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Abstract 
Spatially periodic flows possessing helicity exhibit dynamo action. One such flow 

studied by G.O. Roberts serves as the model in this thesis. The first results de­

tail the structure of the flow, including its symmetry properties as ascertained by 

group-theoretical methods. A kinematic dynamo model at low magnetic Reynolds 

number is developed in the third chapter. It is found that magnetic fields with ax-

ial wavenumbers 0( Ri) are destabilised by the fluid motions, producing a dynamo 

effect . Roberts' cellular flow is next utilised to develop a simplified self-consistent 

dynamo model. The Navier-Stokes and induction equations are integrated over a 

cellular region in the x - y plane. Degrees of freedom are recovered by imposing time­

dependent amplitudes on the axial and planar velocities. The resulting set of three 

scalar evolution equations for the mean magnetic field energy density and velocity 

amplitudes are made nondimensional. The model thus represents a hydromagnetic 

analogue of the disc dynamo problem. Equilibria of the three variables are determined 

in terms of four dimensionless parameters arising from the analysis. The bifurcation 

structure of the system is analyzed, leading to a minimal criterion for dynamo action. 

Using linear stability analysis, mean magnetic field growth rates are determined in 

the regimes of the parameter space specified by the bifurcations. In a concluding 

chapter, implications for the geodynamo are discussed. 
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Chapter 1 

GENERAL INTRODUCTION 

1.1 Historical background 

Geomagnetic measurements were conducted in China and Europe centuries ago. 

By 1600 Sir William Gilbert had displayed the essentially dipolar nature of the earth's 

magnetic field (Furumoto, unpublished notes). Yet the idea of a fluid dynamo main­

taining an embedded magnetic field only arose within this century when in 1919 

Larmor posited cyclonic motions as the source of the intense fields associated with 

sunspots (Parker, 1979). His view of a sunspot as a storm was incorrect, yet the 

connection between magnetic fields and turbulent fluid motions provided the impetus 

for modern dynamo theory. 

In 1934 Cowling produced the first anti-dynamo theorem which stated that ax­

isymmetric fields cannot be maintained by purely axisymmetric motions. This devel­

opement posed theoretical difficulties as the nearly spherical symmetry of the planets 

and Sun made axisymmetric fluid motions appealing. Later, Zeldovich showed that 

purely planar motions are likewise incapable of maintaining an embedded magnetic 

field against Ohmic dissipation. Theorists then postulated that the class of admissible 

flows for dynamo action must be three-dimensional motions with nontrivial topologies 

(Parker, 1979). 

Parker (1955) showed that small-scale helical motions can give· rise to dynamo 
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!'Lction by generating a current flux parallel to the mean magnetic field. Steenbeck, 

Raedler, and Krause (1966) elaborated the mean-field electrodynamics, thereby pro­

viding mathematical rigor to Parker's heuristic model. They named the process en­

visaged by Parker the alpha effect. The influence oflocalized motions on large-scale 

magnetism was then firmly established . 

Helical flows have received attention· as candidiates for dynamo action. Formally, 

helicity is the scalar product of the fluid velocity with its vorticity integrated over 

the fluid domain. Like disc dynamos, helical flows lack reflectional symmetry, a 

property which supports dynamo action (cf. Moffatt, 1978). Such flows were first 

studied by G.O. Roberts (1970, 1972) who showed that they mostly behave as first­

order dynamos , i.e., the first perturbative term in the magnetic field modal expansion 

exhibits a positive growth rate. 

A particular periodic flow that has received much attention is the Roberts cell, 

whose streamfunction is given by sin x sin y. Arising from the superposition of two he­

lical waves , the flow consists of square cells reminiscent of patterns found in Rayleigh 

convection. Numerous studies of the Roberts cell as a kinematic dynamo have been 

made (Childress, 1979; Anufriyev and Fishman, 1982; Perkins and Zweibel, 1987) 

including the high conductivity limit (cf. Soward, 1987). Incorporation of dynamics 

into the cellular flow dynamo is developed in the present work. 

1.2 The dynamo problem 

1.2.1 The induction equation 

If a magnetic field is embedded within an electrically conducting fluid, any 

motion of the fluid will generate currents due to the induced electric field. Magnetic 

energy is then dissipated through Joule heating. The currents also generate magnetic 

fields which can enhance the embedded magnetic field under certain flow topologies. 

Regeneration of magnetic field lines by fluid motions to counteract Ohmic decay 
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is the primary mechanism for the maintenance of magnetic fields in astrophysical 

bodies with fluid regions such as planets, stars, and even galaxies. The study of such 

processes constitute hydromagnetic dynamo theory. 

The evolution of a magnetic field bin a fluid with velocity il is governed by the 

magnetohydrodynamic induction equation which is derivable from Maxwell's equa­

tions and Ohm's law, 

(1.1) 

The magnetic diffusivity T/ = (µ0')- 1 where O' is the conductivity and µ the perme­

ability. 

The dynamo problem consists of finding flows in which the nonmagnetic state is 

unstable (the dynamo instability) allowing for exponential growth of an initial seed 

field . Equation 1.1 is linear in b implying the field is determined only to within an 

arbitrary multiplicative constant. In kinematic dynamos, the magnetic amplitude 

is presumed small so that the velocity field remains unaltered. The Navier-Stokes 

equation may be then neglected. 

For a steady flow il = il( x), one can construct magnetic field representations of the 

form b(x, t) = bP(x) exp pt (Childress and Ghil, 1986). It follows that the induction 

equation, with suitable boundary conditions, becomes an eigenvalue problem with 

the magnetic growth rate p being the eigenvalue: 

(1.2) 

Equation 1.2 constitutes a non-hermitian elliptic equation. The eigenvalue prob­

lem is well-posed if either Neumann or Dirichlet boundary conditions are imposed on 

b for a bounded flow (Barton, 1989). If the flow pervades all space, it is sufficient 

that the magnetic field be spatially periodic. Eigenvalues are discrete and generally 

complex with a point of accumulation at negative infinity. A dynamo exists when 

Re (p) > 0. Eigenfunctions may be countably degenerate (Bayley, private communi-
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cation). An observation must be made here: the leading term (the Laplacian) in the 

differential operator on the right-hand side of (1.2) is hermitian. The non-hermitian 

advective term is of lower order as it involves only first derivatives and may be formally 

treated as a perturbation. Thus a complete eigenfunction basis set is constructible 

even though the operator is non-hermitian (Vishik, private communication). This 

is an important point, for without a complete basis set an eigenmodal expansion of 

the magnetic field would be of limited use (some magnetic states could then have 

a zero projection onto the eigenfunction set). Frequently in dynamo models growth 

rate become functions of the magnetic Reynolds number Rm which is the magnetic 

advection-diffusion ratio i.e., Rm = IV'l~~~~lb)I. The problem then becomes finding 

the critical magnetic Reynolds number for the onset of dynamo action. 

1.2.2 The infinite conductivity limit 

For a perfectly conducting fluid (a = oo ), the diffusive term in the induction 

equation vanishes. This recasts the equation to read 

a§ ... 
at= Vx(uxB), (1.3) 

where the Use of Lagrangian coordinates yields the Cauchy solution for the magnetic 

field's evolution. Density p appears due to mass continuity (cf. Moffatt, 1978). 

Bi(i, t) 
p(x,t) 

axi Bj(a, o) 
oai p(a, O) 

(1.4) 

This result is a statment of the frozen flux theorem mentioned earlier. A particle 

initially at a remains on the same field line. 

Diffusion in a stationary medium 

A resistive fluid at rest provides the opposite case from above. Here u = 0 arrd 

the induction equation reduces to a vector diffusion formula. Solving for B using the 
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heat equation Green's function in Cartesian coordinates yields for the magnetic field 

(Pearson, 1974; Parker, 1979) 

&Bi = \72 B at T/ 1 ' 
(1.5) 

B;(X, t) ~ (4"~t)-t j j j Bi(<~ 0) exp {-(X 4~fl'} d3e (1.6) 

From (1.6) above, the field dissipates with a Gaussian profile. Large field gradients 

rapidly decay, while less sharply varying field lines smooth out more slowly. Diffusion 

of magnetic lines of force within a medium occurs on a timescale td ,...., L
2 

where L .,, 

is a typical lengthscale of the system considered. For example, in the earth's core L 

may be taken as the radius Rcore· The diffusion time is then ,...., 104 years, which is 

consistent with current estimates of transition times at the onset of reversals. 

1.2.3 The alpha effect 

Parker (1955) envisaged a means to deform toroidal field lines into poloidal lines 

within a stellar convective zone. In his approach, a mass of rising fluid transports an 

embedded magnetic field. Stellar gases, being ionized, possess high electrical conduc-

tivities, so Alfven's theorem holds. The Coriolis force acts on the fluid mass causing 

it to spin. Such helical motions twist magnetic field lines into looplike configurations. 

Parker referred to this stretch-and-twist episode as a 'cyclonic event'. This_ process 

of field generation is called the alpha effect, named after the symbol used (Steenbeck, 

Radler, and Krause 1966 ; Radler and Krause, 1980). The alpha effect is due then 

to convection and rotation. An equivalent statement is that a toroidal current is 

generated parallel to the toroidal field thereby producing a poloidal field. This also 

was demonstrated in Parker's seminal paper (Parker, 1955b ). 

Mean-field magnetohydrodynamics (cf. Raedler and Krause, 1980) refers to a 

multi-scale method within dynamo theory. Specifically, one views the magnetic field 

as consisting of two parts: a mean field varying over large spatio-temporal scales and 
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a fluctuation from the mean, assumed to vary over smaller scales. In principle, the 

averaging method employed in determining the mean field may be spatial, temporal, 

or emsemble (Gibbs) averaging. The main criterion is that the two scales be widely 

separated, justifying the decomposition. One should not however assume the localized 

fluctuating field to be smaller in magnitude than the mean field; indeed within the 

solar convective zone, local field strengths of several thousand Gauss are achievable 

(based upon sunspot observations) while the large-scale solar field is only '""" 5 Gauss. 

