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Abstract

Determining the precise ages of young (∼10 to few hundred Myr) kinematic (“moving”) groups

is important for placing star, protoplanetary disk, and planet observations on an evolutionary

timeline. The nearby ∼25 Myr-old β Pictoris Moving Group (BPMG) is an important benchmark

for studying stars and planetary systems at the end of the primordial disk phase. Gaia DR3

astrometry combined with ground-based observations and more sophisticated stellar models permit

a systematic re-evaluation of its membership and age. We combined Gaia astrometry with previous

and new radial velocities to evaluate moving-group membership in a Bayesian framework. To

minimize the effect of unresolved stellar multiplicity on age estimates, we identified and excluded

multi-star systems using Gaia astrometry, ground-based adaptive optics imaging, and multi-epoch

radial velocities, as well as the literature identifications. We estimated age using isochrone and

lithium-depletion-boundary fitting with models that account for the effect of magnetic activity and

spots on young, rapidly rotating stars. We report an age of 33+9
−11 Myr to the BPMG based on

isochrone fitting to the single-star and resolved-binary sample, which is older than, but within the

uncertainties of, literature values.
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Chapter 1

Introduction

1.1 The Beta Pictoris Moving Group: A Young, Co-Eval Stellar

Association

Associations of nearby, kinematically coherent, coeval stars, known as young moving groups

(YMGs), are indispensable laboratories for studying early stellar and planetary evolution. Studies

of YMG members have informed research on disk-dissipation and planet-formation timescales, early

evolution of stellar evolution and magnetic activity, and the local stellar mass function (e.g., Kalas

et al. 2004; Malo et al. 2014a; Binks & Jeffries 2017; Shkolnik et al. 2017). Accurately describing

these evolutionary sequences relies on precise and accurate ages of these groups, e.g., by fitting

of model isochrones or the lithium-depletion boundary to each group’s stellar population (Bowler

et al. 2019). Moreover, the ages of individual members (and their planets) can be robustly assigned

to the ensemble age of the YMG. In recent years, the advent of all-sky photometric and astrometric

surveys has enabled the identification, confirmation, and characterization of many new members of

YMGs, as well as entirely new groups (Faherty et al. 2018; Gagné et al. 2018).

The β Pictoris Moving Group (BPMG), as the youngest, nearest (median distance ∼ 50 pc)

YMG, affords some of the most detailed studies of pre-main sequence stars (pre-MS), including

their intrinsically faintest (lowest and substellar-mass) members. Additionally, projected angular

separations between binaries are larger, facilitating the identification and characterization of stellar

and substellar companions. Its age, with recent isochronal estimates converging around 23±3

Myr (Mamajek & Bell 2014), corresponds to an epoch immediately following the dissipation of

protoplanetary disks and the initial phase in the evolution of fully-formed stars and planets. The

BPMG’s eponymous star, β Pictoris, hosts one of the first directly imaged debris disks (Lecavelier
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Figure 1.1 Literature-reported BPMG age estimates from Table 6 of Miret-Roig et al. (2020)
(updated from Table 1 of Mamajek & Bell 2014), along with the isochronal and Li depletion
ages from this study. Estimated ages of other young stellar associations Taurus (TAU), Upper
Scorpius (USCO), Carina (CAR), and Columba (COL) have been plotted for comparison and
context, gathered from Table 1 of Gagné & Faherty (2018) and references therein. The best-fit
model age from each fit method in this work, the two color-magnitude diagrams (CMDs) and Li
depletion boundary (LDB), are circled in red. Sources marked with an * do not report errors for
their ages.

Des Etangs et al. 1993), as well as a rare directly imaged multi-planet system (Lagrange et al. 2020).

Other BPMG members include 51 Eridani, hosting a directly imaged Jupiter analog (Macintosh

et al. 2015), PSO J318.5-22, a free-floating planet (Liu et al. 2013), and AU Microscopii, hosting
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an edge-on debris disk and two transiting planets (Kalas et al. 2004; Plavchan et al. 2020; Cale

et al. 2021).

1.2 Age-Dating BPMG: Precedents and Discrepancies

As seen in Fig. 1.1, the BPMG has been age-dated by fitting model isochrones to

sequences in color-magnitude diagrams (CMDs), dynamical trace-back analyses, and lithium-

depletion-boundary (LDB) model fitting. In this work, we utilize both isochrone and LDB models

to assess the age of the BPMG.

Figure 1.2 Various isochrone models plotted on a Gaia G vs. BP-RP CMD. The left panel shows
isochrones from 10-50 Myr from Baraffe et al. (2015), while the right panel shows 20 Myr isochrones
from the various models (Baraffe et al. 2015; Feiden 2016; Somers et al. 2020) used in this study
(detailed in Sec. 3.1). For the SPOTS (Somers et al. 2020) models, we show the lowest (f=0.00)
and highest (f=0.85) spot fraction models to exemplify the effect of increasing the spot fraction
(refer to Sec. 1.2). The dashed black lines illustrate the evolution of individual stars of various
masses (in solar masses, M⊙) from 1 Myr (green dot) to 4 Gyr (magenta dot), from the SPOTS
f=0.00 evolutionary tracks.

Isochrones are theoretical curves on a Hertszprung-Russell Diagram (HRD) or, the observational

analog, a color-magnitude diagram (CMD; Fig. 1.2), identifying a co-eval population of stars at

different masses. In a HRD or CMD, the horizontal axis represents temperature (roughly mass or

color, as a proxy) while the vertical axis is the star’s intrinsic brightness (i.e., absolute magnitude

3



or luminosity). For main sequence (MS) and pre-MS stars, the higher mass, hotter stars will

generally reside toward the upper left of the diagram, while the cooler, lower mass stars will be

toward the lower right. Stellar evolutionary tracks follow a single star’s evolution over time in

luminosity (magnitude) vs. effective temperature (color) space (Kippenhahn et al. 2013). This is

illustrated in the right-side panel of Fig. 1.2; the dashed lines show the evolution of single stars

(0.2, 0.5, 1.0, 1.3 M⊙) from 1 Myr (green points) to 4 Gyr (magenta points) (Somers et al. 2020).

Connecting contemporary points across the different evolutionary tracks produces an isochrone.

Isochrone models from 10-50 Myr from the (Baraffe et al. 2015) evolutionary models are plotted on

a CMD in the left-side panel of Fig. 1.2. The CMD displays Gaia absolute magnitude (denoted as

MG) vs. color (BP-RP). The absolute magnitude is computed from the apparent magnitude and

distance (parallax). The color is the difference in apparent magnitudes in two passbands, BP and

RP, with the bluer magnitude preceding the redder by convention. From Gaia, BP stands for blue

photometer and RP stands for red photometer. Even within this small age range, it is clear how

stars of different masses (BP-RP, by proxy) evolve differently over time, especially at the younger

(10-30 Myr) ages, where greater offsets in the isochrones are visible at different ranges of BP-RP.

Generally, on the pre-MS, younger isochrones are above and toward the right of older ones.

For MS stars, the evolutionary models trace changes in luminosity and effective temperature

due to surface gravity changes that result from nuclear fusion in stellar cores (Angus et al. 2019).

