our least-
squares equations, constraint equations, parameters, and observations are organized into a set of
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matrix equations from which an optimal solution is found.

3.4 Testing on Synthetic Data

Before obtaining results from this modeling scheme using our relative drift rate observations, it was
first attempted on a synthetic data set. The synthetic data contained a chosen number of hotspots,
each with a known absolute drift rate magnitude and azimuth. The relative rates from this data,
which are our synthetic "observations", were calculated by

dijsynthetic = ri cos(–ij ≠ ai) + rj cos(–ji ≠ aj), (3.17)

where ri and ai are the absolute drift rate and azimuth of hotspot i respectively, and –ij is the
azimuth from hotspot i to hotspot j along the great circle connecting them. With these calculations
we have a set of synthetic observations that are equivalent to the observations we have with our
relative hotspot drift rate data. From here we can set up a system of hotspots with prescribed
absolute drifts, attain the relative rates, and use the relative rates in our model to test if the
solutions match the prescribed drifts. However, since our method constrains for no-net-translation
and no-net-rotation, we set up the synthetic case to have neither of these net motions so we can
directly compare prescribed and resolved drifts (see Figure 3.2). Our synthetic case showed us
that the method was stable and could reproduce the prescribed data exactly. We also used a
Monte Carlo simulation to check that our formal error estimates were consistent with results from
the simulation. Our findings showed consistency between errors for the two methods, giving us
more confidence in the formal error calculations on the real data.

3.5 Results

The predicted hotspot drifts found using the methods explained in this chapter are summarized in
Figure 3.3 and Table 3.1. This figure shows the raw solutions satisfying the no-net-translation
and no-net-rotation criteria. These raw solutions do not necessarily represent the true absolute
hotspot motions because they do not capture any mean group rate of all the hotspots. However,
if there is very little or no mean group rate then these results would be reflections of absolute
hotspot motions from 6 Ma to the present. In order to compare how removing specific hotspots
from the system a�ects the drift solutions for the remaining hotspots, we attain the solutions for
each scenario of removing one hotspot. Each panel displays the solution drift vectors of that specific
hotspot for all the eight possible scenarios that exclude one of the other hotspots. For comparison,
Figure 3.4 shows the solutions relative to a fixed Hawaiian hotspot. This solution is found by
describing the HI drift solution as a rotation via Equation (3.16) and subtracting the rotation from
the solutions of the other hotspots. This creates a constant and well-defined reference frame for the
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Synthetic Data Solution

Figure 3.2: A synthetic data set with four hotspots given a geometry and prescribed absolute
drifts that allows for no-net-translation and no-net-rotation within the system. The dashed lines
represent the great circles connecting all the hotspot pairs. For this no-net-motion system, the
solutions perfectly match the known drifts of the hotspots, a�rming our model works to solve for
hotspot drifts in a no-net-rotation reference frame.
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hotspot drifts that allows for a better comparison of solutions when removing or adding hotspots
to the system. The Hawaiian hotspot was chosen as the reference frame for two reasons: a) The
raw solutions consistently found HI to have only a small amount of motion compared to the other
hotspots, and b) the absolute drift of HI from the prediction of the D2012 model is also insignifi-
cantly small compared to the other hotspots for this time frame. In the next chapter we will discuss
our results and compare to them to conclusions from other studies for determining plume drifts.

Hotspot Rate (¶/Myr) Azimuth (¶)
HI 0.061 129¶

CB 0.266 -67¶

KO 0.159 -30¶

FD 0.403 -155¶

PC 0.106 48¶

SA 0.189 -23¶

CR 0.206 94¶

MQ 0.173 -103¶

SO 0.287 100¶

Table 3.1: The rates and azimuths of the hotspot drift solutions when all 9 hotspots are included
in the inversion. This solution explains 95.86% of the variance.
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Figure 3.3: The solution drift vectors for all 9 hotspots modeled (white arrows), the 95% confidence
ellipses for these solutions (dashed ellipses), the solutions with the exclusion of one hotspot from
the system (colored arrows), the 95% confidence ellipses for these nine solutions (tan ellipses), the
absolute hotspot drift predictions from Doubrovine et al. (2012) (red arrows), the predictions from
the Tetley et al. (2019) OptAPM1-M16 (brown arrows) and OptAPM1-s13 (orange arrows) models.
FD has identical drifts for both Tetley et al. (2019) models, so only one appears. Each hotspot is
plotted in a separate panel with the same dimensions (100 km x 100 km) with the hotspot location
directly in the middle (black x’s). A vector scale is displayed in the upper-left-hand (Hawaiian
hotspot) panel and applies to every vector plotted in the figure.
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Figure 3.4: The solution vectors in the reference frame of the Hawaiian hotspot. See Figure 3.3

