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ABSTRACT  

 

It is difficult to study the behavior and physiology of marine mammals or to 

understand and mitigate human impact on them because much of their lives are spent 

underwater. Since sound propagates for long distances in the ocean and since many 

cetaceans are vocal, passive acoustics is a valuable tool for studying and monitoring their 

behavior. After a brief introduction to and review of passive acoustic tracking methods, 

this dissertation develops and applies two new methods. Both methods use widely-spaced 

(tens of kilometers) bottom-mounted hydrophone arrays, as well as propagation models 

that account for depth-dependent sound speed profiles.  

The first passive acoustic tracking method relies on arrival times of direct and 

surface-reflected paths. It is used to track a sperm whale using 5 at the Atlantic Undersea 

Test and Evaluation Center (AUTEC) and gives position estimates that are accurate to 

within 10 meters. With such accuracy, the whale’s pitch and yaw are estimated by 

assuming that its main axis (which points from the tail to the rostrum) is parallel to its 

velocity. Roll is found by fitting the details of the pulses within each sperm whale click to 

the so-called bent horn model of sperm whale sound production. Finally, given the 

position and orientation of the whale, its beam pattern is reconstructed and found to be 

highly directional with an intense forward directed component. 

Pair-wise spectrogram (PWS) processing is the second passive acoustic tracking 

method developed in this dissertation. Although it is computationally more intensive, 
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PWS has several advantages over arrival-time tracking methods, especially in shallow 

water environments, for long duration calls, and for multiple-animal datasets, as is the 

case for humpback whales on Hawaiian breeding grounds. Results of simulations with 

realistic noise conditions and environmental mismatch are given and compared to other 

passive localization techniques. When applied to the AUTEC sperm whale dataset, PWS 

position estimates are within meters of those obtained using the time-of-arrival method.  
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Chapter 1 

INTRODUCTION 

 

 

1.1 Why track marine mammals with passive acoustics? 

 

The past several decades have seen increased concern and controversy over the 

impact of human activity on marine mammal welfare [Green et al. 1994; Richardson et 

al. 1995; Malakoff 2001; NRC 2003; NRC 2005]. Anthropogenic noise in the ocean 

includes sound from shipping, naval operations, and seismic exploration. In response to 

noise, marine mammals change vocalizations rates, alter habitat use, move away from the 

source, lengthen songs, change respiration patterns, and possibly strand [Richardson et al. 

1995; Frantzis 1998; Miller et al. 2000; Anon. 2001; Caldwell 2002; Jepson et al. 2003; 

Gordon et al. 2004; Taylor et al. 2004]. Among other things, the response is influenced 

by source level and frequency characteristics, sound propagation conditions, and the 

sensitivity of the animal [Richardson et al. 1995; DeRuiter et al. 2006; D’Spain et al. 

2006;]. Since sound can propagate for long distances without suffering much attenuation, 

animals may be affected tens, hundreds, and even thousands of kilometers away from a 

source [Greene and Richardson 1988; Bowles et al. 1994; Nieukirk et al. 2004; Madsen 

et al. 2006]. In addition to short-term effects, long-term increases in ocean ambient noise 

[Curtis et al. 1999; Andrew et al. 2002; McDonald et al. 2006], potentially degrade 
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habitat by masking and interfering with acoustic signals that are used for communication, 

orientation, navigation, and detection of predators and prey [Payne and Webb 1971; Au 

1993; Tyack and Clark 2000; Clark and Ellison 2003].  

Methods used to study and monitor marine mammals in the wild include multi-

sensor archival tags, visual surveys, and passive acoustics. Tags can provide detailed 

information on animal depth, orientation, physiology (including heart rate and breathing), 

and vocalizations [Schevill and Watkins 1966; Leatherwood and Evans 1979; Mate 1989; 

Goodyear 1993; Johnson and Tyack 2003]. They have facilitated several major advances 

in our understanding of the impact of noise on marine mammals as well as in behavioral 

studies and in bioacoustics [Watkins et al. 1993; Fletcher et al. 1996; Miller et al. 2004; 

Zimmer et al. 2005a; DeRuiter et al. 2006; Tyack et al. 2006; Watwood et al. 2006; 

Stimpert et al. 2007]. Disadvantages to tagging include logistical problems (tags are 

expensive and can be difficult to place on an animal), possibly altered behavior, and 

limited attachment time [Whitehead et al. 2000]. Furthermore, because they require that 

an animal be tagged, they cannot be used to detect animals for mitigation purposes. Most 

mitigation measures rely on trained visual observers aboard vessels who scan the sea 

surface for the presence of marine mammals [reviewed in Barlow and Gisiner 2006; Weir 

and Dolman 2007]. Visual methods play a key role in many cetacean studies and include 

photo identification [first described by Würsig and Würsig 1977; reviewed in Hammond 

et al. 1990], as well as aerial [e.g. Watkins and Schevill 1979; Würsig et al. 1984, 1993; 

Scott and Perryman 1991; Mobley et al. 1999; Mobley 2005, 2006], ship/boat-based [e.g. 

Johnston et al. 2007; Williams and Thomas 2007], and ground based studies [e.g. Würsig 

and Würsig 1979, 1980; Clark and Clark 1980; Tyack 1981; Noad and Cato 2007]. 
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Limitations include sea state, daylight, and the amount of time an animal spends near the 

surface (as little as 5% of the time for some deep diving species [Barlow 1999]). Passive 

acoustic monitoring (PAM) methods can be used to detect animals that are submerged at 

any time of day, in poor weather conditions, and they are used extensively in studies of 

marine mammal behavior and movement [e.g. Leaper et al. 1992; McDonald et al. 1995; 

Stafford et al. 1998; Au et al. 2000; VanParijs et al. 2002]. PAM is limited to vocalizing 

animals and although most cetaceans are vocal, they may be silent for long periods of 

time and may silence in response to noise [Watkins and Schevill 1975]. PAM is also 

hindered by the incomplete repertoire representations for some species [Dawbin and Cato 

1992; Mellinger et al. 2000].  

The complementary nature of tagging, visual, and acoustic methods means that 

they can be especially useful in combination. For example, Zimmer et al. [2005a] used 

visual sightings and a towed hydrophone system to estimate echolocation source 

characteristics from a tagged sperm whale. Vocalizations recorded from tagged whales 

improve PAM capabilities by adding to the known repertoire [Johnson et al. 2004; 

Stimpert et al. 2007]. Combining visual and acoustic detection methods can improve 

tracks and increase the detection probability, although methods to relate acoustic and 

visual detection statistics to the true population need further development [Ko et al. 1986; 

Frankel et al. 1995; Noad and Cato 2001, 2007; Clark and Fistrup 1997; Tiemann et al. 

2006].  

PAM is useful on its own for census efforts and behavioral studies, particularly 

for continuous, long-term monitoring [Clark and Ellison 1988; McDonald et al. 1995; 

Stafford et al. 1998; Norris et al. 1999] and in hostile or inaccessible areas [Wartzok et 
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al. 1992]. PAM can also be used for bioacoustics research on free-ranging animals [Au et 

al. 1974, 1986, 1987, 2002, 2006; Møhl et al. 1990; Thode et al. 2002; Wahlberg 2002; 

Au and Benoit-Bird 2003; Au and Herzing 2003; Rasmussen et al. 2004; Madsen and 

Wahlberg 2007]. Critical information regarding the biosonar of marine mammals has 

been derived from tests with trained or captive animals [reviewed in Au 1993; Thomas et 

al. 2004], but such studies are limited to smaller species, and biosonar performance might 

differ for free-ranging animals [Au et al. 1974, 2004; Au and Herzing 2003; Madsen et 

al. 2004a,b].  

 

 

1.2 Overview of passive acoustic localization methods 

 

Passive acoustic monitoring refers to the use of acoustic signals to detect, classify, 

and localize calling animals. Detection and classification often require sophisticated 

techniques, and the development of these methods is an active area of research [Altes 

1980; Mellinger and Clark 1993; Potter et al. 1994; Mellinger 2000, 2004; Chesmore 

2001; Oswald et al. 2003, 2007; Gillespie 2004; Roch et al. 2007]. Except for the 

detection algorithm used in the first two papers of this dissertation, detection and 

classification are not dealt with here. Passive acoustic localization (estimation of 

position) and tracking (taking positions estimates over time) are also active areas of 

research, and they are the topic of this dissertation. 

The use of acoustics to track marine life was pioneered in the 1960s and 1970s. 

Walker [1963] tracked sources of 20-Hz pulses, apparently from a whale, using three 
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hydrophones. Cummings et al. [1964] found the positions of fish and invertebrates, also 

using three hydrophones. Watkins and Schevill [1972, 1977] used a three-dimensional 

array with four hydrophones to track the movements of individual whales. Since that 

time, many studies have used a variety of passive acoustic localization methods and 

hydrophone configurations to track marine mammals [e.g. Cummings and Holliday 1985; 

Møhl et al. 1990; Freitag and Tyack 1993; Clark et al. 1994; Stafford et al. 1998]. 

A commonly used method of passive acoustic localization is known as the time-

difference of arrival (TOAD) method (also known as multilateration or hyperbolic 

positioning/fixing). TOAD methods are useful in a broad range of applications: civilian 

and military applications to locate aircraft, submarines, ground vehicles, and stationary 

sources such as explosions, geophysical applications to monitor seismicity [e.g. Fox et al. 

1995], terrestrial biological applications to estimate animal positions [e.g. Mennill et al. 

2006]. TOAD methods have been used to track almost every imaginable source of sound, 

from human speakers to gunshots [Lahr and Fischer 1993; Vermaak and Blake 2001; 

Bucher and Misra 2002].  

In the TOAD method, a signal reaches two spatially separated receivers at 

different times because of different propagation path lengths from the source to the 

receivers. For known receiver positions, the locus of possible source locations is a 

hyperboloid. A third receiver provides another TOAD measurement, which defines a 

second hyperboloid and a line of possible source locations is defined by the intersection 

of these two hyperboloids. A fourth receiver defines a third hyperboloid, with the 

intersection of all three hyperboloids defining a point, which is the estimated source 

location. Note that each additional receiver actually adds as many TOADs (hence 
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hyperboloids) as there were receivers, but only one new TOAD is unique. Also, 

depending on the receiver configuration, the intersection of the three hyperboloids may 

be two points (or infinitely many points in a degenerate case), in which case a fifth 

hydrophone is required to localize a source in three dimensions [Tyrrell 1964; 

Spiesberger 2001]. 

The first step in TOAD methods is to estimate the signal time delay between each 

pair of hydrophones. The most commonly used method is correlation, in which the 

estimate is the time-lag that maximizes the cross-correlations between the received 

signals [Knapp and Carter 1976]. For marine mammal applications, both filtered 

waveforms [Clark et al. 1986; Spiesberger and Fristrup 1990; Mitchell and Bower 1995; 

Janik et al. 2000; Tiemann et al. 2004] and spectrograms [Altes 1980; Clark et al. 1986; 

Frankel et al. 1995; Janik et al. 2000; Clark and Ellison 2003; Tiemann et al. 2004] of the 

recorded signals have been used in the cross correlation. TOADs can also be estimated by 

using a matched-filter approach if a template of the call can be estimated [Stafford et al. 

1998]. The best method to use to estimate TOAD varies depending on the signal, noise, 

and propagation characteristics of the problem. 

The second step in the TOAD method is to find the point of intersection (or the 

closest such point if intersection is imperfect) of the hyperboloids. Assuming constant 

speed of sound propagation, the problem can be expressed as a system of linear 

equations. For a well-defined problem (not underdetermined/overdetermined by too 

few/many receivers), a closed form solution to this system gives the source location [e.g., 

Schmidt 1972; Watkins and Schevill 1971; Schau and Robinson 1987; Delsome et al. 

1980; Spiesberger and Fristrup 1990; Wahlberg et al. 2001]. For overdetermined systems, 
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a least-squares approach can be used to give the best source position [Spiesberger and 

Fristrup 1990; Wahlberg et al. 2001]. Reflections from the bottom and surface can be 

treated as recordings made by virtual receivers and incorporated into the solution [Urick 

1983; Møhl et al. 1990; Aubauer et al. 2000; Wahlberg et al. 2001]. Using reflections 

improves the accuracy of estimated source positions [Møhl et al 1990; Wahlberg et al. 

2001; Thode et al. 2002] and fewer real receivers (as few as one) are required for 

localization [Aubauer et al. 2000; Tiemann et al. 2006; Laplance 2007].  

Error analysis [reviewed in Taylor 1997] can be approached by comparing 

locations obtained by different receiver subsets, or by comparison with positions 

determined visually [Cleator and Dueck 1995; Smith et al. 1998; Aubauer et al. 2000; 

Janik et al. 2000]. Another approach involves linear error propagation and considers 

uncertainties in sound speed, receiver position, ray bending, and TOAD measurement 

[Watkins and Schevill 1971; Spiesberger and Fristrup 1990; Wahlberg et al. 2001].  

The TOAD method can be used with different hydrophone configurations, each 

with its own strengths and weaknesses, to meet various monitoring and research 

requirements. For example, a closely spaced planar array is better for echolocation 

research [Au et al. 2002; Rasmussen et al. 2002; Au and Herzing 2003], but it is limited 

to short distances and animal positions that are perpendicular to the plane of the array. A 

widely spaced array is ideal for tracking in three dimensions over long distances [Stafford 

et al. 1998; Tiemann et al. 2004], but applications are limited to sufficiently loud calls (so 

that they can be heard on several hydrophones) and for logistical reasons (e.g. cost, clock 

synchronization, and hydrophone position uncertainties). As refraction becomes 

significant at long distances, widely spaced arrays are also more sensitive to assumptions 



 - 8 -

of straight-line sound propagation, and sound propagation models may be required to 

obtain accurate position estimates [Chapman 2004; Tiemann et al. 2004].  

A somewhat different approach, which is a version of beamforming [Johnson and 

DeGraag 1982], is required to localize a source using a towed line array [Leaper et al. 

1992; Gillespie 1997; Barlow and Taylor 2005]. This method estimates the bearing to a 

sound relative to the tow cable axis from the TOAD measured between two hydrophones 

spaced a few meters apart by assuming plane wave propagation. Range is estimated via a 

time-motion analysis of the changes in estimated bearing as the platform moves. The 

method requires that the speed of the vessel be much greater than the speed of the 

vocalizing animal, that the animal vocalizes continuously for several minutes, and that 

individuals vocalizing simultaneously can be distinguished – conditions that are not 

always met [Thode 2005]. Furthermore, this method does not distinguish between 

horizontal and vertical range. 

Time of arrival is not the only component of a recorded call that contains 

information about animal location; phase and sound pressure levels can also be useful. 

Directional hydrophones can be used to estimate the direction to high-frequency 

vocalizations [Whitehead and Gordon 1986] and for hydrophones configured less than a 

wavelength apart, differences in phase can be used to estimate the bearing to animal calls 

[Clark 1980]. Cato [1998] proposed a method using only the differences in received 

levels to estimate position, although we note here that this method might not be 

applicable for animals with high directionality. If the source level of the call is known, 

then it may be possible to estimate the distance to an animal from the received level. 
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However, data on source levels are scarce, individuals can vary their source levels, and 

directionality will again confound the problem.  

Matched-field processing (MFP) uses all available information (timing, sound 

pressure level, and phase) to estimate source position (among other applications). The 

underwater acoustics community developed MFP in the 1980s and 1990s for naval 

purposes. Possibly because implementation can be costly and computationally 

demanding, MFP has seen only limited application in marine mammal localization 

problems [Thode et al. 2000; Tiemann et al. 2004; Thode 2005]. Very briefly, localizing 

a source via MFP involves predicting the receiver response given a source at some 

candidate source position and then comparing the predicted response with the measured 

response. This process is repeated for each point in a grid of candidate source positions, 

and the candidate position giving the best agreement between predictions and 

measurements is chosen as the estimated source position. Details can be found in reviews 

by Tolstoy [1993] and Baggeroer et al. [1993] and the references therein. Since MFP was 

designed to exploit the phase information, it traditionally requires large line arrays and 

low frequency sources (higher frequencies become incoherent for long distance 

propagation).  

