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ABSTRACT

A new theory has been developed to exploit the satellite data
particularly the position vector and the relative velocity of a
satellite in the problem of obtaining the terrestrial gravity field
with special consideration to its localised anomalous features. The
new theory makes use of the fact that the dynamical variable Hamiltonian,
associated with the satellite motion is time—invariant in the ideal:
case when all the perturbing forces are neglected. With this as a
working premise, it is possible to.take into account the effects of
perturbing forces such as lunar attraction, air drag, radiation
pressure and solar attraction. The ideal case ignoring all the
perturbing forces, here called the 'simplified theory' and the more
factual case allowing for the effect of the important perturbing
forces, here called the 'extended theory' are both discussed in detail.
The potential function of the earth appears additively in the
Hamiltonian function and can be determined from observations of the
position vector and the relative velocity of a satellite at a number of
points along a small segment of the orbit. Minimally, there must be as
many observations as there are unknown coefficients in the expansion of
geopotential but an abundance of measurements is desirable for the
application of the least squares method. 1In case the position vector
and the relative velocity of a satellite are not available as directly
observed quantities, the equations can be expressed in terms of the
orbital elements of the satellite. The theory emphasises the local

features of the gravity field by allowing for the fact that a satellite



1%

gives information weighted primarily by conditions in its immediate
proximity and thus provides expressions for describing the gravitational
potential of regions immediately below its orbit. Theoretically, it
appears possible to cover the surface of the earth by overlapping
expressions of this type and hence to obtain an adequate description of
the gravity field of the earth. The equations of condition obtained
when the theory is developed to include the effeéts of lunar attraction
and air drag, are shown to remain yalid when all the important pertur-
bations; i.e., lunar attraction, air drag, radiation pressure, solar
attraction, etc., are taken into consideration. The method of setting
up the equations of condition appears to have the advantage of elimina-
ting the necessity of quantifying the perturbing factors, thus enabling
us to avoid some of the poorer approximations involved in the process.
The new theory appears to offer the possibility of exploiting the
‘short wavelength sensing potentiality' of the low altitude satellites
which cannot be used with advantage in the perturbation theory. If the
geopotential coefficients can be determined to a fairly high degree of
accuracy, the theory theoretically has the potential for determining
the time-variant part of the earth's gravity field and may be used to
give some idea as to the differential rotation of the core and mantle
if the core has a radial asymmetry of mass distribution as one resulting
from convection currents within the core.

For purposes of comparison, a short review of the existing method
to determine the geopotential using perturbation theory, is included as

well as the results obtained by some other investigators in the field.



CHAPTER I

INTRODUCTION

One of the major scientific objectives of the artificial satellite
program was the better determination of the geopotential coefficients
used for defining the geoid. Although surface gavity measurements
permit the geoid to be determined, the fact that over 70% of the earth's
surface is water and approximately 307 of the land surface is of difficult
access has severely limited gravity coverage. Other limiting factors
include uncertain vertical and horizontal control which restricts the
reliability of the derived free air gravity anomalies required, and podr
position control at sea which imposes a severe limitation in determining
the E6tv0s correction necessary for obtaining observed gravity values at
sea. As a ship moves independently of the earth, its true motion relative
to that of the earth is a significant factor in determining gravity and
without precise navigation control ‘to determine true course heading and
speed, no reliable estimaté of the EO0tvOs correction can be made.

Although celestial navigation is adequate for traversing the oceans,
it is an inferior system for determining accurate geocentric positions
because of fefraction effects and its susceptibility to local departures
of the vertical, and the restrictions imposed by cloud coverage. Recent
use of VLF and satellite navigation, however, is overcoming some of these
disadvantages.

Electronic navigation aids such as LORAN are also restricted in their
usefulness by their limited coverage of the oceans and the uncertainties
in base station positions which may be on different geodetic datums and

also subject to local departure of the vertical effects.



Satellites appeared to offer a solution to most of these problems
in that the orbit which is governed by the earth's external gravity
field could be established with high‘'precision by having a suitable net-
work of tracking stations whose geocentric positions could be worked out
independently from orbital data for a number of satellites and simulta-
neous transit observations between tracking stations without recourse to
observations influenced by the local gravity field.

By using perturbation theory to analyze tracking data it has been
possible to determine the geopotential coefficients for the Earth out to
the 15th degree. Although the complete set of coefficients for the 15th
degree fit is classified, the published literature includes zonal harmo-
nics to the 1l4th degree and tesseral harmonics to the 10th degree plus
some higher degree tesserals determined from the resonance of satellites.
However, there is some question about the absolute reliability of some
of the higher degree tesseral coefficients derived so far which show a
dependence on the type of tracking data used and the assumptions made by
different investigators. Even for an 8th degree fit some disagreement
exists in some of the higher degree tesseral and zonal coefficients. 1In
view of these discrepancies, the writer has used a mean set of coeffi-
cients (out to 8th degree) based on the values obtained by‘several
investigators to determine a generalized representation of the geoid
and the earth's gravity field.

A comparison of two of the most pronounced anomalous features of
the satellite results with the available surface gravity information of
those regions shows that the satellite results agree with the surface

gravity in general. They define broad areas of anomalous gravity where



detailed gravity surveys and other pertinent geophysical studies should
be undertaken. From a geodetic standpoint, the generalised picture of
the geoid and the earth's gravity field has value in computing the effect
of local anomalous masses defined by local gravity surveys on the local
geoidal heights. However, a detailed comparison of the satellite and
gravimetric results shows that there are significant differences in
detail. The satellite results are too generalised and do not contain

the short wavelength variation of the terrestrial measurements--a feature
of great importance in many geophysical applications. Comparisons of

the satellite and terrestrial gravity results carried out by other
investigators (Kaula, 1966; Khan and Woollard, 1967) indicate the same
general results.

As pointed out above, many of the geophysical applications require
that satellite data be used to define the earth's gravity field to a
greater degree of detail than has been done up to now. There are inhe-
rent limitations in the perturbation theory to accomplish this. The low
order harmonic representation of the gravity field does not give the
required degree of detail, and the accurate determination of the higher
degree tesserals to obtain a higher degree harmonic representation of
the earth's gravity field is complicated in the perturbation theory for
reasons explained later.

In order to achieve the degree of detail required in the definition
of the earth's gravity field, the method employed to obtain it must be
sensitive to local anomalous features. This appears possible theoreti-
cally because the motion of a satellite at any instant is more gffected

by the nearer mass anomalies than the distant one, and there are a



.number of dynamical variables associated with fhe satellite motion which
can be used to exploit this relation. With this as a premise, a new
theory is presented which gives expressions descriptive of the local
gravity field in the region being traversed by the satellite. Since the
new theory envisages a local description of the gravity field in con-
trast to the global description given by perturbation theory as being
used now, it is expected that it will define the gravity field to a
better degree of detail with due emphasis on local anomalies. Hopefully
this description of the gravity field will give some of the subtler short
wavelength fluctuations exhibited by terrestrial gravimetry and hence
will be adequate for many geophysical applications. It may be emphasized
that the new theory is entirely different from the existing perturbation
theory in scope, method and principle.

In the second chapter, a short review of the perturbation theory
is presented along with the results obtained from its application. In
the third chapter we discuss the development of the new theory, outlining
its physical bases, its simplified form and its extension to include the
effects of the different perturbing forces. The equations of condition
are developed both for the 'simplified theory' and for the 'extended
theory' and the domain of application in each case is defined as far as
possible.

It should be noted that the new theory has not been tested as yet;
hence at this stage it is possible to discuss only the theoretical
aspects of its applicability. It will be only after examination of the
results obtained from the new theory that its real scope and limitations

can be defined.