Assume the velocity and magnetic fields are divided in accordance with the mean­

field hypothesis. Mean and fluctuating parts are given by 

U(i, t) i10 (x, t) + il'(i, t), (1. 7) 

b(i, t) bo(i, t) + b'(x, t), (1.8) 

< i1 > = i10 , < i1' > = 0, < b > = b0 , < b' > = 0. (1.9) 

In Eqs. 1.7-1.9, the averaging process is denoted by < · >, averaged quantities have 

a 'O' subscript and flucuating quantities are indicated by primes. Inserting the above 

expressions into the induction equation one obtains 

oho 
at V'x(iloxbo) + Y'xEo + 77Y' 2bo, Eo =<ilxb>, 

ab' 
= Y'x(i10 xb' + i1'xb0 + G) + ryY' 2b', where G at i1' x b' 

(1.10) 

Ea. (i.11) 

The mean electromotive force E0 acts as a source term in the mean-field induction 

equation and produces a mean current fa = O' E0 . In terms of the mean field b0 

(Moffatt, 1978; Radler and Krause, 1980). 

(1.12) 
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_1.2.4 Time-scale for flux expulsion 

Expulsion of magnetic flux occurs at high Rm in closed streamline flows (Weiss, 

1966; Parker, 1979). If the flow consists of neighboring cells, the field is then con­

fined to intense flux sheets or ropes within a boundary layer at the cell walls. Field 

strengths within the sheet are by flux conservation of the order O(R;,{ 2 b0 ) for a two­

dimensional flow where b0 is the magnitude of the initially imposed field. As the fluid 

motions advect magnetic flux tubes , tubes of opposite polarity are brought together 

resulting in reconnection. The length scale of the field also decreases so that ohmic 

dissipation of the field occurs even for small diffusivities. This hydromagnetic effect is 

reminiscent of the damping of electromagnetic radiation in a conducting solid wherein 

an impinging alternating magnetic field is damped by induced currents and confined 

to a skin depth of Jf§. ,...., R;,{2 L, ry being the magnetic diffusivity and w the radiation 

frequency (Jackson, 1975). Weiss (1966) determined the time required for flux to be 

expelled from the central region of a planar flow with closed streamlines and found it 

to be O(R;,{3 tu ), tu being the convective timescale of the motion. 

1.2.5 Self-consistent dynamos 

Inclusion of the Lorentz force into the Navier-Stokes equation and the simultane­

ous solving of it with the induction equation constitutes the dynamical problem. An 

early attempt at a solution was made by Bullard and Gellman (1954) using poloidal 

and toroidal expansions of both the magnetic and velocity fields. However the the 

terms did not converge. Other dynamical models have used simpler solid dies. In 

these dynamos, the torque equation and Kirchhoff formulae are jointly solved. Sim­

ilar models can produce reversals of the magnetic field by including a shunt device 

(Robbins, 1977) or by having two coupled discs (Rikitake, 1958; Cook and Roberts, 

1970). It is interesting to note that Knobloch showed that the shunted disc model 

when cast into dimensionless form yields the Lorenz equations. 
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Hydromagnetic dynamical models are far more complicated than disc dynamos as 

one is dealing with a greater number of degrees of freedom. To date, no one has solved 

the complete set of equations simultaneously. However, the steady-state case has been 

studied numerically for the solar dynamo (Gilman and Miller, 1981; Gilman, 1983; 

Glatzmaier, 1984). as well as the geodynamo (Bullard and Gellman, 1954; Kropachev, 

1971; Fearn and Proctor 1984, 1986b). In these examples, self-consistent velocity and 

magnetic fields are derived iteratively from some initial guesstimates of their forms. 

Such models do provide insights into field structure yet do not include magnetic 

field reversals. A question arises as to whether the equilibrium configurations so 

derived are physically attainable starting from an initially small magnetic field. A 

phenomenological model employing an alpha effect (to be discussed below) dependent 

on magnetic field intensity with a cutoff was recently developed by Olson and Hagee 

(Olson and Hagee, 1991). 

Other dynamical models using truncated forms of the complete dynamo equations 

have been analysed in the context of solar magnetism ( Catteneo, 1988) as well as 

smoothed models of spatially periodic flows for planetary dynamos (McMillan, 1988) . 

Stability and bifurcation analysis of such systems provide information detailing the 

parameter range over which one should expect dynamo action. Such low-order models 

yield insights into the physically realistic dynamos of the future. 

1.2.6 Types of dynamo models 

A hydromagnetic dynamo necessarily involves a positive feedback mechanism. Two 

basic types of dynamos arise from this requirement. In a spherical geometry, toroidal 

fields serve as a source for poloidal field via the alpha effect. In turn, meridional 

field lines are deformeed to regenerate azimuthal fields against Ohmic decay. In the 

presence of large-scale azimuthal motion, the w effect generates toroidal field lines, 

while small-scale helical motions producing an a effect recreate the poloidal field. This 
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is an aw dynamo. These models generally produce oscillatory ( ac) di polar fields. If 

in addition to the toroidal flow there is also large-scale meridional circulation , the m 

effect is included, thereby producing an awm dynamo. Models exploiting both a and 

w effects to generate toroidal fields are a 2w type dynamos (Hagee and Olson, 1991 ). 

The present model is an a 2 dynamo. 

1.3 Outline of the text 

The present work investigates dynamo action in a spatially periodic flow studied 

by G.O. Roberts within a dynamical setting. This represents an extension of dy­

namo modelling beyond the purely kinematic approach._ The objective is to provide 

a tractable model sufficiently flexibile as to apply to a range of possible conditions 

within planetary cores. Emphasis will be· placed however on the geodynamo. 

The outline of this dissertation is as follows. In Chapter two, details of the fluid 

motion are presented. I develop the form of the Roberts cell flow needed for the 

model. Fluid dynamical quantities such as the vorticity, circulation, helicity, and 

turnover time along streamlines are calculated. Symmetries of the flow are studied 

from the viewpoint of group-theoretical methods. Insights into the behavior of the 

flow under translation and rotation are made using these techniques. 

Chapter three presents a simple kinematic dynamo model in which the fluid motion 

is the Roberts cell flow. The local magnetic Reynolds number Rm is low so that the 

dynamical effects may be neglected but the large-scale Rm > > 1 allowing for a net 

growth of the mean magnetic field. This is a simpler problem that the dynamical case 

and should be shown first. Also, the kinematic problem will allow the develpoment 

of results that carry over into the dynamical model. 

In chapter four the main result, a dynamical model, is developed. The mean­

field induction equation is obtained by calculating the alpha effect by a boundary 

layer analysis similar to Childress' (1979). This method applies at large magnetic 
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Reynolds number. Additionally, globally averaged axial torque and force balances 

from the Navier-Stokes equation, including the Lorentz force , are derived. In this 

model, the shape of the pathlines remains unaltered with only the velocity amplitudes 

affected as a result of the magnetic feedback. A set of three nonlinear scalar first­

order ordinary differntial equations are derived detailing the temporal evolution of 

the mean magnetic field energy density and the axial and planar velocity amplitudes. 

The requirement that the flow field form be maintained is unphysical but necessary 

for tractability. Under magnetic stresses, streamlines would deviate from the Roberts 

cell flow form. Nonetheless, the model does represent an improvement over purely 

kinematic dynamos and preserves essential physical content. 

In chapter five the equations are recast into nondimensional form using system 

scale-lengths such as the cell size, the diffusive and and turnover times. Four parame­

ters related to the magnetic Reynolds number, alpha effect coefficient and viscosities 

arise from the nondimensionalization process. I then seek steady-state solutions of 

the system and employ stability theory to ascertain the growth rates of the fields for 

small perturbations from equilibrium. Also the system's bifurcations can be found 

from the equilibria. Growth rates will depend on the given range of parameters and 

coincide with the bifurcation structure. Of particular interest are the Hopf bifur­

cations that occur along the upper subcritical branch. Robbins (1977) suggests the 

geodynamo operates subcritically. 

Numerical integrations of the equations are performed using a multidimensional 

Runge-Kutta routine. Evolving the equations allows for a view of magnetic field 

growth for large initial deviations from equilibrium as well as for studying the growth 

in the region about the Hopf bifurcation. It is found that the oscillations grow until 

a limit cycle is encountered. 

Finally, the issue of the geodynamo will be discussed in chapter six. The relevance 

of the assumption of spatially periodic motion to describe the liquid core's convection 
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will be elaborated, and parameters critical to the geomagnetic field expounded. Such 

a topic is of course rather speculative as the fluid motions within the core have yet 

to be completely discerned. Thus with those limititations I conclude the dissertation 

with a critique of the model. 

All programs used to generate plots were written in Fortran 77 and run on the Uni­

versity of Hawaii VAX II system. Figures in the text were made using the DISSPLA 

library of Fortran graphics subroutines. 
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Chapter 2 

CHARACTERISTICS OF 
ROBERTS CELL MOTION 

2.1 Introduction 

Spatially periodic motions in a conductive fluid can produce a 2 dynamos. One 

such flow, the Roberts cell, has been the focus of several aforementioned studies in a 

kinematic context. This chapter covers the fluid mechanical preliminaries by detailing 

relevant aspects of the motion, thereby laying a foundation for subsequent chapters 

in which the dynamo problem per se is addressed. 

2.2 Prelimanary formalism 

Functions periodic in space and/or time arise frequently in hydrodynamics, e.g., 

streamfunctions describing motion in Rayleigh convection, vortex streets, and Benard 

cells. It is appropriate therefore to provide a formal setting and elucidate some useful 

results regarding such functions. 

