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ABSTRACT

The sediments of Hanalei Bay are separated into two groups based on their source:
terrigenous and marine. The terrigenous component, primarily from the Hanalei River,
was analyzed with measurements of suspended sediment concentration in the river as well
as thickness and calibrated radiocarbon ages of the cored fluvial deposits on the coastal
plain. An empirical model, the Universal Soil Loss Equation (USLE), was used to
describe the erosional characteristics of the Hanalei basin and to estimate the amount of
sediment lost from the valley due to water erosion. The marine component was
investigated by combining observational data describing sedimentary processes with
geophysical surveys. Benthic samples, collected from numerous sites throughout the bay,
show physical characteristics of the sediments, while side-scan sonar and seismic reflection
surveys disclose the lateral extent and thickness of sedimentary deposits.

Suspended sediment and floodplain volumes indicate 7,5604£2,910 Mg (metric
tons) yr' are removed from the Hanalei watershed. This is a higher percentage (45-101%)
of the USLE-predicted hillslope output (4,800£5,600 Mg yr') than would be expected
from a watershed the size of Hanalei (54.4 km?). The excess output of fluvial sediment is
likely due to other erosional processes such as mass movement and channel incision. It
was not possible to differentiate between hillslope sediments mobilized by water erosion
processes, those derived from mass wasting, or those contributed from stream bed and
bank erosion.

Calcium carbonate sediments, which comprise approximately 70% of marine
sediments in Hanalei Bay, are composed of the skeletal remains of marine organisms such
as coralline algae, coral, molluscs, foraminifera, Halimeda, bryozoa, and echinoderms.
Siliciclastic sediment grains are the most common individual grain type (~27%) and
originate primarily from the Hanalei River. The bay holds approximately 45.5£1.5 x 10°

m® of marine sediment while an additional 33.7£11.2 x 10° m’ underlies the modern
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coastal plain. Deposition of this sediment likely started soon after the marine environment
entered the bay ~11.7 kyr. Based on CaCO, production rates in the literature and additional
studies in Hawaii (J. Harney, pers. comm.), this is more carbonate sediment than the reefs
in Hanalei Bay could have produced in the given time. As a result, an average of 2,490 m’
yr! were calculated to have been transported and deposited in Hanalei Bay by the northeast
tradewind driven longshore current. This influx of carbonate sediment frdm the eastern
north shore of Kauai is likely to have played a significant role in the mid to late Holocene

progradation of the Hanalei shoreline.
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Introduction

Located on the north shore of the Hawaiian Island of Kauai, Hanalei Bay receives
fluvial discharge from three undeveloped watersheds. It is also a part of the oceanic
environment of the north shore of Kauai which includes several kilometers of fringing reef
and basalt headlands intermittent with pocket beaches to the east and west. Until recently,
this area has had relatively low pressure from development. As a result of this and its well
defined limits, Hanalei Bay and surrounding watershed provides an excellent location for
studying sediment production, transportation, and deposition. |

Sediment budgets are principally used to improve the understanding of the
sedimentary processes, the sources and sinks that control the variability and evolution of
submerged substrates, the coastline, and the watershed to better know their natural history
and the potential for anthropogenic impacts. The quantification of sediment sources and
sinks to the extent possible is the most important aspect of determining the mass balance of
a sediment budget in order to better understand the natural processes involved. The
primary components of the Hanalei sediment budget include outputs of terrestrial sediments
from the Hanalei River and carbonate contributions from the reefs in and near to the bay.
These primary components can presently be analyzed with minimal concern for changes in
the natural environment due to anthropogenic impacts on the area.

Prior to the research presented here, complete sediment budgets had not been
developed in Hawaii. Several researchers have described individual components and
processes of a budget (Inman et al., 1963; Moberly et al., 1965; Kraft, 1982; McMurtry et
al., 1995; Sea Engineering, 1996), but, without additional components of the budget to
form a cohesive picture, these efforts address a limited set of questions.

Sediment Budget studies in the continental United States have ranged from
terrestrial drainage basins (Clarkin ez al., 1986; Prestegaard, 1988; Phillips, 1991) to

littoral cells and long stretches of coastline (Shepard, 1973; Dean, 1988; Inman and Dolan,



1989; Best and Griggs, 1991; Peterson et al., 1991; Kana, 1995; Komar, 1996; Komar,
1998). Budgets emerge from the practice of quantifying sediment gains and losses for a
defined area. General processes that must be addressed in coastal budgets include sediment
production or introduction to the area of interest, transport within and out of the area, and
storage within the area. Some processes, such as beach erosion or longshore drift, are well
recognized budget components. Others, like biological production or chemical dissolution,
may not be as readily apparent or easily measured. In general, the area defined for a budget
is constrained into littoral cells by physical boundaries. These boundaries may be, but are
not necessarily, comprised of rocky headlands or other sections of coastline that interrupt
the supply of sediment. Sediments may enter a littoral cell situated between two headlands
from terrestrial runoff, fall from an eroding bluff within the cell, or biological production.
Additionally, sediments may enter a cell as part of the longshore drift which bypasses the
upcurrent headland. Sediment may be lost to the cell through longshore drift around the
downcurrent headland, transport into deep water beyond the influence of littoral processes,
removal from the beach system by the wind to form dunes, or abrasion of sediment
particles to a size too fine to be maintained in the littoral cell. Sediments may have
residence times of various lengths in the beach or in offshore bars.

Although it is not currently a problem in Hanalei, anthropogenic activities may
disrupt any one of these processes that in turn is likely to influence the others. Since
coastal erosion is a common reason to investigate sediments in an area, budgets are
frequently a major consideration in the design of erosion control plans (Kana, 1995).
Human influences may be caused by local activities such as groin fields on Long Island
(Kana, 1995) and seawalls on Waikiki Beach and elsewhere on Oahu (Gerritsen, 1978;
Fletcher ef al., 1997) or far removed from the locations of impact such as the cutting off of
sediments by the Aswan High Dam on the Nile River (Frihy et al., 1991) or the Akosombo
Dam of the Volta River of West Africa (Ly, 1980).



It is notoriously difficult to measure all components of a sediment budget. Some
studies do attempt to explain all components in their budget, but, instead of independent
field measurements, some components are arrived at by subtraction. These components are
called “unmeasured residuals”, and they have comprised as much as 94% of the budget in
some studies (Kondolf and Matthews, 1991). These residual terms must be carefully
examined. If errors have occurred in the compilation of the other components, these errors
will be compounded together and hidden in the residual term (Kondolf and Matthews,
1991).

For Hanalei, I address the most significant processes to develop a better
understanding of the major influences governing sediment characteristics. Improved
management practices may be implemented based on this knowledge of sediment

production, transportation, and storage.



Chapter 1. Measured and predicted sediment yield from
a subtropical, wet, steep-sided river basin: Hanalei, Kauali,
Hawaiian Islands’

Abstract

To determine the sediment yield of the 54.4 km2 Hanalei River basin, three
methods were employed: 1) the Universal Soil Loss Equation (USLE), which uses
natural characteristics of the basin such as the amount of rain, slope steepness and length
values, and soil types to predict water erosion from certain hillslope procésses in a basin;
2) the thickness and calibrated radiocarbon age of fluvial deposits cored from the coastal
plain; and 3) field measurements of river suspended sediments. Method 1 (USLE)
provides a model prediction of sediment yield that is tested with observational data from
methods 2 and 3. Several curves, including one by the U.S. Soil Conservation Service,
predict a sediment delivery ratio (measured sediment yield: gross erosion) between
approximately 15% and 50%. With 5,260£2,210 Mg (metric tons) per year of suspended -
sediment output from the Hanalei River and 2,300£700 Mg per year deposited on the

coastal plain, however, the delivery of sediment in the Hanalei basin ranged between

45% and 101% of the maximum predicted USLE value (88+103 Mg km-2 yrl). This
higher than predicted yield may be the result of mass movement. It is not possible to
differentiate, however, between erosion and mass movement as the principal agent of
denudation. Measurements indicate a sediment yield of 140£55 Mg km2 yr1 for the

Hanalei Valley.

' Calhoun, R.S. and C.H. Fletcher. in press. Measured and predicted sediment y1eld from
a subtroplcal heavy rainfall, steep-sided river basin: Hanalei, Kauai, Hawaiian
Islands: Geomorphology.
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Introduction

In the Hawaiian Islands, limited research exists describing the erosion of
sediments on a basin or island-wide scale. Denudation of the Kaneohe Bay drainage
basin on windward Oahu was examined by bedrock analysis, soil and soil-forming
processes, and the concentration of detrital sediment in the bay (Moberly, 1963).

Sediment yields from the Makiki, Manoa, and Palolo Valleys of central Honolulu were

analyzed using sediment deposition rates, determined by 210Pb and 137Cs dating
techniques, in the Ala Wai Canal (McMurtry ef al., 1995). Li (1988) calculated island-
wide rates of denudation for the islands of Hawaii, Oahu, and Kauai based on
measurements of dissolved and suspended sediment concentrations in multiple rivers and
groundwater wells.

The physical loss of sediment from the Hanalei River basin was determined using
observations of floodplain sedimentation and the delivery of suspended sediment to
Hanalei Bay. These are, in turn, used to test the predictions of sediment yield by the
Universal Soil Loss Equation (USLE). This combination of measured and predicted
sediment erosion and deposition has not been previously attempted in Hawaii to describe

non-agricultural wildlands.

Geologic Setting

The Hanalei River basin, extending north from Mt. Waialeale near the center of
the Hawaiian Island of Kauai, receives rainfall volumes that are among the highest on
Earth (>10 m yr''). The basin is comprised predominantly of steep-sided mountain walls
plunging into deep, fluvially-cut gorges. Though heavily vegetated, the steep slopes and

high rainfall ensure a steady supply of sediment to the river. At 25.2 km in length and

with a planimetric drainage area of 54.4 km2, the Hanalei River is one of largest river

systems in the Hawaiian Islands. Over much of its length, the Hanalei River flows
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between canyon walls with little or no floodplain. Below the ~61 m (200 ft) contour,
however, the canyon begins to widen and the river forms a floodplain over its final 12
km. In its lowest reach, the river traverses 6.6 km of the Hanalei coastal plain, defined by
the ~6 m (20 ft) contour, before entering the east side of Hanalei Bay (Figure 1.1).

The upper-most sedimentary facies of the coastal plain is a red-brown mud
derived from the overbank flow of the Hanalei River (Calhoun and Fletcher, 1996). The
top facies is generally underlain by a carbonate sand that is marine or fluvial-marine in
origin. This carbonate sand is a relic of former marine influence that has been intefpreted
as showing net shoreline progradation over the last 4,000 years (Calhoun and Fletcher,
1996). The well-dated contact between the fluvial and marine lithosomes provides an
excellent base from which to calculate the volume and rate of recent Hanalei River
sedimentation.