Pre-MS evolution is distinct from MS evolution. For pre-MS stars, hydrogen burning has not yet

begun; instead, the models trace the evolution of pre-MS stars fueled by gravitational contraction

and deuterium fusion. Low-mass, pre-MS stars are fully convective, and the opacity in their interiors

remains high until they reach temperatures hot enough to develop radiative cores (Kunitomo et al.

2017). Before this occurs, their luminosity is largely a function of gravity (and radius), so they

decrease in luminosity as they contract. This is illustrated by their vertical, downward evolution

on the CMD (known as Hayashi tracks) in Fig. 1.2. This evolution occurs on the Kelvin-Helmholtz

(KH) timescale, and varies by mass. Once a radiative core develops and opacity drops, stars

will move to the left of the diagram due to temperature increase, as is shown in the 1.0 and 1.3

M⊙ tracks in Fig. 1.2. The MS is reached when a star begins hydrogen burning and reaches
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thermal equilibrium, where a star will spend ∼80% of its lifetime. The lowest-mass stars (M dwarfs

⪅ 0.35 M⊙) are fully convective even on the main sequence, thus their pre-MS evolution on the

CMD remains almost entirely vertical.

As mentioned, for pre-MS stars such as the BPMG members, there are large differences in the

evolutionary phases of stars at different masses. The KH timescale for stars increases inversely

with mass, with the highest mass (> 8 M⊙) stars having KH radiative lifetimes shorter than their

accretion time (Haemmerlé et al. 2017). Meanwhile, for the lower mass stars, the KH time is orders

of magnitude longer than the accretion time (Stahler 1983). In other words, massive stars evolve

much more rapidly than low mass stars. Thus, very high mass stars may already be evolving off

the MS at the same age, even at young ages (Haemmerlé et al. 2019). Because of these contrasting

behaviors, most evolutionary models do not span the very low to very high mass ranges.

A star’s position on a CMD or HRD is sensitive to several physical mechanisms such as surface

activity, multiplicity, or reddening/extinction. There are many evolutionary model grids and

isochrones in the literature, tailored for different phases of evolution, mass ranges, and more complex

stellar activity (e.g., Chabrier & Baraffe 1997; Yi et al. 2001; Baraffe et al. 2015; Dotter et al. 2008;

Dotter 2016; Feiden 2016; Haemmerlé et al. 2019; Somers et al. 2020), and each have their own

systematics and caveats. Isochrone model fitting is the most widely used method for estimating

stellar ages, and relies on precise photometric data and distance measurements (via parallax) to

estimate an age for a stellar association, in addition to an appropriate choice of models. As evident

in the right-hand panel of Fig. 1.2, there are significant effects of including magnetism and surface

spots in the models, because they account for the elevated luminosity resulting from magnetic

activity. While all of the isochrones indicate a 20 Myr age, the Dartmouth magnetic and SPOTS

high spot fraction (f=0.85) models appear younger (above and to the right) of their more standard

counterparts (Dartmouth standard, BHAC, SPOTS f=0.00). For the models to converge on the

same locus, we would need to increase the ages of the magnetic and spot fraction models, thus,

the magnetic and spot fraction models would assign older ages to the same sequence of stars. The

models utilized in this study are further described in Sec. 3.1.
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Figure 1.3 Various lithium depletion boundary (LDB) models, with abundances normalized to the
primordial ISM value A(Li)=3.30 vs. BP-RP color as a proxy for temperature. The left panel shows
various age LDBs from Baraffe et al. (2015), while the right panel shows 20 Myr LDBs from the
various models (Baraffe et al. 2015; Feiden 2016; Somers et al. 2020) used in this study (detailed
in Sec. 3.1). For the SPOTS (Somers et al. 2020) models, we show the lowest (f=0.00) and highest
(f=0.85) spot fraction models to exemplify the effect of increasing the spot fraction (refer to Sec.
1.2). The dashed black lines illustrate the evolution of individual stars of various masses (in solar
masses, M⊙) from 1 Myr (green dot) to 4 Gyr (magenta dot), from the SPOTS f=0.00 evolutionary
tracks.

LDB fitting is another age-dating method commonly applied to stellar associations, comparing

surface Li abundances by temperature (again, color as a proxy; Fig. 1.3). Measurements of surface

Li abundances (equivalent width of the Li I 6708 Å line) in low-mass stars provide important

information about their interior structures and nuclear ages (Palla et al. 2007). 7Li is depleted by

proton reactions at a threshold of about 2.5 ×106 K (Burke et al. 2004). The LDB age estimate is

the time it takes for internal temperatures to reach this threshold, and for lithium to be convected

down into and destroyed in these regions. We show the LDB curves from 10-30 Myr from the

(Baraffe et al. 2015) evolutionary models in Fig. 1.3 to illustrate how the boundary changes with

time; generally the Li gap widens with age. At younger ages, the LDB (the right-hand side of the

trough) is at higher masses (smaller BP-RP), because it takes more time for the lower-mass stars to

reach the Li depletion temperature and for convective mixing to fully deplete Li. On the left-hand
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side of the boundary, photospheric temperatures are not high enough to destroy Li, and the onset

of the radiative core structure leads to a halt in the Li depletion.

The LDB appears in the mass range of stars near the hydrogen-burning mass limit, which is

a critical mass (∼0.1-0.3 M⊙) at which a star cannot reach sufficient temperatures to undergo

hydrogen burning, though degeneracy pressure provides sufficient support to sustain its surface

luminosity. These are low mass stars reaching internal temperatures hot enough to burn lithium

(Baraffe et al. 2017). This is a rapid process, as illustrated in Fig. 1.3 with the evolutionary tracks

for 0.2, 0.5, 1.0, and 1.3 M⊙ stars. For each track, there is a very steep drop-off in Li abundance,

and for the lowest mass tracks (0.2-0.5 M⊙), lithium is fully depleted very quickly. Meanwhile some

Li remains in the more Sun-like stars and the very low-mass stars (⪅ 0.7 M⊙), which cannot reach

the internal temperatures to burn lithium. The 20 Myr LDB from the various models used in this

study (described in Sec. 3.1) are shown in 1.3 to illustrate how including magnetic and spot fraction

effects change the LDB. Similar to the case of the isochrones, the 20 Myr Dartmouth magnetic and

SPOTS f=0.00 models show younger LDBs (narrower) compared to the standard models.

For fully convective (<0.5 M⊙) M dwarf stars, lithium is fully destroyed within ∼50 Myr

(Bildsten et al. 1997). Mixing processes, such as overshooting, at the convective boundary have long

posed a difficult obstacle in the evolutionary models (Shaviv & Salpeter 1973), and the convective

activity is further complicated by effects from rotation (Baraffe et al. 2017). However, LDB fitting

provides a useful comparison to isochrone fitting and is resistant to some of the systematics and

limitations of photometry-reliant age estimates.

BPMG age estimates range between ∼10 and 50 Myr, with considerable variation in the

uncertainties (Fig. 1.1, Mamajek & Bell 2014). The most-recent estimates cluster around ∼20-25

Myr, placing the BPMG at an intermediate stage between the Upper Scorpius star-forming region

(10±3 Myr, Pecaut & Mamajek 2016), and the Carina YMG at ∼38-56 Myr old (Bell et al. 2015).