Although passive acoustic methods for marine mammal localization yielded much 

useful information over the past 30 years, there is still a need for improvement. Most 

effort has focused on short duration calls (such as clicks) because arrival time estimates 

are relatively simple in these cases, while longer duration calls have reflections 

overlapping direct arrivals. There is a need to improve methods for localizing long 

duration calls made by many species (baleen whales in particular). Also, methods that 
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increase the accuracy of estimated animal positions, for example by using more realistic 

sound propagation models, will facilitate behavioral studies by providing more detailed 

information on animal movement. Another important goal of passive acoustics is to track 

multiple individuals simultaneously for insight into marine mammal communication and 

interaction. Real-time methods that enable continuous, long-term monitoring are the 

long-term goal.  

 

 

1.3 Sound propagation modeling 

 

Marine mammal localization methods are usually implemented with an isospeed 

(constant sound speed) assumption. In many cases, particularly those involving 

propagation over long distances, this can lead to inaccurate position estimates [Chapman 

2004; Tiemann et al. 2004; Nosal and Frazer 2006a]. To overcome this problem, this 

dissertation uses the Gaussian beam acoustic propagation model BELLHOP [Porter and 

Bucker 1987; Porter and Liu 1994; Porter 2005] to model sound propagation through the 

ocean. For a given frequency ω and fixed source/receiver positions, BELLHOP uses 

environmental inputs (sound speed profiles, surface and bottom properties, and so forth) 

to calculate the arrival time, tk, and complex amplitude, ak, of the kth beam at the receiver. 

These Green’s function is then a sum of beams: 

 ∑=
k

k
ti aeG k )()( )( ωω ωω . (1.1) 
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Chapter 2 

DIRECT-REFLECTED TIME DIFFERENCE METHOD 

 

  

The first paper (Section 2.1) of this Chapter introduces and applies a method that 

relies strictly on the differences in the time of arrival of direct and surface reflected paths 

(DRTD). Unlike the TOAD method, the DRTD method is insensitive to receiver timing 

offset, which makes it ideal for problems where receivers cannot be synchronized. It is 

potentially useful to estimate and correct the timing offset between receivers using a 

source of opportunity (such as a whale call). The second paper (Section 2.2) combines the 

DRTD method with a TOAD method to obtain the track of a sperm whale with accuracy 

to within 10 m. A method to estimate the orientation of the whale is developed and used 

to recover the beam pattern of sperm whale clicks.  

Both the DRTD and the combined TOAD/DRTD methods are implemented using 

a simplified MFP approach; times of arrivals are predicted for every point on a grid of 

candidate source positions, then predictions are compared with measured values to find 

the whale position. Probability density functions are used to quantify error caused by 

uncertainties in receiver position, sound-speed profiles, and TOA measurements. An 

acoustic sound propagation model is used to account for depth-dependent sound speed 

variations. This is important for widely spaced hydrophone arrays because refraction can 

be significant for propagation over long distances.  



 - 12 -

2.1 Paper 1 

 

Nosal E-M, LN Frazer (2006). Delays between direct and reflected arrivals used to track 

a single sperm whale. Applied Acoustics, 87 (11-12), 1187-1201. 

 

Abstract – One dataset made available for the 2nd International Workshop on Detection 

and Localization of Marine Mammals using Passive Acoustics featured a single sperm 

whale recorded for 25 minutes on 5 widely spaced, bottom-mounted hydrophones in the 

Tongue of the Ocean. In this paper, we track the whale using a model-based method that 

relies on the difference in arrival times along direct and surface-reflected propagation 

paths. Four receivers are required to estimate positions in three dimensions. Details of the 

method are presented, and tracks are estimated using an isospeed and a depth-dependent 

sound speed profile (SSP). Depth estimates for the isospeed SSP are about 50–100 m 

shallower than for the depth-dependent SSP, and horizontal positions are similar. 

Performance estimates indicate that the depth-dependent SSP results are more accurate, 

with estimated depths of 650–760 m and average vertical and horizontal swim speeds 

(not accounting for current) of 0.30 m/s and 2.40 m/s, respectively. 

 

2.1.1 Introduction 

Recordings of sperm whale vocalizations in the Tongue of the Ocean were made 

available to participants of the 2nd International Workshop on Detection and Localization 

of Marine Mammals using Passive Acoustics. The datasets are from March 23 and 30, 

2002 and were prepared by the Naval Undersea Warfare Center (NUWC). In the March 
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23 dataset a single sperm whale is clearly heard on all 5 bottom-mounted hydrophones 

for the full 25 minutes of recordings.  

As they are the predominant vocalization present in the recordings, this work 

concentrates on the so-called regular (or usual) clicks emitted by sperm whales during 

deep dives [Whitehead and Weilgart 1991]. Regular clicks have inter-click intervals 

(ICIs) of 0.5–2 s [Goold and Jones 1995; Jaquet et al. 2001], duration of about 10–20 ms 

[Goold and Jones 1995], and energy from below 100 Hz to above 20 kHz [Watkins et al. 

1993; Zimmer et al. 2005a]. Due to these characteristics, as well as the deep-water 

environment and bottom-mounted hydrophones used for the recordings, direct and 

surface-reflected arrivals can be easily identified. Specifically, reflected arrivals come 

shortly after their associated direct arrivals and they have lower amplitude, less power at 

high frequencies, and slightly longer duration. Moreover, the effect of source-receiver 

spacing on the time delay between corresponding direct and surface-reflected rays 

(DRTD) is clearly audible; DRTDs decrease with increasing source/receiver separation.  

For a moving sperm whale DRTDs vary between receivers as well as with time on a 

single receiver. Cato [1998] and Aubauer et al. [2000] explain this effect for an isospeed 

SSP.  

Motivated by this dataset, we developed and implemented a tracking method that 

relies entirely on DRTDs. DRTDs have previously been exploited for localization [Cato 

1998; Aubauer et al. 2000; Thode 2005; Skarsoulis and Kalogerakis 2005], but they have 

typically been used with isospeed SSPs to establish range, and not (to our knowledge) to 

estimate a three dimensional track using widely spaced receivers, as is done here. A ray-

tracing model that accounts for the depth-dependent sound-speed SSP (SSP) gives 
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different, and presumably more accurate, estimates than an isospeed SSP. We also give 

approximate error maps for depth and x-y coordinates of location. Unfortunately, no 

visual or tagging data is available to verify the estimated track of the sperm whale. 

Nevertheless, the estimated track is consistent with other observations of sperm whale 

behavior, which lends confidence to our predictions.  

 

2.1.2 Methods 

Before giving the details of the method, we first provide a general overview, 

noting that at least four receivers are required for the localizations. Signals are sub-

divided into short time intervals, and a list of candidate source depths is created. Each 

time interval and depth is processed separately. At each receiver, the DRTD is 

established by click detection scheme. These measured DRTDs are compared to modeled 

DRTDs to estimate the horizontal separation of source and receiver. This separation 

defines (the radius of) a circle centered at the receiver. If the search has been conducted 

at the correct source depth, the arrival times have been accurately determined, and the 

environment has been perfectly modeled, all receiver circles intersect at a single point, 

which is the position of the source. In most cases, however, the circles do not intersect at 

a single point, and a point of best agreement must be determined. This is accomplished 

by creating a likelihood surface (a probabilistic indicator of source location sometimes 

referred to as an ambiguity surface) for each receiver; the surfaces are assigned value 1 

along the circles (highest probability) and decay according to a Gaussian weighting away 

from the circle, both inward and outward. Likelihood surfaces for each receiver are 

averaged to create a total likelihood surface at the current search depth.  This process is 
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repeated for all candidate source depths, and the point with maximum likelihood is 

declared the overall estimated source position at that time. Only positions at times that 

give sufficiently large likelihood are retained. 

 

2.1.2.1 Preliminaries 

The signal at each receiver is sub-divided into short time intervals, typically 

several tens of seconds long, which can overlap. Two factors are considered when 

choosing interval lengths. First, longer intervals contain more clicks, which helps to 

reduce errors in estimated DRTDs. For intervals that are too long, however, movement of 

the whale may result in significant variation of the DRTDs within the interval. Through 

trial and error, 20 s intervals (which typically contained between 10 and 25 clicks) were 

chosen as a good compromise for the workshop dataset. A 15 s overlap was used since it 

gave good time resolution for the track while keeping run-times reasonably low. 

 Next, a look-up table of predicted DRTDs as a function of range for all receivers 

and candidate source depths is created. Hydrophone positions (Table 2.1.1) were 

provided by NUWC. All phones were 17 feet off the bottom except K, which was 18 feet 

off the bottom. In this work, the Gaussian beam acoustic propagation model BELLHOP 

[Porter and Liu 1994] was used to model the environment and create this table. The range 

list varied from 5 m to 10 km in 5 m increments. Since the hydrophones were all within 

7.5 km of one another, this allowed for searches several kilometers beyond the boundary 

of the receiver array. Candidate depths covered the entire water column at 10 m 

resolution. Two sound speed profiles (SSP) were used. One was an isospeed SSP with a 

sound-speed of 1510 m/s; the other was a depth-dependent SSP, the average historical 
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SSP from the Tongue of the Ocean for March, taken from the Generalized Digital 

Environment Model [GDEM] (Fig.2.1.1). Figure 2.1.2 shows modeled DRTDs as a 

function of horizontal separation for one hydrophone and three candidate source depths.  

 

Table.2.1.1. Hydrophone positions provided by NUWC 
Hydrophone x-position (m) y-position (m) depth (m) 

G 10658.04 -14953.63 1530.55 
H 12788.99 -11897.12 1556.14 
I 14318.86 -16189.18 1553.58 
J 8672.59 -18064.35 1361.93 
K 12007.50 -19238.87 1522.54 

 

 

 
 
Fig 2.1.1 Historical SSPs for the region. The SSP for March, which is when the data was 
collected, is shown in bold and was used to model DRTDs.   
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Fig 2.1.2 Modeled DRTDs for hydrophone H as a function of horizontal separation for 
source depths of (a) 890 m, (b) 670 m, and (c) 400 m. Solid lines are for the depth-
dependent SSP for March; dashed lines are for an isospeed SSP of 1510 m/s.  
 

 

2.1.2.2 Detecting and classifying arrivals to establish DRTDs 

As mentioned in the introduction, the characteristics of the source and the 

environment make it easy to identify direct and surface-reflected arrivals in the time 

series. Short-duration calls result in no overlap between associated direct and surface-

reflected arrivals, and their broadband nature can be used to reduce noise (see next 

paragraph). The ICI is usually long enough so that a reflected arrival precedes the direct 

arrival from the next click. The deep-water environment reduces complications from 

multiple arrivals, and bottom-mounted hydrophones mean that bottom reflections arrive 

immediately after direct signals, so they are not confused with surface reflections. Refer 

to Figure 2.1.3 for a waveform of a typical sequence of direct and reflected arrivals. 
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Direct arrivals are high amplitude and quite evenly spaced, with reflected arrivals 

between them. In some cases the direct and reflected arrivals are not so clear (see 

Fig.2.1.4 (a)). 

 

Fig 2.1.3 Waveform at hydrophone J for the data segment beginning at 170 s. Direct 
arrivals have large relative amplitude.  Surface reflections come between the direct 
arrivals and have smaller relative amplitude. 
   

 

To improve the detection process for such difficult cases, a spectrogram method 

was employed. The spectrogram method exploits the broadband nature of the sperm 

whale clicks. First, a complex spectrogram is created from the hydrophone signal, which 

has a sampling frequency of 48 kHz, via a short-time Fourier transform. A high-pass 

filter is applied to the time series of each frequency channel in the spectrogram. Since 

sperm whale clicks are less than 25 ms in duration, the filter cutoff is set at 40 Hz. 

Filtering is done in the frequency domain using half of a Hanning window to roll-off with 

an 80 Hz transition bandwidth. This reduces slowly varying sounds, such as tonal noise 

from equipment or boats. After filtering, magnitudes are taken of the filtered spectrogram 

points, and each frequency channel is divided by the mean of the entire channel; this de-
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emphasizes the lower frequencies that have more background noise. Finally, the 

frequency channels are summed to give a time signal with lower background noise and 

coarser time resolution than the original signal. The time resolution of the channel sum  

depends on the duration and overlap of the windows used in the discrete FFT transforms. 

Figure 2.1.5 shows the spectrogram and the processed spectrogram for the signal in 

Fig.2.1.4(a) using 512-point Hanning windows with 256-point overlap. The channel sum 

(hereinafter referred to as the filtered signal) is shown in Figure 2.1.4(b).   

 
Fig 2.1.4(a) Waveform at hydrophone K for the data segment beginning at 170 s. Noise 
completely covers the reflected arrivals. (b) After applying the spectrogram method, 
noise is significantly reduced and reflected arrivals are clearly identifiable. 
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Fig 2.1.5 Spectrogram of the signal from Fig.2.1.4 (a) created using 512-point Hanning 
windows with 256-point overlap. (a) Original spectrogram; and (b) after high-pass 
filtering and dividing each frequency channel by its mean. Note in (b) that the tonals have 
been removed, and the low frequencies (with significant background noise) have been de-
emphasized. 
 
 

 Peaks in the filtered signal are classified as direct arrivals if they have amplitude 

greater than some threshold percent of the mean of the three largest amplitudes in the 

current time interval. For the results presented here, a 50 % threshold was used. This was 

chosen by trial and error via visual inspection of signals and detected arrivals in 

numerous cases. Too high of a threshold caused many direct arrivals to be missed; too 

low a threshold caused some reflected arrivals to be incorrectly classified as direct 

arrivals.  
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The peak with maximum amplitude arriving between two classified direct arrivals 

was classified as the surface-reflected arrival corresponding to the direct arrival 

preceding it. Since direct arrivals were not always entirely impulsive (i.e., they had non-

zero duration), and since the bottom-reflected arrival could sometimes be seen 

immediately following the direct arrival, care was taken not to look for the surface 

reflection too soon after the direct arrival; arrivals within 100 ms of the direct arrival 

were not included in the search for surface reflections. Further, since the surface-reflected 

arrivals were expected to have amplitudes between about 10% and 75% of the amplitude 

of the corresponding direct arrival, pairs that did not meet these expectations were 

discarded. Having classified direct and surface-reflected arrivals pairs, DRTDs were 

computed from their relative arrival times. The median of all resulting times was declared 

the representative DRTD for the current time window and receiver. A median was taken 

instead of a mean, since misclassifications can result in large outliers that significantly 

affect the mean.  

In some cases, DRTDs could not be established on all receivers. This occurred at 

times when the whale was silent, as well as for various cases when the detection scheme 

failed. This included cases with very poor signal-to-noise ratios and those in which a 

surface-reflected signal arrived immediately before, at the same time as, or after the 

subsequent direct arrival (due to short ICIs). Time intervals in which a DRTD could not 

be established on at least four hydrophones were discarded. 
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2.1.2.3 Creating likelihood surfaces 

The following steps are repeated for all candidate source depths. The horizontal 

separation with modeled DRTD closest to the measured DRTD is found for each 

receiver. To create a likelihood surface, a grid is created that covers the horizontal plane 

of interest. For the workshop dataset, the grid range used was 7000 m to 16000 m N-S 

and –21000 m to –10000 m E-W, with 10 m resolution in both directions. For each 

receiver, the likelihood value is a function of each grid point’s radial distance from the 

perimeter of a circle centered at the receiver with radius given by the horizontal 

separation corresponding to that receiver. A Gaussian weighting function, with standard 

deviation 500 m, was found to work well for the current dataset. Likelihood surfaces for 

all receivers on which DRTD could be established are averaged to give the total 

likelihood surface (with value between 0 and 1) at the current candidate source depth. 

Figure 2.1.6 shows the likelihood surface at three different depths. When the candidate 

source depth is too shallow or too deep, the receiver circles do not intersect closely, 

resulting in lower maxima. The positions and values of the maxima are stored.  