Three general spacial scales and mechanisms of subaerial mass movement have
been identified in the steep valleys in Hawaii. The smallest mechanism, called soil
avalanches by Wentworth (1943) and soil slips by Ellen et al. (1993), involves mo{fement
of only the top soil and range in size from a few cubic meters up to approximately 1,000
m®. During studies of the Honolulu District of Oahu, Scott (1969) and Ellen et al. (1993)
calculated the mean volume of 201 slips to be 120 m’. An average of between 30 and 40
of these soil slips occur each year in this district depending on the number and severity of
rain events (Ellen et al., 1993; Peterson et al., 1993). Landslides resulting from the
second mechanism, the failure of weathered basalt (saprolite), occur in tﬁe Honolulu
District approximately once a decade and have volumes in the tens of thousands of m’
(Peterson et al. 1993). Both of these types of mass movement are related to times of
severe rainfall events. The third type of mass movement is massive rock avalanches
which occur when unweathered basalt bedrock fails. These are not associated with

rainfall events and probably result from gradual undercutting. The location of these



o
n
- 7
< o Z
L 48 3
*
SERE
‘o @
L. @ =X o g _la\ U)E|,’
S =5 s o 25
@ 8 o [CR
% Q q)\o_ !
vy B = 2GS
q NS
27 x % =1
- o] i ;N
O
S
[ (9] o
L © o 43
4 Q -
— Q
@,
@ % 2
- g Q 12
W2 8
1 1 3 1 ] L [}
] o Q -]
&= & & 2

Hanalei River
Hanalei River

Hanalei Bay
‘aipa River
Waioli River

W

Kauai
N

T150°30W
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roads, and the areas of disturbed stratigraphy associated with the waterfowl refuge and
the Hawaiian fishponds. The 10 and 20 ft (3.0 and 6.1 m) contours were obtained from
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infrequent massive avalanches have been linked with ash layers in the bedrock and are
associated with earthquakes. They may include hundreds of thousands to millions of m’
of rock and soil (Jones et al., 1984). Analysis of geologic maps (Macdonald et al., 1960),
descriptions and maps from the US Soil Conservation Service (1972), and aerial
photographs indicates that all three mass movement types described elsewhere in Hawaii
do or should occur in the Hanalei Valley.

Several studies (Scott and Street, 1976; Jones et al., 1984; Ellen et al. 1993;
Peterson et al. 1993) have described the frequency and volume of mass movement. A
few have computed the total rate of denudation from individual valleys or islands
(Moberly, 1963; Li, 1988; Hill et al., 1997). Although White (1949) addresses it, this is
the first study to quantify denudation of a pristine Hawaiian valley based upon soil

erosion.

Methods

Several methodologies were used to determine the sediment yield of the Hanalei
watershed. Cores were obtained with a gouge auger at 104 sites throughout the coastal
plain to determine subsurface stratigraphy. These were 2.54 cm in diameter and typically
between 3 and 7 m in length. Core penetration was limited by sediment density, most
often after encountering marine sands. Samples of cored sediments were radiocarbon
dated to provide long-term rates of the accumulation of sediment and to determine the
transition from marine to fluvial sedimentation. Short-term rates of sedimentation were

obtained at three locations by means of short (<1 m), thick (6.5 cm) cores. The

shallowest depth of zero 210Pb activity in each core was used to mark the 150 year level
to calculate sedimentation rates.
Isopach mapping of the coastal plain provides an estimate of the volume of

fluvial sediment deposited. Combining this information with radiocarbon ages at the



base of the fluvial lithosome (Calhoun and Fletcher, 1996) allows the calculation of the
annual sedimentation rate on the coastal plain during the late Holocene.

Discharge and crest-stage data on the Hanalei River are recorded at two U.S.
Geological Survey (USGS) stations. The first is a water-stage recorder located 7.89 km
from the river mouth and 10.91 m above mean sea level. At this station, the
instantaneous discharge and the crest height are recorded every half hoﬁr from water year
1962 to 1994, although only the daily mean discharge is preserved in the long-term

record. In addition, from 1962 to 1979, the maximum discharge and crest height for each

year are recorded. From 1980 to 1994, every discharge above 261 m3 s-1 (9,200 cfs) and
its accompanying crest height are recorded. The second station is located 3.86 km above
the river mouth on the Highway 56 bridge near the town of Hanalei. This gage measures
only crest-stage and records the maximum crest-heights for water years 1963 through
1994. It uses mean sea level as its datum. Although during normal conditions of
discharge one sample was taken per day, at times of high discharge, samples were
collected throughout the day to more accurately measure the sediment flux of an event.
A total of 127 samples were taken from the river.

A record of suspended sediment was gathered from the Hanalei River using a
U.S.D.H. 48 hand-held water sampler. Integrated depth (0-100 cm) water samples were
collected from the center of the Highway 56 bridge next to the crest-stage gage on 90
consecutive days from January 21 to April 20, 1995, considered the approximate rainy
season on Kauai. Approximately 950 mL of water were collected per observation under
normal conditions. Five hundred mL or less were collected when the water was
particularly turbid. A vacuum of ~33 kPa (~5 psi) was used to aid in the subsequent
filtering of the water samples through a preweighed 0.45 pm filter. The filters were then
dried for 48 hours at 60° C and the mass measured to the nearest 0.0001 g. Repeated

filtrations with distilled and deionized water indicate that the technique was accurate to
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0.001£0.0005 g. The mass of the sediment left on the filters was used to calculate the

concentration of suspended sediment in g L-! of water discharged by the Hanalei River.
This, in turn, was combined with the daily discharge data from the USGS discharge
station (7.84 km from mouth) to calculate the mass of suspended sediment load of the
Hanalei River. Stream discharge was then compared to the measured concentration of
suspended sediment to derive a regression equation. A 31.75 year record of USGS
discharges formed the basis for obtaining a longer-term estimation of suspended sediment
output. |

To characterize the collection site for suspended sediment, five samples were
taken from evenly spaced locations laterally across the bridge. Additionally, daily water
conductivity and temperature measurements were obtained. The thickness of the fluvial
water column and the basal marine wedge in the channel could then be calculated. A 290
g grab sample of river bottom sediment was obtained and sieved with a ro-tap sieve
shaker, with sieves ranging in size from -1.0 to 4.0 phi in 0.5 phi increments. The
moment method was used to describe the sample’s texture.

In addition to these field methods, an empirical model, the Universal Soil Loss
Equation (USLE), was used to estimate the mass of rill and interrill erosion from the
Hanalei basin, and to facilitate comparisons with other basins. The factors of the USLE
(Table 1.1) were determined using data from U.S. Soil Conservation Service (1972) soil
descriptions, field observations, and tables, graphs, and equations from Foster and
| Wischmeier (1974), Wischmeier (1975), Wischmeier and Smith (1978), and Dissmeyer
and Foster (1980).

Results
Late Holocene rates of fluvial sediment accumulation on the Hanalei coastal

plain, covering thousands of years and calculated with radiocarbon dates, range from 0.07
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to 3.06 mm yr-! with rates generally highest near river channels and decreasing with
distance from the river banks (Figure 1.2). Minimum rates are found in the center of the

coastal plain far from any immediate source. Short-term sedimentation, measured with

short cores, covering less than 150 years, and calculated with 210Pb dating techniques,

also indicate a decrease in the rate of sedimentation as the distance from the Hanalei

River increases. These short-term rates, 0.82 to 3.09 mm yr-! (Figure 1.3), correlate well
with calculations of long-term accumulation using radiocarbon.

From the isopach map derived from core data, it was estimated that the Hanalei

River deposited 7,520,000 m3 of sediment on the coastal plain over the past 4,000 years.

Measurements of 21 oven dried sediment samples indicate that the average bulk density

is 1.2240.38 Mg m-3 (2 sigma). Hence, the river has deposited ~9,170,000 Mg of
sediment on the coastal plain during the last 4,000 years, or an average of 2,300£700 Mg
yrl,

At the bridge sampling site, a wedge of marine water was present.during 76%.of
the sampling days with an average thickness of 1.54 m and a maximum thickness of 2.37
m. The river flowing over this wedge averaged 1.52 m thick with a minimum of 0.60 m.
During times of increased flow, the marine wedge was pushed down river by the
freshwater. Several days of low flow were needed to allow the wedge to return to its
original thickness.

Bottom sediments immediately upriver from the bridge consist of moderately
sorted, very coarse, rounded, basalt sands and granules with a mean phi size of -0.23
(very coarse sand), a standard deviation of 0.90 phi (moderately sorted), and skewness of
0.53 (strongly fine skewed).

Suspended sediment samples from the four locations to either side of midchannel

were found to contain slightly less suspended sediment than simultaneously collected
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samples from the standard midchannel station. The mass of sediment obtained from the
side locations was, however, well within the range normally found at the midchannel
station.

To calculate the mass of suspended sediment transported by the Hanalei River,
records of discharge from the USGS were regressed against suspended sediment

concentration data collected during 90 days of measurement. Only discharges greater

than 2.83 m3 s-! (100 cfs) were used to eliminate the random variability of concentrations
found at low discharge levels. The regression (Figure 1.4) yields: Y =1.39 X +17.98

where Y = suspended sediment concentration (g m™) and X = river discharge in m* s™.
The average daily mean discharge is 6.38 m® s™ (225 cfs) with a range of 2.83 m3 s-1 (100
cfs) to 24.1 m3 s-1 (852 cfs). This relationship has a correlation coefficient (r) of 0.76, a

probability (p) value of less than 0.001, and the standard error of estimate is 5.53 g m-3.
The mean daily discharge of each month from January, 1963 through September, 1995
was calculated and averaged with the other monthly mean discharges from a given year

(Figure 1.5). The suspended sediment load of the Hanalei River from 31.75 years of data

was estimated to be 5,260%£2,210 Mg yr-! using the regression equation. .

The USLE predicts erosion in short tons (2,000 1b) per acre per year. Using
fractional uncertainty multiplication (Taylor, 1982) on the USLE factors yields a
prediction that 0.3910.46 tons per acre per year (88.2£103 Mg km™ yr'') of sediment will
be eroded from the Hanalei basin. By design of the USLE, this figure is total hillslope
erosion that includes only rill nad interrill erosion and does not account for redeposition

and storage within the basin.
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Discussion
Li (1988) calculated a maximum rate of physical denudation of 400+200 Mg km-2
yr-1 for the island of Kauai. In the Hanalei valley, this is equivalent to 21,760+10,880 Mg

yr-l. A minimum rate was not calculated. From this study, estimates of sediment

deposited on the Hanalei coastal plain combined with the suspended sediment output from

the basin indicate that at a minimum 4,650-10,470 Mg yr-! (140£55 Mg km™ yr'") are
removed from the upper valley. Measurements from Hanalei, despite being 6n the
windward side of the island, should not be equal to Li’s (1988) maximum rates for two
reasons. First, in using the USLE, no estimates of mass movement were included as was
done by Li (1988). Mass movement is considered to be a significant method of sediment
movement on steep mountain slopes in the Hawaiian Islands (Scott and Street, 1976).
Second, no sediment concentration data are available for high discharge events because the
sampling interval covered an El Nino year, known to be a period of reduced rainfall in the
HaWaiian Islands. Given the limited temporal measurement period and other constraints
previously discussed, the measured values should be considered minimum estimates.
Additionally, no measurement of bedload transport was made. Inclusion of this component
would increase sediment output, although some evidence suggests that this increase would
be well within the error found in the suspended sediment measurements (Meade ef al.,

1990).