According to the dynamical traceback studies (e.g., Crundall et al. 2019; Miret-Roig et al. 2020),

the BPMG kinematics suggest a single star-forming event and origin, so it is unlikely that there is

a real age spread among BPMG members.
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Several effects can contribute to systematics and error in moving-group age estimates apparent

in Fig. 1.1. Robust membership evaluation based on Galactic space motions requires precise

parallaxes, proper motions, and radial velocities (RVs). Contamination by non-members from the

field or other groups can also cause the cluster to appear older. Additionally, unresolved binarity

can make members appear more luminous and hence younger than they actually are (Sullivan

& Kraus 2021), affect the kinematics used for trace-back analysis, or influence the depletion of

Li though the effect of a stellar companion on disk dissipation and stellar rotation (Somers &

Pinsonneault 2015). Previous studies have highlighted the importance of identifying and excluding

binary systems from group age analyses (e.g., Binks & Jeffries 2014; Alonso-Floriano et al. 2015).

Recently, Miret-Roig et al. (2020) used Gaia DR2 astrometry and ground-based RVs to assess the

BPMG age, identifying binaries based on the astrometry and RV variability.

An additional source of uncertainty in deriving ages from model comparisons comes from the

high stellar rotation rates of the BPMG members. Due to their young age, these stars are rapidly

rotating, and the surface spottedness and magnetic activity of pre-MS stars are observed to be

enhanced compared to more quiescent MS stars (Morris 2020). Furthermore, it is not well known

whether internal age gradients within stellar groups are physical. The mass-dependence of star

formation timescales is not well defined, and multiple epochs of star formation may contribute to

the scatter in group age estimates (Krumholz et al. 2019).

1.3 A Deeper Look with Gaia Space Observatory, New

Evolutionary Models, and Resolved Multiplicity

An individual star’s membership in a YMG is typically assessed by comparing its 6-d (3-d

galactic position and 3-d space velocity) kinematics to that of the established group mean and

dispersion. Previous BPMG membership studies have cataloged candidate members (i.e., Gagné

& Faherty 2018) using incomplete astrometric (5-d; 3-d position and 2-d motion) information,

followed by measurement of the 6th (RV) dimension to confirm membership (i.e., Schneider et al.

2019). Additionally, several studies have used RVs to identify binaries among BPMG members
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(Alonso-Floriano et al. 2015; Messina et al. 2017; Miret-Roig et al. 2020). However, multi-epoch

observations were often not available, thus precluding single-lined spectroscopic binaries from their

identifications.

Gaia is a space observatory currently orbiting the Sun at LaGrangian point L2, creating the

most precise and complete 3-d mapping of our galaxy (Gaia Collaboration et al. 2016). Gaia

achieves this by scanning the sky continuously over many epochs, at different orientations, and very

precisely timed. In its first data release (DR1), Gaia revolutionized the field of space astrometry

by precisely measuring the parallaxes and proper motions of over 2 million objects (an order of

magnitude more than Hipparcos, its predecessor mission). In each subsequent data release, Gaia has

improved the completeness of its survey in addition to improving the precision of measurements,

and supplying new measurements such as radial velocities (for a subset of targets). It provides

more precise and homogeneous photometry and astrometry, in addition to RV measurements to

improve membership validation and binary identification. The RV measurements from Gaia are

yet incomplete, however, and are supplemented by other spectroscopic RV surveys such as RAVE

(Malo et al. 2014a), surveying stars distributed in the Southern Hemisphere. Gaia’s latest data

release, DR3, provides additional data, such as revised estimates of astrometric error (i.e. the

Reduced Unit Weight Error, RUWE) to identify binaries not resolved by Gaia (Belokurov et al.

2020; Wood et al. 2021). Moreover, direct imaging searches for substellar companions to BPMG

members have provided a wealth of archival high-angular-resolution adaptive optics (AO) images

with which to resolve stellar companions at typical separations from ∼100-1000 AU.

In addition to the new and improved astrometry and photometry, new, diverse evolutionary

models are available to address some of the limitations of previously employed models (and

assumptions) used to age-date BPMG. The spread between age estimates from different isochrone

models can arise from a number of factors unique to each model, such as composition (hydrogen

fraction X, helium fraction Y), metallicity (Z=[Fe/H]) or mixing length (Prada Moroni et al. 2016).

Further, the complex activity of young, rapidly rotating stars complicates the photometry-reliant

isochrone fitting (Morris 2020). This is especially true for later spectral types, since rotation

and magnetic activity strongly influence the structure and convection of low-mass stars (Feiden
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2016). To explore the model-dependent outcomes on age estimates, we compare isochronal fits from

several suites of models, accounting for additional physical parameters such as magnetic pressure

and surface spot fraction. The magnetic pressure and spot-fraction models are appropriate for the

study of young, highly active BPMG stars still evolving on the pre-MS. The models accounting

for the adjusted brightness of active stars would push the age estimate of BPMG older, though

this is in conflict with the presence of debris and circumstellar disks observed in BPMG, which are

typically thought to dissipate within the first tens of Myr.

In this work, we combined precision astrometry, photometry, and RVs from Gaia DR3 with

ground-based RV measurements and AO imaging to assess and confirm moving group membership,

identify and exclude close binaries, and distill a catalog of single-star members of the BPMG. We

fit both isochrones and lithium depletion boundaries from new evolutionary models designed for

spotted, magnetically active stars to precise, homogenous measurements of these stars to revisit

the age of the BPMG, and consider the implications of the new, model-dependent ages. Further,

we compare the lower-bound multiplicity fraction from this work with those of other young stellar

associations.
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Chapter 2

Methods

2.1 Catalog Construction

We obtained confirmed and candidate members of the BPMG from the Gagné et al. (2018)

catalog, which analyzed all Gaia DR2 sources with precise parallaxes within the nearest 100 pc for

YMG membership. We screened additional confirmed and candidate members from Binks & Jeffries

(2014, 2016); Kiss et al. (2011); Lee & Song (2018); Messina et al. (2017); Shkolnik et al. (2017)

leading to an initial catalog of 433 (assumed individual) stars. (We discuss a search for companions

to these stars in Section 2.2.) This sample was cross-matched with Gaia DR3 (Gaia Collaboration

et al. 2016, 2021), incorporating its updated and improved astrometry and photometry for 415 stars,

and RVs for 99 stars. From DR2 to DR3, Gaia has improved parallax precision by ∼30%, proper

motions by a factor of 2, and significantly reduced photometric systematics Gaia Collaboration

et al. (2021).In addition to the Gaia data, RVs were gathered from RAVE DR6 (Guiglion et al.

2020), and previous RV surveys of low-mass stars and YMGs (i.e., Binks & Jeffries 2016; Malo

et al. 2014a; Shkolnik et al. 2017; Terrien et al. 2015). RVs, either ground-based or from Gaia, were

obtained for a total of 238 candidates.