After this process has been completed for all candidate source depths, the point 

with the maximum likelihood value is chosen as the estimated source position. Smaller 

maximum likelihood values indicate greater uncertainty in the source position. Times 

with likelihood below a preset level are discarded as having too much error. For the 

workshop data, a threshold of 0.850 was used. 
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Fig 2.1.6 Likelihood surfaces for the first 20 s of data at depths of (a) 400 m (b) 670 m (c) 
890 m. Triangles indicate receiver locations and are labeled in (a). White crosses mark 
position estimates, with surface values (a) 0.401 (b) 0.997 (c) 0.729. The estimated 
source position, chosen from (b), is [10010 m, -15020 m, 670 m]. 
 

 

2.1.3 Results 

The process was automated by a collection of MATLAB codes. No effort was 

made to optimize the code for efficiency. Modeling of the environment (calculation of 

predicted DRTDs) took less than a minute and was done once for each SSP. After this, 

run times were about three times real-time on a 2.8 MHz Pentium IV; 5 minutes of data 

took about 17 minutes to process. Using coarser time and/or space resolution can reduce 

run times. Also, a more intelligent search can increase the efficiency of the algorithm 

(e.g., the swim speed of the whale is limited so it is not necessary to search the entire 

water column if the position of the whale is established for previous time intervals).  

Results are shown in Figure 2.1.7 as estimated position (x-, y-, and depth) versus 

time. In these results, 13% of all time intervals were eliminated because DRTDs could 

not be established on 4 or more receivers. Of the remaining time intervals, 24% were 

eliminated in the isospeed SSP case and 20% were eliminated in the depth-dependent 
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SSP case because maximum likelihood values were less than 0.850. The mean of the 

maximum likelihood values for the remaining points is 0.920 for the isospeed SSP and 

0.998 for the depth-dependent SSP, suggesting that the depth-dependent SSP results are 

more accurate. The x- and y- tracks for the isospeed SSP and the depth-dependent SSP 

are quite similar. The depth tracks are also similar, with the depth-dependent SSP track 

between 650 m and 760 m and about 100 m deeper than the isospeed track. This 

difference reiterates [Aubauer et al. 2000; Thode 2005; Chapman 2004] the importance 

of incorporating the effects of a depth-dependent SSP into methods for tracking marine 

mammals over long ranges using passive acoustics. In Figure 2.1.8, the track from the 

depth-dependent SSP is plotted in the x-y plane with the hydrophone positions. Figure 

2.1.9 shows the smoothed track from the depth-dependent SSP in three dimensions. A 

five-point moving average filter was used along each direction to accomplish the 

smoothing.  

The average swim speed was estimated from the smoothed track by calculating 

the velocity for each time step and taking the mean over all times. The vertical swim 

speed was 0.30 m/s and the horizontal swim speed was 2.40 m/s. It is not known what the 

current was in the area at the time, so the horizontal swim speed relative to the current 

cannot be estimated.  
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Fig 2.1.7 Estimated track (not smoothed) of the sperm whale with the isospeed SSP (dots) 
and the depth-dependent SSP (crosses). Times with performance values less than 0.850, 
and those for which DRTDs could be established on only 3 (or fewer) receivers, have 
been eliminated.  
 

 
Fig 2.1.8 Estimated two-dimensional track (not smoothed) of the sperm whale with the 
depth-dependent SSP. Triangles indicate receiver positions. 
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Fig 2.1.9 Smoothed three-dimensional track (solid line) estimated using the depth-
dependent SSP. Projections onto the three planes are shown with dashed lines.  
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2.1.4 Error estimates 

To estimate the error in source position associated with the method presented 

here, error maps of the array for x- y- and z- directions were created under the 

assumptions that sources of error are independent, error in one direction is independent of 

error in the other directions, and errors are normally distributed. As in time-difference of 

arrival methods [Wahlberg 2004], there are three main input variables (hence sources of 

error) associated with the DRTD method: sound speed SSP, measured DRTD, and 

receiver position. Since no measurement of receiver position error was available, we deal 

only with errors due to SSP and DRTD.  

First, consider errors in the x- and y- directions. For receiver i and position 

( , , )p p pp x y z= , depth is fixed to find ,r iσ , the standard deviation in range for receiver i 

(see Fig. 2). This is a combination of the error due to the SSP, , ,ssp r iσ , and the error due to 

DRTD, , ,drtd r iσ . Letting td be the modeled DRTD between receiver i and p for a reference 

SSP, we approximate , ,ssp r iσ as the difference between the minimum and maximum ranges 

corresponding to td over all possible SSPs, and , ,drtd r iσ  as one fourth of the difference 

between the ranges corresponding to 2d drtdt σ± for the reference SSP, where drtdσ  is the 

estimated standard deviation of DRTD measurements. To the circle passing through p , 

centered on receiver i, we attach a Gaussian PDF with standard deviation  

2 2
, , , , ,r i ssp r i drtd r iσ σ σ= + . 

To estimate error in the x-direction from the combined PDFs at all receivers, each 

PDF is approximated as locally linear. In other words, the PDF for each receiver is 
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approximated by a ridge whose axis is the line tangent to the corresponding circle at p . 

Let θi  denote the angle from the x-axis to the ith hydrophone, then the combined PDF at 

point ( , , )p px y z is: 
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Normalization is automatic as: 
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Similarly for error in the y-direction, the combined PDF at point ( , , )p px y z is: 
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Error in the z-direction is handled in a similar manner. For receiver i and position 

( , , )p p pp x y z= , range is fixed to find the standard deviations in depth for receiver i: 

, ,ssp d iσ , , ,drtd d iσ , and 2 2
, , , , ,d i ssp d i drtd d iσ σ σ= +  (see Fig. 2.1.10). The combined PDF at 

point ( , , )p px y z is simply: 
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Fig 2.1.10 Modeled DRTDs for hydrophone H as a function of depth for source ranges of 
(a) 500 m, (b) 2500 m, and (c) 7500 m. Solid lines are for the depth-dependent SSP for 
March; dashed lines are for an isospeed SSP of 1510 m/s. 
 
 

Based on the width of the processed clicks (about 10 ms), the standard deviation 

of the DRTD measurements, drtdσ , was set to 5 ms. Figure 2.1.11 (a)-(c) shows location 

error maps (at 700 m depth) obtained using the SSPs from all twelve months (see 

Fig.2.1.1) as the collection of possible SSPs. Error maps for different depths are similar. 

For the horizontal directions, error from DRTD measurement only is about double the 

error from SSP only. In the vertical direction, DRTD measurement errors are similar to 

SSP errors.  Figure 2.1.11 (d)-(e) shows error maps obtained when the isospeed SSP is 

added to the collection of possible SSPs. In this case, errors associated with SSP only are 

an order of magnitude greater than errors associated with DRTD only. In Figure 2.1.12, 

the errors associated with the actual tracks are plotted, with the errors calculated for (a) 

the depth-dependent case using the monthly SSPs and (b) the isospeed case using the 
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isospeed SSP in addition to the monthly SSPs. In all instances, error in the vertical 

direction is less than error in the horizontal directions; this is expected because DRTD 

changes more rapidly with depth (Fig.2.1.10) than with range (Fig.2.1.2). 

 

 

 

 

Fig 2.1.11 Contour intervals (values as indicated) of one standard deviation in x-, y-, and 
z- source position at 700 m depth due to uncertainties in SSPs and DRTDs. (a)-(c) Depth-
dependent SSP; (d)-(e) Isospeed SSP. Triangles indicate receiver positions. 
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Fig 2.1.12 One standard deviation in x-, y-, and z- source position (as a function of time) 
along estimated tracks due to uncertainties in SSPs and measurement of DRTDs. (a) 
Depth-dependent SSP; (b) Isospeed SSP.  

 

 

2.1.5 Discussion 

Although it cannot be confirmed by tags or sightings, the estimated track is 

consistent with what is expected for a sperm whale. In particular, sperm whale dives are 

typically many hundreds of meters deep [Papastavrou et al. 1989; Watkins et al. 1993; 

Clarke et al. 1993; Zimmer et al. 2003] with reports of dives in excess of 1000m[Loyker 

1977; Wahlberg 2002]. Dives may last up to 90 minutes [Goold and Jones 1995], but are 

more commonly between about 25 and 50 minutes [Watkins et al. 1993; Papastavrou et 

al. 1989; Gordon and Steiner 1992; Jaquet et al. 2000]. Also, the estimated swim speeds 
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agree with those observed in previous studies [Watkins et al. 1993; Papastavrou et al. 

1989; Wahlberg 2002; Watkins et al. 2002]. Our error estimates suggest that the track 

using the depth-dependent SSP is correct to about 100 m in horizontal position and 20 m 

in depth.  

 An important advantage of the DRTD method over arrival time difference methods 

commonly used for marine mammal localization is that it is much less sensitive to 

synchronization errors in timing between receivers. This is because DRTD measurements 

are estimated for individual hydrophones, rather than between pairs of hydrophones. 

Although a comprehensive study of synchronization error was not performed, it is worth 

noting that a 2.34 s offset between two of the five hydrophones that was (unknown and) 

present in the original version of the distributed dataset did not significantly affect our 

predicted track. 

Several problems are associated with the DRTD method. First, for near-surface 

sources, direct and surface-reflected clicks are difficult to distinguish. Shadow zones 

present another problem for near-surface sources, although this effect would likely occur 

on only one receiver, and can be overcome for sufficiently large (> 5 receiver) arrays. 

Furthermore, surface roughness associated with gravity waves may have a significant 

effect on reflected arrival times [Skarsoulis and Kalogerakis 2005; Godin and Fuks 

1989], and hence on estimated DRTDs. Uncertainty in receiver location is also a 

problem, as it is with all localization techniques. Methods to locate the receivers more 

accurately [Wahlberg et al. 2001], or to include variable receiver position in the modeling 

are useful for this [Michalopoulou and Ma 2005]. Our detection scheme is for a single 

animal, but improved schemes that can distinguish calls of individuals [Thode et al. 
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2002; Mellinger 2002] might extend its applicability to multiple whales. Finally, it would 

be prudent to compare and combine the DRTD method with other localization techniques 

to give more accurate track estimates. 

The reader is advised that some of the methods presented here were done with a 

somewhat “quick and dirty” mentality. This approach was taken because we wanted to 

test the feasibility of using DRTDs for 3-D localization without getting tangled in detail, 

and there is certainly much room for improvement. For example, the method would 

benefit from a more sophisticated (and objective) detection and classification scheme 

[Zimmer et al. 2005a]. Also, likelihood surfaces should incorporate errors in 

measurement and modeling instead of using the (empirical and somewhat arbitrary) 

standard deviation of 500 m. Rather than searching over candidate depths, likelihood 

volumes could be created in three dimensions. Further, the receiver log likelihoods 

(rather than the likelihoods themselves) should be averaged to create overall likelihood 

surfaces. Among other possible improvements, these things would reduce errors and 

allow for more accurate error estimates. 

 

2.1.6 Conclusions 

Recordings of a single sperm whale on 5 bottom-mounted hydrophones in a deep-

water environment were used to track the animal in three dimensions for 25 minutes. A 

model-based method based on the arrival time difference between direct and surface-

reflected clicks was used in the tracking and described in detail. All 5 hydrophones were 

used and at least four hydrophones are needed to apply the method. A depth-dependent 

SSP led to better performance estimates than an isospeed SSP. Run times were about 
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three times longer than real-time, but can be reduced to real-time by decreasing resolution 

or by using a faster machine. Although we did not have data to verify the track visually or 

otherwise, it is consistent with sperm whale behavior. Estimated horizontal positions 

were similar for both SSPs, but depth for the isospeed SSP was about 50–100 m 

shallower than for the depth-dependent SSP. The estimated depth of the whale varied 

between 650 m and 760 m for the depth-dependent SSP. The average vertical and 

horizontal swim speeds were 0.30 m/s and 2.40 m/s, respectively.  
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2.2 Paper 2 

 

Nosal E-M, LN Frazer (2007). Sperm whale 3D track, swim orientation, beam pattern, 

and click levels observed on bottom-mounted hydrophones. Journal of the Acoustical 

Society of America, 122(4), 1969-1978. 

 

Abstract – In an earlier paper [Nosal and Frazer 2006a], a sperm whale was tracked in 3D 

using direct and surface-reflected time differences (DRTD) of clicks recorded on five 

bottom-mounted hydrophones, a passive method that is robust to timing errors between 

hydrophones. This paper refines the DRTD method and combines it with a time of 

(direct) arrival (TOA) method to improve the accuracy of the track. Knowing the position 

and origin time of each click, pitch and yaw are obtained by assuming the main axis of 

the whale is tangent to the track. Roll is then found by applying the bent horn model of 

sperm whale phonation, in which each click is composed of two pulses, p0 and p1, that 

exit the whale at different points. With instantaneous pitch, roll and yaw estimated from 

time differences, amplitudes are then used to estimate the beam patterns of the p0 and p1 

pulses. The resulting beam patterns independently confirm those obtained by Zimmer et 

al. [2005a] with a very different experimental set-up. A method for estimating relative 

click levels is presented and used to find that click levels decrease toward the end of a 

click series, prior to the “creak” associated with prey capture.  
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2.2.1 Introduction 

The main purpose of this paper is to demonstrate and progress the use of passive 

acoustic methods for studying marine mammals in the wild, especially odontocetes. In a 

recent paper [Nosal and Frazer 2006a], we studied the improvement in ray-based tracking 

that occurs when a realistic sound speed profile is used instead of an assumed isospeed 

profile. We tracked a sperm whale using the difference between direct and surface-

reflected click arrival times (DRTD), a method that is robust to time-origin errors on 

different hydrophones. Here we refine the DRTD method and combine it with a time of 

(direct) arrival (TOA) method to get a combined method that is more accurate than either 

method separately. The time and position estimates are precise enough that we can 

approximate swim velocity and orientation at each click, which we then use to estimate 

click beam patterns and levels. 

This paper focuses on clicks with regular inter-click intervals (ICIs) of 0.45-2s, 

called ‘usual’ clicks by Whitehead and Weilgart [1990], emitted by sperm whales while 

foraging at depth. A typical foraging dive lasts about 45 minutes, and begins with a steep, 

steady descent to a depth of several hundred meters [Watkins et al. 2002, Watwood et al. 

2006], followed by a period of searching for prey and then a steep, steady ascent. Series 

of regular clicks emitted at foraging depth are often terminated by a ‘creak’ of clicks with 

high repetition rate followed by several seconds of silence [Gordon 1987; Mullins et al. 

1988; Goold and Jones 1995]. The regular clicks are likely used for echolocation [Norris 

and Harvey 1972; Whitehead and Weilgart 1991; Goold and Jones 1995; Møhl et al. 

2000; Jaquet et al. 2001; Madsen et al. 2002 a; Whitehead 2003; Møhl et al. 2003] while 

the creaks mark the terminal phase of prey capture [Miller et al. 2004]. Regular clicks are 
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short in duration, broadband (100Hz – over 20 kHz), and have a powerful forward 

directed beam [Møhl et al. 2000; Madsen et al. 2002a,b]. Regular clicks are often heard 

on hydrophones several kilometers from the vocalizing animal. Being of short-duration, 

direct and reflected arrivals can often be distinguished, making clicks ideal for passive 

localization. 

We track a single sperm whale from its regular clicks for 23 minutes using 

recordings on 5 bottom-mounted hydrophones. The data were recorded at the Atlantic 

Undersea Test and Evaluation Center (AUTEC) located in the Tongue of the Ocean (off 

Andros Island, Bahamas). They were provided by the Naval Undersea Warfare Center for 

the 2nd International Workshop of Detection and Localization of Marine Mammals using 

Passive Acoustics. The sampling rate was 48 kHz and the hydrophone positions are listed 

in Table 2.1.1. Some further details can be found in Adam et al. [2006], but 

unfortunately, the anti-alias filter, frequency response, sensitivity, and directionality of 

the sensors were not available. Accordingly, our results are limited by the assumption of 

an omni-directional and flat frequency response, and absolute sound pressure levels 

cannot be found.  