McMurtry et al. (1995) calculated 2,630 Mg yr-! of detrital sediment are
deposited in the Ala Wai Canal on the island of Oahu (Table 1.2). The canal drains 42.9

km? of urbanized central Honolulu and nearby steep undeveloped mountains. This
results in a sediment yield of 61.2 Mg km-2 yr-! from the Ala Wai drainage basin

compared to 140£55 Mg km2 yr-! in the Hanalei valley. The drier climate and heavy

urbanization of central Honolulu are likely to be contributing factors to the lower

18



"e-W SN 8€°0FCT T JO Asuap [10s & Sununsse (g461) YHOMIUIA WOI] pardepe = 44
"W S SE0F09°T JO ANsuop J[eseq Surwnsse pue
‘s1onpo1d Sunayieam PIATOSSIP JO [BAOWIAI WIOI] SI)BI U0 Paseq (£961) A[19qOJA woly pardepe = .,
"¢-W SN 8€°0FZT' 1 JO ASUP [10S & Surunsse (9261) 192NS pue 13005 wioyy pawdepe = ,,
(£661) I8 32 U3 £q ¢ 3y woyy pardepe = 4
"(S661) e 10 AN woly pardepe = #

SOWIN[OA

1oy} pue SapIfs (ev61)

Jo rpquinu oewnsy 9.0 sk 0SE'8F008°9T SITH069 8'8¢ ngeo YHOMIUI

WRID[EI PIAJOSSI(] el'0 00TFF006°LT xx 0SFOVE (4] nge  (€961) A119QON

STEOS QUOUR[EAE [10S (9L61)

JojuowaInseawl patg 98°0-91°0 * 0SEYFO6T S 129+09L L nyeQ 1921§ pue Noog
19)eMpUNOIS

Ppue SIoALI Ul 90°0+01°0 - 00¢-09 opim PUB[S] nyeQ (8861) 1'T
SUOTJRIJUIOUOD

Q1S pue uone) 80°0+F81°0 - 00T+007 - & opim puels] Tenes| (8861) I'T
juaurdorosap [BUOISOID
JO suomR[nWIS [EITIP
[enuonbas pue ooeyns

OUBD[OA NBJOO] (€661)

[eurSLIO 10 S3VEP IV-3] #t 61°0-C0°0 - - o3uey nejooyl ngeQ Te 10 U3y
SJUQUIIPaS Ul

SUOIJBIIUIDUOD (S661) ‘T8 1

$Dy.¢1 PUB qdg 7 800 0€9°C #T19 6Ty ngeQ Anmpow
SUONBIUIOUOD S, ¢

pue zyrenb [oso1oy €0-10 0¥0‘1F080°C 001500T (L661)

PIoIA [eIANL] 0L0-0£0 0SE 1F00Y'E 0c1F0¢ce 144! nyeQ ‘e I'H

PIoIA feraniy €2°0-500 0T6TF09S"L SSFOPI - 1479 Teney| Apms STy,

POUIIN (1A wur) (1A sIN) ([-1A W] s]A) [Fa)) pue(s] Joyny

uonepnuag PO JUSUIPRS PIoI& JUoWIpPoS paurelp eary

“ITEMBL] UT SAJBI UOTS0ID [e21sAyd Jo sajewinsy 7' [ S[qe].

19



sediment yield from the Oahu basins. Values of sediment yields from McMurtry et al.

(1995) are at the lower end of the range (60-300 Mg km-2 yr-1) predicted for Oahu by Li

(1988). Li (1988) does not give a minimum rate of denudation for Kauai, but the rate
computed here (140£55 Mg km-2 yr-1) is substantially below Li’s (1988) Kauai
maximum of 400200 Mg km2 yr-! and well above his minimum rate of denudation of

60 Mg km2 yr-! predicted for the islands of Hawaii and Oahu. High end yield estimates
by Wentworth (1943) and Scott and Street (1976) are based on direct ficld measurements
of mass movement scars. They reflect a maximum rate of denudation and may indicate
that portions of soil avalanches are stored low in the valley for periods longer than a
thousand years.

Comparisons of the rates of sediment deposition on the Hanalei coastal plain with
other rates of deposition in various environments from around the world are shown in
Table 1.3. Hanalei has a low rate of deposition relative to other depositional
environments, but has a range similar to those found on other floodplains. The high rates
found by Goodfriend and Stanley (1996) on the Nile River delta could be the result of
being measured in a lake on the floodplain and, therefore, more closely resemble those in

the open water section of the table. Despite the differences in characteristics in size and
area, the Hanalei River (Iength: 25.2 km; area: 54.4 km?2), the Colorado River of Texas
(1,400 km and 110,000 km?2), and the Ganges River of India and Bangladesh (2,500 km

and 952,000 km2) (Showers, 1979) have remarkably similar rates of sediment deposition.
The Ganges River is among the largest continental rivers in the world, draining high
mountainous terrain and includes seasonal monsoon and snowmelt runoff, whereas the
Colorado River drains the semi-arid plains of west and central Texas accustomed to
episodic heavy rains before crossing the more humid Texas gulf coast region. The

Hanalei River valley is characterized by steep, humid, forested mountainsides where
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mass movement and soil erosion, encouraged by copious volumes of rainfall, are
significant means of sediment mobilization.

Because the long-term rates of sediment accumulation and the short-term rates of
sedimentation overlap on the Hanalei floodplain, compaction and erosion of the fluvial
coastal plain sediments are not considered to be significant processes. As a result, the
volume of fluvial sediment present on the modern coastal plain represents the total
deposited during the last 4,000 years. Prior to 4,000 years ago, Hanalei Bay covered
much of the modern coastal plain and limited significant fluvial deposition to the extreme
eastern portion (Calhoun and Fletcher, 1996). T hese middle to late Holocene fluvial
sediments represent the deposition of suspended sediment during flood conditions, a

major constituent of the sediment budget missed by the daily observations of suspended
sediment. Neither the 2,300+700 Mg yr-! deposited on the coastal plain nor the

measured 5,260+2,210 Mg yr‘l of suspended sediment lost to the bay, however, account
well for the large volumes of suspended sediment which pass completely through the
Hanalei River system and into the bay during extremely high discharge events. One high
discharge event was sampled in the field, but it was a bankfull event and cannot
accurately be compared with the massive discharges that reach heights of up to 2.5 m
above flood stage. Even this bankfull event, however, contained nearly seven times the
concentration of suspended sediment that would be predicted for such a discharge based
on interpolations from normal flow conditions. This relatively high concentration of
suspended sediment shows that high discharge events cannot be adequately explained by
simple extrapolation from normal flow discharges. These events, which range in
frequency from O to 5 events per year, have yet to be adequately sampled, and, as a result,
the contribution of sediment to the bay, though almost certainly significant, must remain

speculative.

22



The USLE was designed for and empirically tested on the gently sloping, deep
soiled, agricultural fields of the American midwest and eastern seaboard. It describes soil
loss only by rill and interrill erosion. It does not describe sediment loss due to mass
movement, stream channel and bank erosion, or gully erosion. In this study, it waé
applied to the steep, thin soiled, wildlands of the Hanalei Valley. This study may,
therefore, serve as a test of the validity of the USLE in such an environment as well as
the applicability of the similar Modified Universal Soil Loss Equation (MUSLE)
(Williams, 1975) and the Revised Universal Soil Loss Equation (RUSLE) (Renard et al.,
1994). The use of these equations would greatly simplify the field measurements and
calculations of sediment loss from the valley because of individual high-intensity storms
in addition to long-term erosion.

The USLE calculates the total mass of sediments eroded in a specific area by
specific processes. Drainage basins the size of Hanalei tend to have sediment delivery
ratios (SDR = sediment yield / gross erosion) of 15% to 50% (Walling, 1994) which
means the erosion predicted by the USLE will be approximately two to seven times the
sediment yield. In the case of the Hanalei Valley however, the 95% confidence band of
suspended sediment and storage (4,650 - 10,470 Mg yr') is 45% to 101% of the upper
95% confidence band of the USLE prediction (i.e. 10,400 Mg yr™"). This is not an
entirely unexpected result. The consistently steep mountain sides and general lack of a
floodplain in the Hanalei Valley results in few areas for the systematic redeposition of
eroded sediments. Additionally, because the USLE was established to calculate only
sheet and rﬂl erosion, the processes of mass movement, stream bank and bed incision,
and gully erosion were not included in the calculation. These processes will increase
basin sediment output, but not effect the USLE estimate of “gross” erosion.

In the Hanalei basin, the R and K factors fit within expected ranges. The C factor

and the combined LS factor are extreme values. The C factor is several orders of
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magnitude lower than normally calculated. Usually C values smaller than 1 x 10-3 are
considered too small to have been accurately measured (El-Swaify, personal
communication, 1996). Despite this, higher “normal” C values would render the final
calculation far too high to be of any practical use. Additionally, the use of a lower than
“normal” C value in Hawaii is consistent with the findings of Cooley and Williams
(1985), and the C value was calculated using the same equations and graphs that would
be used on any forested land (Figure 1.6) (Dissmeyer and Foster, 1980). The LS factor
was calculated using the mean LS factor from six representative profiles in the basin.
These profiles had a mean length of 1,910 m, 62% slope, and change in height of 690 m.
They ranged from 680 to 3,060 m in length, 35 to 146% slope, and 290 to 1220 m height
variation. These are extremely long, steep profiles and this is reflected in the extreme
value for the LS factor.

With a water erosion estimate of 4,800+5,600 Mg yr’', the USLE appears at first
to reasonably reflect the physical characteristics of the Hanalei Valley. Water erosion,
however, is not the sole process mobilizing sediment in the basin. Mass movement also
contributes to sediment mobilization and must be addressed.