Let Rm denote them-dimensional real space endowed with the standard Pythagorean 

metric and Z the set of integers. Further, let {~}r;1 be a set of linearly independent 

vectors spanning Rm i.e., a basis set (Apostol, 1969). An n-dimensional periodic 

function f(x E Rm) is a mapping f : Rm ---+ U C en with the translational 
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property (cf. Roberts, 1970) 

m 

f(x) f(x + :Lei~), Ci E z v Ci. (2.1) 
i=l 

One can also define an inner product and consequently a norm and metric on the 

space S of such functions. The space S is then a Hilbert space as each element can 

be a limit of a Cauchy sequence i.e., limn-+oo II fn - f II = 0, fn E S where II · II 
is the norm. 

The average of f(x) is determined over a single 'cell' D consisting of the region 

bounded by the parallelpiped formed by {~}. Denoting the average by< f >, 

- 11 1 - m < f > = V · · · f(x) IT dxi where V is the ·cell volume. 
cell i=l 

(2.2) 

Equation 2.1 is readily seen to be equivalent to < f > = f~ · · · f~ [(Li O'i~) Tii dai 

(Roberts, 1970) by noting that the determinant of the Jacobian matrix is the volume. 

For f periodic, the wavevectors are drawn from the set/{ = {27r(JT)-1 (c1 , ···,cm) I 

Ci E Z} where Jij = (lj )x; is the Jacobian matrix mentioned above. One has the 

following results 

f(x) :L a( 'k) expik.x with ii*( 'k) 
kEK 

< f > = a(O), 

a(-k), 

For L ni =I- 0' < a;: ... a;;:: f > = 0' 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

Equations 2.3-2.4 are standard, while (2.5) is obtained by noting that the k = 0 

term will be zero; equation 2.6 is a corollary of (2.5). 
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2.3 Development of the model flow 

2.3.1 Stream function and velocity field 

In order to describe a plausible viscous flow, the stream function should be 

continuous through the second partial derivatives, i.e., 'I/; E C 2 (D) where D is the 

region containing the fluid. This is evident by the requirement that the flow be 

smooth as viscosity weakens velocity gradients. The model developed below satisfies 

this requirement, as well as the looser conditions for an inviscid flow. 

I begin with the stream function given in dimensional form by 

'I/; = ~ sin kx sin ky. (2.7) 

For planar motion equation 2. 7 describes a Kolmogorov flow. Its simplicity makes 

the flow amenable to smoothing and perturbation analysis and thus is particularly 

appealing. Rolls in Rayleigh convection have similar patterns so the flow is a useful 

modelling tool. 

In the form used here, I 'I/; I:::; ~. Horizontal velocities derive from the stream 

function and are tangent to streamlines (Tritton, 1987). The velocity field satisfies the 

incompressibility condition. A graph of the Kolmogorov flow streamlines is presented 

in Figure 2.1. 

UH = u(x, y) x + v(x, y) y, (2.8) 

u(x,y) o'I/; v(x,y) o'l/; (2.9) oy' ox 

"V. UH = 0. (2.10) 

Adding a z-velocity Uz = w( 'I/;) retains much of the structure found in two di­

mensions, as particle motion is still constrained to the concentric cylindrical stream 

surfaces 'I/; = constant and the velocity field remains solenoidal. Such flows are quasi 

two-dimensional and constitute exact solutions of the Euler equation (Bayley, 1987). 

This is Roberts' cellular flow. 
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Solenoidal vector fields may be decomposed into toroidal and poloidal components 

(Parker, 1979). A similar construct is obtained here whereby 

i1 = v x 'l/Jz + v x v x Wz, v 2w = w. (2.11) 

From the velocity structure, the particle motion is evident; fluid particles move 

along nested helices within square cells as shown in Figure 2.2. Streamlines in Figure 

2.1 are the projections of pathlines onto the x-y plane. Note that the axial velocity 

remains constant along streamsurfaces, yet allows for vertical shear. This last feature 

is reminiscent of the Taylor-Proudman theorem for inviscid rotating systems. 

Stagnation points, where u = 0, form a square lattice on the x-y plane at the 

positions indicated below. Separatrices, given by 'I/; = 0, connect the stagnation 

points and form cell boundaries. 

-u (2.12) 

2.3.2 Vorticity and helical structure 

Vorticity, defined as the curl of the Eulerian velocity field, represents a measure of 

the rotationality of a flow. A sufficient condition for nonzero vorticity is that a fluid 

element changes its orientation while executing its translational motion in the fluid 

(Tritton, 1987). 

By Stokes' Law the surface integral of the vorticity equals the line integral of the 

velocity along a closed curve. This is Kelvin's Circulation Theorem (Chandrasekhar, 

1961 ). The circulation is defined below. 

(2.13) 

All flows with closed streamlines possess nonzero circulation. The converse statement, 

however, is not generally true as seen in the case of simple shear flows (Tritton, 1987). 
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In the case of quasi two dimensional flows i.e., i1 = V' x 'lj;z + J( 'lj; )z vorticity and 

circulation are given, respectively, by 

.... 
w = 

For the Roberts cell flow defined above 

r = 2k2 jj 'l/;dS 
cell 

8U 
T· 

(2.14) 

(2.15) 

(2.16) 

Helicity indicates the 'handedness' of a vortex as well as the knottedness of vortex 

filaments (Zeldovich et al., 1983). It is defined as the surface integral of the scalar 

product of vorticity and velocity. 

H = j j u·wdS (2.17) 

As defined, His a pseudoscalar quantity, changing signs upon coordinate inversion. 

Helical flows lack reflectional symmetry and are prime candidates for dynamo action 

(Moffatt, 1978), yet nonhelical flows may also regenerate magnetic fields (Gilbert, 

Frisch, and Pouquet, 1988). Purely planar flows are incapable of supporting dynamo 

action due to the absence of a feedback mechanism. This necessity of a third velocity 

component coupled with the nonreflectional symmetry of the flow causes the Roberts 

cell motion to be helical. To be specific, the helicity is nonzero when integrated 

over many cells if the axial velocity is an odd function of the stream function (for 

quasi-two-dimensional flows), 

Uz =w('l/;)withw(-'l/;) = -w('l/;). (2.18) 

This last statement is equivalent to saying the flow possesses a definite helicity 

(our present model is right-handed). 

Flows of maximal helicity are Beltrami fields (Childress., 1988), where the velocity 

and vorticity are parallel (w = c(x) il). Perkins and Zweibel (1987) considered a 
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restrictive scaling on the axial velocity amplitude to retrieve the Beltrami property 

for a purely kinematic Roberts cell dynamo. The Roberts cell version in the present 

study with w('lj;) = I< 'ljJ exhibits af 'quasi-Beltrami' property in that the velocity 

can be divided into two components with the curl of one being parallel to the other 

i.e., 

H I<U2 fof fof [sin2 kx sin2 ky]dxdy 

'7 .... 2k2 
.... 

v X UH = -/{ Uy, 

'\7 X ilv = f<uH. 

7r2 I<U2 

k2 

2.3.3 Turnover time and iagrangian motion 

(2.19) 

(2.20) 

(2.21) 

Particles are affixed to stream surfaces for steady flows so turnover time depend 

solely on values of 1/J. We employ the symmetry of the motion to derive expressions 

for the period and particle positions as a function of time. Assume a fluid particle is 

initially at y = ;k, x = t arcsin ,(/J0 in the cell S defined in Figure 2.1. The time required 

to reach x = ;k is t where T is the turnover time along the particular streamline. To 

obtain an expression for the turnover time one determines the equation of motion for 

a given particle which is the Lagrangian description of motion. This procedure yields 

the turnover time in terms of an incomplete elliptic integral of the first kind, similar 

to that derived for the harmonic oscillator problem 

i = i(ii,t) where i(ii,O) .... 
a, (2.22) 

d2x 1 x2 1 2 . 2 
-

2 
= -kU2 sin2kx ==> - - -U sm kx = E 

dt 2 2 2 ' 
(2.23) 

~kU2 sin 2ky, (2.24) 

z = w('lj;)t. (2.25) 
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The x-velocity is zero at time t = 0, so we obtain E = -~U2 {;0 
2 

where {;0 = 
sin kx sin ky. Now the equation for the turnover time is given by 

where 00 = arcs in 1/Jo. (2.26) 

Figure 2.3 displays the period as a function of ,(/;0 . 

Two cases of interest immediately arise from the above equation. First, near the 

vortex centers (i.e., J ~o J= 1 - t:2 ), trajectories approximate circles in the x-y plane. 

This reduces the period expression to one involving the parameter r, the radius of the 

streamline as measured from the cell center . 

1/Jo . [7r k8 l . [7r k8 l - k
2 
(8 2 . 8 2 ) - k2 2 

sm 2 + x sm 2 + y ~ 1 
2 

x + y -
2 

r , (2.27) 

JuJ~Ukr,T~:;. (2.28) 

Also of interest is the situation of small ~o near the cell boundary. Here the 

turnover time increases without bounds due to the stagnation points. As will be 

seen, the magnetic field will be confined primarily to this region. 

Employing the expression derived above the x-position as a function of time is 

given by 

1
kx(t) d() _ 

_ = Uk'lj;0t. 
arcsin 1/Jo J-1. sin 2 () - 1 

"15 

(2.29) 

The y- position of the fluid particle is then found from the stream function: 

YL _kl arcsin( . 1/Jok ) along the lower half of a stream line, 
sm x 

Yu = I - YL along the upper half of a streamline. 

(2.30) 

(2.31) 

A plot of x(t) versus t is shown for a typical streamline 1[;0 = 0.5 in Figure 2.4. 