caption for symbol explanations.
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CHAPTER 4
DISCUSSION

The work from Chapter 2 has produced a carefully processed set of spatial time-series capturing
geometric age and paleolatitude progressions with uncertainties for eleven Pacific seamount chains.
These data can be used for further analysis and serve as prime constraints for future plate and
plume motion modeling. In this paper, we used this data to analyze inter-hotspot distances be-
tween the long-lived seamount chains (see Section 2.5). As a novel use for this data, a modeling
scheme described in Chapter 3 was used to solve for recent hotspot motions. Results from this
method of solving for plume drifts are discussed through the remainder of this chapter. We compare
our results to hotspot drifts predictions from D2012, and Tetley et al. (2019), herein called T2019.

With the results from this study, the D2012 predictions, and the T2019 predictions, we have a
comparison of three di�erent assessments of Pacific hotspot motions for the past 6 Myr. (1) The
inversion of observed relative drift rates (this study), (2) predictions from APM modeling that
include how plumes are e�ected by the mantle wind (D2012), and (3) a modeling of Pacific APM
in which plume drifts are obtained from the misfit between the predicted seamount trails from a
fixed hotspot model and the observed seamount trails (T2019). However, of the 9 hotspots exam-
ined in our modeling of plume drifts, the D2012 and T2019 predictions only cover some of them.
Specifically, the D2012 model does not include predictions for CB and FD, while the T2019 model
does not include predictions for KO, PC, MQ, SO, and CR.

The solution vectors plotted with their uncertainty ellipses in Figures 3.3 and 3.4 suggest sig-
nificant absolute drifts of the hotspots at the 95% confidence level, with the exception of HI. The
95% confidence ellipse (for the inversion including all hotspots) for HI is within a region that would
suggest no drift. This lack of significant drift for HI is consistent with the predictions from D2012
which also suggest no significant absolute drift for HI for the last 6 Ma.

Our results for Caroline show a prominent eastward drift of the hotspot. However, this result
for Caroline should be considered with caution. The Caroline seamount chain has only three age
data points throughout, with two in the 6 ≠ 0 Ma timeframe. This makes the chain age progres-
sion predictions less reliable and therefore decreases our confidence that these changes in distance
between coeval seamounts from Caroline to the other chains are the result of relative hotspot drift
rather than inaccuracies in our age progression curve. However, excluding Caroline from the hotspot
system did not have a significant e�ect on the solutions for the other hotspots and therefore it is
still included in the overall solution.
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The D2012 model predictions give absolute drift rates that are consistent with some of the hotspot
drift solutions from our study, which include HI, SA, MQ, and SO, while the hotspots KO, PC, and
CR show conflicting results. The predictions from the T2019 model show conflicting results from
all four hotspots we can make comparisons to (HI, CB, FD, and SA). Furthermore, for cases where
we have both D2012 and T2019 predictions (HI and SA), the predictions from the two models have
conflicting results. The predictions from the T2019 model may suggest there is a large mean group
signal we are missing from our solutions, while the D2012 predictions may suggest there has been
very little recent drift of the Hawaiian hotspot, making the mean group rate of the hotspots small
or nonexistent.

Of all the hotspots we have D2012 model predictions for, the three where our solutions contradict
the predictions from D2012 (KO, PC, and CR) are also the hotspots with corresponding seamount
trails where we have the least amount of age data (see Figure 1.1 and Figure A.1). This raises
the question of whether the relative drifts we observe from seamount chains with sparser data are
the results of hotspot drifts or artifacts of predicted seamount chain age progressions that do not
correctly follow the true paths of the hotspot chains. Better data may be required to explore these
discrepancies further.