Mass movement has long been recognized as an important process in steep
valleys of Hawaii (Stearns and Vaksvik, 1935; Wentworth, 1943; White, 1949; Scott and
Street, 1976; Ellen ef al., 1993; Peterson et al., 1993, and Hill et al., 1997). Several of
the more recent authors (Scott and Street, 1976; Ellen et al., 1993; and Peterson et al.,
1993) have attempted to quantify the volume of denudation because of mass movement.
Li (1988), Moberly (1963), and Hill ef al. (1997) all quantify the tofal volume lost from
an area, but do not distinguish the losses by type. Between 15% and 50% of the

.maximum USLE-predicted gross erosion (10,400 Mg yr™), or 1,560 to 5,200 Mg yr’',
should be 6utput from the basin (Walling, 1994). If mass movement does account for the

appatent excess sediment found in the Hanalei River and coastal plain, the difference
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steps subfactor

100% in steps: Y = 12.081 X(1:%92): 2 = 0.995

. 90%in steps:Y = 4.851 x(1:082). 2 _ 0,997

hY

...... \

0.5 i

0.1 : \'

10 50 100
Slope gradient (in percentage)

Figure 1.6. Steps subfactor value vs. slope gradient, in percentage. Curves are
used to derive steps subfactor of C. Estimates of the percentage of
slope that are that are stepped range between 90 and 100%, while
estimates of slope gradient, in percentage, are 80 tto 90%. Data
points are from Table 7.of Dissmeyer and Foster (1980).
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between the total measured sediment (4,650 - 10,470 Mg yr™') and the SDR-predicted
eroded sediment (1,560 - 5,200 Mg yr") is the result of mass movement. The result is
that between 0 and 8,910 Mg yr"! appear to be removed from the Hanalei Valley by mass
movement. Mass movement, however, is not the only process likely to be producing this
apparently extra sediment. Stream channel and bank erosion, as well as gully erosion
also factor into this mass. These four processes should be grouped together into what
Kondolf and Mattews (1991) term “unmeasured residuals”. Caution must be taken when
using unmeasured residuals because, while they may help balance a sediment budget,
hidden errors are often enclosed within these budget components (Kondolf and Mattews,
1991). Tt is also apparent from comparing the total measured yield, the expected volume
of mass movement (and other processes), and the expected volume of erosion that the
ability to differentiate denudation processes in the Hanalei Valley is not precise enough
to warrant practical application.

From the measured yield of 7,560£2,910 Mg yr!, a total denudation rate of 0.05-
0.23 mm yr" may be calculated for the 54.4 km® Hanalei Valley (1.22+0.38 Mg m?>).
This agrees very well with the rates calculated by others (Table 1.2). It may be surprising
to find such good agreement given the direct influence of total rainfall on sediment yield
(Scott and Street, 1976; Ellen et al., 1993) and the much higher rainfall volumes in the

Hanalei Valley.

Conclusions

From calculations based on field data, 7,560+2,910 Mg of sediment per year, or

140455 Mg km-2 yr-1, are removed from the upper Hanalei River valley by the river
(Figure 1.7). This is higher than the sediment yield from three central Honolulu drainage

basins (McMurtry et al., 1995) as is to be expected because of the lower rainfall and
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higher degree of urbanization found in the Honolulu watersheds. It also fits within the
expected range for Kauai based on Li’s (1988) measurements and calculations.

As the rates of deposition indicate, "overbank" events on the Hanalei River are a
common and important characteristic of the lower reaches of the river. While these
events may presently be described as yearly averages by what they have left behind (i.e.,
deposited sediments), “overbank” events cannot yet be individually characterized in
terms of frequency and magnitude. It is in these terms that the river must be described to
be of practical use for land use managers.

The USLE was applied in an attempt to test the validity of its assumptions in an
environment significantly different from that for which it was developed. If the equation
was able to describe erosion in the valley, other equations with similar assumptions, such
as the RUSLE and MUSLE, could be used in the valley and greatly simplify the
fieldwork necessary to describe the "overbank" events of the Hanalei River. The

measured sediment yield is 45% to 101% of the maximum predicted rate of hillslope rill

and interrill erosion of 4,800+5,600 Mg yr-1. The higher than expected sediment delivery
ratio may reflect the importance of mass movement in Hanalei Valley, but which is not
accounted for by the USLE. Additionally, when the important process of mass
movement is addressed, it becomes apparent that data presented herein are not able to
differentiate between sediment movement due to water erosion and that due to mass
movement. As a result, the USLE equation provides a description of sediment erosion
that does not appear to be of practical use in the Hanalei watershed.

Calculations show that approximately 30% of the yearly sediment arriving at the
coastal plain (7,560£2,910 Mg) is deposited. The remaining 70% is discharged into the
ocean. Because of biases inherent in the field measurements, more accurate and detailed

observations of high discharge events are likely to lower the percentage of total sediment
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deposited on the coastal plain by increasing the measured volume of sediment passing

through the Hanalei River system to the ocean.
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Chapter 2. From watershed to reef, a budget of carbonate
and terrigenous sediments, Hanalei Bay, Kauai,
Hawaiian Islands

Abstract

Surficial sediments of Hanalei Bay on the north shore of Kauai are dominated by
carbonate grains made of coralline algae, coral, and mollusc fragments as well as
foraminifera, Halimeda, bryozoa, and echinoderm tests comprising approximately 70% of
the grains. Siliciclastic grains from the Hanalei River watershed draining the shield
volcanic highlands of Kauai are the most common individual grain type and form a zone of
high concentration from the mouth of the Hanaleiv River into the center of the bay.

The post-glacial sea-level transgression began in the bay soon after 11.7 kyr and
resulted in the deposition of 45.5+1.5 x 10° m® of sediment in the bay and approximately
33.7411.2 x 10° m® of sediment on the Hanalei coastal plain since that time. The total
volume of carbonate sediment stored in the bay and coastal plain is greater than the volume
likely to have been produced exclusively in the bay during the same time according to
published carbonate sediment production rates. Calculations indicate that approximately
2,490 m® yr’' have been imported into the bay or coastal plain and deposited since 11.7
kyr. The majority of this sediment influx is likely delivered from the east by the strong
tradewind currents that characterize Kauai’s north shore. Excess carbonate sediment flux
into Hanalei Bay peaked at a rate of 15,530 m’ yr' between 5.0 kyr and 3.0 kyr (when sea
level may have been 2 m above present) diminishing to 3,890 m’ yr' from 1.0 kyr to the
present. This influx is likely to have played a significant role in the mid to late Holocene

progradation of the Hanalei shoreline.
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Introduction

The close proximity and high gradient of marine and terrestrial environments at
Hanalei Bay on the north shore of Kauai, Hawaii, combine to form a unique system in
which to study sedimentary processes (Figure 2.1). The watershed adjacent to Hanalei
Bay contains several rivers: the Hanalei Rivér, one of Hawaii’s largest rivers, the smaller
Waioli and Waipa rivers, and two intermittent streams, the Waikoko in the west and an
unnamed stream entering the northeast corner of the bay. The ocean environment,
however, is the primary influence on the bay’s circulation and sediment budget. Opening
due north, the bay receives massive winter swells from the north Pacific with annual
significant wave heights exceeding 5 m (Bodge and Sullivan, 1999), while northeast
tradewinds provide seasonally variable, but nearly year-round, effects due to wind, waves,
and wave-driven currents (Figure 2.2). The angles of incidence and relative strengths of
these two marine energy sources vary, creating regions in the bay where deposition and
erosion of various sediments form recognizable patterns. Terrestrial and marine
environments converge in Hanalei Bay to create a sediment budget that is the subject of this

study.

Geologic Setting

The northwestern-most of the six main Hawaiian Islands, the Kauai shield volcano
is also the oldest (3.5 - 5.7 million years; Macdonald et al., 1983). Fluvial erosion and
mass movement have created deep valleys and large amphitheaters in the original edifice.
The top of Kauai rises to 1,598 m (5,243 ft) at the summit of Kawaikini. Nearby
Waialeale receives some the highest rainfall in the world (>10 m yr') as the moist
tradewinds are funneled and orographically lifted over the steep-sided mountains. Such
prodigious rainfall, flowing off the noith side of Waialeale and into the 54..4 km” Hanalei

River basin, ensures not only dense vegetation, but also a significant supply of sediment
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Figure 2.1. Map of Hawaiian Islands showing the island of Kauai, Hanalei Bay, and the Hanalei
coastal plain on the north shore of Kauai. Also shown are the town of Hanalei, major roads,
and reefs. The 10 and 20 ft (3.0 and 6.1 m) contours were obtained from U.S. Army

Corps of Engineers contoured orthophotoquads (1:4800). Reef position and extent were
obtained from NOAA-NOS aerial photos at an altitude of 5300 ft (1615 m) (1:8700) as well as

a 100 kHz sidescan sonar survey of the region.
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to Hanalei Bay through mass movement and surface erosion (Calhoun and Fletcher, in
press). The Hanalei watershed is comprised predominantly of deep, steep-sided gorges, so
that the 25.2 km long river has no real floodplain until below the 61 m contour.

Three wave regimes dominate sediment budget processes in Hanalei Bay.
Northeast to easterly tradewind-driven waves are common throughout the year but are
strongest from April to November. During the summer, tradewinds blow 90% to 95% of
the time, while in the winter, they are present 55% to 65% of the time. These winds
generate local waves characterized by periods of 6 to 8 s and heights of 1 to 3 m. Despite
their relatively small height and short period, the persistence of the tradewinds is enough to
set up steady longshore currents that can transport significant volumes of sediment in the
longshore drift (Bodge and Sullivan, 1999). Although no direct measurements of
longshore currents exist on the north shore of Kauai, tradewind-dominated longshore flow
on the east and south shores have been measured, and vary from 6.1 cm s'to 112.8 cm 5!
(Inman et al., 1963; Sea Engineering, 1996).

North Pacific swells, with typical deep-water heights of 2 to 5 m and periods of 12
to 20 s, enter the bay from the west-northwest to the northeast, and are produced by large
winter storms in the north Pacific, most commonly between October and March (Bodge
and Sullivan, 1999). These massive waves create strong currents that shift sediment
around the bay and produce strong seasonal characteristics on the adjacent beaches.

Finally, Kona winds are light variable winds generally from the south and
southwest that most frequently occur during the winter season. In Hanalei, periods of
Kona winds, particularly common during years characterized by the onset of El Nino-
Southern Oscillation conditions, are characterized by calm local conditions. They are,
however, independent of north Pacific storms, and so may occur with large winter swell.

Kona storms approach Kauai from the south, and while they may produce large

waves along the south shore, Hanalei Bay remains protected. Large, steep waves from
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hurricanes generally do not strike Hanalei directly. Hurricanes typically threaten Hawaii
from the south or east and rarely approach the north shore of Kauai from offshore so their
fetch is too short to produce large waves in Hanalei (Juvik and Juvik, 1998; Kodama and
Businger, 1998). Tsunamis are another relatively rare event in Hanalei. While numerous
strong, damaging tsunamis have hit Hanalei in the past and almost certainly redistributed
sediment, the most recent was in 1964, and any influence it had on surface sediments is not
apparent 35 years later.

The entrance of Hanalei Bay is protected on each side by massive basalt headlands
with barren rocky shorelines tens of meters long and over 5 m high. >These stable points
provide identifiable lateral boundaries for the bay. For this analysis, the oceanic limit of the
bay is nominally prescribed between these two points and the landward point of an
offshore paleoreef platform lacking sediment cover at 30 m depth, locally named “King’s
Reef.” South of the headlands, approximately 3.2 km of continuous carbonate sand beach
stretches in a semicircle around the bay. Pocket beaches on the east and west sides of the
bay characterize the transition between the longer beach and the rocky headlands (Figure
2.3).