CHAPTER II
PERTURBATION THEORY FOR THE DETERMINATION OF GEOPOTENTIAL

1. Review of the Perturbation Theory

Let R be the disturbing potential defined as that part of the
geopotential which should be added to the potential of spherical
attraction to define the total geopotential. The equations for the
variation of orbital elements in terms of the disturbing potential R

are (Smart, 1961):

. _ 2 3R
a=—_—"—
na oM
" 2, 3R 2 oR
&= —1 (e’ B - q-fH* A
na e oM ow
y e l—e2 oR 2 oR
e M o B A
na e oJde na da
Q= L L
na (l-e )* sin i 9i
1
. 1—e2 2 3R cot i OR
wE— =2 2.%
na e de na (1-e")” 2i
di _ 1 . 3R . 3R
S5 et [eot 1 ~— = cosee 4 —]
dt na“(1-e9)* ow L]

where
Q = right ascension of the ascending node

a = semi-major axis of the satellite orbit

n = mean motion
e = eccentricity
i = inclination

w = argument of perigee



M = mean anomaly defined by M = ;.(t - TO)
and

TO = time of perigee passage

The disturbing potential R can be expressed in terms of spherical
harmonics as:

oM %0 n a

(2) Re—1 5 C—E)n (C cos mA + S sin.mA)
n=2 m=0 T nm nm
an (sin ¢)

where
¢, A, r = latitude, longitude and the geocentric distance
of point being considered

a, = earth's equatorial radius

M = mass of the earth

G = universal constant of gravitation

C__, S = conventional geopotential coefficients
nm nm

an (sin ¢) = conventional associated Legendre's functions.
The general term an of this expansion is:

a
(3) R =2 &n

(C cos mA + S sin mA) P (sin ¢)
nm T X nm nm nm
By an. essentially geometrical transformation, the general term an can

be expressed in terms of the Keplerian elements. The final result of

this conversion is (Kaula, 1961; Khan and Woollard, 1967):

GMa, n e

(4) R.nm = ol Z_ anp i) ¥ anq (e) anpq (w, M, Q, 6)
a p=0 q=-o

or denoting one term of the above expression by R , we get:

nmpq



(5) R = SF {6 (e) Z (w, M, Q, 6)
2 nmpq

(2n-2t) n
= B (1) sin n-m-2t,
nap t 22n 8 (n-m-2t) !In! . =

m k s n-m-2t+s m-s c
L@ LE LT g O

(W) M, @, 8) = [ Cnm]

n-m even
Z
nmpq —Snm

n-m odd ©°8 [(n-2p) w +

n-m even

o Elcd sin [(n-2p) w +

(n-2p+q) M + m(Q-0)] + [inm]
nm

(n-2p+q) M + m (Q-96)]
and the limits of the above summations are defined as follows:

P — summation:
0O<p<n

c - summation:
p-t < m-s, 0 n-m-2t+s, p-t > n-m-2t+s

<O<

p-t > ms, p—t-mts p-t s, Pp-t < n-m-2t+s

t - summation:
n-m,

N for n-m even
0 © ¢ < ﬁ’

b

vV A
~ &

B:%:l’ for n-m odd

o O

The development of the functions anq(e) depends upon whether the

perturbation is long periodic or short periodic. For a long-period

perturbation, n-2p+q=0. For this case the function anq(e) becomes:
\ ;

p =l

L z

n-1 n+2d-2p'
=1
(122 gug

B [y KB = G2a-2p? € g )

(§Dn+2d-2p'



P for p < %

n-p for p >'§

For short periodic terms, n-2p+q#0 and the development of anq(e)

becomes complicated. The resulting expressions are, however, of the

form:
| 2
6 (e = (Dl (14 —=2 55 =3 oldl
=p (1+/1-e%) 1+(1-e“) 2
; P e 2k
k=0 PPIK “npa [l+(l—e2)1/2]
where
1
p _ ; (2p'-2n) [(n-2p'+q') [l+(l—e2)]é]r -D*
npqgk -0 h-r g 2 Ll
and
. - 20y (a=2p'+q") [l+(l—e2)]/2] 1
npqk . L=-r 2 r!

The summation limits in the above expressions are defined as:

k+q' for q' > 0

h

=k for q' <0

=k for q' > 0
3

= k-q' for q' <0
P’ =p o
e R for p < >
p' = &-p n
o QG for p > 2

Differentiate Eq. (5) with respect to various orbital elements and
substitute the result in Eq. (1). This would give the time rate of

change of orbital elements. The resulting equations giving the time



variation of the orbital elements corresponding to R.nm would then be:

n '

dQ Z
nmpq _ e nmp HPCL nmpq
Bk —-n+3(l -e ) sin i
dw 2.4 VA
—nmpq_ _ o D [LL-e_LfF gf - &8Ld g, g ] -0EDY
dt e e nmp npq (1-e2);§ nmp npq 'Ean+3
di o GMaZ F o Gnm z['lmPﬂ
dt e % [(n-2p) cos i-m]
na (1-e ) sin i
(6)
anmpq 2GMa2 anp anqiznmpq
at — nt+2 (n-2p+q)
na
enmpq GMaZ anp anq ;mpq 2
Tk — n+3_ [(1-") (n~2p+q)
na
2 1
- (1-e“)? (n-2p)]
dmx GMarel Fooo Zompa 12
= - 1
dt - nt+3 [2(n+1)anq e anq]
na
In the foregoing expressions:
M* = perturbation of the mean anomaly = f; E.dt;;(t—To)
0
dF
F' - nmp
nmp di
dG
Gl = __B_PS.
npq de
and

|

= the derivative of Z with respect to its argument.
nmpq nmpq
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® If it is now assumed that the dominant perturbations of the orbital
elements are secular, it is possible to integrate the equations of motion
to obtain the integrated changes in the orbital elements caused byrthe

® perturbing potential function. To get the expressions for the integrated
changes, consider

> f2' dt = 2' = Z

. '
it [argument of Z']
.
° fZ dt = Z = 2
d
e [argument of Z]
. where Z*© = the integral of Z with respect to its argument.
° Note that the integration in the above way is valid only if the
. orbital elements appearing in the argument of Z are linear functions of
time.

° : Substitution of Eq. (5) in the equations of motion and the subsequent
integration with respect to time gives the desired expressions for the
integrated perturbations due to the effect of anpq as follows:

® F' ¢ 2z

- n nmp npq _ nmpg
Aerm = GMae - n+3 2 T 0 0 0 .
Pq na (1-e“) ? sin i[(n-2p) w+(n-2p+q)M+m(Q -6)]
| n
® Awnmpq B GMae Ean+3
E " .
[ l(1-eH%F @' -cot i(1-e2)"%F' ¢ ]zt
N nmp npq nmp npq _nmpq
P :

[n-2p)w (n-2p+q) Mehm (2-6) ]



F G [(n-2p)cos i-m]
oMa® —DImP__1Dq

Alnmpq - e ;én+3

L
(l—ez)zsin i

nmpq
[ (n=2p) w+(n-2p+q) M+m (Q-6) ]

(n-2p+q)

5 2F G Z
GMa nOp_npg DOpg

Aa = =
nmpq = nan+2[(n—2p) wt(n-2p+q)M+m (R-6) ]

GMan anpananmpq
g = ;an+3 &

(7) Ae

1
[(-e?) (n-2p+q)=(1-")* (n-2p)]
[ (n=2p)wH (n=2p+a)M4m (2-6) |

i
AM = GMa" angznmgg
nmpq e
na

A
[2(n+l)anqf(l—e )e anq]

[ (n=2p)wt(n-2p+q)M+m(2-6) ]

For long-period variations, we must have n-2p+q = 0 or q = 2p-n.