The dataset used here is the same dataset that we used to develop the DRTD 

method [Nosal and Frazer 2006a]. The track of the sperm whale in this dataset has also 

been obtained using time of arrival differences between pairs of receivers [Giraudet et al. 

2006; Morrissey et al. 2006; White et al. 2006]. The improved accuracy of the combined 

DRTD/TOA method used in this paper allows us to estimate the velocity of the sperm 

whale from position and time differences between successive clicks. The pitch and yaw 
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of the whale then follow from the assumption that the main axis of the whale is parallel to 

its velocity vector.  

In order to find roll, we apply the bent-horn model of sperm whale phonation, 

which was proposed to explain the multi-pulse structure of sperm whale clicks [Norris 

and Harvey 1972; Møhl 2001] and is supported by recent studies [Madsen et al. 2003; 

Møhl et al. 2003; Zimmer et al. 2005a]. In the bent-horn model, a single sound is 

generated at the phonic lips (Figure 2.2.1). Some energy leaks directly into the water as a 

p0 pulse. Most of the energy transmits back through the spermaceti organ, reflects off the 

frontal sac in front of the skull, transmits forward into the “junk,” and exits into the water 

as the p1 pulse. Since the p1 pulse follows a longer path than p0, it arrives later, giving 

the click a multi-pulse structure. Other click components (resulting from further 

reflections in the head and other exit points) are also present [Møhl 2001], but they are 

not required or considered here. Since the measured delay between the p0 and p1 pulses 

depends on the orientation of the whale [Zimmer et al. 2005b; Laplanche et al. 2006], it 

can be used to recover roll. 

 
 
Fig. 2.2.1 Diagram illustrating the paths taken by the p0 and p1 pulses according to the 
modified bent-horn model of sound production in sperm whales. 
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With position, velocity, pitch, roll and yaw obtained solely from travel time 

differences, we then use relative amplitudes to estimate the beam patterns and directivity 

indices of the p0 and p1 pulses that comprise a click. Our results agree with previous 

studies [Møhl 2003; Zimmer et al. 2005a] which found that the p1 pulse has a narrowly 

focused, forward-direct beam, that the p0 pulse is slightly weaker and more broadly 

backward-directed, and that a low-frequency, nearly omni-directional component is 

characteristic of all clicks. Finally, we correct click amplitudes for beam pattern and 

propagation loss to estimate relative click levels within each click sequence, finding that 

click source levels decrease toward the end of a click series. 

 

2.2.2 Data processing  

2.2.2.1 Click detection, classification, and association  

The beginnings and ends of the clicks were detected using an automated transient 

detector [Page 1954; Wald 1947; Abraham 2000; Zimmer et al. 2003; 2005a]. To reduce 

noise, each time series was filtered using a second-order, high-pass Butterworth filter 

with a 300 Hz low cut. The envelope of each filtered time series was calculated as the 

magnitude of the corresponding analytic signal, where the analytic signal has real and 

imaginary parts consisting of the original time series and its Hilbert transform, 

respectively [e.g., Bracewell 2000]. Given the instantaneous signal amplitude (envelope) 

en, a test variable Vn was calculated as: 
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where Nn is the noise estimate. For the first noise estimate, N1 is taken as the mean square 

envelope value (over all samples for that hydrophone). Detection decisions and updates 

for subsequent noise estimates are made according to the value of Vn in the following 

algorithm: 
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 (2.2.2) 

 

where T0, T1, and T2 are the thresholds for decision of detection, end of detection, and 

noise, respectively; Tx ∈ {T1,T2} is the current threshold; and α is the exponential 

weighting on the power estimate when no signal is detected. For the first sample, Tx is set 

equal to T1. Threshold and weighting values that performed well were T0 = 25 (13.98 

dB), T1 =9 (9.54 dB), T2 = 4 (6.02 dB), and α = 1/100. 

At each time step, this algorithm decides if there is a signal present (detection) or 

not (no detection). The algorithm operates in two modes: signal and noise. In the signal 

mode, signal present is decided while the value of the test variable is greater than the 

detection threshold (Vn > T0). No decision is made if the value of the test variable is less 
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than the threshold for detection but greater than the threshold for the end of detection (T1 

< Vn < T0). Signal not present is decided once the value of the test variable drops below 

the end of detection threshold (Vn < T1). Here, the algorithm switches to noise mode. In 

this mode, signal not present is decided while the test variable remains below the noise 

threshold (Vn < T2) and the noise variable is updated at each time step according to an 

exponential weighting  (more weight toward recent values). No decision is made if the 

value of the test variable is less than the threshold for detection but greater than the 

threshold for noise (T2 < Vn < T0). Signal present is decided once the value of the test 

variable jumps above the detection threshold (Vn > T0). Here, the algorithm switches to 

signal mode. 

Each click resulted in a direct arrival, usually followed by a lower-amplitude 

surface reflection. Direct-reflected pairs were classified according to the following 

criteria: (1) the amplitude of the direct arrival varies slowly; (2) the inter-click interval 

between successive direct arrivals varies slowly; (3) the reflected arrival has lower 

amplitude than the direct arrival; and (4) the time between the direct and reflected arrival 

(DRTD) is similar to that of the preceding direct-reflected pair. 

Each click detected on two or more receivers was numbered sequentially. Clicks 

on different receivers were associated by comparing intervals between clicks, which 

should be nearly identical on all receivers. To eliminate incorrect associations due to 

click time measurement error, this comparison included intervals between all clicks in a 

series, not only those immediately preceding or following a given click. In total, 1324 

clicks were numbered, with 1102, 913, 868, 1163, and 1035 clicks detected on receivers 

1, 2, 3, 4, and 5 respectively. The number of clicks detected on a total of 2, 3, 4, and 5 



 - 42 -

receivers was 137, 324, 480, and 383. Only clicks recorded on 3 or more hydrophones 

(total of 1187 clicks) were used for localization.  

 

2.2.2.2 Level and pulse delay measurement 

The maximum of the envelope was used to estimate the received peak pressures 

of each direct click. Using frequency and time windows, peak pressures of the p0, p1, and 

low-frequency (LF) components were also obtained. Following Zimmer et al. [2005a], 

the p0 and p1 pulses were defined to fall in time windows from, respectively, –2 to 3 ms 

and 3 to 10 ms, relative to detection of the start of the click. They were both defined to 

fall in a frequency window of 3 to 22 kHz. The identified p0 and p1 times and amplitudes 

corresponded to maxima of the envelope of the filtered signal. The LF component was 

defined with a time window of -2 to 10 ms and a frequency window of 300 Hz to 3 kHz. 

The delay between the p0 and p1 pulses, τ, was estimated by subtracting p0 arrival time 

from p1 arrival time. 

 

2.2.3 Localization 

2.2.3.1 Methods 

For each receiver, the acoustic propagation model BELLHOP [Porter 2005] was 

used to create a lookup table of TOAs, DRTDs, takeoff beam angles, and transmission 

losses for a list of candidate source ranges and depths. The historic depth-dependent 

sound speed profile for the area (24° 45' N, 77° 45' W) in March was taken from the 

Generalized Digital Environment Model [GDEM] and is the same as the profile used in 

Nosal and Frazer [2006a]. The depth list varied from 5 m to 1550 m with 5 m increments, 
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and the range list varied from 5 m to 20 km with 5 m increments. Since arrival times 

varied smoothly for the depths and ranges of interest, all required TOAs and DRTDs 

were interpolated from the values in the lookup table using cubic splines.  

To determine the time and position of each click, we first created a 4-D grid of 

candidate source points (one dimension for time and three for position). Errors in DRTD 

and TOA were assumed to be normally distributed. Ideally, DRTD and TOA should be 

regarded as functions, not just of source position, but also of sound speed and receiver 

positions, and likelihood surfaces should be maximized over this much larger parameter 

space. However, to reduce computational requirements, we incorporated the uncertainties 

in sound speed profile and receiver positions into the standard deviations for DRTD and 

TOA in a “worst case” manner. Standard deviations σdrtd and σtoa were calculated as: 

 2 2 2
drtd meas rp drtd2σ σ σ σ= + +  (2.2.3) 

 2 2 2
toa meas rp toaσ σ σ σ= + +  (2.2.4) 

where σmeas is the standard deviation (std) in the measured click times, σrp is the std due to 

uncertainty in receiver position, and drtdσ  and toaσ are the std (due to sound speed 

uncertainty) in modeled DRTDs and TOAs. We used σmeas = 5 ms based on the widths of 

the clicks (about 10 ms) and σrp = 2 ms corresponding approximately to a best-guess 

receiver position uncertainty of 3 m (actual position uncertainty is unknown). To 

determine drtdσ  and toaσ , the DRTD and TOA lookup tables were recalculated for all 12 

months using historic sound speed profiles (also from the GDEM). This gave 12 possible 

TOAs and DRTDs for each range and depth. The difference between the minimum and 

the maximum of these 12 values approximates the width of the uncertainty curves. The 
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maximum such width over all ranges and depths (“worst-case”) was taken as two std, 

giving drtdσ = toaσ  = 3 ms. Using the maximum width simplifies the calculations, by 

allowing one std to be used for all candidate points, and it over-estimates final errors. 

For candidate whale position s and click time t, the DRTD and TOA likelihood 

functions were computed as: 
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where the sums are over all receivers that heard the click, N is the number of receivers 

that heard the click, DRTDj and TOAj are the measured values on receiver j and jDRTD  

and jTOA  are the modeled values. The total likelihood value is the product of these: 

 drtd toa( , ) ( ) ( , )L t L L t=s s s . (2.2.7) 

The point (s,t) that maximizes L is the estimated source position and time. An advantage 

of distinct likelihood surfaces is that they can be examined separately as a diagnostic, 

since persistent differences between locations from the two methods are an indication that 

hydrophone time origins may be different (degrading TOA), or that the sound speed 

profile in the upper part of the water column is inaccurate (degrading DRTD). 

For computational efficiency, two passes were made. The first pass was coarsely 

sampled in space (10 m grid spacing) and time (10 ms time spacing). For the first click, 

the spatial search volume covered the full water column in depth and extended 5 km past 

the boundary defined by the receivers. Time was searched from 0 to 20 s. For the other 
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clicks the boundary of the search volume was based on the time, Δt, between the current 

click and the preceding localized click. This was estimated from the measured time 

between these two clicks on a single phone that heard both clicks. The search volume was 

centered on the position estimate of the previous click, and bounded in all three directions 

by double the maximum possible swim distance in Δt, i.e. 8Δt (assuming a swim speed of 

at most 4 m/s). Time was searched from the previously localized click until 2Δt after it. 

The second pass refined the position and time estimate from the first pass by 

searching a smaller, more finely sampled, volume centered on the position and time 

found in the first pass. The search volume for this pass was sampled at intervals of 1m in 

space and 1 ms in time. It was bounded in space by the coarsely determined source 

location, plus or minus 20 m in all directions, and in time by 200 ms before and after the 

coarsely determined click time.  

 

2.2.3.2 Error estimates 

The literature on bioacoustic localization arrays contains various approaches to 

quantify error [e.g., Whalberg et al. 2001; Spiesberger and Wahlberg 2002]. Since the 

complete likelihood surfaces were already calculated in the localization step above, we 

applied a somewhat different approach, using the likelihood surfaces to give error 

estimates. 

95% confidence intervals (CIs) were estimated from conditional likelihood 

functions (CLFs) by identifying the interval containing 2.5% to 97.5% of the cumulative 

likelihood for the parameter of interest. For example, to find the confidence interval in 

the x-position for a single click, all other parameters (y-position, z-position, and click 
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time) were fixed to their values (y0, z0, t0) at the estimated source position and time. The 

corresponding CLF, 0 0 0( | , , )jL x y z t , was calculated according to Eq. (2.2.7) for a list of 

possible x-positions, xj. The cumulative CLF was then calculated as 
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The denominator normalizes the distribution, and the equality is approximate because of 

the discrete sampling of x. The list of x-positions ranged from x0 – 1 km to x0 + 1 km 

(since the CLF was very close to 0 at1 km away from x0), with 1 m resolution. Then the 

95% CI is [x2.5%, x97.5%], where x2.5% and x97.5% are such that C(x2.5%) = 0.025 and C(x97.5%) 

= 0.975. CIs for y-position, z-position, and time were computed similarly.  

 

2.2.3.3 Results 

Figure 2.2.2 shows the resulting x- y- and z- positions obtained for clicks heard on 

three or more receivers.  Figure 2.2.3 shows the positions in the x-y plane. The click time 

list ranged from t0 – 1 s to t0 +1 s with 0.1 ms resolution. The resulting CI half-widths for 

position are shown in Figure 2.2.4. The half-widths for time were less than 4.5 ms, 5 ms, 

and 5.8 ms for clicks heard on 5, 4, and 3 receivers, respectively. 
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Fig. 2.2.2 Estimated track (not smoothed) of the sperm whale. Positions of clicks detected 
on 3 or more receivers are plotted as dots against the time of the click. 
 
 
 

 
 
Fig. 2.2.3 Estimated two-dimensional track (not smoothed) of the sperm whale. Positions 
are plotted as dots to form the track, as in Fig. 2.2.2, and triangles indicate receiver 
positions.  
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Fig. 2.2.4 Half-widths of 95% confidence intervals for position. Red, green, and blue 
indicate clicks detected on 5, 4, and 3 receivers, respectively.  
 
 

2.2.3 Swim Orientation 

2.2.3.1 Conventions 

This section outlines the orientation conventions used below. Two reference 

frames are required: the earth frame and the whale frame, notated as unprimed and 

primed, respectively.  In the earth frame, positive x, y, and z are directed east, north, and 

upward, respectively. In the whale frame, positive x′ , y′ , and z′  point forward (rostrally 

along the whale’s long axis), left, and dorsally, respectively.  The two frames coincide 

when the whale is traveling due east, horizontal and upright. 
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Three angles are required to transform between the whale and earth frames: yaw 

(θz), pitch (θy), and roll (θx), which are rotations about the z, y, and x axes, respectively. 

For yaw and roll, positive values correspond to a coordinate system rotation in a 

clockwise direction when looking away from the origin along the axis of rotation. For 

consistency with conventions used by Johnson and Tyack [2003], and so that a positive 

pitch corresponds to a nose-upward orientation, positive pitch corresponds to a counter-

clockwise rotation when looking away from the origin along the y-axis. Note that this 

convention differs from standard Euler and pitch-roll-heading convention [Goldstein 

1980]. Thus in our convention a whale with zero yaw, pitch, and roll is swimming 

eastward, horizontally, and upright. From this θx = θy = θz = 0 orientation, the whale turns 

left to increase yaw, toward the surface to increase pitch, and clockwise to increase roll. 

To make them unique, θx, θy, and θz are constrained to the intervals (-180o, 180o], [-90o, 

90o], and (-180o, 180o], respectively.  

A vector in the earth (unprimed) frame is expressed in whale (primed) frame 

coordinates via three matrices that commute only in the limit of very small angles (so the 

order of multiplication is important): 

 ( ) ( ) ( )x x y y z z

x x
y R R R y
z z

θ θ θ
′⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥′ =⎢ ⎥ ⎢ ⎥
′⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 (2.2.9) 
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1 0 0

R ( ) 0 cos sin
0 sin cos

x x x x

x x

θ θ θ
θ θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 (2.2.10) 



 - 50 -

 
cos 0 sin

R ( ) 0 1 0
sin 0 cos

y y

y y

y y

θ θ
θ

θ θ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥−⎣ ⎦

 (2.2.11) 

 
cos sin 0

R ( ) sin cos 0
0 0 1

z z

z z z z

θ θ
θ θ θ

⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

 (2.2.12) 

 

2.2.3.2 Pitch and yaw 

The first step in recovering swim attitude is to approximate the velocity of the 

whale at each click. To do this, a vector-valued position function f(t) = ( fx(t), fy(t), fz(t) ) 

was fit to the calculated click positions and times by minimizing a weighted sum of 

squared position error and acceleration:  
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ff s f   , (2.2.13) 

where the sum is over all localized clicks j, Nc is the total number of localized clicks, sj 

and tj are the estimated position and time of click  j,  and a  = 0.7 is a smoothing 

parameter. Velocity in the earth frame, v(t) = ( vx(t), vy(t), vz(t) ), is found by taking the 

first derivative of f.  