Within the 4.41 km? area of the Hanalei seafloor, unconsolidated sediments and
coral-algal reef combine to provide diverse sedimentary environments. The total reef
surface area capable of carbonate sediment production is 1.33 x 10° m?, which consists of
fringing reefs flanking the east and west sides of the bay as well as two centrally located
patch reefs. Additionally, small patch reefs are found on either side of the bay, and a
broad, shallowly sloping depression on the east side immediately offshore from the Hanalei
River and pier is locally named the “Black Hole” due to its high concentration of dark
terrestrial debris. Between the reefs is a broad, gentle, seaward sloping plain of
unconsolidated marine carbonate sand. Moberly et al. (1965) describe a single sample of

sand (location not identified) from the Hanalei beach as approximately 71% carbonate and
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29% siliciclastic (defined as grains derived from the volcanics comprising the basaltic
uplands of Kauai). They classified the carbonate particles as molluscs 31%, foraminifera
20%, coralline algae 16%, echinoids 7%, corals 6%, and unknown 19%. The siliciclastic
grains were composed of 74% fresh lithic grains, 16% weathered lithic grains, and 10%

olivine.

Sediment Budget

The purpose of defining a sediment budget is to develop an improved
understanding of the natural processes governing sediment production, flux, storage, and
eventual fate in order to enhance our ability to model and predict watershed, littoral, and
shoreface evolution, variability, and dynamic states of stability. This knowledge will
promote better management practices and the development of new and more comprehensive
conservation programs.

In identifying and quantifying sediment sources and sinks, processes responsible
for the flux and storage of sedimentary particles across a coastal system require
characterization. Calculations based on measurements of these processes help to identify
which are the most influential to sediment production, distribution, and storage, and which
are not active in a particular area. Although several studies have addressed individual
components and processes in Hawaiian coastal systems (Inman ef al., 1963; Moberly et al.,
1965; Sea Engineering, 1996), no comprehensive coastal sediment budgets have been
described. This leaves multiple questions unanswered regarding other significant
influences on sedimentary processes in a particular location. For Hanalei, the most
significant sedimentary processes are addressed, and, as a result, these calculations are
used to explain geological observations.

To identify and quantify the distribution and character of Hanalei sediments, a range

of geophysical, geochemical, and observational methods were employed. Aerial photos
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and sidescan sonar enables mapping the extent of unconsolidated sediments as well as the
surface area of the carbonate producing reefs. Seismic reflection data allows the
interpretation of sediment thickness throughout the bay and the characterization of
underlying surfaces. Coulometry and point counting of grain-mounted thin-sections
identifies grain composition and geochemistry as well as likely sources. Coastal plain
stratigraphy was determined using over 100 gouge auger cores. Six years of beach
profiling serves to define the seasonal flux of the beach, the connection between the bay
and the coastal plain. Discharge and suspended sediment measurements from the Hanalei
River are useful in quantifying the contribution of fluvial sediments to the bay. Limited
current measurements show possible directions of movement for sedimen@s within, as well

as entering and exiting, the bay.

Reef Ecology

Algal turfs composed of Dotyella, Centroceras, and Tolypiocladia are the most
common (36%) individual living substrate cover in Hanalei Bay. Encrusting coralline
algae, such as Porolithon and Hydrolithon, cover a mean of 15% of the reef surface and
hard corals, Montipora, Porites, Pocillopora, Pavona, Leptastrea, and Fungia, cover 18%
(Friedlander ef al., 1997). The depths between 9.6 and 13.6 m possess the highest mean
cover of coral (23%) and 7.7 m to 9.1 m the lowest (12%). Macroalgae (i.e.; Turbinaria,
Gibsmithia, Corallina) comprise an additional 22% of living cover, and bare substrate is
only 3% of the reef surface. The rugosity or microtopography of the reef structure is
described by Friedlander et al. (1997) as ranging between 1.11 and 4.14 with a mean of

1.6 and a standard deviation of 0.60.
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Methods

Sediment compositional and texture data are based on 41 benthic short-core samples
from around Hanalei Bay and from 4 separate reaches of the Hanalei River acquired in late
summer (August, 1993). Four beachface and nearshore sediment samples were collected
during the winter. Sampling included a 15 cm diameter, open-ended, metal, cylindrical
corer pushed 10-14 cm into the unconsolidated sands of the bay floor by SCUBA divers.
All contents of the corer were oven-dried at approximately 120° C for 72 h. Sample sites
were surveyed using digital compass triangulation with an instrument resolution of +0.5°
and a horizontal accuracy of £15 m. Random splits of samples were analyzed (Humboldt
shaker, -1.0 to 4.0 ¢, 0.5 ¢ intervals) for mean grain size, standard deviation, skewness,
and silt and clay content (<4.0 ¢). Patterns in these sediment textures were contoured by
hand.

Inorganic carbon content of these benthic sediments was measured on duplicate
samples using coulometry described by Engleman et al. (1985), except a carrier gas of
potassium hydroxide scrubbed nitrogen gas was used instead of air, and samples were
dried at 80° C for at least 12 h prior to weighing. The percentage of calcium carbonate in
each sample was calculated with the assumption that all the inorganic carbén was calcium
carbonate (Glenn et al., 1995). Duplicate splits (triplicates if necessary) were run to
achieve 2% reproducibility with each sample.

A 70 line 100 kHz sidescan sonar survey was conducted in the bay and its
surrounding waters during the fall of 1992 by Sea Engineering, Inc. with a EGG model
260 towfish. Differences in acoustic reflections are interpreted with respect to the geology
and sedimentology of the bay floor, including the extent of the reefs, other sediment-free
surfaces, and variations in benthic sediment types. Interpretations were confirmed with
aerial photos and “ground truthing” by SCUBA dives in the bay. Sea Engineering, Inc.

also conducted a seismic reflection survey using a Datasonic bubble pulser with a
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hydrophone streamer during the two days subsequent to the sidescan survéy. A 600 to
4,000 Hz bandpass filter was applied to the 13 seismic lines of the survey. Because the
data were recorded in analog form, no further processing was done. This survey permited
the interpretation of benthic sediment thickness and the nature of the acoustic basement
(basal reflector) of the bay. The composition of benthic sediments was determined by
petrographic microscope identification of 20 grain-mounted thin-sections. Patterns in the
component concentrations were contoured by hand.

The 3.2 km Hanalei beach was profiled semi-annually in five locations to calculate
the sand volume and describe volumetric changes. This survey was conducted with a
level, a tape measure, and a stadia rod between August, 1993 and August, 1995; between
March, 1996 and February, 1999, a range and angle measuring geodimeter and a prism
were employed. Current directions and magnitudes were assessed with a combination of
neutrally buoyant drogue measurements timed over 10 m at slack tide, sediment ripple
dimension measurements, and sediment texture measurements (le Roux, 1994).

Samples ranging between 10 and 35 mg of either coral or coralline algae grains
were separated from four benthic sediment samples. These eight samples were dated using
- the accellerated mass spectrometry (AMS) method of radiocarbon analysis at the NOSAMS
facility in Woods Hole, MA (Pearson et al., 1998). Calibration of the resulting dates was

provided by the Radiocarbon Calibration Program Rev 3.0.3c (Stuiver and Riemer, 1993).

Results
Sedimentology
Carbonate Content

The carbonate content ranged from 42% to 92% with a bay-wide average of
"66+11.7% (1 ©) (Table 2.1). A large region of reduced carbonate content (<60%) originates

at the mouth of the Hanalei River and dominates the middle of the bay (Figure 2.4). This
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Table 2.1: Hanalei Bay carbonate content from coulometry and grain size characteristics from sieving.

Sample # Depth (m) content (%) Mean (¢)

o BR N RV,

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

34

36

37

38

39

40

41

43

44 river mouth
45 river
46 river
47 river
48 river
49 beach
50 beach
51

52

8.0
4.6

5.5

12.2
18.0
18.6
16.8
14.6
11.0
11.0
10.4
14.9
7.6
10.4
10.4
9.8
7.0
15.9
16.8
18.0
15.9
18.0
14.6
11.6
12.2
16.2
12.2
20.4
11.0
1.0
~2.5
~2.0
~2.0
~2.0
+2
+2
1.5
3.0

68

CaCoO, Silt and
St dev (¢) Skewness clay (%)
69 2.42 0.64 -2.22 02 -
73 2.50 0.63 -1.42 0.8
73 223 0.57 -0.36 0.4
85 1.83 0.69 0.11 0.4
51 2.75 0.91 -1.30 1.4
71 2.35 0.58 -1.37 0.2
75 2.20 0.61 -0.93 0.2
76 1.48 0.59 0.11 0.4
2.78 0.66 -1.09 3.5
61 2.65 0.64 -0.39 1.6
60 2.73 0.90 -0.93 6.1
92 0.70 1.10 0.18 0.4
54 2.89 0.80 -1.43 4.7
74 2.10 0.54 0.14 0.4
61 2.79 0.67 -1.00 3.9
61 2.65 0.57 -1.23 0.9
52 1.74 1.55 0.31 12.4
62 1.15 1.43 -0.51 0.4
71 2.23 0.57 -1.04 0.5
69 2.46 0.51 -0.56 0.6
76 1.29 0.57 0.61 . 0.3
73 1.34 0.66 0.42 0.5
60 2.46 0.65 -0.78 1.0
58 3.01 0.82 -0.73 10.7
42 297 0.95 -1.69 7.4
48 1.10 1.02 0.29 0.5
83 2.92 0.68 -1.00 3.8
44 2.95 0.68 -1.10 4.7
60 2.71 0.69 -1.17 1.6
56 2.80 0.61 -0.81 2.4
67 2.24 0.81 -1.03 0.5
78 2.47 0.73 -0.07 2.0
79 1.90 1.19 -0.71 1.8
59 0.76 1.00 0.91 0.3
39 0.12 0.84 0.33 <0.1
0.12 -0.23 0.90 0.99 0.3
insignificant -0.72 0.94 1.78 0.2
insignificant 0.05 0.78 0.70 0.3
0.50 0.24 0.93 0.95 0.6
72
49
59
70
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number: carbonate content.
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region is centered in the bay between 14.5 and 18 m water depth where the carbonate
content decreases to 42%. Carbonate content rises above 70% near the western fringing
reef and as the bay shallows (<10 m) toward the shoreline. Most nearshore and beach
samples not proximal to the Hanalei River have carbonate contents near 70%. Two
samples taken during the winter from the subaerial beach and on the offshore bar at the
Waioli Beach Park have very low carbonate contents, 49% and 59% respectively, while a
third sample taken at the same time from 3 m water depth seaward of the bar has a
carbonate content of 70%. This pattern, perhaps, indicates preferential seasonal erosion of
carbonate grains during periods of high wave energy. Samples in the northeastern corner
of the bay combine to create the appearance of a high carbonate (~90%) tongue entering the
bay, perhaps as a result of preferential transport and subsequent deposition of carbonate
grains, in this case by the longshore current characterizing the tradewind dominated coast to
the east of the bay. An isolated low carbonate patch is located on the seaward side of the

patch reef in the center of the bay.

Composition

The sand in Hanalei Bay is comprised of a mixture of marine-derived carbonate
grains (biogenic and chemically-altered) and terrestrially-derived volcanic grains (basalt
lithics, olivine, plagioclase, and clinopyroxene) (Table 2.2). Biogenic grains are skeletal
remains of marine organisms including coralline algae, coral, molluscs, foraminifera, the
green algae Halimeda, bryozoa, and echinoderms. Altered carbonate grains are skeletal
fragments that were chemically altered such that their internal structures, and hence their
origin, is no longer identifiable.