With this condition Z becomes Z and is now independent
nmpq nmp (2p-n)

of the terms in M. Further, if we are interested only in the effect

of zonal harmonics, we have m=0 and for the long-period effects of the

zonal harmonics, the functions Z become:
nmpq

CnO cos(n=-2p)w , 0 even

Z
nop (2p-n) -c

0 sin(n-2p)w , n odd

1



12

For the long-period effects, G becomes G . While
npq np (2p-n)

computing G, considerable labor can be saved by remembering that

Copt2pen) = Catn-p) (o2p)"

In the case of zonal harmonics, m=0 and anp becomes:

(2n-2t)!
9202t 5y 1n

) (-1) €

0
nOp p=t-c

F =1 "

n , _n-2t k . n-2t
(.) sin i DI 7
c
The last binomial coefficient will be non-zero only if p-c-t = 0 or
¢ = p~t. Thus for a particular value of p, there is only one value of c
corresponding to every value of t and the c-summation can then be

substituted by that value. Thus Fn finally becomes:

Op

2n_§%n_2t)! ) Sinn—Zti (_l)k(n—Zt)(_l)p-t

2 (n-2t)!n! ° P

F = I
nOp "

Now examine Eq. (6). Put m=0 for convenience of discussion. Then

the expressions for @ and w can be written as

©  n-2 cos jw j and n even
de
dtc 8 Z CnO Xln Xln'
=2 j=0 Jsin jw j and n odd
(8)
P ©  n-2 cos jw Jj and n even
and T=L I C X X .
n=2 j=0 Jsin jw j and n odd

Where the X's can be obtained by comparing these expressions with the

original Eq. (6).

Similar expressions can be written for the time-rate of change of

other orbital elements and their integrated changes.



It can be verified easily that X, ., and X, ., the coefficients of
Ini 2nl

Also X the coefficient of

the term sin w, contain a factor —/—. .
sin i 2nl

: . . . ' 1 . .
sin w is the expression for w, contains =" Hence this theory fails for

sini=0o0ori=0and e =0, i.e., the Eq. (6) in invalid for orbits of
zero inclination and zero eccentricity. This holds for Eq. (7) also.

The physical explanation for this is simple. For zero inclination
the position of the ascending node and for a circular orbit, the posi-
tion of the perigee cannot be defined and hence the above relations
become meaningless.

In addition, all expressions in Eq. (7) (for the case of the secular
or long-period effects of zonal harmonics) contain w in the denominator
and therefore are not valid for w = 0. To investigate this point a

little further consider the effect of C20 on perturbation in w. The

expression for w in this particular case is
. 2, o P
w =K C20 (1 + cos"i - 3/2 sin"1i)

where K is independent of i. For w = 0, i is roughly 63°26'. This

value of i is called the critical inclination. Thus the equations for

integrated changes are not valid for orbits with critical inclination.
Note that in Eq. (8), the coefficient X represents the amplitudes

of different perturbations of wave length %—. For j =0, cos jw=1

and hence the perturbations are secular. Note also that it is only for
even values of n that the secular terms appear in the expressions. For

odd values of n, the expressions contain only long-period terms.



Similar remarks can be made for other orbital elements.

To sum up, the even zonal harmonics give rise to secular and long-
period changes in §, w, and M and long-period changes in e and i. The
odd zonal harmonics produce long-period perturbafions in Q, i, e, w, and
M.

In practice, the even zonal harmonics are determined from the
secular motion of the right ascension of the ascending node and argument
of perigee, and the odd zonal harmonics, from the long-period changes in
the orbital elements.

Note that before the observed perturbations can be used in the above
equations for determining zonal harmonic coefficients, they must be
freed from the effects of variations from all other possible sources.

To avoid a serious interplay of the interaction terms among the different

perturbations, satellites greatly affected by air resistance, lunisolar

14

attraction and radiation pressure should not be used. Also if the motion.

of the perigee is too slow, it may be hard to distinguish between the
long period and secular effects.

An accurate determination of the tesseral and sectorial harmonic
coefficients is rendered more difficult because of the short periods
and the small amplitudes of the perturbations involved. The occurrence
of common periodicities in perturbations arising from different harmonic
terms adds to the difficulty. The resonance method has been said to be
fairly sensitive in the determination of some tesseral harmonic coeffi-
cients but it can only be used for specific satellites.

The calculation of both the zonal and the tesseral harmonic

coefficients using perturbation theory appears to show some degree of
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sensitivity to the types of perturbations used, the method of removing
the perturbations originating from sources other than gravitational,
the type, number and distribution of the satellite observations and the

time interval of analysis.

2. Method of Computing the Gravity Field of the Earth

The Geoidal Undulation:
The geoidal undulation N at a point whose coordinates are (r, ¢, and
A) is given [Mueller, 1964] as:

© a
_ _GM e,nt+l .
(9) N = z z [6;—) (ACnm cos mA + Asnm sin mA)

8.80 n=2 m=0

P (sin ¢)]

where
¢, A, and r = latitude, longitude and the geocentric

distance of the point of computation,

respectively
a, = earth's equatorial radius
gy = normal gravity at the point of computation on the
reference ellipsoid
M = mass of the earth
G = universal constant of gravitation
Cnm’ Snm = conventional geopotential coefficients

an (sin ¢) = conventional associated Legendre's functions



® -and
AC =C - reference C
nm nm nm
AS =S - reference S
Py nm nm nm
If the reference surface is so chosen that all of its geopotential
coefficients called the 'reference C__'s' are zero except C,. and C, .,
nm - 20 40
L4 then AC__ and AS can be replaced by the observed C__ and S except
nm nm nm nm
for n = 2, 4 and m = 0.
We can simplify Eq. (2) by making the following approximations:
L]
.y GM _ . 3 GM  _
(i) az = g which gives 1 -8,
E e : 80
% de n+l
% (ii) r = a, which gives C;—) =1
The error introduced by approximation (i) arises from the fact that
®
the equatorial value of gravity 8o computed on the basis of a spherical
: GM .
earth with 8o = 5 using recent values of GM and a,, is not the same as
de
L
&o» the theoretical value of gravity at the point of computation on the
reference ellipsoid. The maximum magnitude of this error is about 0.5%
@ and occurs at the poles. Except for a narrow equatorial belt where the
sign of this error will depend on the relative magnitudes of Q% and
- . ae
® - theoretical equatorial gravity of the reference ellipsoid, the correction

resulting from this error has to be subtracted from the computed value



of N in order to arrive at the correct value.

The error due to assumption (ii) arises from the fact that a, is

not equal to r as assumed. The total error e introduced in N from this

source turns out to be:

o= I (g4 1) 2L g
a n
n e

where

=z
]

contribution to N due to the nth term
and

Ar

a_ =
e

Since a, > 1, the computed value N of the geoidal undulation is
always less than its correct NC. Thus

¥ =N+ Zms 1)y
C a n
n e

Note that the error (e) increases with increasing values of n.
Thus the error becomes important if the harmonic analysis is carried

to a fairly high degree. Although Nn should decrease with increasing

values of n and hence should diminish the error (e) in its own right,

the error may become a sizable fraction of Nn for higher degree terms,
and for very high values of n may equal the partial contribution Nn

itself. However, this is more of a theoretical limitation than a
practical one, for harmonic analyses under consideration are not likely

to be carried to such high degree terms in near future.