To recover pitch and yaw, we assume that the whale’s main axis is parallel to its 

velocity. This assumption neglects the effects of current and the ability of the whale to 

move laterally or vertically, as well as any scanning movements of the head, so the 

goodness of the approximation increases with the forward speed of the whale. Pitch and 

yaw can then be computed as: 

 ( )1sin /y zvθ −= v  (2.2.14) 
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 ( )1tan /z y xv vθ −=  (2.2.15) 

where tan-1 is the four-quadrant, inverse tangent.  

 

2.2.3.3 Roll 

Once position, pitch, and yaw are known, roll is estimated from the delay τ 

between the p0 and p1 pulses (Fig. 2.2.1). To do this, we build on methods introduced by 

Zimmer et al. [2005b] and Laplanche et al. [2006]. The modeled delay is split into two 

components: τ = tc + tΔp. The constant component, tc, is the time required for sound to 

travel from the phonic lips to the frontal sac, where it reflects, and thence forward to the 

p1 exit point. It is assumed fixed for a given animal. The second component, tΔp, is the 

difference between the travel time from the p1 exit point to the receiver and the travel 

time from the p0 exit point to the receiver. It depends on the exit point of the p1 pulse 

relative to the phonic lips—we assume this exit point is fixed for a given animal—and on 

whale position, receiver position, and roll. The exit point of the p1 pulse is located at the 

junk and is directly ventral to the phonic lips [Madsen 2002; Zimmer et al. 2005b]. 

Hence, if we take the phonic lips to be at point (0,0,0) in the whale frame, the p1 exit 

point can be approximated as (0,0,-dz), with dz fixed for the individual whale (Fig. 2.2.1).   

Given the position of the whale, s, and the receiver, r, in the earth frame, as well 

as the pitch and yaw angles previously determined, τ can be modeled (for various tc, dz, 

and roll angles) as follows. For each click and receiver, we find the takeoff direction of 

the ray that connects the receiver and localized source positions. For a constant sound-

speed profile, this direction in the earth frame would simply be r – s with source position 

s and receiver position r. To find this direction for our depth-dependent sound speed 
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profile, the list of takeoff angles from BELLHOP is interpolated to get the vertical angle 

(or elevation), φ , of the ray in the earth frame. The ray direction vector in the earth frame 

is then:  

 ( ) ( ) ( )22, , tan
T

x x y y x x y yr s r s r s r sφ⎡ ⎤= − − − + −⎢ ⎥⎣ ⎦
b    . (2.2.16) 

This ray direction is transformed into the whale frame direction vector, ′b  by 

applying Eq. (2.2.9) with the calculated yaw, pitch, and candidate roll angle for the 

current click. The azimuth 180 ,180α′ ⎡ ⎤∈ −⎣ ⎦
o o  and elevation 90 ,90φ′ ⎡ ⎤∈ −⎣ ⎦

o o of the ray in 

whale coordinates are then calculated as: 
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where tan-1 is the four-quadrant inverse tangent. Here, positive/negative azimuth 

corresponds to a leftward/rightward directed beam, and positive/negative elevation 

corresponds to an upward/downward directed beam. Elevation and azimuth of 0o 

correspond to a beam directed along the whale’s main axis, x′ .  

Since the distance from the whale to the receiver is much greater than dz, the 

vertical takeoff angles of the p0 pulse and the p1 pulse from the junk exit point are well 

approximated by φ′ . Then tΔp is approximated as (Figure 2.2.5): 

 sin( ) /pt dz cφΔ ′≅  (2.2.18) 

in which c is the speed of sound through water (cw), for 90 90α′− ≤ ≤o o , but c is the 

variable speed of sound through whale tissue (ct), for 90α′ > o or 90α′ < − o . The change 
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in sound speed is necessary because for clicks propagating forward ( 90 90α′− ≤ ≤o o ) 

both the p0 path, and the p1 path after exiting the junk, pass primarily through the water, 

while backward propagating pulses pass through whale tissue. For each click, cw is found 

from the value of the sound speed profile interpolated to the depth of the whale, while ct 

is a function of temperature, pressure, ray elevation, and ray azimuth (different angles 

mean that sound passes through different tissues). For simplicity, the unknown value of ct 

is assumed here to be constant and is estimated in the following optimization step. 

 

 

 
 
Fig. 2.2.5 Angle approximation used in estimating the delay between p0 and p1. 
 
 
 

The constants tc, dz, and ct, and the roll for each click are found as follows. With 

tc, dz, and ct fixed over all clicks, we find the roll for each click that minimizes the 

difference between measured and modeled τ in a least squares sense over all receivers. 

Summing over all clicks gives the total squared error associated with the current values of 

tc and dz. This total error is minimized over tc, dz, and ct. 

The best fit values were tc = 6.6 ms,  dz = 1.30 m, and ct =1540 m/s. The value tc 

= 6.6 ms corresponds to a whale length of 14.42 m using the formulas of Gordon [1991], 
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and to a whale length of 13.61 m using the formula of Rhinelander and Dawson [2004]. 

The estimated p1 exit point located 1.30 m ventral of the phonic lips for a whale over 

13.5 m makes sense anatomically assuming that the exit point is on the junk [Møhl 2001]. 

It is also consistent with the results of Zimmer et al. [2005b], who found the p1 exit point 

to be 1.10 m ventral of the phonic lips for a 12 m whale. The derived value ct =1540 m/s 

is high compared to the value of 1370 m/s found by Flewellen and Morris [1978] for the 

speed of sound through spermaceti oil at 33 oC at 1 atm. It is more consistent with 

(although still on the high end of) values for more similar conditions given by Goold et 

al. [1996], who found that sound speed in spermaceti oil increased from 1390 to 1540 

m/s with increasing pressure (from 0 to 90 atm) and decreasing temperature (from 38 to 

22 oC). The seemingly high value for ct found here possibly stems from the fact that our 

animal is alive, and that the p1 pulse passes through other whale tissue (not only 

spermaceti oil) to get to the receiver; however, we have made numerous assumptions and 

approximations that invariably introduce error, and our estimate will need to be examined 

in future work. 

 

2.2.4 Beam pattern and directivity 

2.2.4.1 Methods and results 

The azimuth and elevation of each click to each receiver were found for the 

calculated position and orientation data as outlined in the previous section. The received 

levels obtained in Section 2.2.2.2 were corrected for transmission loss using the values in 

the lookup table from Section 2.2.3.1 to get click levels. Since hydrophone sensitivity (or 

clipping level) was unavailable, click levels could only be found as values relative to 
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some arbitrary level, chosen such that the weakest click level corresponded to 0 dB. 

Hence, we report only “relative click levels”, by which we mean the difference between 

the current click level and the minimum click level (over all clicks).  

Relative click levels are plotted as a function of azimuth and elevation in Figure 

2.2.6. Since 324, 480, and 383 clicks were localized on 3, 4, and 5 receivers, respectively, 

a total of 324×3 + 480×4 + 383×5 = 4807 points are plotted. Multiple clicks with 

similar azimuth and elevation were measured, and the figures show higher levels 

overlapping lower levels, which helps to reduce the effect of variation in click source 

levels by approximating the maximum level in each direction. The resulting beam 

patterns are similar, although with somewhat broader peaks, to the patterns found by 

Zimmer et al. [2005a] who used a similar approach. 



 - 56 -

 

 

 
 
 

 
 
Fig. 2.2.6 Estimated beam patterns from 4807 recorded clicks. Since receiver sensitivities 
were not available, these are not absolute click levels but relative levels, such that 0 dB 
corresponds to the weakest recorded click. For these figures, recorded levels were 
corrected for transmission loss and were plotted as colored dots on the appropriate 
elevation/azimuth position. Higher levels are shown overlapping lower levels to 
minimize the effect of a variable source level. Results are shown for the full click, p0 
pulse, p1 pulse, and LF components. 
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 Although absolute source levels cannot be estimated, source level differences can 

be found: the maximum source level of the p1 pulse measured here was 8.8 dB higher 

than the maximum source level of the p0 pulse and 19.4 dB higher than the maximum 

source level of the LF component. These values are consistent with estimates reported by 

Zimmer et al. [2005a] of 210 dBpeak for the p1 pulse, 200 dBpeak for the p0 pulse, and 190 

dBpeak for the LF component, all re: 1μPa at 1m.  

Directivity indices were estimated according to a discretized version of Eq. (3-10) 

of Au [1993]: 
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in which Nα is the number of azimuth steps of width α′Δ , Nφ is the number of elevation 

steps of width φ′Δ , ( , )i jp α φ′ ′  is the received pressure corrected for transmission loss for 

the bin corresponding to azimuth step iα ′ and elevation step jφ ′  (recall that the primes 

denote whale frame coordinates), and pmax is the maximum received pressure over all 

angles. Step widths of 2.5o were used for both azimuth and elevation, and the maximum 

pressure over each bin was used for ( , )i jp α φ′ ′ . Estimated directivity indices were 21.8 

dB for the p1 pulse, 9.4 dB for the p0 pulse, and 5.2 dB for the LF component. In 

comparison, Møhl et al. [2003] reported a p1 directivity index of 27 dB and Zimmer et 

al. [2005a] reported a p1 directivity index of 26.7 dB and a p0 directivity index of 7.4 

dB.  
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2.2.4.2 Discussion 

Similarly to the case discussed in Zimmer et al. [2005a], it is likely that the 

maximum source level of the p1 pulse is underestimated here due to clipping of the high-

intensity arrivals (197 out of all 4807 signals used reached clipping amplitude), limited 

sampling bandwidth, and a small sample size of on-axis clicks (only 8 clicks within 5o of 

the main beam axis). This explains in part why our beam pattern for the p1 pulse has a 

broader peak and lower directivity than reported by Zimmer et al. [2005a] and Møhl et 

al. [2003].  

To deal with clipping, we follow Zimmer et al. [2005a], in which a model 

broadband beam pattern is fit to the 90th percentile for off-axis angles between 20 and 90 

degrees (binned here into 2 degree intervals). In Fig.2.2.7, which is similar to Fig. 9 of 

Zimmer et al. [2005a], all measured (relative) levels are plotted with gray dots as a 

function of off-axis angle. The 90th percentile for each (2 degree) off-axis bin is plotted in 

black and the best-fit modeled beam pattern is plotted in red. The p1 pulse was modeled 

as a Gabor function emitted from a circular piston [Au 1993]. The parameters that give 

the best fit (in a least squares sense) are peak frequency 15 kHz, signal duration 0.60 ms, 

and piston radius 0.40 m. These correspond to a p1 directivity index of 25.2 dB. This is 

much closer to, although still considerably less than, the values of 27 dB and 26.7 dB 

reported by Møhl et al. [2003] and Zimmer et al. [2005a], respectively. Unfortunately, 

maximum source level could not be estimated here because hydrophone sensitivity was 

unknown.  
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Fig. 2.2.7 Scatter plot of estimated p1 beam pattern as a function of off axis angle. Levels 
are relative, as in Fig. 2.2.6. The black line represents the 90th percentile for each off axis 
angle bin (bin size 2 degrees). The red line represents the beam pattern predicted for a 
circular piston with parameters fitted to measured values (black line) for off axis angles 
between 20 and 90 degrees. Results and best-fit parameters are given in the text. 
 

 

Other sources of error in our beam pattern are from errors in estimated pitch, yaw, 

and roll. These stem from uncertainties in source location and click time, from the 

assumption that the whale’s main axis coincides with the velocity vector, and from 

approximations made in application of the bent-horn model (constant sound speed 

through whale tissue, for example). Further, our results are limited by the assumption that 

all clicks have the same beam pattern and by the assumptions on receiver response (flat-

frequency, omni-directional, and the same for all receivers). The remarkable agreement 

of our beam patterns with those of Zimmer et al. [2005a] and Møhl et al. [2003], both of 

which used very different experimental set-ups, suggests that either our assumptions are 

at least approximately satisfied or that the errors caused by the assumptions tend to cancel 

over multiple hydrophones. 
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2.2.5 Click source levels 

Click source levels were estimated from the measured beam patterns by finding 

best-fit levels to a “model” beam pattern. For a given direction, the model beam pattern 

was assigned the maximum received level, corrected for transmission loss, over all 

directions within 5o. This approach was preferred over binning the received levels into 

discretized azimuth and elevation steps, which would have resulted in a non-uniform 

weighting of the received levels since different elevation bins subtend different solid 

angles (this also explains why the clicks in Figure 2.2.6 are more densely populated at 

elevations closer to 0o). For a sufficient number of clicks, this should eliminate variations 

due to click source level, giving a model that well approximates the true beam pattern 

[Zimmer et al. 2005a].  

Relative click source levels (at a distance of 1m on the acoustic axis) were 

estimated by minimizing the misfit between the model levels and the received levels 

corrected for transmission loss and source level. Minimization was done in a least squares 

sense over all receivers that heard the click. Again, because receiver sensitivity was 

unknown, only relative click source levels could be found; the resulting relative click 

source levels are shown in Figure 2.2.8. A total of 14 complete click series and 2 

incomplete click series (at the beginning and the end of the dataset) were recorded, where 

a series is defined as ending in a creak or at least 5 seconds of silence. Click levels vary 

by about 20 dB (in agreement with the dynamic range reported by Madsen et al. [2002]) 

and tend to steadily decrease toward the end of each click series. There were no apparent 

correlations between the inter-click intervals and source levels, or between whale depth 

(or orientation) and source level. However, as shown in Figure 2.2.9, there is a significant 
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relationship between click level and the order of the click within its series. This suggests 

that the variation in click level may be a consequence of the click production mechanism, 

whereby a click series begins at some constant level and decreases with each subsequent 

click. However, other explanations are possible. For example, since we do not have target 

range information it is not possible to determine if level is controlled by some automatic 

gain control mechanism, as might be employed by dolphins [Au and Benoit-Bird 2003; 

Au and Herzing 2003] but possibly not by beaked whales [Madsen et al. 2005]. 

Re-calculating the directivity indices after correcting with these click source 

levels gave indices of 22.9 dB, 9 dB, and 5 dB for the p1, p0, and LF components, 

respectively. Since corrected beam patterns were very similar to those in Figure 2.2.6 

they are not presented. 

 

 

  
 
Fig. 2.2.8 Source levels relative to the strongest recorded source level as a function of 
time. Click levels decline by 10–15 dB from the start to the end of most click series. The 
beginning of each series is indicated by an arrow at the top of the figure. 
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Fig. 2.2.9 Relative source level as a function of click number within its series. Data are 
pooled from all 14 complete click series. The significant correlation and the negative 
slope of the regression line suggest that click level decreases with click number within a 
series. 

 

 
2.2.6 Concluding remarks 

Although our method to recover roll is specific to sperm whales, our estimation of 

pitch and yaw is applicable to any clicking marine mammal. Since beam patterns exhibit 

rotational symmetry, at least to a first approximation – as for sperm whales [Zimmer et 

al. 2005a; this paper] and for bottlenose dolphins [Au 1993] – it may be useful to 

estimate beam patterns as a function of off-axis angle only. In that case, roll is not 

needed, so the methods developed here can be used to obtain directivity indices and 

estimates of click level for any clicking marine mammal recorded on bottom-mounted 

hydrophones in the wild. 
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Chapter 3 

PAIR-WISE SPECTROGRAM PROCESSING 

 

  

It is not always possible to extract time-of-arrival information as easily as in the 

single sperm whale dataset considered in Chapter 2. Difficulties arise in shallow water 

environments that have many reflections, in datasets with multiple calling animals, in 

noisy environments, and with long duration calls (typical of baleen whales) for which 

direct and reflected arrivals overlap and interfere. Pair-wise waveform (PWW) and pair-

wise spectrogram (PWS) processing were developed to deal with these situations. PWW 

and PWS extend MFP methods to localize unknown sources of any frequency using 

widely spaced arrays. As in the DRTD/TOAD method, PWW/PWS use acoustic 

propagation models that account for depth-dependent sound-speed profiles and 

probability density functions to quantify error.  