We calculated probabilities of BPMG membership using BANYAN Σ, a multivariate Bayesian

classifier. BANYAN Σ calculates UVW space velocities and XYZ galactic positions from coordinates,

proper motions, parallaxes, RVs, and their errors, and compares these to the six-dimensional group

means and standard deviations of the 27 nearest identified young moving groups (Gagné et al.

2018). For candidates with multi-epoch RV measurements, we used their median values in the

BANYAN inputs. Based on the distribution of membership probabilities computed for candidates

with complete kinematic data, we elected a threshold probability of 0.9; 148 of 238 with RV

mesurements candidates were selected in this way. Separately, we identified 63 of the 195 candidates
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lacking RVs which would have membership probabilities >0.9 for an “optimal” RV that maximizes

that probability and is plausible, i.e., the “optimal” RV, a statistical prediction assigned by BANYAN,

was within the distribution of the measured RVs of confirmed members. These are high-priority

targets for RV follow-up but are not further analyzed in this work.
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Figure 2.1 Left:Gaia color-magnitude diagram (CMD) of the BPMG sample. MG is the absolute G
magnitude, and BP-PP is the color, or the difference in magnitudes from the blue and red passbands
on Gaia. Right: Gaia-2MASS CMD. MKs is the absolute Ks magnitude. The color is the same as
in the left panel. All BPMG members confirmed in this study are shown as grey dots, while those
passing the binary exclusion and photometric criteria are outlined in black. Only those outlined in
black are used in the isochrone fitting described in Sec. 3.1. For both panels, we show the best-fit
locus to the fit sample as a green line, and the approximate binary locus (-2.5log(2)≈0.75 mag, Sec.
2.2) in the dashed green line. Additionally, we show an approximate binary main-sequence locus
from Mamajek & Bell (2014) as a blue dotted line.

We used the Gaia photometric color BP-RP as a proxy for temperature to plot the members in a

CMD. In a Gaia G vs. BP-RP CMD (see Fig. 2.1 for binary-screened sample), we compared the P

> 0.9 candidates against the empirical Mamajek & Bell (2014) MS to identify older MS interlopers

contaminating the sample. We computed the minimum offset of each candidate from the MS

model in color-magnitude space. We assigned a cutoff of offset<0.55 based on the distribution of

this distance metric. A total of nine candidates with BP-RP > 2 were flagged as MS interlopers.

12



We still include those with BP-RP < 2, since hotter, bluer stars at this evolutionary phase

may be arriving on the main sequence (Krumholz et al. 2019). Additionally, 5 photometrically

outlying (over-luminous or over-reddened) candidates were removed from the membership sample

with offset>1.03. Confirmed BPMG systems (single stars and unresolved and resolved binaries)

are listed in Table 2.1. We cross-matched this BPMG sample with the 2-Micron All-Sky Survey

(2MASS) catalog to obtain additional photometry in the infrared, and we corrected for extinction

and reddening based on the Leike et al. (2020) 3-d ISM dust distribution using dustmaps (Green

2018). The mean value for reddening was E(B-V)=0.0005, and the mean extinction values were

A(G) = 0.0003 and A(Ks) = 7.1×10−5.

To account for inflated luminosity introduced by unresolved stellar companions, we corrected

the Ks-band photometry of binaries that were resolved by Gaia but not resolved by 2MASS (noted

in Table 2.1). We predicted 2MASS Ks magnitudes of each Gaia-resolved component using an

empirical color-color relation between Gaia BP-RP and Gaia G-2MASS Ks based on the empirical

main sequence of Mamajek & Bell (2014) and the Gaia DR3 BP-RP color and G magnitude of

each component1, and we then compared the predicted and the measured Ks mags. Based on the

distribution of the differences, we flagged systems with a difference of 0.25 mag as significantly

contaminated by a companion. Based on the contrast of the predicted Ks mags, we apportioned

the measured Ks fluxes for each binary component accordingly, and recalculated the Ks mags for

each component. This salvaged 9 systems to be used in the BP-RP vs. Ks CMD fitting in Sec. 3.1.

2.2 Binary Identification

We adopted resolved binary systems identified by Shkolnik et al. (2017) and Miret-Roig et al.

(2020). We describe in this section additional resolved binary or multi-star systems in the Gaia

DR3 astrometric catalog and AO imaging. To identify unresolved binaries, we examined Gaia

DR3 Renormalized Unit Weight Error (RUWE), RV variability, and over-luminosity relative to the

BPMG locus. In addition to addressing the effect of source confusion from unresolved binaries

1This color-color relation is based on main sequence stars and ignores metallicity effects but should be
approximately correct for BPMG members.
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in 2MASS and Gaia photometry, we identified additional BPMG members (stellar companions)

to be included in the age-dating fit sample. Fig. 2.2 shows the approximate contrast-separation

coverage of these methods. Along with the 50% AO detection efficiency contour described below,

we show the Gaia 50% recovery contour for resolved binaries from Wood et al. (2021, and references

therein), and the expected 50% recovery with RUWE based on Ziegler et al. (2018). Importantly,

the AO imaging probes a region of parameter space inaccessible to Gaia.

Gaia DR3 resolved binaries: We identified sources within 30” with similar parallaxes and proper

motions; this search radius corresponds to a reasonable binary separation of 1500 AU at the median

distance of BPMG (∼50 pc). The probability that a nearby Gaia source is bound to a primary

BPMG member is computed by:

P = dµ ∗ exp

[
−
(

dµ2/2

σ2
µ + µ2

orb

+
δπ2/2

σ2
π

)]/
σ2
µ + µ2

orb

σπ
(2.1)

where dµ is the differences in the proper motions, σµ is the combined proper motion errors,

µorbit is the perturbation from orbit (negligible in this case), δπ is the difference in parallaxes,

and σπ is the parallax error of the potential secondary. We found 30 likely multi-star systems,

29 binaries and one triple system, from this computation, using a cutoff of P=0.98, based on the

distribution of P. We could confirm 14 of these companions as BPMG members based on their

astrometry, independent RVs, and BANYAN. The separations and contrasts of these 14 systems are

shown in Fig. 2.2 as purple squares, labeled ”Gaia Resolved.”

Binary systems resolved in Gaia were included in subsequent analyses as they are not expected

to have the same photometric contamination issues as unresolved binaries. However, the resolution

is more limited in 2MASS; we recomputed individual photometry for components of binary systems

resolved in Gaia but not 2MASS (final paragraph of Sec. 2.1) using an empirical color-color relation

from (Mamajek & Bell 2014).

AO imaging: We collected archival AO images of confirmed BPMG members obtained with

three instruments: NAOS+CONICA (NACO) on the ESO VLT UT1 (Lenzen et al. 2003; Rousset

et al. 2003), NIRC2 on Keck (Service et al. 2016), and NIRI on Gemini-North (Hodapp et al.
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2003) from the ESO, Keck Observatory, and Gemini Observatory archives, respectively. In each

archive, we performed a cone search within 10” (the typical field of view) of the coordinates of

each member. We recovered at least one AO image for 117 BPMG members, and we inspected

each image for additional sources. We show in Fig. 2.2 the 16 AO-resolved binary components as

pink triangles. An injection-and-recovery analysis was performed to assess the completeness and

false positive rate of the visual inspection, by adding a simulated companion to randomly selected

AO images containing a single (real) star. The point spread function of the target star was scaled

and used for the simulated (fake) binary companion. The contrast of the simulated companion

was randomly sampled from a uniform distribution in magnitude, and the separation was sampled

from the Winters et al. (2019) orbital distribution of nearby M dwarf systems, assuming a distance

of 50 pc. Separations were limited to 1.5 arcsec to focus on a region of the parameter space not

resolved by Gaia, and because recovery should not change at larger separations. The results of the

data injection recovery are shown in Fig. 2.2(right). We performed a kernel density estimation

using sklearn.neighbors.KernelDensity on the detected and undetected simulated companions

to establish a 50% detection efficiency contour in separation-contrast space.