17
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o
The error e increases with Ar which is a function of latitude. Thus
the error is zero at the equator and a maximum at the poles for any .given
value of n. Note that e also increases with n.
e
Since it is inconvenient to calculate Nn’ it is helpful to express
e as the mean of the percentage errors of the individual terms, i.e.,
o 1 br 2,
Mean of the percentage error = o I (n+ 1) — 10™%
n e
For harmonic analyses carried to the 8th degree, the maximum
“ magnitude of this mean percentage error is about 2%. A more detailed
discussion of these errors is given in Khan and Woollard (1967).
. Neither of the above errors is significant in view of the present
® accuracy of the satellite results.
. The above assumptions reduce Eq. (9) to the following form:
= g 3
(10) N=a I 2 (C_cosmr + S sin m\) P (sin ¢)
e nm nm nm
n=2 m=0
Equation (10) has been used to compute the results reported in this
L section.
The Gravity Anomaly:
& The gravity anomaly (Ag) at any point can be computed from the
following equation:
© n
e (11) Ag = g §=2 fl=0 [(n - 1) .(Cnmcos mA + Snmsin mA) an (sin ¢)
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where &g =

o2

As Eq. (11) incorporates the same assumptions as in Eq. (10) for
the geoidal undulations, it is influenced by the same sources of error

and in the same degree.

3. Discussion of Results

Data Used:

Table I éives the zonal harmonic coefficients obtained by Smith
(1963, 1965), Kozai (1964), and King Hele, et. al (1965). Table II
lists the tesseral harmonic coefficients obtained by Anderle (1966)
Guier and Newton (1965) and Gaposhkin (1966). These values were chosen
since they represent the most recent and presumably most reliable data
available. Since some discrepancies existed in the corresponding
values of the tesseral harmonic coefficients and some of the higher
degree zonal harmonic coefficients in different sets, a 'mean solution'
was obtained from a linear combination of these sets. The mean

normalised coefficients are given in Table III.

Geoidal Undulations:

Table IV summarizes the magnitude and location of the maximum
elevations and depressions of the different geoids obtained using the
different sets of geopotential coefficients given in Tables I to III.
It should be noted that Table IV is made up of three sections. In the

first section each geoid is referred to a reference ellipsoid whose CZO‘

and C40 parameters are those defined by the set of zonal coefficients



20

TABLE I: NORMALIZED ZONAL HARMONIC

COEFFICIENTS Cn OF THE GEOPOTENTIALS

0

Smith Kozai King Hele et al

(1963, 1965) (1964) (1965)
Cn0106 Cn0106 CnOlO6

-484.172 -484.174 -484,172

0.923 0.963 0.967

0.567 0.550 0.507

0.054 0.063 0.045

- 0.202 - 0.179 - 0.158

0.077 0.086 0.114

0.112 0.065 - 0.107




TABLE II: NORMALIZED TESSERAL HARMONIC COEFFICIENTS
C_, S OF THE GEOPOTENTIAL
nm’ “nm
Anderle Guier & Newton Gaposhkin
(1966) (1965) (1966)

m C S C S C S

nm nm nm nm nm nm

107° 107° 107° 107° 107° 107°

2 2.45 -1.52 2.38 -1.20 2.38 -1.35
1 2+15 0.:27 1.84 0.21 1.94 0.27
2 0.98 -0.91 1.22 -0.68 Qs 73 -0.54
3 0.58 1.62 0.66 0.98 0.56 1.62
1 -0.49 -0.57 -0.56 -0.44 -0.57 -0.47
2 027 0.67 0.42 0.44 0.33 0.66
3 1.03 -0.25 0.84 0.00 0.85 -0.19
4 -0.41 0.34 -0.21 0.19 -0.05 0.23
1 0.03 -0.12 0.14 -0.17 -0.08 -0.10
2 0.64 -0.33 Q.27 -0.34 0.63 -0.23
3 -0.39 -0.12 0.09 0.10 -0.52 0.01
4 -0.55 015 -0.49 -0.26 -0.26 0.06
5 0,21 -0.59 -0.03 -0.67 0.16 -0.59
1 -0.08 0.19 0.00 0.10 -0.05 -0.03
2 0513 -0.46 -0.16 -0.16 0.07 =0.37
3 -0.02 -0.13 0..53 0.05 -0.05 0.03
4 -0.19 -0.32 -0.31 -0.51 -0.04 -0.52
5 -0.09 -0.79 -0.18 -0.50 -0.31 -0.46
6 -0.32 -0.36 0.01 -0.23 -0.04 -0.16
1 0.33 0.08 0.13 0.09 0.20 0.16
2 0.35 -0.19 0.46 0.06 0.36 0.16
3 0.32 0.04 039 -0.21 0..25 0.02
4 -0.47 -0.24 -0.14 0.00 -0.15 -0.10
5 0.05 0.02 -0.06 -0.19 0.08 0.05
6 -0.48 -0.24 =0.45 -0.75 -0.21 0.06
7 0.09 -0.14 0.06 0.10
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TABLE

II: (Continued) NORMALIZED TESSERAL HARMONIC COEFFICIENTS

C , Snm OF THE GEOPOTENTIAL

nm

Anderle Guier & Newton Gaposhkin
(1966) (1965) (1966)
n m c S C S C S
nm nm nm nm nm nm
8 1 ~0.15 -0.05 -0.08 0.07
2 0.09 -0.04 0.03 0.04
3 -0.05 0.22 -0.04 0.00
4 -0.07 -0.04 ~0.21 0.01
5 0.08 0.00 -0.05 0.12
6 -0.02 0.67 -0.02 0.32
7 0.17 =007 -0.01 0.03
8 ~0.15 0.09 -0.25 0.10

22



TABLE III:

COEFFICIENTS OF THE GEOPOTENTIAL Cnm’ S

(Mean Solution)

NORMALIZED SPHERICAL HARMONIC

nm

nm nm nm nm

1678 1078 1070 107°

0 -484.173 - 3 0.15 -0.02
2 2.40 -1.36 4 -0.18 -0.45
0 0.951 - 5 -0.19 -0.58
1 1.98 0.25 6 -0.12 -0.25
2 0.98 -0.71 0 0.092 -
3 0.60 % | 1 O, 22 0.11
0 0.541 - 2 0.39 0.01
1 - 0.54 -0.49 3 0.32 -0.05
2 0.34 0.59 4 -0.25 -0.11
3 0.91 -0.22 5 0.02 -0.04
4 - 0.22 0.25 6 -0.38 -0.31
0 0.054 - 7 0.07 -0.02
1 0.03 -0.13 0 0.024 -
2 0.51 -0.30 1 -0.11 0.01
3 - 0.33 0.0 2 0.06 0.0
4 - 0.43 -0.02 3 -0.04 0.11
5 0. 11 -0.62 4 -0.14 -0.02
0 - 0.180 - 5 0.01 0.06
1 - 0.04 0.09 6 -0.02 0.49
2 0.01 -0.33 7 0.08 -0.02
8 -0.20 0.09
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TABLE IV: COMPARISON OF GEO1DAL UNDULATIONS OBTAINED FROM
DIFFERENT SETS OF GEOPOTENTIAL COEFFICIENTS
Ref. of the Geo- Maximum Height Maximum Depression
potential Coeff. Above the Reference Below the Ref. Total Parameters
used to Compute Ellipsoid Ellipsoid Range of the
the Geoidal in Reference
Undulation Magnitude Location Magnitude Location Meters Ellipsoid
in Meters Long. Lat. in Meters Long. Lat.
Kozai (1964); 140° 0° , 75° 0° 0
+81 to to -98 to to 179 o% Table I
Gaposhkin (1966) 150° 5°N 80° 10°N Cal. 2
Smith (1963, 65); 350° 55°N 75° 10°N 0
Guier & +65 to to -91 to to 156 o% 1able I
Newton (1965) 355° 60°N 80° 15°N Col. 1
King-Hele (1965); 140° 0° 70° 5° C 40
+83 to to -98 to to 181 % Table I
Anderle (1966) 150° 5°N 80° 10°N Col. 3
Table III: Mean 145° 5°S 75° 5°N Coo & Cuo
Coefficients +70 to to =95 to to 165 of
155° 5°N 80° 10°N Table III