Note that the presence of stagnation points increases transit times around the 'corner' 

• 7r 37r regions x = 4k, 4k . 
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2.4 Flows and symmetries 

Recent studies (cf. Zaslavskii et al., 1991) have shown an underlying structural 

similarity in many patterns of physical interest. Consider the set of unit vectors 

Eq = { ei }]=1 forming a q-star in the x-y plane, i.e., 

. ( 27rj. 27rj) 
e j = cos-,s1n- . 

q q 
(2 .32) 

The stream functions 1/;q defined by 

q 

1/;q = 1/Jo L cos(ei · r), (2.33) 
j =l 

where r = (x, y) form an exact solution of the steady, Euler equation. For q = 2 

the streamfunction describes the Kolmogorov flow, a simple shearing motion. The 

q = 3, 6 cases yield hexagonal cells. For the case of q = 4 a square cell pattern emerges 

and It is readily verifible that the form is identical to the streamfunction listed above 

with rotation, translation, and change of scale. Symmetries of orders q = 3, 4, 6 mimic 

the regular polygons capable of tiling a plane. For q =J. 2, 3, 4, 6 the streamlines have a 

quasicystal pattern (Q-ftows) in which long-range order is lost. A related result from 

group theory is that translational symmetry is consistent only with rotations of 27r / n 

where n= 1,2,3,4,6. 

2.4.1 Group properties of the flow 

The symmetry group of a square, D 4 in the Schoenfties notation or 422 in the 

crystallographic notation (Falicov, 1966), contains 8 elements and is isomorphic to 

a subgroup of P4 , the permutations of 4 elements. Group elements are expressed as 

combinations of the two generators r, s and are listed in Table 2.1. 

The first column is the group element. The second column gives the counterclockwise 

rotation (in degrees) and axis. The last two columns are the P4 element isomorph 

and cyclic structure, respectively. 
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Table 2.1: Group elements in D 4 

9i rotation P4 cycle structure 

i [1234] (1)(2)(3)( 4) 
r 90~ [4123] (1234) 
r2 180° z [3412] (13)(24) 
r3 270° z [2341] (1234) 
s 180~ [4321] (14)(23) 
sr 180~=-y [3214] (13)(2)( 4) 
sr2 180° y [2143] (12)(34) 
sr3 180~=y [1432] (1 )(3)(24) 

Group elements may be combined into classes, each class containing elements with 

similar cyclic structure (Matthews and Walker, 1970). For the group D4 the classes 

are reproduced with a notation change from (Falicov, 1966) in Table 2.2. 

It is now possible to construct a character table of the group. Characters are 

the traces of the matrices forming the irreducible representations of the group. An 

important result from group theory is that the number of irreducible representations 

equals the number of classes (Falicov, 1966). Irreducible representations of the group 

members are shown in Table 2.3 and the character table for D 4 is given in Table 2.4 

with notational changes from (Falicov, 1966). Characters are denoted by the µi. 

Under a group element R, a function transforms according to the rule (Falicov, 

1966) 

PR f(x) = f(R- 1x), R-1(x, y, z) = (Rx, Ry, Rz). (2.34) 

I derive in table 2.5 transformations of the Roberts cell stream function under the 

action of group rotations. The identity element i is omitted as it leaves a functi~n 

unchanged. 
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Table 2.2: Classes of the group D 4 

class group elements 

C1 z 

C2 r r3 

C3 r2 

C4 s 
' 

sr2 

Cs sr 
' 

sr3 

From Table 2.5, sin x sin y transforms according to representation 4 (as determined 

by looking at the elements r ands in Table 2.3) , i.e., it is antisymmetric with respect 

to both a rotation ofa /2 about the z-axis and a rotation of 7r about the x- and y-

axes. Whence when acted upon by either of the group elements r and s the function 

transforms into - sin x sin y . The function is an eigenfunction of the operators r 

ands. However, centering the origin in the middle of the square cell without rotation 

symmetrizes the streamfunction, i.e, 'lj; = cos x cosy transforms under representation 

1. Translating the origin by a quarter wavelength on either the x or y axis yields 

'lj; = cos x sin y, sin x cosy respectively, which transform by representation 5. 

I also investigated related functions. The fonctions sin2 x cos2 y ± cos2 x sin2 y, cos x ± 

cosy transform according to representations 1 (for the '+') and 3 (for the '-'). The 

functions sin x ± sin y transform according to representation 5, while sin x ± cosy, 

cos x ± sin y exhibit a mixed symmetry containing both representations 1 and 3. 

For representation 2, the picture is complex. In this representation, the transfor-

mation is symmetric under rotations about the z-axis, but antisymmetric with respect 

to all other operations (which involve rotations of 7r about axes in the x-y plane). The 

only function in this representation in Table 5 is 'lj; = z. So any function transform­

ing by representation 2 wil be of the form J(x,y,z) = g(z)h(x 2 + y 2
) where g(·) is 
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Table 2.3: Irreducible representations of the group elements 

element representation 

1 2 3 4 5 

1 1 1 1 ( ~ ~) 
r 1 1 -1 -1 ( ~ ~1) 

7'2 1 1 1 1 ( -1 0 ) 
0 -1 

r3 1 1 -1 -1 ( ~1 ~) 

s 1 -1 1 -1 
( ~ ~1) 

ST' 1 -1 -1 1 ( 0 -1) 
-1 0 

sr2 1 -1 1 -1 ( ~1 ~) 

sr3 1 -1 -1 1 ( ~ ~ ) 
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Table 2.4: Character table for D4 

character class 

C1 C2 C3 C4 Cs 

µ1 1 1 1 1 1 
µ2 1 1 1 -1 -1 
µ3 1 -1 1 1 -1 
µ4 1 -1 1 -1 1 
µs 2 0 -2 0 0 

Table 2.5: Transformation table 

function group element 

r r2 r3 s sr sr2 sr3 

x -y -x y x -y -x y 
y x -y -x -y -x y x 
z z z z -z -z -z -z 

sinxsiny -sinxsiny sinxsiny -sinxsiny -sinxsiny sinxsiny -sinxsiny sinxsiny 
cosxcosy cosxcosy cosxcosy cosxcosy cosxcosy cosxcosy cosxcosy cosxcosy 
sinxcosy -sinycosx -sinxcosy sinycosx sinxcosy -sinycosx -sinxcosy sinycosx 
cosxsiny cosysinx -cosxsiny -cosysinx -cosxsiny -cosysinx cosxsiny cosysinx 
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an odd function. As I was looking for periodic functions of x, y only, I conclude that 

no such function invariant under representation 2 exists. 

2.5 Chapter summary 

In this chapter, the stream function for the Roberts square cell flow was presented 

and the fluid dynamical quantities of interest such as vorticity, circulation and helicity 

were calculated. It is seen that the flow is helical with a 'quasi-Beltrami ' nature 

depending on the choice of the axial ( z-direction) velocity. To insure a nonzero helicity, 

I showed that a sufficient condition in the axial velocity being an odd function of 'lj;. 

Using group-theoretical methods I determined equivalent forms of the streamfunc­

tion. These forms are also obtainable by coordinate translations, which follows from 

a basic theorem in group theory. I found that the resulting functions transformed 

according to representations 1, 3, 4, and 5 of the group D 4 • No function J(x, y) seems 

invariant under representation 2. As this representation involves inversion of the z­

axis with rotations in the x-y plane, any function transforming by representation 2 

must be antisymmetric in z and symmetric in x and y. 
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, lOLMOGOROV FLOW STREAMLINES 

= .. --------------------------------------------------, .. 
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Figure 2.1: The Kolmogorov flow streamlines 

Streamlines -J;0 = sin kx sin ky are given for 0 :S -J;0 :S 1 in increments of 0. 1, corre-

sponding to the square cell S = {(x,y) I 0 :S x,y :S ~}. 
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Figure 2.2: Typical pathlines in the Roberts cell flow 

Pathlines consist of nested helices bounded by the surface 1/;( x, y) = 0. Particle 

trajectories are indicated by arrows. For the pathline given, w = 0.4~0 
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TURNOVER TIME VERSUS MODIFIED STREAM FUNCTION 
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Figure 2.3: Dependency of the turnover time on the stream function 

Turnover time T( ~o) is calculated from equation 28. As 'I/Jo -t 0, T -t oo due to the 

corner stagnation points. 
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Figure 2.4: Position versus time along a typical streamline 

The x-position is plotted versus time in units of the turnover time for -J;0 = 0.5 for 

one-half cycle The initial position x 0 = k-1 arcsin( -J;0 ) . The final position = ~ - xo . 
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Chapter 3 

LOW Rm INDUCTION IN THE 
MODEL FLOW 

3.1 Chapter overview 

Faraday's law coupled with Ohm's and Ampere's laws yield the hydromagnetic 

induction equation. The kinematic dynamo problem, valid for weak magnetic field 

strengths, utilizes only the induction equation and is the theme of this chapter. Sev­

eral results , namely induction at low magnetic Reynolds numbers and the minimum 

criterion for mean-field dynamo action, are developed herein. 

3.2 First order smoothing at low Rm 

3.2.1 Preliminary considerations 

I begin the investigation of dynamo action in the Roberts cell flow by considering 

induction in the case of small magnetic Reynolds numbers . Recall that Rm is a 

measure of the relative strengths of advection and diffusion of a magnetic field within 

a fluid. For a fluid of uniform conductivity a, a typical lengthscale l and velocity 

amplitude U the magnetic Reynolds number is Rm = ~1 where T/ = (µa )-1
. 

A small value ( < 1) of Rm implies that diffusive effects dominate. Under such 

conditions, local (small-scale) magnetic field lines decay unless maintained by some 

external source. One could imagine, for example, a fluid at low Rm being placed 
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between the poles of a magnet. Within the fluid, the magnetic field would eventually 

be stationary, in which case the advection of the imposed field just balances diffusion. 

The spatial distribution of the field would reflect the nature of the fluid motion. 

Consider the Roberts cell motion in the case of small Rm· To expedite the cal­

culation of the alpha effect, we employ the two-scale (mean-field electrodynamic) 

approach mentioned earlier. Further it shall be noted that the average of a quantity 

shall be taken over four cells constituting a complete "cycle" of the motion in the x-y 

plane, that is, 
1 {21 {21 

< f >= 412 lo lo f(x, t)dxdy 

where l is the cell dimension. The modified stream function is now 

Ul . 1rX • try 
'I/; = -; sm -

1
- sm -

1
-. 