Gaia RUWE: Gaia RUWE is a measure of astrometric error to a single-star fit analogous to

reduced χ2. Stars with RUWE > 1.4 are almost invariably unresolved binaries (Belokurov et al.

2020). Fitton et al. (2022) find that single stars hosting protoplanetary disks also exhibit elevated

RUWE, but BPMG members are known to host only less substantial debris disks that have mostly

accreted or dissipated (Lagrange et al. 2010). Twenty-nine members were identified as binaries

based on RUWE.

Radial Velocity : Sources with ground-based RVs at more than one epoch or observation were

assessed for binarity with a χ2 difference test of the RV data. Based on the distribution of the

reduced χ2 values for stars with multiple RV epochs of observation, we chose a criterion of χ2
ν > 20.

If the binary sources were not resolved by Gaia or AO imaging, they were removed from the sample

for age analyses. Seven such systems were not included in the CMD and lithium depletion boundary

(LDB) fits. We show in Fig. 2.2 an estimated RV detection limit contour based on the separations

and contrasts of the resolved BPMG binaries and the average RV amplitude from members with
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Figure 2.2 Left : Separation vs. contrast for binary components in the BPMG primary sample from
the present Gaia cone search astrometry comparison and AO image inspection, as well as literature-
reported binaries. Unresolved spectroscopic, RV, and RUWE-identified binaries are not included.
We show an empirical 50% recovery contour of RUWE binaries from Wood et al. (2021), along with
50% recovery contour for Gaia-resolved binaries from Ziegler et al. (2018) and the 50% recovery for
AO from our injection-and-recovery tests. The estimated RV detection limit is shown in light green.
Right : Results of the AO injection-and-recovery analysis. Simulated binaries that were not detected
by eye (false negatives) are plotted as open points, and successfully identified simulated binaries are
plotted as green points. The contour represents a 50% detection efficiency. The simulated binaries
stayed within 1.5”, since recovery is not expected to change at larger separations.

multi-epoch RVs. We computed the expected separations and contrasts of unresolved systems

assuming a typical primary mass of 0.3 M⊙ and maximum separation of 1000 AU. Additionally,

p-values for RV variability are included for many sufficiently bright stars in Gaia DR3 (Chance

et al. 2022) and 14 sources for which p < 0.01 were flagged as binary systems.

Photometry : Binaries unresolved by Gaia were assumed to be equal-brightness, i.e. the most

probable configuration (Duchêne & Kraus 2013), with equal partitioning of the flux. From the

conversion of flux to magnitude, this translates to a factor of -2.5*log(2)≈0.75 mag. We estimated

the equal mass binary locus of BPMG by shifting the BPMG polyfit locus (described in Sec. 2.1)

by +0.75 mag. We then examined the offsets of BPMG members from the binary locus. We

quantified this offset by the difference in the binary locus Gaia G mag and the observed, ∆MG,

16



and removed 18 likely photometric binaries from the age-dating fit sample based on a cut-off range

of 0.7 < ∆MG < 0.75 mag, which was assessed from the distribution of all offsets computed. The

unresolved (RUWE, RV, and photometric) binaries are excluded from the isochrone fitting. Since

they are not resolved, they are not given in Fig. 2.2(left), though we provide approximate detection

limits for these methods. The final sample is shown in a Gaia absolute G mag (MG) vs. BP-RP

color CMD in Fig. 2.1.
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Chapter 3

Model Fitting for Age Determination

3.1 Color-Magnitude Diagram Isochrone Fitting

CMD isochrone fitting was described in Sec. 1.2. We estimated the age of the BPMG by fitting

isochrones from different models to the color-absolute magnitude diagram of confirmed members.

We excluded binaries that are not resolved by Gaia, leaving 107 single stars and 46 components of

resolved binaries. The Gaia G vs. BP-RP and 2MASS Ks vs. BP-RP color magnitude diagrams of

these stars are plotted in Fig. 4.2 along with the isochrone fits.

We compared these observations with the pre-main sequence models of Baraffe et al. (2015),

Dartmouth standard and magnetic models (Feiden 2016), and the SPOTS models of Somers et al.

(2020). The Baraffe et al. (2015) models (hereafter, BHAC) are calibrated for pre-MS and MS low-

mass stars. The evolutionary calculations are based on standard input physics of stellar interiors

(Chabrier & Baraffe 1997), but with updated atmosphere models compared to the predecessory

evolutionary models of Baraffe et al. (1998). While the BHAC models are calibrated for pre-MS

stars, they do not account for the effects of stronger magnetic fields occurring at the surfaces of

young, rapidly rotating stars. We used the scipy.interpolate.interp1d function to produce

a finer age model grid (spaced by 1 Myr) than is provided in Baraffe et al. (2015) to better

compare with the Dartmouth and SPOTS model grids. We interpolated the model Gaia and

2MASS magnitudes based on the supplied model masses, magnitudes, and ages.

Dartmouth stellar evolution models are suitable for modeling low-mass main sequence (Dotter

et al. 2008) and pre-MS stars (Feiden 2016), with or without effects of stellar magnetic fields

(Feiden & Chaboyer 2012; Feiden 2016). These models were used to age-date BPMG in Malo

et al. (2014b). Their interior structure and evolution calculations adopt standard input physics

(e.g., solar-calibrated mixing length, general ideal gas equation-of-state, PHOENIX (Hauschildt

21



et al. 1999) model atmospheres) comparable to other modern low-mass stellar models (e.g., BHAC;

Dotter et al. 2008) with updates to improve the accuracy of model predictions for very-low-mass

stars and the pre-main-sequence phase of stellar evolution (e.g., Malo et al. 2014b; Feiden et al.

2015). Models including magnetic fields account for the impact of magnetism on the gas equation

of state and on the efficiency of thermal convection (Feiden & Chaboyer 2012; Feiden 2016).

Surface magnetic field strengths are assumed to be in pressure equipartition with the gas near

the stellar photosphere (Feiden (2016)). The model grid assumes solar metallicity (appropriate for

the BPMG) and solar composition (Grevesse et al. 2007) and includes individual mass tracks with

0.1 ≤ M/M⊙ ≤ 2.0, and isochrones with ages from 1 Myr – 10 Gyr. Synthetic Gaia photometry

is calculated using synthetic spectra from MARCS model atmospheres (Gustafsson et al. 2008),

2MASS JHK passbands (Skrutskie et al. 2006), and revised Gaia DR2 passbands (Evans et al.