The concentration of coral in sand range from 35% at the northeast corner of the
bay to 3% at the northwest corner (Figure 2.5). Other areas of low coral sand

concentration include the bay’s southeast corner at the mouth of the Waioli River (7%), the
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Table 2.2: Marine sediment composition in Hanalei Bay from 20 benthic sample sites.
Sample locations are shown in Figures 2.5 and 2.6. See Appendix A for the complete
summary of each sample.

Mean throughout Standard Waioli Beach Park (%)
Component bay (%) Deviation Range (%) (modern beach sample)
Detrital 27 13 7-58 50
Coralline algae . 19 8.2 11-42 18
Coral 17 8.4 3-35 10
Chemically-altered 12 4.4 3-20 13

carbonate

Mollusc 9 3.6 3-15 3
Forams 6 2.1 3-12 5
Halimeda 3 2.3 0-8 0.3
Bryozoa 2 1.5 0-6 0.3
Unknown 2 2.8 0-9 1
Echinoderm 1 0.87 0-3 0.3

percentages of siliciclastic component from Waioli Beach Park:
olivine 50
lithic 43
altered lithic 3
clinopyroxene 1
plagioclase 1
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Figure 2.5. Percentage of coral grains is contoured. Each sample site is labeled with
sample number: percentage of coralgrains. Coral percentages range from
3 to 35% with a mean of 17.0%. Best radiocarbon ages are shown in blue.
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Black Hole (9%), and much of the sand adjacent to the western fringing reef (<10%).
Areas of high coral sand concentration include between the Hanalei River mouth and the
Black Hole (29%) and east of the southern end of the western fringing reef (>25%).

In general, coralline algae concentrations are high next to the fringing reefs and low
in the middle of the bay. Algal grains range from a high of 42% in the southwest corner to
a low of 11% in the center of the bay (Figure 2.6).

Radiocarbon dates consistently showed coralline algae grains are significantly older
than coral grains from the same location (Table 2.3). The best dates for coral grains ranged
from 240 BP in the northeastern corner of the bay to 936 BP near the center of the bay.
Coralline algae showed best dates ranging from 1,036 BP in the northeast to 2,300 BP on
the beach at Waioli Beach Park.

Siliciclastic sand grains are the most common individual grain type and range from
58% at the Black Hole to 7% at the northeast corner (Figure 2.7). High siliciclastic levels
are also found in the center of the bay. The beach sample at Waioli Beach Park has a
relatively high siliciclastic component of 50%. That same beach sample hés an unusually
low concentration of mollusc fragments (3%) (Figure 2.8). The mollusc percentage pattern
also shows relatively high concentrations along the western fringing reef and around the
central patch reef (>10%), and a region of low mollusc concentration entering from the

northeast (<6%).

Texture

Sediment textures were computed using the method of moments described by
Boggs (1995) (after Krumbein and Pettijohn, 1938). The classifications of texture are
from Boggs (1995) (after Folk, 1974). The mean size of all sediments ranges from 0.12 ¢
(coarse sand) at the mouth of the Hanalei River to 3.01 ¢ (very fine sand) in the deeper

water at the outer reaches of the bay (Figure 2.9). Most of the bay floor is.moderately well
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Figure 2.6. Percentage of coralline lgae sand grains is contoured. Sample sites are labeled
with sample number: percentage of coralline algae grains. Percentages range
from 11 to 42% with a mean of 19.5%. Best radiocarbon ages are in blue.
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Figure 2.7. Percentage of detrital sand grains is contoured. Sample sites are
labeled with sample number: percentage of detrital grains. Percentages

range from 7 to 58% WiZIQI a mean of 27%
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Figxre 2.8. Percentage of mollusc sand grains is contoured. Sample sites are
labeled with sample number: percentage of mollusc grains. Mollusc
percentages range from 2.6 to 15.3% with a mean of 9.2%.
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Figure 2.9. Sample number: mean sediment size-(phi) and bedform direction
(arrows are perpendicular to ripple crest) are shown.
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sorted with standard deviations between 0.51 and 0.73 ¢ (Figure 2.10). There are several
important exceptions. The deeper section of the bay (below 15-18 m) is moderately sorted
with standard deviations between 0.80 and 0.95 ¢. Three isolated locations are poorly
sorted with standard deviations from 1.00 to 1.55 ¢: along the reef edge in the northeastern
corner, in the Black Hole located just off the mouth of the Hanalei River, and immediately
west of the patch reef in the center of the bay. Although the sediments are mostly strongly
coarse skewed, they do not appear to closely follow an established pattern (Figure 2.11).
The center of the bay varies between -0.70 and -1.5 with the sediments along the reefs on
either side of the bay shifting to strongly fine skewed (>0.30). A notable exception is a
strongly fine skewed patch of sediment just west of the patch reef in the center of the bay.
This is the same patch of sediment earlier noted as poorly sorted.

All samples collected from the inner bay (shallower than ~10.5 m) contained less
than 2% silt and clay (Figure 2.12). A region of higher percentages of silt and clay, which
enters the bay from deep water, is positioned slightly west of center. This region, in 17 m
water depth, has a maximum silt and clay percentage of 11% and is centered between the
two fringing reefs. Near the edges of the bay along the fringing reefs, breaking waves
increase the turbulence and result in low mud content. The western reef is' bordered by
slightly higher mud percentages. The exception to this pattern is the sample taken inside
the Black Hole in 15 m of water. This sample contains 12% silt and clay, the highest in the
bay. Field observations of this site, which is a typical location for the Black Hole, show
that it has ~20 cm of dark brown silt and clay underiain by carbonate sand. The bottom is
covered in green algae and there are tree branches and fern stems with the leaves still
attached indicating rapid deposition. The underlying carbonate sand was not sampled. The
mud portion was not tested to determine the concentrations of carbonate and terrigenous
material. It was assumed that these components had percentages similar to those found in

each sample throughout the bay (carbonate 70.5%, terrigenous 27.2%).
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Figure 2.10. Sample number: sediment standard deviation (phi)
and bedform direction are shown.
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Isoline interval 0.5

Figure 2.11. Sediment skewness and bedform direction.
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Figure 2.12. Sample number: percentage of silt and clay and bedform direction.
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The patch reef in the shallow center of the bay appears to influence the local
currents enough to create a distinctive patch of sand immediately to its west. The sediment
patch has pronounced edges where the mean sediment size changes from approximately 2.5
¢ to 0.75 ¢ over the space of a few centimeters. The bedforms in the patch are straight-
crested symmetrical ripples ~10 cm in height with a wavelength of ~80 cm whereas outside
the patch the ripples are only 3-5 cm in height and a few tens of centimeters in wave length.
Carbonate content also changes in this area, decreasing from over 70% outside the patch to
less than 60% inside. Mud percentage does not change significantly, but the standard
deviation rises dramatically (to 1.00 ¢) and is very strongly fine skewed (0.91) in contrast

to outside the patch which is very strongly coarse skewed (-1.42).

Beach Volumes

Five beach profile lines, starting with profile 1 ~240 m south of the Hanalei pier,
are spaced approximately 350 m, 610 m, 425 m, and 1,040 m in a clockwise manner
around the bay. Between August, 1993 and August, 1996, the beach sand volume
fluctuated seasonally, with summer volumes above 300,000 m® and winter volumes at or
below 300,000 m? (Figure 2.13). After August, 1996, the beach volume increased until
July, 1998 when 460,000 m® of sand were stored in the beach prism. The seasonal
variation of summer accretion and winter erosion continued through the survey period with
the notable exception of March, 1997 when the beach increased in volume.over the
preceding summer. A least median of squares regression of the data, divided into summer

and winter sets, shows a 15,900 m® yr' increase for both the summer and the winter.

Currents
Measurements of surface currents during summer tradewind conditions at slack tide

show considerable variation throughout the bay (Figure 2.14). Sections of the eastern
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= benthic current direction based on bedforms

:} = benthic current direction and relative magnitude
= based on sediment mean, sorting, and skewness
(le Roux, 1994)
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Figure 2.14. Benthic and surface currents. The magnitudes of the yellow
arrows are relative only to each other. The length of blue arrows
is not related to their velocities. Stable rip currents are seen only
during the winter.
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beach shoreline show no significant current, while the middle of the beach had an easterly
moving longshore current at 36:0.5 cm s™'. The longshore current driven by the easterly
tradewinds at the eastern point of the bay (Puu Poa Point) flows into the bay rather than
simply across the mouth. During periods of southerly winds, “Kona weather,” most
longshore currents slackened due to the loss of significant wind and wave energy. The
notable exception to this was along the western beaches where longshore currents reverse
direction and the stream-mouth sand spits of the Waikoko Stream and Waipa River migrate
to the southeast instead of the usual northwest. Observations of sand bedforms throughout
the bay show that summer tradewinds produce limited benthic currents. Small amplitude
(2-5 cm), symmetrical ripples indicated a lack of sustained bottom flow. Winter
conditions, with their combination of tradewinds and northerly swell, set up at least two rip
current cells in the bay, one near the center of the beach, and the other on the eastern side.
There is also frequently a third rip current near the mouth of the Hanalei River under the
Hanalei pier. The two dominant rip currents are primarily stationary throughout a winter
season, but may migrate several hundred meters between seasons. Velocities in the rip
current cells reach several meters per second. These currents and the corresponding winter
benthic currents are likely to be the principle causes of significant benthic sediment
movement in the bay. Current directions and magnitudes indicated by sediment texture
show movement into the bay along the western fringing reef and a general counter-
clockwise movement of sediment in the shallower region of the bay. This methodology,
described by le Roux (1994), uses mean sediment size, sorting, and skewness from four
neighboring sampling sites to calculate a sediment movement trend vector for a centralized
fifth sample site. The calculations assume that spatial changes in these parameters are the
result of transport processes, that the three grain-size parameters are of equal importance,
that sediment transport occurs along wide, unidirectional fronts, and the grain-size

parameter gradients are constant between the five sampled stations.
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Seismic and Sidescan Surveys

The 4.41 km® Hanalei Bay contains 1.334 km” of reef top and slope surface,
including both fringing (1.31 km?) and patch (0.02 km?) reefs. The remaining 3.08 km? is
covered with unconsolidated carbonate sand of variable texture and composition. Sub-
bottom seismic reflection (Figure 2.15) records indicate that sand thickness varies from 4.7
m near King’s Reef to 34.0 m along the eastern fringing reef (Figure 2.16). In the bay, the
depth of the basal reflector below modern sea level reaches a maximum of 49.1 m next to
King’s Reef (Figure 2.17). In the center of the bay, the basal surface reveals a depression
with a depth of nearly 41 m and what appears to be a buried valley with its axial trace
exiting the bay to the northeast. Although this reflector was not cored and its composition
is unknown, there are four likely possibilities: basalt basement, paleoreef (iithified
carbonate) structure, a paleosol layer, or a different density in a layer of carbonate sand. It
is assumed that the stratigraphic column above this reflector is marine carbonate sand, and
that the reflector is predominantly one of the first three composition possibilities. This is
consistent with observations that seismic lines crossing exposed paleoreef surfaces (e.g.
King’s Reef) show lateral continuity and contiguity between the basal reflector and exposed
paleoreef hardground that are possibly middle to late Pleistocene in age (Sherman ez al.,
1999). In this case, the entire bay holds 45.5+1.5 x 10° m® of sand using a seismic
velocity of 1,620£40 m s (Fu et al., 1999).