Equivalently, the wavenumber now equals k = f. 

(3.1) 

(3.2) 

Small-scale magnetic fields will have the same periodicity as the flow due to the 

translational symmetry of the system. This is seen by considering a gedanken exper­

iment. A uniform externally applied magnetic field b0 is embedded in a stationary 

fluid. At time t=O the Roberts cell motion begins. The field twists, causing the 

formation of cell-sized perturbations. Put differently, the field is now considered as 

consisting of the mean portion b0 and a fluctuation b'. Since alternating cells behave 

identically, the perturbation likewise possesses the flow's periodicity. One can employ 

order-of-magnitude arguments to facilitate in the computation of the fluctuating field. 

The temporal evolution of the perturbing field is given by 

8b' 
at 

"\l·b'=O 

b'(x, o) = o. 

30 

(3.3) 
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It is evident that the term V' x ( u' x b') is the most difficult to handle. To solve 

for b' exactly would require expressing the field as an infinite Fourier sum over modes 

with the flow's periodicity. Then matching exponents in the induction equation would 

determine conditions on the Fourier amplitudes b( k). If some simplifying assumptions 

are possible, the perturbed electromotive force term may be omitted altogether. 

First-order smoothing (Moffatt, 1978) provides such a simplification. Each term 

in the induction equation can be assigned an order-of-magnitude value; some terms 

are larger than others. If the offending term is smaller than either aJ1 or 'f/\i' 2 b1 it 

could be dropped under first-order smoothing. The first choice doesn't involve the 

diffusivity (i.e., the magnetic Reynolds number) so we take the second choice. In the 

case of conventional turbulent motions I~~' I ,...., IV' x GI << IT/Y'2b'I· This analysis is 

valid for the low Rm regime. Besides, the a effect to be determined for mean field 

growth will use the steady-state value of the perturbed field. 

u'b' 'f/b' 
-z-< r 

u'l 
Rm= - << 1 

T/ 

Here l = f is the familiar cell wall length. 

Two timescales, the convective time tu = ~ and the diffusive time td = 

(3.6) 

(3.7) 

~are 
T/ 

relevant. The magnetic Reynolds number may be considered as the ratio of these two 

t . . R - !a Imes I.e., m - tu. 

After initial growth of the perturbing field, diffusion balances the restorative ad­

vection wrought by the mean field and b' achieves a steady-state ( t = oo) configu­

ration. In this construct we maintain the 'weak field' assumption that the Lorentz 

force doesn't alter pathlines. Then the perturbed field satisfies 

(3.8) 

For the right-hand terms to be of similar magnitude, the mean field amplitttde 
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must exceed the perturbed field's amplitude by a factor of R;/, 

(3.9) 

bo ,...., R:;,/ b' where Rm < < 1. (3 .10) 

Now that the magnitude of the perturbed field relative to the mean field is estab­

lished, it is useful to consider the mean field and ascertain its time- and length- scales. 

Evolution of the averaged magnetic field is governed by the induction equation 

obo - -ot = 'Vx < i1 x b' > + rt'V 2 bo, (3.11) 

where the a effect is the first term on the right-hand side. Allowing the length scale 

of the mean field to be denoted by L order-of-magnitude arguments show that for 

smallscale inductive effects to balance diffusion one must have 

rybo 
L2' 

uL 

rt 

(3.12) 

(3.13) 

}__ ,...., ,...., RL-2 ,...., R2 ( ) L m 3.14 

From equations 3.12-3.14, it is seen that L ,...., R~2 l >> l which justifies the 

assumption of wide scale separation. Also, the largescale magnetic Reynolds number 

RL is greater than one so that a mean field of lengthscale O(R~2 l) may be destabilised 

by the a effect producing a dynamo. 

Convective and diffusive timescales for the mean field may now be ascertained. 

In terms of the local diffusion time the largescale convective and diffusive times, 

respectively, are given by 

tL 
L ,...., R::n3

td, (3 .15) u u 

tL 
L2 

,...., R~4td. (3.16) d 
rt -Again the timescales relevant to the evolution of b0 are widely separated from those 

of b'. 
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3.2.2 Calculation of the Rm order field 

To solve for the perturbed field in the Roberts cell case, substitute the velocity u = 

U (sin kx cos ky, - cos kx sin ky, ~ sin kx sin ky) into the induction equation yielding 

b~ = 2~T/ [box cos kx cos ky - boy sin kx sin ky] (3.17) 

b~ = Uk [box sin kx sin ky - boy cos kx cos ky] 
2 'T/ 

(3.18) 

b~ = vk [box cos kx sin ky +boy sin kx cos ky] 
2 'T/ 

(3.19) 

The perturbed magnetic field has the same periodic structure as the fluid. That the 

perturbed field satisfies Gauss' Law is readily verifiable. Further, the initial condition 

on b' is met by multiplying the above spatial components by 1 - exp(-'T/k2t). The 

inclusion of the temporal factor overcomes objections that the above equations were 

time-independent and hence incorrect. Actually, The time derivative of b' could have 

been maintained in the modified induction equation, so long as the magnetic Reynolds 

number remained small. Once b' is known, the mean electromotive force is quickly 

calculated. 

a · · 1J 

< u' x b' > = a . bo, 

- UV (1 - e-11k2t)8· . (. . ) 4k'f/ 1J i,J=l,2, 

(3.20) 

(3.21) 

(3.22) 

The 2 x 2 unit matrix 8;i is the familiar Kronecker delta. No contribution to a is made 

by boz as the flow depends only on the planar coordinates x and y. The net small­

scale emf, having formed, is capable of driving a current antiparallel to the mean field. 

Childress (1988) obtained a similar expression using a cellular flow with a different 

scaling than the present work, however he did not include the time dependence in 

his calculation of a. Nonetheless if one allows a sufficient time t > > rik2 to pas~, 

Childress' solution will be obtained. 
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3.2.3 Higher order field terms 

It is of interest now to include the small-scale advective term in the induction equation 

and determine higher order terms in the perturbed magnetic field. To do this, I 

expand b' in a perturbation series, matching powers of the expansion coefficient Rm 

i.e., 

(3.23) 

Rewriting the induction equation in dimensionless form using the scaling t = 

\7 d where the subscript refers to dimensionless quantities 

yields 

(3.24) 

Rewriting the induction equation in this manner yields an infinite set of iterative 

equations: 

(3.25) 

(3.26) 

(3.27) 

In equations 3.25-3.27, the 'd' subscript was dropped for convenience. The solution 

of equation 3.25 was previously derived first-order smoothing results (3.17)-(3.19). In 

equation 3.26, we require the field b2 to be spatially periodic and solenoidal. Solving, 

it is found that 

-b - u2 (b k b 2k v [i. . 2k i. . k ])( -2.,,k2t -4ryk2t) 
2 - Sk2ry2 ox cos 2 y, oy cos x, U uox sm y-uoy sm 2 x 1 - 2e + e . 

(3.28) 

It is seen that the higher order corrections do not contribute to the mean small­

scale electromotive force. i.e., < i1' x bn >= 0 for n > 1. Also for each iterate 

bn ,...., O(R;;,b0 ), Thus for small Rm, the first-order smoothing technique provides a 

sufficiently accurate picture of the perturbed magnetic field. 
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.3.3 A mean field dynamo model 

The determination of a in equations 3.20-3.22 can be employed to calculate the 

mean field growth rate, thereby creating a dynamo if the real part of that rate is 

positive. Implicit in the foregoing discussion was the assumption of the constancy 

of b0 over time- and length-scales describing the development of b' which was shown 

to be valid. Using the definition of an average b0 , if allowed to vary, can depend 

only on z and t. It must however also satisfy Gauss' law, namely \7 · b0 = 0. This 

constraint implies boz at most depends on time. Yet from the induction equation, the 

z-component satisfies Btboz = 0, implying it is at most constant. We can therefore set 

it equal to zero without altering the physical content. Inserting the a effect into the 

mean-field induction equation leads to a pair of coupled differential equations for box 

and boy· 
8box 8boy 82box 

(3.29) 
at 

-a-+17--
az 8z2 

8boy 8box 82boy 
(3.30) 

at afu + T/ 8z2 

Both terms have the same time dependence and from separation of variables the 

temporal part is readily seen to be of the form box, boy ,....., ePt. The growth rate p now 

can be determined. The spatial portion of the mean field admits a solution of the 

form,....., ei>.z where,\,....., L-1 . Using matrix notation, we determine the eigenparameter 

p, 

-1-,,.,,\2 - p -ia,\ I 0- . \ \2 
ZCT/\ -17 /\ - p 

(3.31) 

The mean field growth rate p = ±a,\ -17,\ 2 assumes its maximum value when * = 0, 

yielding Pmax = ~~. Varying on a scale ,\-1 the magnetic Reynolds number based on 

this length is large RL = fr, > > 1. The feedback mechanism of this a 2 dynamo is 

readily seen. Smallscale vortical motions produce a net electromotive force yielding a 

current parallel to the mean field. The largescale current in turn amplifies the mean 

magnetic field . 
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3.4 Chapter summary 

At low values of the local ( smallscale) magnetic Reynolds number, any externally 

applied magnetic fields will be slightly perturbed. The perturbed field reaches an 

equilibrium configuration in a time on the order of the diffusive timescale of the 

fluid. Though the a effect so gene~ated is weak, it is however sufficient to destabilise 

magnetic fields of lengthscale "" O(R~2 l. Thus a dynamo acting at the larger scale 

is possible. However as the mean-field evolves on a convective time larger than the 

local diffusive time (by a factor of R;;,,3), its growth is relatively slow. The large scale 

magnetic Reynolds number is large (O(R~1 )) so there is no contradiction here that 

dynamo action occurs only when advection overcomes diffusion. 