2018) assuming the total extinction (AV ) is zero.

The SPOTS evolutionary models (Somers et al. 2020) address the distorting effects of activity

and surface spots on the structure of magnetically active stars. The model grid includes evolution

tracks and isochrones for 0.1 – 1.3 M⊙ stars with discrete surface spot coverage fractions of f =

0.0, 0.17, 0.34, 0.51, 0.68, and 0.85. The SPOTS isochrones are empirically calibrated from the

color transformations of Pecaut & Mamajek (2013). However, Gaia magnitudes and colors are not

provided for objects redder than BP-RP ∼2.5 for models with spot fraction > 0. We extend the fits

down to BP-RP=3.0 for the spot fraction > 0 isochrones using the model luminosity, gravity, mass,

and dual-temperature regime (for hot and cool surface regions) to obtain bolometric corrections

(and hence absolute magnitudes) for Gaia G, BP , and RP and 2MASS Ks magnitudes from the

YBC database (Chen et al. 2019), assuming AV =0 and solar metallicity. The BP-RP color were

generated by taking the difference in absolute BP and RP magnitudes.

We modified the spot fractions, which are specified in terms of surface area, to fractions in

luminosity using the formulation

f ′ =
f

f + (1 − f)(Thot/Tcool)4
. (3.1)
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The two model temperatures, Thot and Tcool from SPOTS were used to separately compute

magnitudes and relative fluxes for hot and cool surface regions, and an average flux was computed

based on our modified spot fractions. Objects redder than BP-RP=3 are still included in the fits.

We used the τ2 isochrone fitting metric (Naylor & Jeffries 2006), a form of maximum-likelihood

two-dimensional fitting in color-magnitude space. τ2 behaves essentially as a χ2 statistic, with an

added dependence on the model density of stars in color-magnitude space (ρ in Eq. 5 of Naylor &

Jeffries (2006)). We show in Fig. 4.2 the results of our isochrone fitting analysis for each of the

nine models (BHAC, Dartmouth standard, Dartmouth magnetic, and each of the six spot fraction

models from SPOTS), in Gaia BP-RP vs. MG and MKs CMDs. To better visualize the model

performance on the CMD, we also show the difference in absolute magnitude vs. BP-RP for each

model from a best-fit curve to the main BPMG locus, which was computed using the numpy.poly1d

and numpy.polyfit functions (see Fig. 2.1 for a clean look at the sample and polyfit curve). We

supply in Table 4.1 the age results and τ2 values from each of the fits.

3.2 Lithium Depletion Boundary Analysis

LDB model fitting was described in Sec. 1.2. We compared the abundance of lithium vs.

effective temperature to model predictions as an independent constraint on the age of the BPMG.

Li 6708Å equivalent width (EW) measurements and upper limits were gathered from the literature

(Bowler et al. 2019; Mentuch et al. 2008; Messina et al. 2016; Zuckerman et al. 2001) for single

BPMG members. For this analysis, we chose to exclude binary systems due to confusion in deriving

accurate abundances for each binary component. Additionally, the presence of a companion may

affect rotation rates and lead to lithium depletion on faster timescales than in single star systems.

The EW measurements were converted to abundances based on the curves of growth of Palla et al.

(2007) in the Teff range 3100 –3600 K and Soderblom et al. (1993) in the Teff range 4000 – 6500 K.

We normalized the Li abundances to the ISM value of A(Li) = 3.30 based on meteoritic abundances,

a proxy for Li in the protosolar value (Asplund et al. 2009). The typical abundance uncertainty was

computed by interpolating the typical EW error over model temperature. We show the converted
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Li abundances as a function of Gaia BP-RP, a proxy for effective temperature, in Fig. 4.3, along

with the model Li abundances from each of the nine models. For each of the models, we identified

the best-fit Li/Li0 vs. BP-RP curves by minimum χ2 fit. A description of the LDB is given in

Sec.1.1.
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Chapter 4

Results

4.1 Membership and Binarity Census

The BPMG catalog is presented in Table 2.1. Binary systems are noted in the ‘Binary Flag’ column.

Resolved systems for which we re-computed the 2MASS Ks magnitudes are marked with an * in the

‘Ks mag’ column. This is the most kinematically complete BPMG census available based on the

latest Gaia astrometry and and extensive literature search of RVs. An extended machine-readable

data table is available upon request.

To summarize, from our membership and binary identification analyses we recovered 238

candidates compiled from the literature had sufficient kinematic data to be analyzed in BANYAN. 148

candidates advanced with a probability of BPMG membership > 0.9, and 9 of the 148 candidates

were identified as MS interlopers and removed from the membership census, leaving 139 confirmed

members. 5 members were excluded from subsequent analyses due to problematic photometry

whose cause was unclear. 15 members were already identified in the literature as binaries. 30

systems were identified as resolved binary systems using Gaia astrometry in a Bayesian framework;

14 new companions were independently confirmed in BANYAN, making the total membership count

153. 16 binary companions were resolved in AO images; 4 were identified in the Gaia search.

47 total systems were excluded from isochronal fits due to unresolved binarity; 29 from the Gaia

RUWE criterion, 21 from RV variability, and 18 photometric binaries; there is some overlap between

methods. We present a BPMG catalog of 153 systems, including 42 resolved binaries, 47 unresolved

binaries, and 64 single stars. We report a multiplicity fraction of ∼42%, the fraction of binary to

single systems in this sample, consistent with the literature pre-main sequence stars between star-

forming regions (∼50-58%, Ghez et al. (1997)) and main-sequence M dwarfs (up to ∼41%, Shan

et al. (2017); Zúñiga-Fernández et al. (2021)). We show a comparison of our results to other YMGs
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in Fig. 4.1, adapted from Shan et al. (2017). In Shan et al. (2017), they report multiplicity

fractions from AO imaging, astrometry, and spectroscopy. Age estimates are based on BANYAN

and SACY membership catalogs. Our result is plotted in black to distinguish from the literature

results (Jaehnig et al. 2017; Shan et al. 2017; Kounkel et al. 2019; Zúñiga-Fernández et al. 2021),

and clearly is in agreement with the majority of similarly-aged YMGs.