VA4
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TABLE IV: (Continued) COMPARISON OF GEOIDAL UNDULATIONS OBTAINED FROM
DIFFERENT SETS OF GEOPOTENTIAL COEFFICIENTS
Ref. of the Geo- Maximum Height Maximum Depression
potential Coeff. Above the Reference Below the Ref. Total Parameters
used to Compute Ellipsoid Ellipsoid Range of the
the Geoidal - in Reference
Undulation Magnitude Location Magnitude Location Meters Ellipsoid
in Meters Long. Lat. in Meters Long. Lat.
Kozai (1964); 360° 60°N 75° ks Internation-
+94 to to -128 to to 222 al reference
Gaposhkin (1966) 355° 70°N 80° 10°N Ellipsoid
Smith (1963, 65); 345° 60°N h* 5°N
Guier & +101 to to -118 to to 219 -do-
Newton (1965) 355° 65N 80° 10°N
Mean Coeffi- 340° 60°N 75°  50°N
cients +99 to to =125 to to 224 =do-
355° 70°N 80° 10°N
Mean Coeffi- 135° 50°s 65° 0° Best fit
cients +69 to to -93 to to 162 Satellite
165° 15°N 75° 20°N Spheroid
Polar Flat-
tening =
1
298.25

6?




TABLE IV:

(Continued) COMPARLSON OF GEOIDAL UNDULATIONS OBTAINED FROM

DIFFERENT SETS OF GEOPOTENTIAL COEFFICIENTS

Ref. of the Geo-

Maximum Height Maximum Depression

potential Coeff. Above the Reference Below the Ref. Total Parameters
used to Compute Ellipsoid Ellipsoid Range of the
the Geoidal in Reference
Undulation Magnitude Location Magnitude Location Meters Ellipsoid
in Meters Long. Lat. in Meters Long. Lat.
Other Results
Uotila's geoid 130° 10°S 60° 10°N Ellipsoid
(1962) obtained +60 to to -60 to to 120 with rlat-
from free air 150° 10°N 80°  40°N tening =
gravity anomalies ’ A
298.24
Kaula's map (1966) 135° 1578 65°  10°S Ellipsoid
obtained from a +76 to to -90 to to 166 with Flat-
combination of 165° 5°N 85° 10°N tening =
satellite and gravi- I
metric data. (Geopo- 298.25

tential coeff. for
this case not given)

97



TABLE IV: (Continued) COMPARISON OF GEOIDAL UNDULATIONS OBTAINED FROM

DIFFERENT SETS OF GEOPOTENTIAL COEFFICIENTS

Ref. of the Geo- Maximum Height Maximum Depression

potential Coeff. Above the Reference Below the Ref. Total Parameters

used to Compute Ellipsoid Ellipsoid Range of the

the Geoidal in Reference

Undulation Magnitude Location Magnitude Location Meters Ellipsoid
in Meters Long. Lat. in Meters Long. Lat.

3 locations
of equal value

Zongolovich Geoid 120°  3°S 55° 0 Russian
based on surface +80 to to -60 to to 140 Ellipsoid
gravity data 140° 12°N 80°  22°N
300°  18°s
to to
340° 20°N
235% 12°s
to to
265° 35°8

LT
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that are used to compute the individual geoid under consideration.
Although each set of geoidal undulations was thus derived from a
different reference surface, this difference is not significant because

the C20 and C40 values for the different sets of zonal coefficients are

in fairly good agreement. Figure 1 shows the geoidal undulations
obtained in this manner using the mean coefficients.

In the second section each derived geoid is referred to the
international reference ellipsoid. Figure 2 is a plot of the geoid
determined on this basis using the mean coefficient values. For
comparative purposes data are also given for a geoid derived using the
mean coefficients and best-fitting satellite-derived reference spheroid

1

598.25° This solution is shown in

with a polar flattening value of

Figure 3.

In the third section comparative geoidal data are given as obtained
by Kaula (1966), Uotila (1962), and Zongolovich (1952).

Kaula (1966) used a combination of satellite and gravimetric data
to obtain his results. Uotila (1962) and Zongolovich (1952) both used
surface gravimetric data. For comparative purposes Zongolovich's (1952)
geoidal map is shown in Figure 4.

From an inépection of Table IV it is seen that broadly speaking,
the area of maximum geoidal depression defined by each geoid has much
the same location, although there is some variation in magnitude
values. The significantly lower magnitude found with the gravity
solutions, Uotila (1962) and Zongolovich (1952), can be attributed to

the paucity and poor distribution of the gravity data available. 1In
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the case of the area of maximum geoidal elevation there is a significant
dependence on the reference ellipsoid used. However, the scatter is
restricted to one or two areas, the Solomon Islands-New Guinea region
and the North Atlantic area immediately south of Iceland. This would
suggest the gravity anomaly in the two areas is of similar magnitude.
Actually the available data indicate the free air anomaly values in
the Solomons area is at least locally considerabiy higher than in the
North Atlantic area. A 15th degree fit of the data presumably would
give a consistent pattern with the Solomons region being the area of
maximum geoidal rise.

It is to be noted that the geoidal undulations referred to the

'best-fitting satellite ellipsoid' (whose reference C20 and C40 are

equal to the observed ones) show a consistently different pattern
from those referred to the international reference ellipsoid. As the
equatorial radius and flattening of the '"satellite ellipsoid'" are
smaller than the corresponding parameters of the international reference
ellipsoid, the geoidal undulations referred to the "satellite ellipsoid"
appear to show some accentuation of equatorial "highs" and damping of
polar "highs." However, this argument may hold only for the general
pattern of these differences and not give a systematic change in
magnitude. At this stage this point has not been investigated
adequately.

The data of Table IV bring out one important point. Until
recently it had been believed on the basis of gravimetric.data that the

maximum deviation of the geoid from the reference surface of the
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international ellipsoid was not more than 30 to 40 meters. As seen,
the differences obtained are of the order of 100 meters or more for an
8th degree fit.

In connection with Figure 3 in which the geoidal undulations are
referred to a 'best-fitting satellite derived spheroid' the reference
geopotential (Vl) was defined by

GM > Zentl
V. =— [1+ £ C—;ﬁ C

i a

) E, nPn (sin ¢)]

where Cn are the zonal harmonic coefficients and Pn(sin ¢) the Legendre's
polynomials. As is obvious, it is an axially symmetrical surface but

not equatorially symmetrical. The maximum geoidal deviations are +69
meters and -93 meters in this case and are of almost the same magnitude

as those computed by setting both C and C40 equal to zero.

20

Gravity Anomalies:

Figure 5 gives the free air anomaly map obtained using the mean
coefficients and referred to the International Gravity formula. Figure
6 is a similar map obtained by Kaula (1966) using a combination of
surface gravity data and satellite gravity information. Although these
maps show broad-scale agreement on some features, there are significant
differences on others. These differences can be related, in part at
least, to the difference in input data and the difference in some of
the assumptions used.