There are implications here for modelling planetary dynamos. Within the fluid 

cores of such bodies, small scale convective motions, even weak ones, can amplify 

the largescale magnetic field provided the scale length separation is sufficient, i.e., 

at least O(R;;,,2
). Rotation favors the establishment of such vortices via the Coriolis 

force acting on rising convecting masses. This allows for an o:2 dynamo mechanism 

which could operate within planetary cores. 
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Chapter 4 

DYNAMICAL BEHAVIOR AT 
LARGE Rm IN THE MODEL 
FLOW 

4.1 Overview of the ch~pter 

In this chapter, Roberts's cellular flow is considered at large magnetic Reynolds 

number. First, previous work is noted. Soward's (1987) a effect calculation is em­

ployed to write the scalarized mean field induction equation. Next the scheme for 

scalarization of the Navier-Stokes equation is presented. Boundary layer analysis 

allows the determination of the axial magnetic field and vector potential. Once de­

termined these quantities permit calculation of magnetic force and torque terms in 

the (now) scalar Navier-Stokes equations. A dynamo model incorporating Lorentz 

back-reaction onto the fluid is thus developed via a set of three ordinary differential 

equations detailing the evolution of the mean magnetic field, axial and planar velocity 

amplitudes. 
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4.2 Previous results 

4.2.1 Boundary layer analysis 

When the magnetic Reynolds number Rm = UL is much greater than unity, the 
T/ 

induction equation takes the dimensionless form (Childress, 1988) 

( 4.1) 

The highest order term is now multiplied by a small parameter implying the existence 

of boundary layers needed to satisfy boundary conditions (Neyfeh, 1985). Within the 

boundary layer, magnetic diffusion is of the same magnitude as advection. For the 

present model, this layer is 0( R:;;/12 L) where L is the cell wall length as seen by 

assuming 't "'"' 7: (Childress, 1988). 

Soward (1987) modified the Roberts cell flow by imposing a weak singularity in 

the axial vorticity at the stagnation points to produce a 'semi-fast' kinematic dynamo. 

However this added feature doesn't alter the a effect calculation (Perkins and Zweibel, 

1987). He then determined the a effect by reducing the induction problem to a 

diffusion equation via transformation to Von Mises coordinates da = ju}i-jds, ~ = 

R-:,(,21/J where s is the length along the separatrix 'ljJ = 0. The boundary conditions 

were then incorporated into the solution by the Wiener-Hopf technique. He found 

the averaged electromotive force is found to be 

< i1 x b > = abo, ( 4.2) 

a = ]{ ( 1 0 ) -0.533 v1J[;;. 0 1 . ( 4.3) 

Soward also determined, using asymptotic methods, the mean field growth rate to 

be maximal when the axial wavenumber A "'"' O(ln Rm) relative to the cell length, 

which is consistent with the assumption of wide scale separation. Other authors 

(Childress, 1979; Anufriyev and Fishman, 1984; Perkins and Zweibel, 1987) have 
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also calculated the a effect for Roberts' cellular dynamo however Soward's analysis 

appears to lead to the correct asymptotic limit of the magnetic growth rate (Childress, 

private communication). 

4.3 Formulation of the mean field induction equa­
tion 

The first equation to be developed in this model is a scalar form of the mean 

field induction equation. Several points however should be noted. As an average 

of the magnetic field over many cells , the mean field b~ is independent of the planar 

coordinates x , y. Hence it is a vector-valued function of time and the axial coordinate 

z . Also, the mean field obeys the soleniodal constraint, i.e., Gauss ' law, implying the 

axial component of b~ is at most a constant. One may set boz = 0 without altering 

the physical content of the problem. Therefore the mean field lies in the x - y plane. 

I assume the mean field to be of the form 

( 4.4) 

where the axial wavenumber >.. < < L- 1
, L being the cell wall length. Using the 

expression for the a effect the induction equation is written as 

ob~ • A --> 2--> 
i)t = i>..az x bo - ry>.. bo. ( 4.5) 

At this point the vector equation is transformed into a scalar one by setting Be 

box + i boy so that 

dBc '2B 'B dt + 'f/A c = -(l'A c• (4.6) 

The axial wavenumber >.. exceeds L-1 by a factor of ln Rm (Soward, 1987) while a 

determines the a effect magnitude. Using Soward's result, 

a - -0.533V !iiJ. ( 4. 7) 

39 



_Note that a has dimensions of a velocity as it should. This scalarized induction 

equation constitutes the first model equation. 

·In seeking a dynamical model incorporating the Lorentz force it is necessary to 

make the velocity amplitudes time-dependent i.e., U -+ U(t), V -+ V(t) to allow 

sufficient degrees of freedom in the equations. If the timescale of the system (i.e., 

U(t), V(t), b0 (t)) is long compared to the eddy turnover time L/U, one can employ 

the instantaneous a effect computed from the steady cellular flow case. Likewise 

the magnetic force and torque exerted on the fluid is calculated using instantaneous 

b values. The model is based on this assumption. In that case the a effect above 

becomes -0.533V(t)~. 

4.4 The Axial momentum equation 

The model second equation considers the global axial (i.e., z-direction) momentum 

balance. Derivation of the evolution equation for the axial velocity amplitude V(t) is 

the goal. The eulerian z-velocity is given by w = V ( t) sin 7r{, sin Y;. It is assumed this 

form is maintained even in the presence of Lorentz stresses. Calculation of quantities 

are made over the cellular region M = (x,y,z) I 0 ::S x,y ::S L, -oo < z < oo). 

The fluid density p is assumed constant. Here I am integrating the z-component of 

the Na vier-Stokes equation over a cell, that is 

{L {L Ow {L {L [)p _, _, 
P lo lo (at + i1. '\lw)dxdy = lo lo (-oz + p11'\l2w + {j x b}z)dxdy. ( 4.8) 

Consider the left-hand side of equation 4.8 .. The rate of change of axial momentum 

per unit axial length is given by 

dmz = {L {L 8w(x, y, t) dxd 
dt p lo lo at y 

4L2p dV(t) 
-----

7r2 dt 
( 4.9) 

Next the advective term does not contribute to the formula, i.e., 

foL foL i1 · '\lw(x, y, t)dxdy = 0. (4)0) 
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Now consider the right-hand of the integrated Navier-Stokes equation. First, the 

pressure gradient term yields 

1
L1L8P - -dxdy 

0 0 az 
- 8P(C) L2 

az 
for at least one c E M by the mean-value theorem. Set 8~~?) 

-! f 8P dxdy = 
JM 8z 

4pL2 

-2-r. 
7r 

This choice gives r units of acceleration, the same as ~~. 

( 4.11) 

- !e. r so that 
71"2 

(4.12) 

Next evaluate viscous stresses. The drag force per length in the cellular region is 

easily calculated and found to be 

fJ2 ()2 
fvisc = pv j JM( fJx2 + fJy2 )w(x, y, t)dxdy -8pvV(t), ( 4.13) 

wherev is the kinematic viscosity. 

The final term to evaluate is the Lorentz force per length. As with the a effect 

calculation, assume a uniform field b0 is maintained exterior to the cell. After flux 

expulsion, the steady field within the cell has the form b = ( ~~, - ~~, B) due to the 

flow symmetry. The magnetic force per length then equals 

-If f aAaB aAaB 
j mag = µ JM( 8y 8x - OX By )dxdy, ( 4.14) 

where µ is the magnetic permeability. The functions A, B satisfy the relations 

UH. VA = TJV' 2A, ( 4.15) 

( 4.16) 

from the induction equation. 

As the field is confined to a layer of thickness 0( R;;.,1/
2 L) it is expedient to rewrite 

the above formulae in the Von Mises boundary layer coordinates u = f uHds , J; = 

R~2 '!j;. The function A then is a solution of the one-dimensional heat equation ~: = 
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T/ ~~~ while a solution for B that satisfies the condition B = 0 at 'ljJ = 0 is ~ d:~o) ~~. 

One obtains for the Lorentz force per length 

f = _1 j j( a~ oB _ a A a~ )dud·i· 
mag µ f)'ljJ fJu fJu o'ljJ '// (4.17) 

µ-1 j j ~(A BB) - ~(A Bl!_ )dud~ 
81/; 0<7 0<7 81/; 

J 
f)B A v 

= A{)~ d'l/J ex U. 

The magnetic force per length can now be wriiten as !mag = -1'fIBcB; where, recall, 

Be is a complex number, Be = Bx+ iBy, formed from the mean magnetic field and 

I is a constant arising form the integrals. To verify this form of the magnetic force, 

note that it is expressible as a quadratic functional in Be, J mag = I: fijBiBj with 

f 11 = f 22 , f 12 = f21 by symmetry. But B = 1 + i yields the same force as 1 - i so 

f 12 = 0. Again by the symmetry of the flow we must also have f 11 = f22 so the force 

is proportional to /Bc/ 2 as stated . 

I now have the second equation of the model: 

( 4.18) 

4.5 The axial torque equation 

The third model equation details the evolution of the planar velocity amplitude 

U ( t) . To arrive at this expression, I consider the rate of change of axial angular 

. momentum equation, which may be found by taking the cross product of position 

from the z-axis with the Navier-Stokes equation and then integrating over a cell: 

( 4.19) 

Note we posit the spatial structure of the flow to be preserved by the viscous arid 

magnetic torques. 
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The rate of change of axial angular momentum is determined to be 

dl(t) 
dt 

-p {L {L x 81/; + y81/; dxdy, 
lo lo ax 8y 

8pL3 dU(t) 
-----

7r2 dt . 

( 4.20) 

Next the advective term makes no contribution as before due to the presence of 

terms such as sin 2~x , sin~ in the integrand giving a zero value for the integral. 

The pressure gradient term may be considered in a mechanical sense an internal 

rotator supplying angular momentum to the fluid to overcome viscous and magnetic 

torques . The equation is found to be 

( 4.21) 

The exact form of the pressure gradient is not specified as before since one can again 

employ the mean value theorem and say the term represents an averaged value of the 

integrand times the cell area to be called T0 . 