0 10 20 30 40 50
Age (Myr)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Bi
na

ry
 Fr

ac
tio

n

NGC 1333
IC 348

THA

Col

Arg

Car

TWA

TWAeCha

ArgTHA

BPMG

Figure 4.1 Binary fractions from this work compared to those from previous BPMG studies and
different YMGs. Estimates for BPMG are outlined in black, and the result from this work is
plotted in black. The Kounkel et al. (2019) grey shaded region is an estimate of 8.3±0.5% from
RVs and the double-lined spectroscopic binary (SB2) fraction of systems. Jaehnig et al. (2017) give
system spectroscopic binary (SB) fractions in star-forming regions (sky blue points), as well as an
overall upper limit of 13.4%. Shan et al. (2017) report stellar multiplicity fractions by association
(turquoise points) as well as an overall fraction of 35±5% (turquoise shaded region) based on
adaptive optics imaging. Zúñiga-Fernández et al. (2021) also report stellar SB fractions for nearby
YMGs (dark blue points).
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4.2 Age Estimates

We tabulate the age estimates resulting from the isochrone fits in Fig. 4.2 along with the best-fit

metric in Table 4.1, and we discuss these results in the following section. We additionally show

the LDB fits in Fig. 4.3. For each model we computed the concordance or internal agreement in

age results from the three fit methods (Gaia CMD, Gaia-2MASS CMD, and LDB). This is a χ2

difference value of the three age results from each model. For the best-fit ages from each of the

three fitting methods, we report a 1σ age uncertainty. The age uncertainties were computed by

selecting the points on the χ2 or τ2 distributions demarcating 68% of the total area under the curve

about the minimum χ2 or τ2 value.
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Table 4.1 BPMG age estimates for each of the 9 evolutionary model sets and 3 age-dating methods.
The τ2 and χ2 value (minimum) from the best-fit age for a given model and CMD or LBD fit,
respectively. The model concordance column is the chi2 difference between best-fit ages from a
given model. The best-fit result from each fit method (Gaia CMD, Gaia-2MASS CMD, and LDB)
is bolded, and the 1σ errors are given in the Age column.

Model Method Age (Myr) τ2min,fit χ2
min,fit Model Concordance (χ2

age)

BHAC G vs. BP-RP CMD 12 68.0 –
BHAC Ks vs. BP-RP CMD 11 62.5 – 0.68
BHAC LDB 15 – 35.1

Dartmouth Standard G vs. BP-RP CMD 14 65.1 –
Dartmouth Standard Ks vs. BP-RP CMD 11+4

−3 37.8 – 2.80
Dartmouth Standard LDB 20 – 27.6

Dartmouth Magnetic G vs. BP-RP CMD 33+9
−11 33.2 –

Dartmouth Magnetic Ks vs. BP-RP CMD 35 82.9 – 2.72
Dartmouth Magnetic LDB 23±8 – 15.6

SPOTS f=0.00 G vs. BP-RP CMD 10 210.0 –
SPOTS f=0.00 Ks vs. BP-RP CMD 10 86.7 – 10.00
SPOTS f=0.00 LDB 25 – 26.8

SPOTS f=0.17 G vs. BP-RP CMD 12 140.0 –
SPOTS f=0.17 Ks vs. BP-RP CMD 12 89.8 – 2.14
SPOTS f=0.17 LDB 6.3 – 42.3

SPOTS f=0.34 G vs. BP-RP CMD 20 91.6 –
SPOTS f=0.34 Ks vs. BP-RP CMD 22 76.6 – 4.77
SPOTS f=0.34 LDB 10 – 29.1

SPOTS f=0.51 G vs. BP-RP CMD 32 66.8 –
SPOTS f=0.51 Ks vs. BP-RP CMD 40 43.5 – 10.18
SPOTS f=0.51 LDB 16 – 27.4

SPOTS f=0.68 G vs. BP-RP CMD 45 35.3 –
SPOTS f=0.68 Ks vs. BP-RP CMD 45 38.7 – 4.90
SPOTS f=0.68 LDB 28 – 24.4

SPOTS f=0.85 G vs. BP-RP CMD 50 34.2 –
SPOTS f=0.85 Ks vs. BP-RP CMD 50 44.7 – 3.33
SPOTS f=0.85 LDB 35 – 28.1
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Figure 4.2 Gaia (top) and 2MASS-Gaia (bottom) color-magnitude diagrams of the single star
BPMG sample. All BPMG members confirmed in this study are shown as grey dots, while those
passing the binary exclusion and photometric criteria are outlined in black. Only those outlined are
used in the isochrone fitting. Left : Best-fit isochrones by minimum τ2. For the SPOTS isochrones,
f ′ denotes the revised spot fraction (Eq. 2.1) from YBC corrections. In both panels, we show a
best-fit spline to the main BPMG locus in red. Right : Each of the nine best-fit isochrone curves
subtracted from the BPMG fit locus spline to better visualize the regions of the CMD where the
models tend to fit or fail. The τ2 values for each fit are given in Table 4.1.
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Figure 4.3 Li 6708Å equivalent widths converted to abundances vs. Gaia BP-RP color for BPMG
members with Li measurements from the literature. The abundances are computed relative to the
primorial ISM value. Points plotted as triangles represent non-detection (upper limits) of lithium.
Typical errors are shown in the bottom left. For the incomplete LDB curves from the BHAC
models, the fitting sample includes on those within the color ranges covered in the model LDBs.
For each model, the best (minumum χ2) fit model LDB is plotted.

Figure 4.4 The results in Table 4.1 shown graphically. For LDB fits (diamonds), the y-axis is χ2

scaled on the right, while for CMD fits (circles, squares) the y-axis is τ2 scaled on the left.
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Chapter 5

Discussion

We have presented a detailed sample selection for the Beta Pictoris Moving Group using the most

precise available photometry and astrometry and utilizing complete kinematics for membership

validation. We further refined this sample by quantitatively identifying older MS interlopers aligned

in kinematic space with BPMG, but exhibiting older ages on the color-magnitude diagram. Our

catalog contains a total of 106 single and resolved companions, and 47 unresolved binaries. To

date, this is the most thorough vetting of binarity in the BPMG sample, and improves upon

the previous samples of Gagné & Faherty (2018) and subsequent literature by newly confirming

37 previously identified candidates and rejecting 90 others. The relationship between binary

separation, formation, and pre-MS evolution is not well known; this sample of young pre-MS

binaries at varying separations paves the way for a detailed study of how the presence of a companion

may affect pre-MS spin-down, especially since much of BPMG has been observed by continuous

photometric surveys such as TESS.

This sample refinement appears to affect the age estimates quite variably among the different

models. Curiously, with the refined and single-star fit sample, one would expect the isochronal ages

to bias older (Sullivan & Kraus 2021), but the BHAC and Dartmouth Standard models consistently

produce younger ages than the literature employing the same models (e.g., Binks & Jeffries 2014;

Malo et al. 2014b). There is notable internal disagreement between the models used in this study,

suggesting that the BPMG age determination is largely model-dependent. We show in Fig. 1.1

the results of the present work in comparison to previous literature values. The new age estimates

still lie within the uncertainty spread of the literature, but tend to place BPMG at older ages than

previously reported. The overall best fits (by minimum τ2 or χ2) per method (the two CMDs and

LDB) from the 27 estimates are bolded in Table 4.1.
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The single best-fit age estimate is supplied by the Dartmouth magnetic models, for producing

the lowest τ2 value in a CMD, and supplying a best-fit model in two of the three fit methods,

deeming it the best-performing model overall. The Gaia G vs. BP-RP CMD places the BPMG at

33+9
−11 Myr according to the Gaia CMD, while the best-fit LDB suggests 23±8 Myr. Qualitatively,

it is clear that the Dartmouth magnetic model is the only appropriate model for LDB fitting; the

other models either do not span the color range employed here and/or fail to produce the shape of

the BPMG lithium gap at BP-RP of ∼2.5-3 entirely. The overall best-fit Gaia-2MASS isochrone was

from the Dartmouth standard model and suggests a much younger age of 11 Myr, but the magnetic

model returns a slightly lower τ2 value. These two isochrone curves (Dartmouth magnetic 33 Myr

and standard 11 Myr) are nearly identical, highlighted by the similarity in their offsets from the

BPMG locus in the upper right panel of Fig. 4.2 (teal and cyan curves). The magnetic model

should be more appropriate, as it should better approximate the actual physics ongoing in these

highly active stars (Morris 2020).