Section 3.1 (Paper 3) develops PWW and PWS processing and tests them using a 

simulated dataset. Section 3.2 introduces a modified version of PWS processing that is 

computationally less demanding. It also explores the effects of certain parameters in 

PWS, such as the number of points used to create spectrograms. PWS is applied to 

another simulated dataset, which covers greater ranges and higher frequencies than in 

Section 3.1, and it is compared to the TOAD method.  
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3.1 Paper 3 

 

Nosal E-M, LN Frazer (2006). Pair-wise processing of spectrograms for localization of 

multiple broadband CW sources. Newsletter of the IEEE Ocean Engineering Society, 

Winter 2006. 

 

Abstract - A pair-wise processing algorithm has been developed to localize broadband 

sources in shallow water. A simple sparse hydrophone array with number of elements 

roughly equal to the maximum number of sources is used. The sources can be 

continuous-wave (i.e. no onset times), and no previous knowledge of source signatures is 

required. The processor is spatially coherent and partially frequency coherent. 

Simulations show considerable improvement over conventional (i.e. frequency 

incoherent) matched field techniques under realistic noise conditions, with environmental 

mismatch and multiple sources. Spectrograms have been incorporated into the algorithm 

to make use of higher frequencies at greater ranges. Our work is motivated by the 

problem of localizing multiple singing humpback whales. 

 

3.1.1 Introduction 

The goal of our research is to extend and implement passive acoustic localization 

algorithms for use in tracking vocalizing humpback whales on winter breeding grounds. 

Acoustical techniques have advantages over visual and tagging techniques since they are 

non-invasive and unobtrusive, they are not interrupted by poor weather conditions or lack 
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of daylight, they enable continuous and remote sensing, and they are cost and time 

efficient. 

Although localization methods for underwater sources have made great progress 

over the last 25 years [reviewed in Tolstoy et al. 1993; Baggeroer et al. 1993; Hursky et 

al. 2004], their application to humpback whale localization is problematic because of 

their need for large numbers of hydrophones, e.g. vertical line arrays, assets that are 

seldom available to scientists studying whales. Accordingly, acoustical methods for 

locating whales have often relied on simple assumptions, such as constant sound-speeds 

and straight-line propagation, that are not satisfied by the shallow water environments in 

which humpbacks are usually found [Chapman 2004]. Model-based methods (i.e. those 

that use computer models of acoustic propagation) are desirable in this problem, but 

available model-based methods can be difficult to apply, mainly due to the characteristics 

of humpback vocalizations. These include: 

• Unknown waveforms: the whale’s song is not known (or, technically, how far the 

whale is into the song is unknown). 

• Continuous waveforms: song units typically consist of up-sweeps, down-sweeps, 

and constant-frequency contours [Payne and McVay 1971]. 

• Multiple sources: singers tend to space themselves about 4-6 km apart [Frankel 

1994], although the spacing becomes tighter with increasing density of whales. 

• Broadband, mid-frequencies: 30 Hz – 8kHz [Winn and Winn 1978]. 

Since model-based algorithms depend on the agreement of measured signals with 

synthetic signals, they have difficulty with high-frequency sources, i.e. sources located 

many wavelengths from receivers. For source-receiver offsets many wavelengths long, 
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fluctuations and uncertainties in sound speed profile and bathymetry distort actual signals 

to the point where they no longer agree with signals synthesized under the assumption of 

a constant environment. Thus popular model-based techniques have been limited to low 

frequencies (well below 1 kHz) where such environmental mismatch is less harmful. 

Only recently have mid and high frequencies started being explored for use in source 

localization [Hodgkiss et al. 1997; Hursky et al. 2004]. 

Another limit to existing techniques is that most require additional assumptions 

about the source. For example it is often assumed that there is only one source, or that the 

source waveform is known, impulsive, or narrow-band. In addition, as noted above, some 

techniques rely on line arrays. We consider arrays with a few hydrophones separated by 

many source wavelengths (sparse arrays) because they are often the only type of array 

available to whale researchers, and they are usually the simplest and least costly type of 

array [Hayes et al. 2000]. Various sparse arrays currently in operation (e.g. AUTEC, 

PMRF, and the Southern California Offshore Acoustic Range) can be used to gather 

marine mammal data. 

In this work we address the problem of low spatial resolution (of arrays with 

relatively few hydrophones) by utilizing the frequency coherence of the source signal as 

well as its spatial coherence; we do this without the usual requirement that the source 

signal be known. We address the problem of lowered coherence at high frequencies by 

processing spectrograms instead of waveforms. 
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3.1.2. Algorithms 

To deal with unknown, continuous-wave sources, a pair-wise waveform (PWW) 

processor is used. It is an extension of the pair-wise inversion technique of Frazer and 

Sun [1998], with application of ideas from Westwood’s broadband processor [1992]. 

Here we assume that all hydrophones have the same unknown transfer function; arrays in 

which different hydrophones have different transfer functions can be accommodated by 

four-wise processors [Frazer and Sun 1998] with lower resolution. 

To understand the PWW processor, consider the received signals at two 

hydrophones,  R1 (ω ) and  R2 (ω ) . Let 1
ˆ ( )G ω and 2

ˆ ( )G ω  denote the channel Green’s 

functions from the source to the first and second hydrophones, respectively. The received 

spectra (measured) are the products of the source spectrum, W (ω ) , with the impulse 

responses, i.e. 

ˆ( ) ( ) ( )n nR W Gω ω ω=   n = 1, 2. 

Now, let   Gn (x ,ω )  denote the modeled Green’s functions between receiver n and 

candidate source location  x . We introduce the following two products: 

12 1 2( , ) ( ) ( , )H x R G xω ω ω=  

21 2 1( , ) ( ) ( , )H x R G xω ω ω= . 

Denote the correct source location by s . Then ˆ( , ) ( )n nG s Gω ω≈  (approximately since the 

propagation model cannot be perfect). This leads to: 

12 1 2 21
ˆ ˆ( , ) ( ) ( ) ( ) ( , )H s W G G H sω ω ω ω ω≈ ≈ . 
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For a single pair of receivers our PWW processor (a probabilistic indicator of 

source location) is given by 
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where * denotes conjugation. The reason for this definition of ϕ(x)  can be understood as 

follows. Think of H12 and H21 as two complex column vectors with frequency as the row 

index. Concatenate them twice, once with H12 above H21, then vice-versa, to make two 

longer vectors. Then ϕ(x )  is just the normalized inner product of these two longer 

vectors. The definition above is preferable to just taking the inner product between H12 

and H12 directly because it adds symmetry to the algorithm; it does not matter which 

receiver is named 1 and which is named 2. By the Cauchy-Schwartz inequality, the 

processor reaches its maximum value (unity) when H12 = H21. In particular, ϕ(x ) is 

maximized at the true source location x s= .  

To reduce computational requirements, note that *
12

*
2121

*
12 )( HHHH = . 

Consequently, the PWW processor can be written as: 
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The single-pair PWW processor can be generalized to N > 2 receivers by 

summing coherently over receiver pairs: 
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To address the problem of incoherence at long ranges, we process spectrograms 

instead of waveforms. We call this the pair-wise spectrogram (PWS) processor. 

Spectrograms are less sensitive to mismatch and fluctuations in the ocean wave-guide, 

particularly at higher frequencies. Our use of spectrograms is in the spirit of envelope 

processing [Hursky et al. 2004] in which signal envelopes are processed instead of 

waveforms. In contrast to envelope processing, however, PWS processing retains both 

time and frequency characteristics, and can still benefit from coherence at low 

frequencies. 

Let ( , , )ijS x t f  denote the spectrogram formed from ( , )ijH x ω , where t and f are 

time and frequency steps respectively. Above the crossover frequency fc (to be 

determined), only the envelope of each channel is processed, and the mean is removed 

from each envelope because a constant offset holds no information. The formula for the 

PWS processor is analogous to that of the PWW processor: 
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Once again, intuition into this processor is gained by thinking of the spectrograms 

as vectors and taking normalized inner products. Of course, a weighting over frequencies 

and/or times may be introduced in either of the processors above to emphasize or de-
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emphasize certain aspects of the signal. For a slowly drifting source, for example, it may 

be advantageous to put more weight on more recent times. 

 

3.1.3. Simulation Specifics 

The Bartlett, PWW, and PWS processors were implemented in MATLAB. 

Bellhop [Porter and Bucker 1987] was used to model impulse responses. Simulations 

were run for a 700 m by 700 m by 200 m (constant depth) area. The sound speed profile 

used was typical of that seen in Hawaiian winter waters. It was based on historical values 

taken from the Generalized Digital Environmental Model. A humpback whale signal, 40 

s long and sampled at 2 kHz, was propagated (by convolution with modeled impulse 

responses) from several source locations to several receiver locations within the range. A 

spectrogram of the signal used is shown in Figure 3.1.1.  

 

 
Fig. 3.1.1 Spectrogram of humpback whale signal used in simulations. 
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Simulations shown here are for a case with 1 source and three receiver, and 

another case with two sources and four receivers. Figures 3.1.2 and 3.1.3 show the 

source/receiver layouts as well as the search areas from a top down perspective. In the 

first case the source was at (252 m, 304 m, 60 m) and the three receivers were at (47 m, 

102 m, 60 m), (175 m, 647 m, 60 m), and (603 m, 200 m, 60 m). In the 2 source case, the 

first source and three receivers were in the same positions as in the 1 source case. The 

second source was at (452 m, 573 m, 60 m) and the fourth receiver was at (677 m, 697 m, 

60 m). The same signal was used for the second source as for the first source, with the 

first 20 s and the last 20 s swapped in the time domain. 

Simulated noise was of the worst-case type: many noise sources with source 

signatures identical to that of the actual source, except for their randomized strengths and 

start times. These “noise whales” were placed at every grid point in the search area. The 

signals from the “noise whales” were propagated to the receivers and summed in time to 

give the background noise. The power of the “noise whales” was adjusted to give a 

specified average signal-to-noise ratio (SNR) over all receivers.  

 
 
Fig. 3.1.2.  Simulation layout for 1 source simulation. Vertical and horizontal distances 
are in m. 
 



 - 72 -

 

 
 
Fig. 3.1.3. Simulation layout for 2 source simulation. Vertical and horizontal distances 
are in m. 
 
 
 

 
 
Fig. 3.1.4.  SNR 5 dB.  1 source, 3 receivers.  All three processors successfully localize 
the source 
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Fig. 3.1.5.  SNR 0 dB. 1 source, 3 receivers. The PWW and PWS processors successfully 
localize the source which is lost to the Bartlett processor. 
 
 

 
 
Fig. 3.1.6. SNR -5 dB. 1 source, 3 receivers. Only the PWS processor successfully 
localizes the source. 
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After generation of the noisy, synthetic data, the PWW, PWS, and Bartlett 

algorithms were used to try to locate the whales. The grid used in the localization was at a 

single depth (60 m) and grid spacing was 4 m (ultimately, searches will be conducted 

over several depths). Spectrograms were generated using a 256 point FFT. Signals were 

Hanning windowed prior to computing each spectrum, and there was a 128 point overlap 

between successive time windows of the spectrogram. Environmental mismatch was 

introduced in the form of incorrect water depth; all inversions shown are for a depth of 

204 m rather than of 200 m. SNRs were gradually decreased to explore the localization 

error due to noise. Only frequencies up to 200 Hz were used in the Bartlett and PWW 

processors since higher frequencies became too incoherent to add useful information. For 

the PWS processor, the crossover frequency fc was 100 Hz. 

 

3.1.4. Discussion 

Ambiguity surfaces for the three processors for increasing levels of noise are 

shown in Figures 3.1.4-3.1.6. The images have been individually scaled so that red and 

blue correspond to the maximum and minimum surface values, respectively. At 5 dB 

SNR, all three processors localize the source accurately. At 0 dB SNR, however, spurious 

sources begin to appear with the Bartlett processor, while the pair-wise processors still 

find the source. Increasing the noise to -5 dB, only the PWS processor correctly localizes 

the source. Only the PWS processor is able to localize both sources in the 2 source case 

with 0 dB SNR (Fig. 3.1.7). 

It is evident from these simulations that the PWS is more robust with respect to 

noise and mismatch than the other two processors, but that this benefit is gained by loss 
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of resolution.  Indeed, the localized sources in the PWS surface are “smeared” over a 

larger area. This effect is minimized by raising the cutoff frequency, fc, and/or by 

reducing the number of points in the spectrogram FFT window.  

 

 
 
Fig. 3.1.7  SNR 0 dB. 2 sources, 4 receivers.  Only the PWS processor localizes both 
sources (4 receivers). 
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3.1.5. Conclusion 

A pair-wise spectrogram (PWS) processor has been proposed for the localization 

of multiple broad-band unknown continuous-wave sources in shallow water. It appears 

robust with respect to mismatch and noise; with only three receivers, a single source 

could be localized under conditions of both environmental mismatch and signal to noise 

ratios worse than –5 dB. Two identical (but unknown) sources could be localized in 

mismatch and 0 dB SNR. Many aspects of these processors remain to be explored though 

simulations and analysis of real data. 

Of interest for future work is the use of cochleagrams instead of spectrograms in 

the PWS processor. These are auditory representations of sound (as heard by whales) 

whereby a cochlear filter-bank [Helweg et al. 2000; Moore 2003] is applied to the signal. 

Being biologically more relevant than spectrogram processing, cochleagrams may prove 

to aid in localization – perhaps the whales know something we don’t. 

Currently, efforts are being made to modify the PWS processor to further reduce 

computational requirements, which will allow us to work at longer ranges and at higher 

sampling frequencies.  
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3.2 Paper 4 

 

Nosal E-M, LN Frazer (in press). Modified pair-wise spectrogram processing for 

localization of unknown broadband sources. IEEE Journal of Ocean Engineering. 

 

Abstract—Pair-wise waveform (PWW) and pair-wise spectrogram (PWS) processors for 

3-D localization of unknown, continuous-wave, broadband sources in shallow water have 

been developed and implemented [Nosal and Frazer 2006b].  The processors use sparse 

hydrophone arrays and are applicable to multiple sources, which can be unknown, 

continuous-wave, and broadband.  Here, we give new formulas for these two processors 

that significantly reduce computational requirements, making localization at longer 

ranges and higher frequencies feasible.  The new processors are motivated by a 

demonstration that an incoherent version of the PWW processor (in which processor 

outputs at different frequencies are averaged after being processed independently) is the 

Bartlett processor without auto-receiver terms.  The new PWW processor is 

mathematically equivalent to the original version, though much faster.  The new PWS 

processor is mathematically equivalent to the original version only in the limit of infinite 

spectrogram window length, but for window lengths that are optimal with the old PWS 

processor, the new PWS processor gives essentially the same results with much greater 

speed.  Simulations comparing PWS processing to Bartlett, PWW processing, and a time 

difference of arrival method indicate that the main advantage of PWS processing is for 

multiple sources in uncertain, high noise environments at ranges many wavelengths long.  

With PWS, increased robustness with respect to mismatch is obtained at the expense of 
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reduced resolution; varying PWS processor parameters (such as the size of windows used 

to create spectrograms) optimizes this tradeoff.  This work is motivated by the problem of 

localizing singing humpback whales, and simulation results use whale sources. 

 

3.2.1 Introduction 

 Acoustic techniques for localization of marine mammals are an important addition 

to visual and tagging techniques.  Despite recent advances in localization methods for 

underwater sources [Baggeroer et al. 1993; Tolstoy 1993; Hodgkiss et al. 1997; Hursky 

et al. 2004], acoustic techniques are seldom used to track singing humpback whales.  