The viscous torque expression is determined next. One has 

Tv = -pv laL laL x\12~~ +y\12~~dxdy ( 4.22) 

= -l6p11LU(t). 

The final term to calculate is the magnetic torque expression. It is readily verifiable 

that this term is given by 

Tmag = -µ:;,/z·JJ rxb·\1bdxdy. 
cell 

( 4.23) 

Note here that I am evaluating the moment of the divergence of magnetic stresses as 

the gradient part of J x bis absorbed by the fluid pressure term. 

Now define the symmetric tensor Tij - b;bj and let Eijk be the usual Levi-Civita 

tensor . In tensor notation the magnetic torque is determined to be 

( 4.24) 
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In the boundary layer approximation appropriate to the cellular flow dynamo at large 

magnetic Reynolds number this expression for the magnetic torque becomes 

Tmag = µm f (xby - ybx)(bxdy - bydx), 

~ ~B B*L2 
c c 

µm 

( 4.25) 

where k is an 0(1) constant from the boundary layer analysis and remarks used 

in determination of the magnetic force term (i.e., the appearance of IBcl2 
) likewise 

apply here. 

The third and last equation of the model is now given by 

dU 
dt 

4.6 Nondimensionalization of the equations 

( 4.26) 

It is assumed in this model that the local magnetic Reynolds number is large and 

that over the convective time of the fluid the average magnetic and velocity fields do 

not vary appreciably. Whence the system evolves on the longer diffusive timescale of 

the mean field. So I first set 

( 4.27) 

where t* is now dimensionless In what follows all starred quantities are nondimen-

sional. 

The velocity amplitudes are scaled by a common factor, hence 

U(t) UoU*(t*), 

V(t) U0 V*(t*). 

With the above scalings the mean field induction equation becomes 

dB* B* 
dt* + 

44 

* V*B* 
a fiT:' 

vU* 

( 4.28) 

( 4.29) 



-where a* = 0.5331l1J; and the magnetic field has been scaled as B = B0 B*. 

The equations for U*, V* become respectively 

( 4.30) 

dV* 27r2 v f k 7r3 v2 V * V* m A IB*l2 
dt* + L 2TJ>..2 = ·TJ>.2U0 - 4LU0 TJ>.2U* ' 

(4.31) 

where VA is the Alfven velocity 1;.b. 
yPµ 

The equation for U* s can be further simplified by setting the value of the axial 

wavenumber >. so that 

Then one has the final equation for U*: 

dU* + *U* = 1 - IB*l2, 
dt* µ 

µ* 

Setting V** = 1J.Suo V* and letting 

v* 

one has the equation for V** : 

27rv r 
LTJ;..2 T/;..2uo' 

km7r2V~ f 

4UoTJ>..2 TJA2U0 ' 

dV** V** 
-- = v*V** = 1- *-IB*j2. 
dt* I U* 

( 4.32) 

( 4.33) 

( 4.34) 

( 4.35) 

The alteration of V* changes the coefficient a* in the nondimensional induction 

equation. Writing a** = a* 1J.Suo I then have 

dB* V** B* -- + B* =a**---
dt* VtF . 
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Defining Z = jB*j 2 and dropping asteriskes and the dynamo model consists of 

three evolution equations involving a set of four free parameters (a , /,µ, 11) containing 

physical properties such as fluid density, conductivity, viscosity, cell size and scale 

length of the mean magnetic field. The formulae are 

dU . - z, ( 4.37) - + µU = 1 
dt 

dV 
vV = 1 

,vz 
( 4.38) dt + u 

dZ = 2( aV 
dt vu l)Z. ( 4.39) 

Analysis of the model dynamo equations comprises the topic of the next chapter. 

46 



Chapter 5 

ANALYSIS OF THE DYNAMO 
EQUATIONS 

5.1 Chapter overview 

In this chapter, the stability of equi.J.ibrium solutions of the dynamo equations 

as well as their temporal evolution is studied. The magnetic energy behavior over 

ranges of parameters is emphasized. 

5.2 Equilibrium solutions of the model 

Setting the time derivative in the model equations equal to zero yields the equilibria 

of the system. Denoting those values with subscript 'e' ,one has 

(5.1) 

(5.2) 

(5.3) 

Two cases arise from the above equations; the nonmagnetic equilibrium situation 

( Ze = 0 ) and the magnetic case ( Ze =J 0 ). 
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5.2.1 Case of zero Ze 

For zero Ze, the values of the velocity amplitudes are given by 

(5.4) 

5.2.2 Case of nonzero Ze 

In this case, the constraint Ue = a 2v'/ is imposed for the velocity amplitudes to 

be real. From this the magnetic energy term lies between zero and one (due to the 

required positivity of Ue): 

(5.5) 

The result is physically understandable; Ze is a nondimensional magnetic 'energy' 

which should be positive. 

Solving for Ze one has a simple quadratic equation for nonzero K /µ - II 

0, (5.6) 

!) l , 
(5.7) 

while for zero K there is one value of Ze namely 

1/2 

Ze = 1 - -
2

• (5.8) 
µa 

To insure at least one positive, real Ze it is sufficient that µa 2 > 11
2

• It will be 

seen that this condition suffices for the zero magnetic state to be unstable i.e., for 

the system to exhibit dynamo action. Also, the combinations of parameters 2~µ and 

µ~2 
determine whether the Ze values are positive or negative, purely real or complex. 

II 

Figure 5.1 illustrates this dependence. 

48 



5.2.3 Some special cases 

In an inviscid fluid, µ = v = 0. The equilibrium values U, V, and Z are given by 

(5.9) 

Forµ = v = / = 1 the a value strongly determines the nature of equilibrium solutions: 

if a < 0 :::} Ue = Ve = 1, Ze = 0, (5.10) 

(5 .11) 

This is a case where K = 0. 

Another simple case is found by setting / = 0.5, µ = 1, and v = 2. For this choice 

of parameters, kappa = -1.5. Magnetic energy equilibrium values are given by 

Ze = ~ [ 6 - a 2 ± Ja4 - 3a2 ] • (5.12) 

In this example, z; are complex when a< J3. For J3 <a< 2, both Ze values are 

positive and only z: > 0 when a > 2. 

5.3 Bifurcation structure of the Ze values 

From the stability diagram (Fig. 5.1) several points can be made. First, only z: > 0 

for µ11~
2 > 1. For lower values, finding a positive Ze depends on the sign of 2~µ - 1. 

Figure 5.2 illustrates the bifurcation structure of Ze values as a function of µ11~
2

• Such 

bifurcation diagrams are commonly used in dynamical systems theory. Under the 

constraint 'b.E. - 1 > 0, Ze = 0 for µ~
2 

< 1; if µ~
2 

> 1 a Ze > 0 appears in addition 
ll ll ll 

to the zero solution, asymptotically approaching Ze = 1 as µ11~
2 

~ oo. This is the 

supercritical branch of solutions in current terminology. The subcritical branch details 

Ze values for 'b.E. -1 < 0. Here, Ze = 0 for~ less than some minimum value. When 
ll ll 

( µcx
2 

) µcx
2 

) dd. . 1 1 z± . b d µcx
2 

- 1 z+ d 7 min < 7 < 1, two a it1ona va ues e appear, eyon 7 ~ 1, on y e an 

the zero solution remain. The subcritical branch is further divided into lower and 
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_upper parts depending on the stability of solutions. In the next section the stability 

of the equilibria is studied. 

5.4 Stabilty of the equilibria 

In this section, small departures from equilibrium are studied using linear stability 

analysis. Writing U = Ue + Ui, V = Ve + Vi, and Z = Ze + Z1 and keeping only 

linear terms in U1 , Vi, Z1 the equations become 

(5.13) 

dVi 
---;ft+ vVi (5.14) 

(5.15) 

Consider the case Ze = 0, Ue = 1/ µ, Ve = 1/v solving for the perturbations yields 

Vi(t) 

= U1(0)e-µt - Z1(0) [ei1t - e-µt], 
f3+µ 

T/ (O) -vt _ /µZ1(0) [ /]t _ -vt] 
v1 e a. 2 e e , 

fJV + V 

Z1(t) = Z1(0)e11t where (3 = 2(afo -1). 
v 

(5.16) 

(5.17) 

(5.18) 

As seen, the zero magnetic equilibrium is u~stable for (3 > 0 -+ aVJi/v > 1; any 

perturbation Z1 grows exponentially away from zero. On the bifurcation diagram, 

the Ze branch is stable for ~ < 1 and unstable otherwise. 
/) 

Seeking solutions to equations 5.13-5.15 of the form ePt leads to an eigenvalue 

problem. The growth rates are found from the cubic equation 

p3 + (µ + v + f)p2 + [µ(v + f) + 210 - O]p + 210µ +or - vO = 0, (5.19) 

where r = 'YJe and () = avg;;·. 
e Ue 

From the above expression, determining the stability of equilibria in general is 

rather involved. 
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5.5 Numerical integration of the model equations 

Using a three-dimensional numerical integration routine, equations 4.38-4.39 can be 

solved iteratively. I employed a fourth Runge-Kutta method in which errors are of 

order 0( 8t5
) where 8t is the timestep increment. 

5.5.1 Case of 2{µ > v 

From the stability and bifurcation diagrams (Figs . 5.1, 5.2), when 21µ > v the 

Ze takes on the value at the supercritical branch if µo: 2 > v2
; otherwise Ze = 0. 

Likewise, for µo: 2 > v2
, the Ze = 0 branch is unstable. Figure 5.3 illustrates this. 

Parameters o: = / = 2, µ = v = 1 and ·initially Z = 0.01 while U and V were at their 

equilibrium values. The perturbation grew until reaching equilibrium at z:. Note 

the trajectory overshoots z: once then converges to it. The zero branch is unstable, 

while the supercritical Ze value has a large radius of attraction, meaning initially far 

values from it eventually spiral in. The timstep interval here is 0.003 and there are 

5000 iterations corresponding to t11nai = 15. 