One caveat of the isochronal model fitting is that not all models will be appropriate for all stars.

We fit the isochrone models for BPMG members spanning a large mass range for homogeneity,

however, it is expected that different models are better suited for age determination in different

mass ranges. While the lower mass members should be better described by the magnetic and spot

fraction models, the higher mass and hotter stars are expected to have fewer spots (Morris 2020).

Furthermore, the presence of starspots also affects the structures of stars in different mass ranges.

For low-mass, pre-MS stars, starspots slow contraction and spin-down along the Hayashi tracks,

leading to inflated radii, from 10% in K-stars up to 40% in M-stars (Jackson & Jeffries 2014).

In the Gaia G vs. BP-RP CMD, the standard models (BHAC and Dartmouth standard)

produce the shape of the BPMG locus well, but slightly overestimate the luminosity of the faintest

objects. The standard models do not reproduce the shape of the LDB observed in BPMG. This,

in conjunction with the poorer isochrone fits, suggests that the magnetic and spot fraction models

are better suited for age-dating BPMG and similar YMGs and young associations. The 2MASS

Ks vs. BP-RP CMD generally produced poorer isochrone fits across the 9 models. And in both

CMDs, the models tend to overestimate the luminosity of the bluest stars.
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With increasing spot fraction, the SPOTS models tend to better fit the hottest stars while

underestimating the luminosity or color of the coolest members. As mentioned in Sec.3.1, the

SPOTS models are not well calibrated in this region of the CMD (Somers et al. 2020). It is possible

that the YBC-interpolated isochrones used here are neglecting to account for local extinction around

these young stars, where disk materials may still be present or evaporating. Another possibility is

that the revised luminosity spot fractions (as opposed to the surface spot fraction) overestimate the

true spot fractions of the low mass members, but not the higher mass members. However, lower

mass stars are likely to be more active, as they are more rapidly rotating at this stage of the group’s

evolution. The different SPOTS models, especially the highest spot fraction models (f ′ = 0.837,

0.931) produce the best internal agreement among the three fits. Among the SPOTS models, the

overall best-performing is the f ′ = 0.837 model, which suggests and age range of 28-45 Myr. This

reinforces the revised age estimated adopted in this study; the better-fitting models push the age

estimate older.

The implications of an older age for BPMG on our understanding of disk and planet evolution

are several. If the BPMG is indeed older than previously accepted, this contradicts the expected

typical disk lifetimes of a few to tens of Myr (Richert et al. 2018). These long-lived disks, now

suggested to be even older, have not been well explained, though binary perturbations may play

a role. Additionally, any substellar and planetary companions of BPMG members, such as the

well-studied systems mentioned in Sec. 1.1, would be more massive than previously determined

based on the older age (Sullivan & Kraus 2021).

The revised age estimate presented here is largely dependent upon the models, the methods used

to interpolate the isochrones, and the photometric precision of Gaia and 2MASS. It is unlikely that

Gaia is the main source of internal disagreement; it is a homogenous and highly precise dataset.

Though, it is certainly possible that the census and binary screen are incomplete. Instead, it

appears that the models, while they are appropriate for fitting in some cases, are not quite tuned

to the observations compiled in this work. Further spectroscopic follow-up of BPMG members may

reveal additional hidden binaries, and deeper searches in to the kinematics may refine the sample

further.
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Chapter 6

Conclusion

In this study we presented an updated membership census and binary catalog for the Beta

Pictoris Moving Group, the nearest and youngest co-moving stellar group in the solar neighborhood.

We utilized the latest and most precise space-based astrometry, photometry, and radial velocity data

from Gaia DR3 to compute precise membership probabilities and identify binaries contaminating

the samples of previous photometric age-dating studies. The Gaia data was supplemented with

ground-based RVs from surveys and literature, and photometry from the 2MASS survey.

With the Gaia and RV survey data, we were able to confirm 37 new members of BPMG and

reject 90 candidates previously identified in the literature which lacked full kinematic data. We

found a multiplicity fraction of 42% using a variety of methods to identify resolved and unresolved

binaries among the confirmed BPMG members. The single-star and resolved companion sample

was used in age-dating analyses to mitigate the expected age-biasing effects of unidentified binaries

in a stellar sample. The multiplicity fraction reported here is in agreement with the literature (e.g.,

Shan et al. 2017; Zúñiga-Fernández et al. 2021) within errors (Fig. 4.1), following the trend of

decreasing binary fraction as a funcin of age (Zúñiga-Fernández et al. 2021). The slightly higher

fraction reflects an improved completeness of the binary search, as the previous papers tended to

utilize a subset of the binary identification methods from this work (i.e., RVs, AO imaging). The

binary fractions from Kounkel et al. (2019) and Jaehnig et al. (2017) in Fig. 4.1 are the ratio

of confirmed spectroscopic binaries (SBs) to the total of their sample. Zúñiga-Fernández et al.

(2021) also report SB fractions, but extrapolate to an expected occurrence rate. Since we have not

investigated SBs in our binary search, our multiplicity fraction represents a lower limit.

We used 9 suites of evolutionary models: the BHAC standard models, Dartmouth standard

and magnetic models, and the SPOTS models at 6 discrete spot fractions. We found that the

refined sample does not pose as large an effect on the age estimate as the models themselves. From
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isochrone fitting in two CMDs and from LDB fitting, we find the best-fit age for the BPMG to

be 33 Myr. This result is expected from the effect of binaries on stellar luminosities, though the

effect is not large. However, the same standard models employed in previous works returned much

younger ages of 10-12 Myr, which contradicts the expectation that accounting for binarity would

push isochrone ages older.

This study shows that isochrone fitting for young stellar populations is largely sensitive to the

models themselves, but that overall, the surface spot and magnetic models out-perform the previous

standards.
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Baines, D., Baker, S. G., Balaguer-Núñez, L., Balbinot, E., Balog, Z., Barache, C., Barbato,
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B. K., Navarro, J. F., Parker, Q., Reid, W., Seabroke, G. M., & Siebert, A. 2020, A&A, 644,

A168

Gustafsson, B., Edvardsson, B., Eriksson, K., Jørgensen, U. G., Nordlund, Å., & Plez, B. 2008,
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J., Bland-Hawthorn, J., Campbell, R., Freeman, K. C., Fulbright, J. P., Gibson, B. K., Grebel,

E. K., Helmi, A., Munari, U., Navarro, J. F., Parker, Q. A., Reid, W., Seabroke, G. M., Siebert,

A., Siviero, A., Steinmetz, M., Watson, F. G., Williams, M., Wyse, R. F. G., & Zwitter, T. 2011,

MNRAS, 411, 117

Kounkel, M., Covey, K., Moe, M., Kratter, K. M., Suárez, G., Stassun, K. G., Román-Zúñiga, C.,
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