This is because the problem is complicated by limited resources, by the source 

characteristics (unknown, continuous-wave [Payne and McVay 1971], broadband [Winn 

and Winn 1978], multiple sources [Frankel 1994]), and the by the environment (shallow 

water, sound-speed ducts, long ranges, and sound-speed uncertainties). 

The pair-wise waveform (PWW) and pair-wise spectrogram (PWS) processors 

[Nosal and Frazer 2006b] were developed with the humpback localization problem in 

mind.  Both processors are in the spirit of matched field processing (MFP).  That is, the 

measured sound field is compared to the predicted sound field for a source at a candidate 

position. A grid of candidate source positions is examined to find the point of best 

agreement.  In contrast to most MFP methods, which typically rely on line arrays 

[Baggeroer et al. 1993; Tolstoy 1993; Hodgkiss et al. 1997], the PWW and PWS 

processors use (fixed or floating) sparse hydrophone arrays (few hydrophones separated 

by many source wavelengths), as these are more available to marine mammal researchers 

due to their simplicity and lower cost [Hayes et al. 2000].  Moreover, data may be 
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available from large arrays currently in operation (e.g. AUTEC, PMRF, and the Southern 

California Offshore Acoustic Range).  

For unknown, continuous-wave source signals, pair-wise processing [Westwood 

1992; Frazer and Sun 1998] is used to retain partial frequency (as well as spatial) 

coherence.  This improves the spatial resolution of arrays with relatively few 

hydrophones and strengthens performance for multiple sources.  At high frequencies (i.e. 

sources many wavelengths from receivers), measured signals lose coherence due to 

environment fluctuations and uncertainties, which limits the applicability of the PWW 

and other waveform based MFP methods [Baggeroer et al. 1993; Tolstoy 1993; 

Westwood 1992] to lower frequencies (typically well below 1kHz).  In the PWS 

processor, this problem is addressed by processing spectrograms instead of waveforms.  

PWS processing is related to envelope processing [Hursky et al. 2004], which has 

successfully been used to extend MFP methods to high frequencies.  To some extent, 

spectrograms can be thought of as generalized envelopes since taking the magnitude of 

(individual points of) a spectrogram channel at one frequency is similar to taking the 

envelope of the signal after applying a band-pass filter centered at that frequency.  In this 

light, the reason that spectrogram processing is expected to work better than waveform 

processing at high frequencies (or in cases with significant environmental mismatch and 

noise) is intuitive; a small change in a waveform that causes measured and synthetic 

waveforms to disagree has a much smaller effect on the spectrograms, so that measured 

and synthetic spectrograms can still agree quite closely.  PWS processing has the 

advantage over envelope processing of retaining both time and frequency information 

and permitting high and low frequencies to be processed differently. 
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Spectrograms have previously been used to estimate time of arrival differences in 

marine mammal detection methods [Mellinger and Clark 2000] and hyperbolic fixing 

localization methods [Clark et al. 1986; Janik et al. 2000; Clark and Ellison 2000; 

Tiemann et al. 2004].  Low frequency spectrograms have also been used to determine 

group and phase velocity relationships for long-range localization using a single 

hydrophone [Kuperman et al. 2001].  The PWS processor is the first (to our knowledge) 

to apply spectrograms in a MFP approach.  

In their original forms [Nosal and Frazer 2006b] the PWW and PWS processors 

were computationally inefficient, which greatly constrained their usefulness.  In this 

paper we demonstrate the equivalence of Bartlett (linear) MFP, with auto-receiver terms 

removed, to an incoherent version of PWW processing in which frequencies are 

separately processed and then averaged.  The demonstration leads, very usefully, to a 

form of the PWW processor that is less intuitive but computationally much more efficient 

that the original form.  After a review of the PWS processor, a similar computationally 

efficient form of the PWS processor is developed.  

Using these new, more efficient forms of the PWW and PWS processors, we were 

able to run simulations for much longer ranges and higher frequencies.  The simulations 

showed that larger FFT windows (than were previously [Nosal and Frazer 2006b]  used) 

to create spectrograms make the PWS processor more successful at localizing multiple 

sources at long ranges (on the order of several kilometers at 2 kHz).  Specifically, for 

simulations with significant environmental mismatch we are able to localize 2 sources 

with only 3 receivers in signal-to-noise ratios (SNRs) as poor as  –10 dB; by comparison, 

4 receivers and 0 dB SNR were previously [Nosal and Frazer 2006b] required to localize 
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2 sources.  Our simulations compare the PWS processor with a time of arrival difference 

(TOAD) method, the Bartlett processor and the PWW processor.  

  

3.2.2 Overview of pair-wise waveform (PWW) processing  

The PWW processor [Westwood 1992; Frazer and Sun 1998; Nosal and Frazer 

2006b], is used to deal with unknown, continuous-wave sources. Let ( )iR ω denote the 

Fourier-transformed received signal at the ith hydrophone (N hydrophones in total), 

let ˆ ( )iG ω denote the unknown true Green’s function between the unknown actual source 

location s  and the ith hydrophone, let ( , )iG x ω  denote the modeled Green’s function 

between the ith hydrophone and a candidate source location x , and let ( )W ω denote the 

source spectrum. For all receiver pairs, define the following products: 

( , ) ( ) ( , )i jijH x R G xω ω ω= . The PWW processor is then given by: 
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  (3.2.1) 

where * denotes conjugation.  The first line shows that PWW is just a normalized inner 

product, symmetric over receivers.  The second line holds because ( )ij ji ji ijH H H H
∗∗ ∗= .  
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Since ˆ( ) ( ) ( )i iR W Gω ω ω=  and ˆ( , ) ( )i iG s Gω ω≈  for all receivers (approximately since 

the propagation model cannot be perfect), it follows that 

ˆ ˆ( , ) ( ) ( ) ( ) ( , )ij i j jiH s W G G H sω ω ω ω ω≈ ≈ . 

Thus, by the Cauchy-Schwartz inequality, the processor reaches its maximum (ideally 

unity) at the true source location x s= .  

A weighting over frequencies and/or times may be introduced to emphasize 

aspects of the signal.  For a slowly drifting source, for example, it may be advantageous 

to put more weight on more recent times.  Also, it is important to window time and 

frequency channels with windows tapered at both ends to avoid ringing that manifests as 

spurious sources. 

Our PWW processor differs from Westwood’s [1992] processor in two respects.  

First, in the PWW processor the order of receivers does not matter (evident from the first 

equality in Eq.(3.2.1)), while in Westwood’s processor it does (see the Appendix).  This 

receiver symmetry is at the expense of losing the imaginary parts in the numerator 

products (and hence some frequency coherence).  The second difference is in how the 

products are normalized.  

 

3.2.3 Relation between PWW, incoherent PWW (IPWW), and Bartlett processing  

We first show that the Bartlett linear processor [Bucker 1976; Tolstoy 1993] with 

the auto-receiver terms removed is equivalent to a frequency-incoherent version of the 

PWW processor, i.e., a PWW processor in which frequencies are processed individually 



 - 83 -

and then an average is taken over the outputs at different frequencies.  We refer to this as 

the incoherent PWW, or IPWW, processor.  To see the equivalence, first define vectors 
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The Bartlett processor is given by [Bucker 1976; Tolstoy 1993]: 
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where Nω is the number of frequencies.  Expanding terms in the numerator gives 
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and in the denominator, 
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After removal of the auto-receiver (i = j) terms from the numerator and denominator, the 

Bartlett processor becomes 
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This is just Eq. (3.2.1) applied to individual frequencies, then averaged, which is our 

IPWW processor. 

 It is evident from this derivation that the both the IPWW and PWW processors 

differ from the Bartlett processor since they do not include the auto-receiver (i=j) terms.  

The auto-receiver terms are constants and hold no useful information for localization, so 

processor resolution must increase when these terms are removed.  Normalization in the 

PWW processor is done after all frequency contributions are summed, so each frequency 

is weighted proportionally to the spectral power of the received signals, while the Bartlett 

and IPWW processors weight all frequencies equally.  Because of this, the PWW 

processor puts more weight on frequencies with more energy, and since these are usually 

the frequencies with higher signal-to-noise ratios, resolution is increased in the PWW 

processor.  Overall, the order of processor resolution from higher to lower is PWW, 

IPWW, and Bartlett.  Because of this, PWW is expected to outperform IPWW and 

IPWW is expected to outperform Bartlett in cases without much noise or mismatch and in 
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cases where localization includes optimization of parameters in a well-chosen 

environmental model.  For the same reason, however, Bartlett can outperform IPWW and 

IPWW can outperform PWW in cases with significant mismatch, if environmental 

parameters are not searched.  Since relative performance of the processors changes 

depending on the amount and nature of noise and mismatch, testing is always advisable 

in particular cases. 

  

3.2.4 Reducing computational load for PWW processing  

The relation between IPWW processing and Bartlett processing suggests an 

alternative formula for the PWW processor.  Indeed, a derivation similar to that in 

Section 3.2.3, but in the opposite direction, gives  

 ( )pww xϕ
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This formula for the PWW processor is less intuitive, but it is mathematically 

equivalent to the first version and requires much less computational effort to implement.  

In the first version, Hij is calculated for each receiver pair, while in the second version, 

only i iR G∗  is computed for each receiver.  This reduces the number of operations from 

2( )O N to ( )O N , where N is the number of receivers; thus, run times are greatly reduced.  
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3.2.5 Overview of pair-wise spectrogram (PWS) processing 

As discussed in the introduction, PWS processing [Nosal and Frazer 2006b] is 

used to address the problem of incoherence at long ranges.  It is similar to PWW 

processing, except that spectrograms (which are less sensitive to environmental 

mismatch) are processed instead of waveforms.  

Let ( , , )ijS x fτ  denote the complex spectrogram formed from ( , )ijH x ω , where τ  

and f are time and frequency steps, respectively.  The PWS processor is defined as 
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As waveforms may still agree at lower frequencies, it is often advantageous to run 

the PWS processor twice: once with complex spectrograms for frequencies less than 

some crossover frequency fc and once with magnitudes (or envelopes) for frequency 

channels above fc.  The results are then averaged.  In the spectrogram envelope version, 

the mean is removed from each frequency channel because a constant offset holds no 

information.  Envelope processing reduces error and the effects of mismatch but at the 

cost of lower resolution.  The optimum crossover frequency fc is determined during 

processing by the agreement of the complex version and the envelope version of the 

processor.  Roughly speaking, the use of complex spectrograms in PWS gives results 

similar to PWW.  Increases in noise level, source range, and environmental mismatch all 

favor a lower crossover frequency. 
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3.2.6 Reducing computational load for PWS processing 

Surprisingly, the mathematical trick used to get the computationally efficient 

version of the PWW processor (Eq. (3.2.4)) can also be applied to the PWS processor.  

For a given candidate source location x , let ti denote the time of the first arrival in the 

modeled Green’s function (between x and receiver i).  Let ( , )ig x t  be the modeled time-

domain Green’s function advanced by ti so that the first arrival is at time 0.  Similarly, let 

( )ir t  be the signal at receiver i in the time domain, advanced by ti.  Denote the 

spectrogram of ( )ir t  by ( , )i iR R f τ=% % , where nfft points are used to create the 

spectrograms.  For all time steps in ( , )iR f τ% , let ( , , )i iG G x f τ=% %  be the FFT of the first nfft 

points in ( , )ig x t .  If the time corresponding to nfft is considerably longer than the delay 

time between the first and last arrivals in ( , )ig x t , then ij i jS R G≈% %% , in which ijS%  is the 

spectrogram of ( ) ( , )i ir t g x t∗  (where ∗  denotes convolution).  Make the following 

definitions 
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A development similar to that for the PWW processor then gives a computationally 

simpler version of the PWS processor: 
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As with the new version of the PWW processor, this form of the PWS processor reduces 

run times by a factor of N.  The two forms of the PWS processor are not mathematically 

equivalent, because of the approximation ij i jS R G≈% %% , which is exact only in the limit as 

nfft becomes infinite.  Nevertheless, they give indistinguishable results for the nfft values 

thought to be optimal for processing with the exact formula.  Thus, in our experience 

there is no reason to use the exact formula. 

 

3.2.7 Simulated data  

All simulations and localization techniques discussed were implemented in 

MATLAB.  Simulations were run for a 10 km by 10 km by 200 m (constant depth) area 

with a sound speed profile typical of Hawaiian winter waters.  The sound speed profile 

was based on historical values taken from the Generalized Digital Environmental Model 

[GEDM] and is shown in Figure 3.2.1.  Geoacoustic properties of the seafloor were taken 

from typical values for sand [Fu et al. 2004]: density 1.86 g/cm2, compressional wave 

speed 1620 m/s, compressional wave attenuation 0.83 dB/wavelength.  Three receivers 

were used in the simulations, with (x, y, depth) coordinates (1150 m, 1080 m, 30 m), 

(2380 m, 8620 m, 30 m,), and  (9340 m, 3630 m, 30 m).  Figure 3.2.3 shows the receiver 

configuration in plan view.  The grid used in the localization was at a single depth (60 m) 

with 200 m grid spacing.  Given the sound-speed profile, bathymetry, and geoacoustic 

properties of the bottom, the Gaussian beam tracing model BELLHOP [Porter and 
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Bucker 1987; Porter and Liu 1994; Porter 2005] was used to calculate magnitudes, 

phases, and travel times for each source-receiver pair and each receiver-grid point pair.  

Green’s functions were computed from these multi-path parameters. 

  

 
 
Fig. 3.2.1 Sound speed profile used in forward model; inversion assumed a homogeneous 
SSP with sound speed 1530 m/s. 
 
 
 

 
 

Fig. 3.2.2 Humpback whale signal used in simulations. 
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Fig 3.2.3 Simulation configuration 
 

 

To create the simulated signal, a humpback whale signal (shown in Figure 3.2.2), 

40 s long and sampled at 4 kHz, was propagated (by convolving the source signal with 

the appropriate Green’s function) from two source positions with (x, y, depth) 

coordinates (2800 m, 3000 m, 60 m) and (7600 m, 7800 m, 60 m).  Source positions are 

shown in Figure 3.2.3.  The signal, recorded approximately half a mile from the singer, 

was taken from 4 minutes and 10 seconds into track 1 of the Audio CD, Rapture of the 

Deep [Knapp 2001].  The first 20 s and the last 20 s of the humpback signal at the second 

source position were swapped, so that the two sources were similar but not identical.  For 

sources identical in signature and timing, the received signals from individual whales are 

nearly indistinguishable, and all processors perform poorly.  Moreover, the case of 

identical sources is unrealistic; humpbacks sing very similar songs, but do not sing the 

same part of the song at precisely the same time.  

The source positions were intentionally placed on grid points.  This was done in 

fairness to the Bartlett and PWW processors.  A coarse grid spacing of 200 m was chosen 
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for reduced run times, but it can disproportionately degrade the performance of the 

Bartlett and PWW processors; in these wave-based processors, sidelobes can overpower 

true sources when grid spacing is not sufficiently fine [Tolstoy 1993].  Placing the 

sources on grid points helped to minimize this effect.  

Noise was of the worst-case type: many noise sources with source signatures 

identical to that of the sources, except for their randomized strengths and phase shifts.  

These “noise whales” were placed at every grid point in the search area.  The signals 

from the “noise whales” were propagated to the receivers and summed in time to give the 

background noise.  The power of the “noise whales” was adjusted to give a specified 

average SNR over all receivers.  In other simulations, different types of noise (such as 

ambient noise recorded in Hawaii) were used, instead of and in addition to, the “noise 

whales”, but the “noise whales” consistently resulted in worse performance of the 

processors.  This is likely because, in the “noise whale” case, the noise levels are highest 

at the same frequencies where the source levels are highest.  

 

3.2.8 Localization method parameters and specifics 

After generation of the noisy, synthetic data a time difference of arrival (TOAD) 

method [Tiemann et al. 2004], the Bartlett processor, the PWW processor and the PWS 

processor were used to try to locate the simulated singers for varying SNRs.  