The motion of the Hawaiian hotspot from 6 ≠ 0 Ma has important implications for recent ab-
solute plate motions. A recent bend in the Hawaiian chain suggests either a recent southward shift
in the Hawaiian hotspot drift or a more northerly shift in Pacific plate motion (Cox and Enge-
bretson 1985; Pollitz 1986; Wessel and Kroenke 2000, 2007, 2008; Austermann et al. 2011). Our
results for the Hawaiian hotspot and the consistency with the D2012 model predictions that show
very little drift of the hotspot would suggest this change in seamount geometry around 6 Ma is the
result of plate motion change. On the other hand, T2019 predictions explain this change in the
geometry by a change in plume drift that is moving rapidly to the southeast. Yet, we note this
implied motion is simply resolved as a residual misfit between their predicted trail and observed
trail.

While paleolatitude data suggest a southward drift of the Hawaiian hotspot sometime between
12 Ma to the present (Figure 2.8), these inferences should be taken with caution. The youngest
paleolatitude data we have is 12 Ma which comes from shifts in equatorial sediments giving inferred
paleo-spin-axes (Woodworth and Gordon 2018; Parés and Moore 2005). This gap in data makes it
di�cult to determine when this potential southward drift may have occurred by looking at paleo-
latitudes alone. However, TPW (Goldreich and Toomre 1969; Tsai and Stevenson 2007) may also
explain the apparent southward change in paleolatitude without the need for a southward drift of
the Hawaiian hotspot (Woodworth and Gordon 2018). We note hotspots LV and RU show similar
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paleolatitude trends (see Appendix A.4), which could support either a southward mean group rate
of the hotspots or recent TPW. Unfortunately, both chains have very little age and seamount data
for the more recent time periods, with no well-determined hotspot location. This makes it di�cult
to determine uniquely if there is a significant southward change in paleolatitude since the hotspot
locations are so uncertain. Consequently, it also makes our 6≠0 Ma relative drift rate predictions for
the two hotspots too unreliable to include in our system that solves for hotspot drifts (Chapter 3).

The addition of paleolatitude data from the timeframe 6 ≠ 0 Ma would allow us to use paleo-
latitude as a constraint in our least-squares solution. Constraining the paleolatitude of just two
hotspots would fix the group rotation of the hotspots and allow for the system to be solved without
a no-net-rotation constraint. However, the paleolatitudes would place no constraints on the lon-
gitudinal translation, and therefore the no-net-translation constraint would apply but need to be
modified to a no-net-longitudinal-translation constraint. However, the analysis of land based pale-
olatitude measurements from Pacific island chains is beyond the scope of this work, and therefore
these improvements to the model constraints cannot be made at this time for the 6 ≠ 0 Ma time
frame. Possibly, geodynamic arguments may be used to explore such constraints (e.g. Conrad et al.
2013). However, more work needs to be done to explore these studies on geodymanic models and
examine them as suitable constraints to plume drifts.

To our knowledge, the methodology developed in Chapter 3 is novel and represents the first
time inter-hotspot distance variations have been used to directly determine plume drifts. We are
hopeful this new method can help shed light on the motion of plumes and thus help improve fu-
ture APM models. Our findings could also be improved if more data become available, for both
seamount age and paleolatitude. This method for finding plume drifts may also be applied to other
time periods where there appear to be a constant change in inter-hotspot distance between the
seamount chains. Our data set also has future utility beyond our simple analysis of recent plume
drifts, which could include the holy grail of developing more robust APM models that aim to solve
for plate motions and plume drifts simultaneously over longer time periods.
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APPENDIX A

A.1 Square-Root of Age Curve for Determining Filter Widths

Our median filter with varying radii used to obtain the residual bathymetry from Section 2.1

was assigned a radius based on the age of the seafloor when seamount loading occurred (�t). A
linear function of square root of age verses filter width was constructed based on known ages and
filter widths that worked for specific regions. Based on visual inspection of cross sections along
the youngest portion of the Hawaiian chain, a filter width of 420 km was found to have properly
removed the flexure of the ocean floor due to lithosphere deformation. In the older Emperor
region, a similar visual inspection found 330 km to be a reasonable filter width. The crustal age
at seamount loading for the young Hawaiian chain is approximately 90 Myr, while we estimated
an average loading age for the Emperor chain to be about 48 Myr. This gave us our two points at
(
Ô