The short wavelength component of the gravity field which is of

interest to the geophysicist, is the one most poorly represented in
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these results, for as indicated earlier, with an 8th degree fit the
results represent regional rather than local values. That they do
accomplish this purpose is shown by a comparison of these results with
the available surface gravity information expressed as free air anomalies.
Figure 7 shows a free air anomaly map for the North Atlantic Ocean which
takes in a portion of the gravity "high'" defined south of Greenland and
the gravity '"low' defined in the eastern North Atlantic Ocean on all the
satellite derived maps. Figure 8 shows regional variations in free air
anomaly values in the Pacific Ocean in terms of areas having anomalies
>+20 mgals, >-20 mgals, and with no dominant sign. The agreement of the
satellite derived maps with the surface gravity anomaly maps is on the
whole good, and as would be expected Kaula's map (Fig. 6) appears to be
somewhat better, especiéily in the Atlantic Ocean, since his map was
derived using the available surface gravity data.

It is clear, therefore, that the satellite data are useful in
determining areas of anomalous mass associated with the earth, or in
defining the gravity field for areas remote from a point in using
Stokes' theorem. Many otherbimportant geophysical applications, however,
pre-require a degree of detail in the earth's gravity field representation
which is not available in the satellite results at present.

Moreover, the significance of the anomalous areas of gravity is
not too clear. Because of the long wavelengths portrayed, the anomalous
mass could be deep seated and associated with the earth's core, or
represent the integrated effect of a number of shallow mass anomalies
located in the upper mantle or crust. In either case there would also

be a contribution from surface topography. The fact that the topographic
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effect only appears to be of secondary importance stresses the need for
geophysical investigations in these areas. Some of them such as the
positive anomaly area over the Mid-Atlantic Ridge are known to be
characterized by anomalous geophysical relations:

a sub-normal mantle velocity, pronounced magnetic anomalies,

nigh heat flow along the crest of the ridge but sub-normal

heat flow along the flanks.
However, it is difficult to reconcile these observations with the
anomalous gravity field which conforms closely with the regional topo-
graphic relief and which the Bouguer anomalies indicate is compensated
without postulating that the subnormal mantle velocity values are
indicative of higher than normal density wvalues or that there is deeper,
as yet undiscovered, layering in the upper mantle. Worzel (1965) has
shown three possible theoretical mass distributions, all in the upper
30 kms of the crust to explain the observed gravity relations over the
mid-Atlantic Ridge. vCook (1962) has postulated that the apparent sub-
normal mantle velocities are due to a mixture of crustal and mantle
materials as a result of convection with attendent high heat flow.
While eminently reasonable for the mid-Atlantic Ridge, these explana-

tions do not explain the relations in the Indian Ocean area where the

‘satellite data define a broad negative anomaly area that appears to be

related to a stable ocean basin region lying between a narrow volcanic
ridge and a rise of the mid-Atlantic Ridge type which has many of the
geophysical associations noted for the mid-Atlantic Ridge.

It is this lack of consistency between gravity and other geophysical

relations on a regional scale that raises doubts as to interpretations
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FIGURE 1. GEOIDAL UNDULATIONS IN METERS REFERRED TO AN ELLIPSOID WHOSE C20 COEFFICIENTS COINCIDE

WITH THE SATELLITE-OBSERVED ONES. COMPUTED USING MEAN ZONALS AND TESSERALS UP TO P88 AS DEFINED

IN THE TEXT. CONTOUR INTERVAL: 10 METERS
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FIGURE 2.

GEOIDAL UNDULATIONS IN METERS REFERRED TO THE INTERNATIONAL REFERENCE ELLIPSOID.

USING MEAN COEFFICIENTS UP TO P88 AS DEFINED IN THE TEXT.

CONTOUR INTERVAL: 10 METERS

COMPUTED
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FIGURE 3. GEOIDAL UNDULATIONS IN METERS REFERRED TO A BEST-FITTING SATELLITE SPHEROID AS DEFINED

IN THE TEXT. COMPUTED USING MEAN TESSERAL COEFFICIENTS UP TO P88 AS DEFINED IN THE TEXT.

CONTOUR INTERVAL: 10 METERS
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FIGURE 4.

RUSSIAN REFERENCE ELLIPSOID COMPUTED BY ZONGOLOVICH (1952)
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FIGURE 5. GRAVITY ANOMALIES IN MILLIGALS REFERRED TO THE INTERNATIONAL GRAVITY FORMULA. COMPUTED

USING MEAN ZONALS AND TESSERALS UP TO P

88

AS DEFINED IN THE TEXT.

CONTOUR INTERVAL BETWEEN SOLID

LINES: 10 MILLIGALS; BETWEEN SOLID AND BROKEN LINES: 5 MILLIGALS
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FIGURE 6. GRAVITY ANOMALIES IN MILLIGALS (TAKEN FROM KAULA, 1966). RESULTS COMBINE AVATLABLE

SURFACE GRAVITY MEASUREMENTS WITH SATELLITE INFORMATION. CONTOUR INTERVAL BETWEEN SOLID

LINES: 10 WMILLIGALS; BETIWEEN SOLID AND BROKEN LINES: 5 MILLIGALS
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that have been placed on the data and point up fhe need for more extensive
geophysical studies in areas of anomalous gravity. In this respect
whereas the satellite gravity results have proven their worth by out-
lining, in general, the anomalous areas, they do not exhibit any of the
local variations shown by gravimetric results and fail to furnish the

degree of detail required in many of the detailed geophysical studies.

4. Limitations of the Perturbation Theory

The method of determination of the geopotential using the
perturbation theory has certain inherent limitations. The observed
perturbations of the orbital elements arise from a composite effect of
all disturbing factors and in order to accurately determine the geopo-
tential, it is necessary to isolate the portion arising solely from
gravitational sources. This separation of gravitational component is
rendered difficult because of the uncertainties involved in identifying
the component perturbations with their parent sources. As of now, our
knowledge of the atmospheric structure, the radiation pressure, etc.,
is too inadequate to enable us to determine accurate corrections for
these factors. The uncertainty in the corrections for the non-
gravitational factors results in the introduction of some interaction
terms among the different perturbations which consequently can lead to
an erroneous determination of the geopotential. Another problem is the
separation of the perturbation effects of the individual harmonic terms.
Common periodicities occur in the periodic motions originating from

various harmonic terms. The decomposition of these periodic motionms
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into component parts and the assignment of these components to their
legitimate sources is likely to introduce further uncertainty in the
computations. Moreover, in the perturbation theory, any perturbation
is treated as the integrated effect of the mass anomalies of a certain
wave—-length and the theory does not appear to offer the potentiality of
yielding adequate information about the individual mass anomalies.

Consequently, the results obtained from this theory give a rather smoothed

picture of the gravity field.



CHAPTER III
DEVELOPMENT OF THE NEW THEORY FOR
DETERMINAION OF GEOPOTENTIAL

1. Physical Basis of the New Theory

The gravity effect of the anomalous masses decreases with height
and the rate of decrease is a function of the degree of harmonic term by
which that specific gravity anomaly can be represented on the earth's
surface. The shorter the wave length of the gravity anomaly, the
faster the decrease of its effect with increasing height. Thus, a
satellite will only sense those anomalies whose wave length is equal to
or greater than the 'limiting wave length,' here defined as the shortest
wave length which can be discerned by a satellite at its altitude. The
limiting wave length is thus a function of satellite altitude. The
gravity anomalies having wave lengths smaller than the limiting wave
length will have no effect on satellite motion and hence information
about them cannot be retrieved from the satellite data. The limiting
wave length thus sets an upper limit on the degree of detail with which
the geopotential can be derived from satellite motion. As pointed out
earlier, the perturbation theory does not exploit this potentiality of
satellite dynamics. It rather makes use of the orbital perturbation
arising from the integrated effect of the mass anomalies of a specific
wave length, and the geopotential coefficient thus determined reflects
the cumulative effect of these mass anomalies rather than their

individual contribution. Hence, when geopotential is recomputed from
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these harmonic coefficients, the contribution of each coefficient is to
emphasize the mathematical pattern of its characteristic wave length and
not the actual pattern of distribution of the individual mass anomalies
of that wave length. This argument holds for any harmonic analysis
carried to a finite number of terms.