Environmental mismatch was introduced in the form of incorrect sound speed profile and 

water depth; all inversions assumed homogeneous sound speed (1530 m/s) and water 

depth 204 m (rather than 200 m).  The processors were used to create ambiguity surfaces 
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(probabilistic indicators of source position) in which the value for the ambiguity surface 

at each grid point is the processor value at that point.  

 

3.2.8.1 TOAD Method 

The TOAD method is from Tiemann et al. [2004], and further details can be 

found in their paper.  For each receiver pair, the 40 s signals were windowed into 10 s 

frames with 2 s overlap.  For each frame and receiver pair, a digitized-spectrogram 

correlation method [Tiemann et al. 2004] was used to estimate time-lags between whale 

calls.  Spectrograms were generated using 512-point Hanning FFT windows with 90% 

overlap.  Since there was more than one source, the two time-lag bins that gave the 

highest spectral correlation scores were chosen provided they exceeded a 100-point 

threshold.  This differs from Tiemann et al. [2004], in which only one peak was taken at a 

time since only one source was being localized.  Here, taking fewer or greater than two 

time-lags reduced performance.  If only one time-lag was chosen, fewer correct sources 

were found, and if more than 2 time-lags were chosen, more spurious sources (and no 

new correct sources) were found.  This optimization of the TOAD method for two 

sources used information that might not be available in a real application. 

It is expected that a group of time-lags corresponding to the same whale call 

satisfies the following: 

 12 23 13
ˆ ˆ ˆmg mg mgT T T ε+ − ≤  (3.2.7) 

where ˆmg
ijT  is the measured time-lag between hydrophones i and j for time frame m and 

time-lag group g, and ε is a tolerance factor to account for the lack of precision in time-
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lag measurements.  Only groups of lags satisfying Eq. (3.2.7) with ε = 0.1 s were used 

(this is the value that gave best results).  More than one surface was formed for each time 

frame when more than one group of lags satisfied Eq. (3.2.7).  Surfaces for each time 

frame m, lag group g, receiver pair ij, and grid point x were created according to Eq. (20) 

of Tiemann et al. [2004]: 
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In the above, ( )ij xT is the modeled time lag between receivers i and j for a source at grid 

point x , dij is the distance between receiver pair ij, and c is the minimum possible sound 

speed.  The denominator of Eq.(3.2.8) is a normalization by the maximum possible time 

lag between receiver pair ij [Tiemann et al. 2004].  Surfaces m
gA  for each time frame m 

and lag group g were generated according to an exponentiated version of Eq. (22) of 

Tiemann et. al. [2004]: 

 
1

( ) exp ( ) ( )
N

m mg
g ij ij

i j i
A x L x xα

= >

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑∑  (3.2.9) 

where ( )ij xα  is the total predicted transmission loss in dB for the two paths between each 

of the receivers i and j and grid point x .  Exponentiation was used so that surfaces have 

maxima (and not minima) in the most likely whale positions, as is the case for the other 

processors.  The surfaces m
gA  were combined for the mth frame by taking the maximum 

surface values over all groups at each grid point. 

 ( ) max ( )m m
gg

x xS A= . (3.2.10) 
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Since the sources are stationary, surfaces for all frames were combined (again via 

maximums) to give an overall ambiguity surface 

  ( ) max ( )m
total m

x xS S= . (3.2.11) 

Maximums were used to combine the surfaces (rather than summation, for 

example) because they gave the best results.  By taking maximums, correctly localized 

sources that were found in only a few surfaces m
gA  still appeared in the overall surface 

totalS .  Similarly, a spurious source that appeared in several individual surfaces m
gA  was 

not over-emphasized.  

 

3.2.8.2 Bartlett, PWW, and PWS processors compared 

The Bartlett and PWW processors used frequencies up to 200 Hz only. 

Simulations using higher frequencies gave worse performance, indicating that higher 

frequencies were too incoherent to add useful information.  The PWS processor used 

frequencies up to 2 kHz.  

For the PWS processor, spectrograms were generated using 2 s long Hanning FFT 

windows with 50% overlap. A 2 s FFT window is significantly longer than the 0.128 s 

window used in our previous work [Nosal and Frazer 2006b].  By running numerous 

simulations, we found that a longer FFT window makes the PWS processor more robust 

with respect to mismatch and noise.  Also, when a longer FFT window is used, the 

processor is less sensitive to changes in candidate source position and the resulting 

ambiguity surface has much broader peaks.  Although this does not allow the source to be 

localized as precisely in space, a longer FFT window permits a much coarser grid (here 
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we used a grid spacing of 200 m compared to 4 m [Nosal and Frazer 2006b]).  Ideally, 

the PWS could be used in a first sweep of a broad area with coarse grid spacing and a 

long FFT window, then more locally with finer grid spacing and a shorter FFT window.  

As phase is retained in PWS processing of frequencies below the crossover 

frequency fc (to make use of coherence), these lower frequencies serve to sharpen the 

ambiguity surface peaks.  In the simulations presented here, trial and error was used to 

find an optimal crossover frequency fc of 100 Hz.  

 

3.2.9 Results, discussion, and conclusion  

Table 3.2.1 gives the run times on a 2 GHz Pentium 4 PC for the old (Eq. (3.2.1)) 

and new (Eq. (3.2.4)) forms of the PWW processor.  There is a 3 times reduction in run 

time (approximately), consistent with the observation from Section IV that the new form 

requires N (number of receivers) times fewer operations than the old form.  Also shown 

are run times for the old (Eq. (3.2.5)) and new (Eq. (3.2.6)) forms of the PWS processor, 

in which run speeds are again reduced by a factor of 3. 

 

Table 3.2.1 Run times for the original and modified forms of the PWW and PWS 
processors. 
 

 Original forms 
Eqs. (3.2.1) & (3.2.5) 

Modified forms 
Eqs. (3.2.4) & (3.2.6) 

PWW run time (minutes) 32 10 
PWS run time (minutes) 61 22 
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Figure 3.2.4 shows ambiguity surfaces with each grid point colored according to 

the value of the ambiguity surface at that point.  The ambiguity surfaces have been 

squared and blurred with a 2-dimensional, 3 by 3 Gaussian lowpass filter with standard 

deviation 0.5.  The images have been scaled to use the full colormap, with red 

corresponding to the maximum value attained by the surface, and blue corresponding to 

the minimum.  As a result, scales for each image are different.  Colorbars are not shown 

since only relative levels within each surface are of interest, with maxima (red) 

corresponding to source position estimates.  The maximum values for each of the 

surfaces (before squaring and blurring) are given in Table 3.2.2.  These numbers are not 

particularly significant since they are not probabilities and they should not be used to 

compare processor performance.  They are provided for reference purposes only.  For all 

processors, localized source positions are slightly off, which is due to the introduced 

environmental mismatch.  As might be expected, the first source lost to all processors as 

noise increases is the source outside of the receiver array. 
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Fig. 3.2.4 TOAD method, Bartlett, PWW, and PWS ambiguity surfaces for various 
SNRs. Correct source positions are centered in the white diamond makers.  Colorbars are 
individually scaled, and maximum values for each surface are given in Table 3.2.2. 
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Table 3.2.2 Maximum values of surfaces in Figure 3.2.4.  These are provided for 
reference purposes only; they are not probability values and cannot be used to compare 
processor performance. 
 

SN ratio (dB) TOAD Bartlett PWW PWS 
20 0.854 0.233 0.204 0.356 
10 0.787 0.069 0.175 0.333 
0 0.715 0.032 0.082 0.233 
-5 0.702 0.031 0.081 0.099 
-10 0.683 0.030 0.080 0.016 
-15 0.652 0.029 0.075 0.006 

 
 

 

The TOAD method (optimized for two sources) is more successful than either 

Bartlett or the PWW processor at SNRs of 20 and 10 dB.  At 0 dB both sources are still 

localized, but a spurious source appears that is stronger than either of the real sources.  In 

contrast, neither the Bartlett nor the PWW processors localize both sources. At SNR –5 

dB, one source is still found but two spurious sources appear (in Bartlett and PWW, both 

sources have been lost completely), and at –15 dB, only one spurious source remains.  

In the simulation for SNR 20 dB, the PWW processor exhibits minor 

improvement over the Bartlett processor in that both sources are localized (although the 

source outside of the receiver array is weak), while the Bartlett processor finds only one 

source.  Both processors localize one source at 10 dB SNR, but the Bartlett processor 

gives spurious sources.  Improvement of the PWW over the Bartlett processor is also 

seen at 0 dB SNR, where the PWW processor localizes one source (albeit quite weakly), 

while the Bartlett processor does not localize either source.  In the simulations for this 

paper, the noise was always in exactly the same band as the signal, so the advantage of 

PWW over Bartlett was reduced.  As discussed in Section 3.2.3, we did not expect an 
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obvious advantage of either the PWW or the Bartlett processor over the other, and in 

other cases with noise and mismatch, the Bartlett processor may outperform the PWW 

processor. 

At high levels of noise it is clear that the PWS processor is the best of the four; it 

localizes both sources correctly for SNR as low as –10 dB.  Even at –15 dB SNR, one 

source is still localized, although spurious sources begin to appear.  It is apparent from 

the simulations that the PWS processor has lower resolution and lower error than the 

other processors.  As discussed in Section 3.2.8, this is due to the long (2 s) FFT window.  

If higher resolution is desired, a shorter FFT window should be used, for which a finer 

grid may be required.  The performance of the PWS processor shows improvement from 

previous simulations [Nosal and Frazer 2006b] in which 4 receivers and 0 dB SNR were 

required to localize two sources.  This is made possible by the use of longer FFT 

windows (2 s compared to 0.128 s). 

Several points regarding the PWS processor should be mentioned.  First, when 

working with real data, it will be necessary to process for an array of candidate source 

depths to create ambiguity volumes rather than surfaces.  Second, processing longer 

lengths of signal will improve results by reducing the effects of noise, provided that the 

sources remain stationary (as in the case of humpback whale singers).  Also, more 

receivers will improve predictions; in our experience the PWS processor can only 

localize as many sources as there are receivers.  As with other processors, different 

source characteristics and power levels will give varying degrees of success.  The PWS 

processor seems to perform remarkably better when the sources have different frequency 

bands (simulations not included).  Since the PWS processor does not discriminate 
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between source characteristics, directional noise sources (such as ships and other whales) 

may be localized as actual sources.  Indeed, when localizing one humpback, other 

humpbacks in the area are effectively noise sources themselves.  Problems arising from 

constant tone sources and tonals from recording equipment are eliminated through the 

mean removal process in PWS processing.  This step may be replaced with a high-pass 

filtering of envelopes of spectrogram frequency channels.  

In summary, a new version of the PWS processor [Nosal and Frazer 2006b] 

reduces computational requirements of the processors by a factor of N, where N is the 

number of receivers.  In simulations with environmental mismatch, three receivers were 

used to localize two sources in SNRs down to –10 dB.  For –15 dB SNR, one of two 

sources was found.  In these simulations, the PWS processor outperformed a TOAD 

method, the Bartlett processor, and the PWW processor.  Compared with the other 

methods, the PWS processor sacrifices spatial resolution in order to localize higher 

frequency signals at greater ranges on a coarser computational grid.  This tradeoff may be 

adjusted by changing the length of FFT windows used to create the spectrograms. 
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3.3 PWS applied to AUTEC data 
 

PWS was applied to the same single sperm whale dataset that was used in Chapter 

2 with similar results. Figure 3.3.1 shows the resulting track compared to the track 

obtained using the combined DRTD/TOAD method in Section 2.2. These results used a 

grid spacing of 10 m and 0.05 s long FFT window to create spectrograms. The predicted 

positions agree quite well and lend confidence to the PWS method and implementation. It 

is not obvious why the depths disagree. Possible causes include grid spacing, the high 

directionality of sperm whale clicks, or uncertainties in receiver positions and sound 

speed profiles. 

 

 
 
Fig. 3.3.1 Comparison of sperm whale tracks obtained using the DRTD/TOA method 
(red) and PWS processing (blue). 
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Chapter 4 

CONCLUDING REMARKS AND FUTURE DIRECTIONS 

 

All of the methods described and developed in this dissertation are really a 

variation on the same theme of localization by matching predicted fields with measured 

fields. Indeed, even the simplest TOAD method matches (a version of) the predicted field 

with (a version of) the measured field. In this case, only the time-of-arrival of the direct 

signal is kept for the measured and predicted fields, and the field prediction is simplified 

by straight-line assumptions. The TOAD/DRTD does the same thing but increases the 

accuracy of estimated positions by including surface reflections in the measured and 

predicted fields and by using a propagation model. PWW/PWS processing goes one step 

further by including phase/frequency and sound pressure level information.  

When deciding between methods it is important to consider the tradeoff between the 

accuracy and power of the processor on one hand, and the computational demands and 

modeling complexity on the other hand. 

The next step for the DRTD/TOAD method is to generalize it to multiple animal 

tracking. One approach for this is to develop a method to separate click trains from 

individual animals, which should be possible given the relatively stable inter-click 

intervals of many odontocetes (e.g. sperm whales [Baggenstoss 2007]). It may be 

possible to separate individuals based on spectral components for certain species, or to 

separate calls using the feature-based extraction methods that are being developed for 
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passive acoustic detection problems [e.g. Kim et al. 2006; Oswald et al. 2007]. Future 

developments and improvements to the PWS processor will be prompted by application 

to real datasets. Of immediate interest is to use PWS to track multiple singing humpback 

whales simultaneously to study interactions between singers. 

The coming years will undoubtedly see significant advances in the techniques 

available to study marine mammals. For example, recent advances in piezoelectric 

materials have led to the development of vector sensors. In addition to pressure 

(measured by hydrophones), vector sensors can measure particle velocity, which makes 

them useful in compact array configurations [Nehorai and Paldi 1994; Hawkes and 

Nehorai 2003]. Beyond acoustics, marine mammal monitoring capabilities will likely 

benefit from advances in autonomous and remotely controlled vehicles, including surface 

vessels, aircraft, and underwater vehicles. Various other technologies hold promise for 

marine mammal studies, including radar, infrared and hyper-spectral imagery, satellite 

imagery, and LIDAR (Light and Detection Ranging) [Barlow and Gisiner 2006]. 

Integration of tagging, visual, and acoustic data with these new approaches is one of the 

most exciting and potentially fruitful challenges. 
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APPENDIX 

 

This appendix demonstrates that Westwood’s processor [Westwood 1992] is 

dependent on receiver order.  For receiver i, denote the received signal by ( )iR ω and the 

modeled Green’s function by ( , )iG x ω  as in Section 3.2.  Westwood [1992] defines the 

“data” cross spectrum as: 

 ( ) ( ) ( )ij i jD R Rω ω ω∗=   (A1) 

and the modeled cross spectrum as 

 ( ) ( , ) ( , )ij i jM G x G xω ω ω∗=  . (A2) 

His processor is given by [1992]: 
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 (A3) 

where B denotes a frequency band chosen to maximize SNR.  To see the dependence on 

receiver order, apply this processor with three receivers at a single frequency: 

 
( ) ( )

12 12 13 13 23 23
1 1/ 2 1/ 22 2 2 2 2 2

12 13 23 12 13 23

W

D M D M D M

D D D M M M
ϕ

∗ ∗ ∗+ +
=

+ + + +
 (A4) 

where the dependence on frequency is dropped in the notation for simplicity.  Now, 

suppose that the first and second receivers are switched in order.  Then the processor 

becomes: 
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( ) ( )

21 21 23 23 13 13
2 1/ 2 1/ 22 2 2 2 2 2

21 23 13 21 23 13

W

D M D M D M

D D D M M M
ϕ

∗ ∗ ∗+ +
=

+ + + +
 . (A5) 

Since ij jiD D=  and ij jiM M= , the two denominators are the same.  In the numerators 

the sum of the second and third terms is the same; however, the first term in the 

numerator of Eq. (A4) is the conjugate of the first term in the numerator of Eq. (A5), i.e. 

 ( )12 12 21 21D M D M
∗∗ ∗= . (A6) 

It follows that the numerators are not equal, so that Eqs. (A4) and (A5) give different 

values; hence the processor is not symmetric with respect to receiver order.  
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