Figures 5.4 and 5.5 show the evolution of Z and U in the above example. Due 

to applied torques the velocity amplitude increases initially. This in turn amplifies 

the magnetic field. Later, the magnetic torque affects the motion causing U to begin 

decreasing. The magnetic field continues to increase for awhile causing the overshoot 

then begins to dampen due to the reduced fluid motion. Eventually, the field converges 

to its equilibrium value. 

In Figure 5.6 the o: effect is too weak to sustain the magnetic field. The field 

decays to zero and the velocity reaches its steady-state value Ue = 1. 

5.5.2 Case of 21µ < v 

Along the lower subcritical branch, z; is unstable; initial lower values decay to 

zero while initially larger values converge to the upper branch. Figures 5. 7 and 5.8 
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illustrate this. The choice of a didn't affect the general behavior. In this range of a 

the zero and upper branches are attractors, while the lower branch is a repellor. No 

chaotic behavior was observed. 

Along the upper subcritical branch, the real part of the complex growth rate be­

comes less negative as a increases. At some a the growth rate is purely imaginary, 

implying simple sinusoidal variations in time for U, V and Z. This is a Hopf bifurca­

tion. Figure 5.9 shows V versus time. Again there is a phase lag between the velocity 

amplitudes and the magnetic field due to the feedback mechanism mentioned earlier. 

As a increases beyond the Hopf point, the complex growth rate has a positive 

real part, yielding an initially growing oscillation for U, V, Z as seen in Figures 5.10, 

5.11, and 5.13. Again, large magnetic energy values dampen the velocity amplitudes. 

Eventually the system settles onto a limit cycle, a nonlinear but regular oscillation as 

illustrated in Figure 5.14. 

In concluding this chapter, several points should be made. First nonzero magnetic 

energy solutions were found; the dynamo model is successful. Along the supercritical 

branch the magnetic energy reaches its equilibrium, so the field is· longterm stable. 

The subcritical branch has the more intersting behavior. As for the dynamo problem, 

the field will not decay along the upper branch. Oscillatory motion is achieved at and 

beyond the Hopf bifurcation. This latter behavior is reminiscent of secular variations 

in the geomagnetic field. 
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Figure 5.1: Stability diagram of Ze 
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Ze behavior is determined in the parameter space of variables 21/11 - 1 and µa. 2 /112
. 
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Hopf bifurcation 
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su percri ti cal bifurcation (stable) 

Ze = 0 unstable 

Figure 5.2: Bifurcation diagram of Ze 

Supercritical and subcritical branches correspond to nonzero Ze· Stability of the 

equilibrium solutions is indicated. 
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o.4$ o.~o o.55 0.60 o.~ 0.10 o.75 o.so o.!5 o.90 o.u 
velocity amplitude u ( alpha=2,gamma=2,mu=nu=t) 

Figure 5.3: Supercritical case: phase diagram of Z vs U. 

A perturbation from Ze = 0 grows until equilibrium is reached at a Ze on the super­

critical branch. 
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Figure 5.4: Supercritical case: Z vs t. 

Z grows initially reaching maximum at t ~ 4 before equilibrating. 
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Figure 5.5: Supercritical case: U vs t. 

U peaks at t ;:::;j 2 before reaching equilibrium. 
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Figure 5.6: A decaying field. 

Parameters correspond to negative Ze region of stability diagram. 
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Figure 5. 7: Subcritical lower branch: a field decay 

Z decays when Z(t = 0) < z; . 
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Figure 5.8: Subcritical branch: stability of upper branch. 

Z increases to z: when Z(O) > Z;. 
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Figure 5.9: Hopf bifurcation: V vs t. 

At Hopf bifurcation, U, V, Z oscillate sinusoidally. 
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Figure 5.10: Post-Hopf: U vs t. 

Beyond Hopf bifurcation, U, V, Z exhibit growing oscillations. 
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Figure 5.11: Post Hopf: V vs t . 
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Chapter 6 

SUMMARY OF THE MODEL 

6.1 Analysis of the model 

6.1.1 The model within the context of a rotating fluid 

In the geostrophic approximation valid for a rotating fluid at low Ekman and Rossby 

numbers (i.e., Coriolis forces dominate) the fluid motion is bidimensional, independent 

of the coordinate parallel to the rotation axis n (Chandrasekhar, 1961). So the 

motivation for using the Roberts cell flow is to mimic in a simple way the convection 

patterns occuring in a rapidly rotating fluid. Thus in my model the z-axis is the 

rotation axis. 

The main problem with the flow geometry I chose is the question of how to fit it 

into a spherical shape. Though the model assumes the cells to fill space, the same 

results would occur if I have a row of cells with insulating boundary conditions so that 

bis continuous across the boundaries. In a spherical context the model approximates 

an array of small cells (relative to the core radius) parallel to the rotation axis looking 

in the equatorial region. 

In the experiments of Busse and Carrigan (Melchior, 1986) it was observed that 

convection in a rotating sphere led to the establishment of Taylor columns similar to 

the cellular array mentioned. In the experiment the axial velocity did depend on the 

z-coordinate due to constraints imposed by the boundaries. 

66 



To impose the Roberts cell model onto the geodynamo leads to the observation 

that the mean field represents the toroidal component of the core field. This is less 

effective that a description of the poloidal field observed at the surface. However that 

weakness is partially remedied by noting the mean toroidal current flux generated 

< i1 x b > = ab= a- 1 < J > (6.1) 

would drive the poloidal field, indeeed the a effect is the by mechanism by which 

poloidal field is regenerated. So one can thus argue that variations in the toroidal 

field results in similar fluctuations in the poloidal field via the a effect. This is an ad 

hoc assumption but is justified by the physics. 

6.2 Stability and bifurcation analysis of the model 

In the previous chapter the equilibrium values of the magnetic field and velocity 

amplitudes were derived first. These values represent the t - oo limits for the 

supercritical bifurcation branch developed from the parameter space. So the mode 

!equations are capable of yielding a case of stable magnetic field. It is noted that there 

have been periods in the geologic record where the field did not frequently reverse 

(e.g., the Permian and Cretaceous eras). Recently Gubbins (1994) has proposed a 

controversial theory that long-term field behavior is regulated by changes at the core­

mantle boundary, as the timescale for the cycles of reversal frequency are comparable 

to mantle convection turnover time. One can infer from the model that the parameters 

I developed may be nonconstant when applied to the geodynamo. I could at a later 

time include such a time dependency. The model is capable of incorporating the 

Gubbins theory. 

For the subcritical region in the parameter space, the field decays if it is initially 

below its equilibrium value and grows to a upper branch value if initially above 

equilibrium. On the upper branch, growing oscillations of the field were found for 
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values of a greater than the critical value determining the Hopf bifurcation point. 

Eventually the field oscillations ceased growing at the limit cycle so that a periodic 

behavior was developed. This behavior while not a field 'reversal' does mimic the 

geodynamo to some extent, the best analogy being secular variations and aborted 

reversal events. 

For the lower part of the stability diagram where µa2 /11
2 < 1 but not the subcrit­

ical branch, only the zero field solution is stable. The values of the parameters in this 

range produce no dynamo. This sets a limit on the values of viscosity and diffusivity 

in the early fluid core. Obviously no field would have evolved in this parameter range. 

While evolving the set of equations numerically I observed that there is a lag time 

between the velocity and the magnetic field. This is a consequence of the negative 

feedback the magnetic field imposes on the velocity. On the supercitical branch the 

velocity and field would initially growth with the velocity graph (versus time) having 

a negative curvature. The velocity would peak first, then begin to decay. For a while 

the magnetic field would continue to grow in a form of an overshoot; after the velocity 

had declined then the field would begin to damp. Then the field would grow slightly 

again, evolving toward its steady-state value. This feedback is illustrated in Figures 

5.4-5.5. 

6.2.1 Manetic stresses and pathlines 

The goal of this research was to produce a model incorporating the Lorentz force 

into the fluid motion equation. I added extra degrees of freedom were to prevent 

over-determination of the system by making the velocity amplitudes functions of 

time. Fluid particles maintained the same pathlines as in the constant-amplitude 

case. While this restriction simplified the physics, since pathlines and streamlines do 

not generally coincide in time-dependent flows, the requirement that the streamlines 

remain unaltered is unphysical. Maxwell stresses will deform a flux tube because the 
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hydrostatic pressure will not generally balance the magnetic pressure (an exception 

being the 'force-free' case where current flux is parallel to the magnetic field). However 

the model does have the advantage of remaining tractable. Moreover the purely 

kinematic dynamo models always assume fixed streamlines, the typical justification 

being that the kinematic case is valid when the field is weak (i.e., when the Maxwell 

stress is less than, the Reynolds stress). Thus the present model is best described as 

a 'semi-dynamical' approach with an inherent weak-field structure and represents an 

improvement over kinematic dynamos. 

In my model the velocity is continuous across cell boundaries, unlike those models 

requiring large or infinite shear to form a strong omega effect such as the Ponomarenko 

dynamo (cf. Zeldovich et al., 1983; Gilbert, 1988) or the various disc dynamo models. 

This feature eases the jump conditions as the magnetic field and current flux will be 

continuous across boundaries. 

6.3 Future Directions 

In this dissertation, Roberts cellular flow has been developed into a model dynamo 

illustrating feedback between the magnetic and velocity fields. One may expand upon 

this work in several ways. More efficient dynamo generation may be produced by al­

tering the flow by the addition of non-integrable terms in the velocity field. This 

would have the effect of making the flow 'chaotic'; in regions near the separatrices 

'l/; = 0 fluid particles would tend to separate exponentially in time in a so-called 

stochastic web. Also I would consider other similar flows but in cylindrical or spher­

ical coordinates. Cellular structures would arise from the stream function. Another 

avenue of useful pursuit would be to maintain the present model but allow the four 

parameters a,/,µ, and 11 to vary in time sinusoidally. 
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