As a satellite is more affected by a nearby mass than a remote mass
of the same magnitude, its motion should yield information primarily
weighted in favor of the area over which the satellite is passing, unless
of course, the more distant masses outsize the nearer masses considerably
and consequently have greater gravitational effect. Any method for the
determination of geopotential from satellite motion which aims at giving
the maximum degree of detail down to the limiting wave length, should
therefore, exploit these facts. To illustrate, see Fig. 9. Let S be
the position of the satellite, R/4 its height above the surface of the
earth where R is the mean radius of the earth. The mass of the spherical
part of the earth can be supposed to be concentrated at M and does not
interest us in this investigation. We are looking for only the effects
of the anomalous masses on the satellite. Consider anomalous masses of
equal magnitude AM, located at Pi (i=1,...4). Let the disturbing forces

arising from these mass anomalies be AFi (i=1,...4). Then

_ 16GAM

>

i
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.
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16GAM
81 R

AF, =

Notice that in case the mass anomalies at P P, and P4 are of

1* Fao T3

equal magnitude, the effect of the mass anomalies at P2 and P3 on the

satellites will be only about 2.5% of that of the anomaly at Pl and that

4° about 1.257% of that of one at Pl. In order that

the contribution AF4 be equal to AF 4

81 times the one at Pl' For closer satellites, this percentage contribu-

of the anomaly at P

the mass anomaly at P, has to be

1°
tion of the distant mass anomalies becomes still smaller and their
magnitude has to be still larger in order to have a contribution
comparable to that of the mass anomaly located at Pl (i.e., the point
right underneath the satellite) or its neighborhood. For example, for
the satellite whose height above the surface of the earth is equal to

R/6, the contribution of the mass anomaly at P, is only about 0.5% and

4

of those at P, and P, about 1.25% of the anomaly at P

2 3 In order to

1
have the same contribution as that from Pl, the mass anomaly at P4 has

to be 169 times as large as the one at P Thus barring a few exceptions

1°
when the mass anomalies located in the area over which the satellite is
moving, are very much smaller in comparison to the distant anomalies,
the anomalous masses in the neighborhood of points right below the
satellite exert the controlling influence ‘on the satellite. The instan-
taneous elements of a satellite can thus be exploited, in principle at
least, to yield information concerning the nearer mass anomalies. The

new theory presented here exploits this potentiality of satellite motion.

There exist a number of dynamical variables associated with the
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satellite motion which are approximately constant in time. One such

+1L D
N &

variable isAHamiltonian. In the ideal case which occurs when all the
perturbatioﬁs are ignored, it is possible to express the Hamiltonian as
a function of the angular velocity of the earth as well as of the
position and velocity of the satellite relative to the earth. With
this as basis, however, it seems possible to take into consideration
the effect of perturbations such as those arising from moon, air drag,
radiation pressure, etc., or to modify the calculational procedures so
as to reduce these effects to a minimum.

The potential function of the earth appears additively in the
Hamiltonian. It is this function we seek to determine. If we expand
this function in terms of spherical harmonics or the elements of the
tensor of inertia, it is possible to determine the expansion coeffi-
cients which appear linearly as multiples of the spherical harmonics
in the expansion. The determination of the expansion coefficients is
made possible by the fact that they are assumed to remain constant over
a short segment of the satellite orbit and are expressive of the mass
distribution in the region right be}ow the orbital segment under
consideration. Minimally, there must be about as many observations as
there are expansion coefficients. However, an abundance of measurements
will be desirable to be able to apply the least squares method. 1In
this way, this new theory enables us to obtain expressions for the
gravitational potential expressive of regions immediately below the
satellite trajectory. The region for which the information is primarily
weighted has been termed as 'effective area' and can be defined by

stipulating that it should extend only as far out as a point at which



a certain mass anomaly would cease to have a certain minimum contribu-
tion. If this minimum limit is set at 507 of the contribution that

the same mass anomaly would have if it were located right below the
satellite, the area in question lies roughly within a circle whose
center lies at the point immediately below the satellite and with a
radius equal to the altitude of the satellite. If the minimum limit is
20%, the above-mentioned circle has a radius of twice the altitude of
the satellite. If the satellite altitude is higher, the effective area
will be greater, though the degree of detail with which the gravity
field can be obtained will diminish with altitude. Theoretically, it
is possible to cover the surface of the earth by such effective areas
and thus to obtain a description of the earth's gravity field. 1In
principle, the description obtained in this way should show at least
some of the subtler features exhibited by terrestrial gravimetry.

In its initial form the new theory requires the measurement of the
position vector and the relative velocity of the satellite at several
points along a short segment of its trajectory. This could be done if
Doppler and Interferometer measurements are simultaneously made at the
same tracking staéion. The same could also hopefully be accomplished
with a simultaneous use of laser and Baker Nunn camera tracking. The
latter technique is already being experimented with by the Smithsonian
Astrophysical Observatory, Cambridgé, Massachusetts. However, the non-
availability of the position vector and the relative velocity as
directly measured quantities is no big hurdle in the implementation of
the new theory. The position and velocity of a satellite at any time

can be derived from its orbital elements which are available as the

48



o

»e

49

routine initial data and hence equations of condition can be set up in
terms of the orbital elements. In this conversion we have to forego
some of the ideal conditions which hold for the new theory in its
original form but because of the mathematical approach adopted, it is
believed that even with the same input data the new theory will yield a
better degree of detail than the perturbation theory.

First, the ideal case ignoring all the perturbations is treated.
A complete development of the equations of condition and the transforma-
tion of the position and relative velocity of the satellite to orbital
elements is given. The 'extended theory,' taking into account the
perturbing effects of the moon, the air drag, the radiation pressure,
etc., is then developed and the equations of condition are derived for
this case which reduce these perturbation effects to minimum. These are

the equations which should be used for any practical applications.

2. Simplified Theory--The Ideal Case Ignoring

All the Perturbations

Consider the ideal case of a satellite moving in a closed orbit
around the earth, its motion being controlled only by the earth's
gravity field. Let V denote the absolute velocity vector of the
satellite in an earth-centered, space-fixed system of coordinates, v,
its relative velocity vector in an earth-centered, earth-fixed coordinate
system, w, the angular velocity of the earth and xr the radius vector of
the satellite from the origin of the coordinate system which is supposed

to lie on the axis of rotation of the earth. Then we know (Wills, 1958,
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p. 54) that

(1) V=v+wxzx

The Lagrangian L of the system is
(2) L=%mV-+-V-mU

where
m = mass of the satellite
U = potential energy of the earth at the location of the

satellite.