48, 330) and (
Ô

90, 420) which defined the linear function used to determine filter width values
along a chain:

fw = 420 ≠ 330Ô
90 ≠

Ô
48

Ô
�t + 86 (A.1)

A.2 Medial Trail Lines and Age Curves

A large portion of our data analysis of seamount chains involved determining the medial trail lines
of the seamount chains and fitting a continuous age progression through them. Sections 2.1, 2.2,

and 2.3 described and gave examples of the processes for determining these age progressive hotspot
trails, and here some of the steps and result for the remaining chains are shown.
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Figure A.1: Medial trail lines (red lines) and radiometic age data locations (white circles) with
their projected positions on the medial line (colored circles) for ten of the chains. Dashed lines
represent portions of the chain with little to no seamount data. The figure for HI is in the main
paper as Figure 2.5.
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Figure A.2: Binned radiometric age data for nine of the seamount chains with a weighted polynomial
regression fit to the data. The models’ parameter order is determined by an F-test, where CB is fit
with a second-order polynomial and the remaining chains displayed here are fit with a first-order
polynomial. Dashed lines represent gaps in the chain where there is little to no seamount data. CR
has two added points (red circles) that do not change the trend but help stabilize the uncertainty.
Results for HI and LV are displayed in the main paper (see Figure 2.6).

Two data points were added to the Caroline age regression that do not change the trend but do
change the confidence bands. With only three data points, the small degree of freedom gives
unreasonably large confidence bands for the CR regression. Since we understand the dynamics of
the system we are fitting a curve to (age progression of seamounts along a chain), and we see a
reasonable trend with the three data points, we felt overriding the objectively found uncertainties
in the CR age curve was necessary to more accurately reflect the scatter in the data.
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Figure A.3: Summary of all eleven seamount chains’ medial trail line (black lines), showing the
medial lines’ variable across-track uncertainty (colored paths) with their color representing the
continuous age progression of the chain. A grey-scale bathymetry grid of the Pacific region is
displayed with the Pacific plate boundaries (thick black line). The present hotspot locations (yellow
stars) are determined by the zero age of the regression curve, which in some cases is noticeably o�
from what was defined as zero distance on the medial trail lines (i.e. LV, RU SA, and SO).
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A.3 Inter-Hotspot Distances

Based on the age progression curves and medial trail lines from Sections 2.2 and 2.3 we can
determine inter-hotspot distances for every chain pair. Inter-hotspot distances between the three
long-lived chains are shown in Figure 2.9 with a shorter-lived chain shown in Figure 2.10. To
include inter-hotspot distance results for all eleven chains (55 chain pairs), we include Figure A.4.

Figure A.4: Inter-hotspot distance results for the other ten chains. Each panel represents a di�erent
chain with all the chains’ inter-hotspot distances plotted together. The top three panels have a
larger range on the x-axis (85 ≠ 0 Myr) to accommodate for the longer-lived chains (HI, LV, and
RU). The remaining chains all have the same x-axis scale (30 ≠ 0 Myr). Dashed lines represent
portions where one of the chains in the pair has regions with very little to no seamount data.
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A.4 Paleolatitudes

The methods for attaining our paleolatitude curves and an explanation of the di�erent types of
paleolatitude data are described in Section 2.4, with results for HI displayed in Figure 2.8. The
remaining chains we have su�cient paleolatitude data to fit a regression curve to (LV, RU, CB,
KO, and FD) have their data and curves shown in Figure A.5.

Figure A.5: Paleolatitudes for the LV, RU, CB, KO, and FD chains and the present day hotspot
latitude fit by a polynomial regression. LV and RU are fit by a third-order polynomial, while
the remaining chains (CB, KO, and FD) are fit by a first-order polynomial. Present day hotspot
latitudes are defined by the zero age location on the age progression curves. Dashed lines represent
portions of the chain with little to no seamount data. For better comparison, all chains are plotted
with the same age-axis and distance-axis scale.
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