If the Bard et al. (1990) sea-level curve (Figure 2.18) is used as a proxy for sea-
level at Hanalei, post-glacial sea-level rise first transgressed the basal reflector in Hanalei
Bay during the period 11.7 to 11.2 kyr (Figure 2.19). By 5.0 kyr, the bay and coastal
plain were completely inundated by the sea (Calhoun and Fletcher, 1996), and, assuming
constant sediment accumulation rates and bathymetry similar to the modern bay,

approximately 26.05 x 10° m’ of sand had accumulated on the bay floor. Between 5.0 kyr
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150° 31.8' W B. 159° 30.0' W

Lumahai
Beach

Figure 2.15B. Seismic survey track lines. Lines are labeled at their ends.
Black circles show locations where sediment thicknesses
were measured.
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Figure 2.16. Thickness (m) of marine sediment in Hanalei Bay
plotted on a sidescan sonar mosaic. Acoustic
reflectance shows reefs and rubble as dark and fine
sediments (sand) as light gray. * = Location where
thickness is measured using seismic profiles.
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Figure 2.17. Depth (m) below modern sea level to basal reflector
in seismic profiles superimposed on a sidescan sonar
image of the bay. = Location where depth was measured
from seismic profiles.
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Figure 2.19. Sea level and topography at 11.2 kyr superimposed on a sidescan
sonar mosaic of the bay. Sea level is 40 m below present.
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and the present, 19.44 x 10° m® of sand were deposited in the bay and an additional 33.66

x 10° m* m on the coastal plain.

Coastal Plain Deposition

From logs of wells drilled in Hanalei in the 1940s, comparisons to findings on the
Kailua coastal plain on Oahu (Kraft, 1982), and consistency with marine sedimentation
rates found by Calhoun and Fletcher (1996), it is estimated that the average thickness of the
marine sediments on the Hanalei coastal plain (an accretional strand plain) to be
approximately 6 m. Consequently, 5.61 km” of the formerly-inundated coastal plain
contains 33.66 x 10° m® of marine sand. During the late to middle Holocene regression
described by Calhoun and Fletcher (1996), 1.02 km? of coastal plain accreted between 4.0
kyr and 3.0 kyr, 3.40 km* between 3.0 kyr and 2.0 kyr, and from 2.0 kyr to 1.0 kyr, the
final 1.19 km? of the present coastal plain were accreted. During these time periods,
11,640,000 m?, 8,584,000 m®, and 1,792,000 m’ of sand were deposited on the coastal
plain, respectively, at an average annual rate varying from 11,640 to 1,790 m®yr'. An
additional 11,640,000 m® were deposited subaqueously between 5.0 and 4.0 kyr (Table
2.4).

Discussion

The distribution of sediment components and textures in Hanalei Bay allows
conclusions to be drawn regarding environmental processes and sediment sources effecting
the bay. These patterns are identified on contour maps of each characteristic.

A contoured region of relatively low carbonate sand concentration, which includes
most of the central bay and reaches out into deeper water, can be traced to the Hanalei
River. Composed of sediment with a carbonate content of less than 60%, this region

dominates the sedimentology of the entire bay and is caused by an influx of terrigenous
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sand and mud originating from the Hanalei River. This interpretation is reinforced by the
appearance of a similar pattern when high concentrations of siliciclastic grains are
contoured. The nearshore sediments, with the exception of near the Hanalei River, have
carbonate content percentages consistently in the low to mid seventies. This consistency,
particularly notable in close proximity to the mouth of the Waioli River, indicates that the
Hanalei River is the only significant source of terrestrial sediment in the bay. Localized
patches (2-4 m?) of extremely low carbonate concentrations (estimated <20%) are observed
on the beach near the Waipa River. Due to the low flow and sluggish energy nature of the
Waipa River, these patches appear to be beach placer deposits of basalt fragments and
olivine that are the product of preferential carbonate sand erosion.

Areas of high carbonate content sediment (>70%) along both fringing reefs indicate
that these reefs are a prime source of carbonate sediment in the bay. An additional source is
the deep water outside the bay along the eastern fringing reef. Very high carbonate content
sediments (>80%) form a plume here that appears to reflect the transportion of carbonate
sediments into the bay.

The distribution of silt and clay in the sediments appears to be fairly simple. Areas
of high energy due to currents or breaking waves have low silt and clay percentages
(<2%). Waves break all along both fringing reefs creating high turbulence and preventing
deposition of fine grains in these areas. Mud content is slightly lower along the eastern reef
suggesting slightly higher energy, perhaps due to its orientation relative to the average
approach direction of winter swell (320°) (Gerritsen, 1978). This provides more energy to
be expended in one location, at the seaward-most reef edge, rather than spread over a larger
length of reef front as would occur if the reef front had a more open exposure to the swell.

Hanalei Bay may be inferred to act as a sediment trap or sink for sediments moving
west along the north shore of Kauai under the influence of the longshore current produced

by the northeast tradewinds. The energy from this longshore current is greatly reduced as
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the bathymetry suddenly increases off the fringing reef surface onto the outer bay floor.
Any sediment in motion under the influence of this longshore flow from the east will likely
be deposited near the base of the reef slope. High wave energy probably also accounts for
the lack of mud in the shallow portions of the bay (<12 m). Even relatively small
tradewind waves provide sufficient energy to maintain silt and clay in suspension where the
water is shallow. As the bay deepens, the benthic wave energy drops, and mud content of
the sediments begins to increase. Most samples reflect summer season (tradewind) energy
regimes. It may be inferred that during the winter, when wave energy is high, mud content
decreases.

The major exception to this pattern of mud distribution is the Black Hole. The mud
content here is the highest in the bay (12%) and, from surface observations as well as
conversations with local boaters, is present throughout the year. The Black Hole is in a
broad, shallowly sloping depression with a maximum depth of approximately 17 m while
the surrounding bay reaches approximately 12 m. This deepening, and the resulting
decrease in benthic wave energy, as well as the depression’s protected location shoreward
from the eastern fringing reef, may cause mud to be retained here while it is being removed
from the rest of the bay by large wave events. Additionally, because the depression is
located directly off the mouth of the Hanalei River, there is a ready supply of fine sediment.

The distribution of mean sediment size shows patterns similar to the silt and clay
percentages. Regions of high wave and current energy display medium to coarse sands
and the low energy center of the bay is characterized by very fine sand. A plume of
medium to coarse sand appears to extend from the Hanalei River out through the Black
Hole. Coarser sediment lies in a thin band along the edges of both fringing reefs and in a
broad plain in the nearshore environment. The eastern sediments are slightly coarser

(coarser than 2.0 ¢) than the western sediment (coarser than 2.5 ¢) indicating higher

energy and/or a proximal source of larger grains.
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Observations at all benthic sample sites found either small (1-5 cm height)
symmetrical straight crested ripples or a planar bed. This suggests that wave energy is
responsible for the majority of benthic sediment movement and is therefore more important
for the distribution of sediments than currents. Additionally, no areas of hard substrate
were found, outside of reef surfaces, which would result in regions swept clean by
currents. All reefs are substantially raised above their surrounding unconsolidated
sediments and so are not likely to be periodically buried. Living coral and coralline algae is
common on these reef crests and would not likely survive prolonged burial. One exception
to these observations is in the nearshore environment during high wave events. These
waves set up longshore and rip currents that redistribute beach and nearshore sediments
and form asymmetrical ripples and dunes, some with wave lengths of several meters.
These currents, however, are restricted to the region between the breaker zone and the
shoreline, their formation limited to extreme conditions, and they do not appear to exert a
significant influence on the remainder of the bay.

Although benthic processes redistribute sediments, the texture and compositional
variations still allow patterns to be discerned and processes to be characterized. Coralline
algae concentration levels are high near the fringing reefs and a pronounced low
concentration area is in the center of the bay indicating that both reefs are sources of
coralline algae sediment. Coral concentrations are high along the eastern fringing reef in
the same location where total carbonate concentrations show a region of high carbonate
concentration sediment entering the bay. Coral concentrations are, however, low along
most of the western fringing reef indicating that this reef may not be a source of coral.
From this, coral sediment may be inferred to be entering the bay from the east where there
is a several kilometer long fringing reef and that the bay itself may not have produced the
majority of the coral sediment within it. Ina revefsed pattern, mollusc fragments generally

appear to be concentrated around the reefs except to the northeast where coral sands are
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highly concentrated. This suggests that mollusc sediments are being produced in the bay
rather than carried into it by the longshore current.

The radiocarbon dates from coral grains are consistent with the primary source of
coral sediment being in the northeast corner of the bay and the counterclock-wise rotation
of the sediment redistribution in the shallow region of the bay. The oldest sample in the
middle of the bay may be at the distal end of the bay gyre with the start at the northeast
corner and the southwest corner of the bay in the middle. Coralline algae may show an
increase in the age of its grains as shore is approached because it has both fringing reefs as

its sources.

Sediment Budget

Calculations of the total sediment volume in Hanalei Bay, based on seismic
reflection, sidescan sonar, and aerial photography, indicate that the bay holds
approximately 45.5+1.5 x 10° m® of unconsolidated sediment. Hard reef structure, which
is the most likely modern habitat source for marine carbonate sediment production,
measures 1.334 x 10° m2, This reef surface has been submerged, and therefore
productive, for only the past 5.0 kyr (Calhoun and Fletcher, 1996), although there may
have been other reef surfaces in Hanalei Bay producing carbonate sediments during
Holocene (Jones, 1992). The 70% of the sediment that is carbonate and has been
deposited in the bay or on the coastal plain equals 31.248 x 10° m® of calcium carbonate
(with measured 44% porosity). Based on extrapolations to Hanalei Bay from other studies
(Hallock, 1981; Agegian, 1985; Hubbard ef al., 1990; Harney and Fletcher, 1999), total
carbonate sediment production supported by the reef substrate within Hanalei Bay is
estimated to total 2.148%1.674 x 10° m’ during the past 5.0 kyr (Table 2.5). As a result,
there appears to be an excess of carbonate sand stored in the Hanalei Bay and coastal plain

system compared to the volume likely produced within its boundaries over the available
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time period. Approximately 5,820 m’ yr'' excess carbonate has been deposited in the
coastal plain and bay during the last 5.0 kyr, and, contrary to Calhoun and Fletcher (1996),
it appears likely that this excess has contributed significantly, although not. necessarily
exclusively, to the progradation of the Hanalei shoreline.

If the Bard et al. (1990) and Grossman and Fletcher (1998) sea-level curves are
accepted as a proxy for sea-level in Hanalei Bay, the above calculations ignore the fact that
marine deposition has been taking place over the 11.7 kyr that the sea has flooded at least
part of the bay. Additionally, carbonate sediment production has likely only been occurring
at a rate similar to that of today for the past 5 0 kyr after major portions of the fringing reefs
submerged. If, however, the sediments in the bay are divided into equal accumulation rate
thicknesses and reflect modern bathymetric characteristics, deposition during the late
Holocene still out paces production in the bay. Deposition of marine sediment began
slowly (1,550 m* yr"), although this rate may be too low if sea-level did not actually reach
into the bay until 11.4 kyr. Accumulation in the bay stabilized at approximately 4,000 mt’
yr'' from 11.2 to 5.0 kyr (Figure 2.20). Because Hanalei Bay has been fully inundated by
- the sea only since 5.0 kyr (Calhoun and Fletcher, 1996; Fletcher and Jones, 1996;
Grossman and Fletcher, 1998), all unconsolidated marine sediments underlying the modern
coastal plain have been deposited since then. Between 5.0 and 3.0 kyr, corresponding to
the middle Pacific Kapapa Stand of the sea at +1-2 m (Grossman and Fletcher, 1998),
marine deposition on the coastal plain and in the bay increased to 15,500 m’ yr" before
decreasing to slightly under 4,000 m® yr' from 1.0 kyr to the present. This variation in
deposition is not simply a function of available area for deposition. The marine sediments
found in the bay and on the coastal plain are a similar combination of carbonate grains from
marine organisms and siliciclastic grains predominantly terrigenous in origin.

Estimates of excess carbonate sediment entering Hanalei Bay rely heavily on

published carbonate production rates. Each published rate (in mm yr') was multiplied by
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Deposition rate per area of deposition
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the reef surface area in Hanalei (1.3342 x 10° m®) to calculate the total carbonate produced
in Hanalei. If the published rate was based on a single organism (i.e. only coral), then total
carbonate number was divided by the abundance percentage of that organism found in the
sediments (17% for coral). If the organism was a reef framework building organism (coral
or coralline algae), the total carbonate production was multiplied by 0.248 (the net sediment
production expressed as a fraction of total carbonate production) to determine carbonate
sediment production (Hubbard et al., 1990). The carbonate sediment production rates
using six different methodologies (or rationals) are then subtracted from the average annual
volume of stored sediment during the past 5,000 yrs (4,190 m’) to infer the excess
carbonate sediment entering the bay. The mean calculated excess is approximately
3,760£330 m® yr'.

Because excess carbonate was calculated by the subtracting one measured volume
from another and not directly measured, this excess carbonate volume is termed an
“unmeasured residual” by Kondolf and Matthews (1991). They warn that, while it is
difficult to measure all components of a budget, care must be taken when unmeasured
residuals are used, particularly if the residual comprises a large portion of fhe budget. In
the case of Hanalei Bay, 90% of the CaCO, is credited to the unmeasured residual or 64%
of the total sediment. Errors in measuring the subtrahend and minuend will be transferred
to the residual. These hidden errors are difficult to identify without proper accounting of
the errors involved with the original measurements.

Hallock (1981) calculated a carbonate production rate of 0.05 mm yr' using
foraminifera from 16 sites on the Hawaiian Island of Oahu. Apparent mortality of
individual foraminifera was added over time and then converted to g CaCO, ﬁsing
diameter-mass ratios to determine a carbonate production rate. Hubbard et al. (1990)
calculated three carbonate production rates based on the growth of coral, coralline algae,

and all carbonate producers across a reef. Coral production was calculated with x-rayed
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coral samples showing annual growth and multiple transects to determine coral abundance
and surface area coverage. Due to the lack of coralline algae in reef cores, Hubbard et al.
(1990) assumed bioerosion of coralline algae was similar to its gross carbonate production.
Bioerosion was calculated by multiplying the abundance of coralline algae fragments by the
total sediment production. Total sediment production was calculated by dividing gross
carbonate production minus carbonate that remains in the reef structure by the abundance of
coral fragments found in the sediments. Agegian (1985) measured coralline algae growth
by staining specimens and then letting them grow for a given period of time before
measuring the subsequént additional growth.

In using these previous studies for the carbonate production rates, several important
assumptions are made. First, that the growing conditions for the studied organisms were
similar to those found in Hanalei Bay. Second, that the abundance of each component in
the Hanalei sediment as a whole has remained close to constant over time. Finally, that it is
possible to extrapolate the rate of total carbonate sediment production from an individual
component.

The Hanalei River has been calculated to discharge 4,310£1,810 m® yr' of fluvial
suspended sediment (Calhoun and Fletcher, in press). This would result in
50.427+21.177 x 10° m’ yr' discharged over 11,700 years. This far exceeds the
approximately 6.93920.23 x 10° m’ of terrigenous sediment found in the modern bay
(27% of 45.5+1.5 x 10° m’ with 44% porosity). It is also far above the total when
5.135%1.712 x 10° m® of siliciclastic sediments are added from the coastal plain (27% of
33.66+11.22 x 10° m* with 44% porosity). Since the terrigenous component is likely to be
significantly higher on the coastal plain due to its juxtaposition to the Hanalei River and its
more protected nature, the total terrigenous material on the coastal plain and in the bay may
be greater than the apparent 12.07421.942 x 10° m* calculated. From these calculations

however, 15.234 x 10° m® to 61.472 x 10° m® or 1,300 to 5,250 m® yr”' of terrigenous
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sediment are lost from the Hanalei system to the open ocean (Figure 2.21). From point
counting of thin-sections data, 590 m’ yr'' of terrigenous sediment have been deposited in
the bay during the past 5,000 years (27% of 10.89 x 10° m®). Since these data were based
on sand-size grains, this figure may be considered to represent bedload discharge from the
Hanalei River. Additionally, the silt and clay-size particles represent 2.26% of the
sediment in the bay and those that are terrigenous (27%) may be considered suspended
sediment from the Hanalei River. This results in only 1020 m’ yr' of the suspend
sediment discharged from the Hanalei River staying in the bay and the remaining
4,300+1,830 m* yr'' of suspended sediment from the Hanalei River being lost to the open
ocean.

The increase in beach sediment volume over the six years of data collection appears
dramatic. It is, however, difficult to claim that this increase is a significant long-term trend
on such a brief temporal scale. It should be noted, however, that the beach volume in
Hanalei does appear to be in a stable state. Due to the normal wide seasonal fluctuations in
beach volume, at least a part of this short-term stability may be credited to the absence of
anthropogenic impacts on the sediment budget. The question of whether this brief period
of beach accretion is consistent with long-term shoreline trends must be addressed with the

analysis of recent and historical aerial photos (Coyne et al., 1999).

Conclusions

From the characteristics of sediment in Hanalei Bay, it appears that the bay has one
significant source of terrigenous material, the Hanalei River, and two significant sources of
carbonate sediments, the fringing reefs on either side of the bay and longshore delivery by
tradewind driven flow along the coast to the east of Hanalei Bay. These two materials
(carbonate:terrigenous) comprise the sediments in Hanalei Bay with an average ratio of 2:1.

The nearshore Hanalei marine environment generally has carbonate contents above 70%,
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and offshore environments generally have carbonate percentages below 60%. Specific
locations along the beach may vary due to placer deposits resulting from preferential
movement of carbonate particles during the higher energy winter swell regime.

Wave stress is a more important source of energy for sediment movement than
sustained current flow. The exception to this is in the surf zone during the winter high-
wave environment. During these times, longshore and rip currents are set up and transport
sediments from the beach face to the nearshore environment.

The inundation of Hanalei Bay began soon after 11.7 kyr. Marine-sediments have
been deposited in the bay since then, peaking at 15,500 m® yr'' between 5.0 and 3.0 kyr.
Sediments presently total 45.5£1.5 x 10° m® in the bay and approximately 33.7+11.2 x 10°
m° on the coastal plain. This volume represents more carbonate sediment than can be
readily accounted for by inferred rates of local carbonate sediment production. To balance
the volume of stored and produced carbonate sediment, since 5.0 kyr, approximately
3,760+330 m® yr' of carbonate sediment must be brought into Hanalei Bay from the east.
This excess sediment has likely been a significant factor in the mid to late Holocene

progradation of the Hanalei shoreline.
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Conclusions

Systematic observations of the sediments in Hanalei Bay and its environs show that
terrigenous and marine sediments are arranged in distinct patterns. The sole significant
source of terrigenous sediment, the Hanalei River, discharges 4,310+1,810 m* yr'! of
suspended sediment in the bay. An additional 1,880+570 m’ yr'' are deposited on the
floodplain during overbank events by the river. Due to the nature of the observations,
these volumes must be considered minimum values. While these volumes do compare
favorably with other denudation studies conducted in Hawaii (Li, 1988; McMurtry et al.,
1995), more detailed field measurements must be taken of high discharge events to better
define these volumes.

The USLE does not describe the Hanalei watershed adequately enough to be of
practical use. This is primarily due to the significant size of the errors involved with
calculating the fluvial sediment discharge and the USLE factors in addition to the local
importance of such processes as mass movement for which the USLE does not account.

While approximately 590+20 m’® of terrigenous sediment are deposited annually in
the bay, it comprises only 27% of the sediment in the bay. The remaining the sediments
are the skeletal remains of marine organisms (coralline algae, coral, diagenetic grains,
mollusks, foraminifera, Halimeda, bryozoa, and echinoderms). The source of all these
marine sediments is a principal concern to the management of the bay environment. The
carbonate sediments are inferred to be produced on the fringing reefs in the bay at a rate of
4204330 m’ yr''. This is not enough to account for the 45.5+1.5 x 10° m® found in the
modern bay and presumed deposited since 11.7 kyr when the marine environment first
entered Hanalei Bay during the post-glacial maximum sea-level transgression. Since 5.0
kyr when the bay and coastal plain were completely inundated, an additional 33.7+11.2 x
10° m® have been deposited on the coastal plain. To balance the volume of stored sediment

and the volume of carbonate sediment produced locally, approximately 3,760+330 m” are
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inferred to be transported into the bay annually from the east by the tradewind induced
longshore current. This additional sediment has likely been a significant factor in the mid
to late Holocene progradation of the Hanalei shoreline. Figure 2.22 is a summary of the
processes significant to the sediment budget of Hanalei Bay with particular emphasis on
5.0 kyr to present.

Improved management practices may be implemented based on the these
conclusions concerning the most significant sedimentary processes in Hanalei Bay. From
this new understanding, future research may include investigation of CaCO, production
within the bay, cores through the sediments in the bay to determine the exact nature of the
basal reflector observed in the seismic profiles, and a geophysical survey, possibly
including ground-penetrating radar, to search for additional buried paleoreefs under the

modern coastal plain.
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Figure 2.22. The processes and volumes significant to the sediment budget of Hanalei

Bay are shown with particular emphasis on 5.0 kyr to present. Blue arrows

are gains to the budget and red arrows are losses.
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