Substitution of (1) in (2) gives
(3) L=%m(+wxyr) r Wt+wxr)-mU

The canonical momentum Py is given by

o
]
I

m(1+y_x3)i

where v, have been chosen as the generalized coordinates. In vectorial
form the above equation is

(4) p=m (v+¥x I

The Hamiltonian H of the system is

(5) H=p -+ -v-L

Substitute (3) and (4) in (5) and get
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H=m+wxyr *v-%m(+twxzxr * v+wxzx)+mU
.=m (W+wxrx * [v-L5 @+wxzr)] +mU
=%m (+twxr) *c (V-wxzx)+mU
=1/2m[v2-(y_x_1;) c (wxx)]+mU
Now
wxzx) *« (Wwxx = w2 r2 - (w - 5)2
Hence
(6) H=%mn [v2 + (w - r)2 - w2 r2] +m U

H is constant

in time if the secular decceleration in the earth's

rotation is ignored. U is regarded independent of time.

Consider
tion. Let x

relative to a

r

4

3. Geopotential

a body M of finite dimensions and arbitrary mass distribu-
be the position vector of center of mass O of the body M,
fixed coordinate system. Further, let (see Fig. 10):

= Xl‘i =+ X, j + x, k = position vector of a material
~

particle at P with mass m.

- x'l R x'2 4+ x'3 k = position vector of the mass

element dM at point Q of the body M.

r=-e

Then U, the potential of attraction of body M on the mass at P is



FIGURE 10. POSITION OF THE MASS ELEMENT dM, THE

MATERIAL PARTICLE P AND THE VECTORS r, A and p

52.
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given by

B D(R) .3
U=6/, =" d @

where D(p) is the density function and the symbol fv indicates that
integration is to be carried over the entire volume of the body.

The expression of A = Lg '.R' in terms of Legendre's polynomials

which are function of the anglq“zr;~g is well-known and is given in a
slightly modified form in any good text on the subject (MacMillan, 1958;

Kellog, 1953). Comnsequently, U can be expressed as

X .

7 =@+§£%+%G.'Q..—15‘1+...

r ¥ 1’J lJ T
where

3
P=7pD( d p=Mx,
218\' 3

e 1 ' -

(8) Qij—f(3xixj ppij)D(Q)dQ

6ij is the Kronecher § function, defined as

1 for i=j
Si, =
J 0 for i # j
Note that the first term in equation (7) indicates the potential
of the body if all its mass M were concentrated at its center.

The second term vanishes if the center of mass O of body M is taken

as the origin of the coordinate system because in that case r = 0
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The moments of inertia A, B, C and the products of inertia D, E, F

are usually defined by the integrals

A= (x'g + x'g) D(p) d3 o
B =/ (x'_%’ + x'i) D(p) d3_p_

2 < 2 3
f(xl+x2) D(p) d” p

()
I

(9)

= [ x'2 x‘3 D(p) d3 <3

w}
|

¥ 3
E=fx'3x1D(_g)dg
F=/x. x', D) &

- Xlxz L. L

By comparing the above expressions with equation (8), we get

Qll=B+C—2A Q23, Q32=3D
(10) Qyy = C+ A - 2B Qp3s Qyp = 3E
Q33 = A+ B - 2C Q9> Qyq = 3F

In the initial investigation we plan to determine only those

quantities which are shown in equation (7).
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»

. One of the fundamental properties of the potential function U is
that for all points not belonging to the mass M, it satisfies the
Laplace's equation. A particular solution of this equation enables us
®
to express U in terms of the spherical harmonics and can be written as
(Byerly, 1959)
@ oM © n a,n
(11) U=—1[ ¢ b —) (€ cos mA + S sin mA)
r T m nm
n=0 m=20
P (sin ¢)]
nm :
®
If the center of mass of the body M is chosen as the origin of the
< coordinate system, the term for m = 1 vanishes and the equation (11)

®

reduces to the form
cM © n ae n

(12) U=—[1+ 3 T (—) (C_ cosm\ + S sin m\)
= T nm nm

P n=2 m=20

an (sin ¢)]

& where an (sin ¢) are called the Associated Legendre's functions. The
first term in the expansion indicates the potential of the body M if all
its mass were concentrated in its center.

| A comparison of equation (11) with equation (7) gives some useful

X relations between the spherical harmonic coefficients Cnm’ Snm and the
physical constants of the earth. For the first few harmonics these

®

relations are:

00
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*
1
. . _ Ix 3 dm _ X3,
10 Ma a
e e
1 v
® . =fxldm=xlc . _fxzdm_xzc
11 Ma a i Ma 3
e e e e
(13)
Crp = = =5 [C =% (a+B)]
L 20 2
Ma
e
E D
C = S = ——
21 2 21 2
» Mae Mae
B - A F
C,, = S,, =
. 2 4Ma2 - 2M32
e e
®
Note that in the foregoing expressions .= %, i X5, g s X3. k
where i, j, k are unit vectors in the direction of X5 X,, X, respec-
. tively. In principle, there should be no difficulty in carrying out
the development further to tie the higher harmonic coefficients to the
physical constants of the earth (Jung, 1956).
® Note that by a proper choice of the reference system, we can
eliminate the coefficients ClO’ Cll’ Sll’ C21 and SZl'
. 4. Equations of Condition for
) the Simplified Theory
® Y We can substitute the expansion of geopotential from equation (7)

or equation (11) in equation (6) depending upon whether our most

immediate purpose is to determine the spherical harmonic coefficients of



geopotential or elements of t.e tensor of inertia. Substitution of

equation (11) in equation (6) gives

2

(14) =5 v+ 0P - )

8 |

+
<}
I~ 8
(<)

8
o~
C e
' )
o

A
s
~
e}
0
(o]
n
8
e

2 . .
S sin mX) an (sin ¢)]

Let_g_i and vy (i=1, 2,...1) be the measured values of the
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position vector and the relative velocity of the satellite along a short

segment of its orbit. Substitute these values in equation (14) and by

successive subtractions get the equations of condition as follows:

2 2 2 2 2 2 2
1 — . — . — —
% [(vi+l vi) + (w £i+1) (w +x.) w (ri+l ri)]
B ) " cos mAi+l an (sin ¢)
+GM I r at|c (1+1)
n=0 m=0 e nm n+1
i+l
cos mAi an (sin ¢) sin mki+l an (sin ¢)
_ (1) (i+1)
n+l N Snm rn+l
5 8 i+l
sin mki an (sin ¢) )
_ (€9) [_ _ ’
] }— 0 b= 1y 25essdl



or

(15)

where

(16)

© n
/ ' ~
5 i 0 m E 0 Yhm am T Pom hnm )
(1) (1)
= fie1,1 Migg g0 ¥ Iy o) =
B = f [GM, a,, r, cos A, an (sin ¢)]
(2)
, cos mAi+l an (sin ¢)
- oM a° { §1+1)
e rn-'.-l
i+l
cos mAi an (sin ¢)
_ (1)
n+l
o
i
L = f [GM, a,s T, sin A, an (sin ¢)]
(1)
sin mli+l an (sin ¢)
_ n (i+1)
= e rn+l
i+l
sin mki an (sin ¢)
B (1)
n+1
T

L

g 1, 2500els
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* and
an fi+l
-
+ w
®

e o _
,i (Vi+l,i’ B Zigy 1) 7 [V — V)
2 ‘ 2 2,2 2
. r.+l) - (w - x.) W (ri+l - ri)]

b |
Minimally i-1 = (n+l)2 or n = (i—l)/2 - 1. However, if it is desired to

apply the least squares method of adjustment, i >> (n+l)2 or

® L

n << (i-1)* - 1,
g 5. Transformation of the Position Vector and the
» ; Relative Velocity of a Satellite into
Orbital Elements

&) Consider a coordinate system ii 1=1, 2, 3); the ’il_z plane of
which coincides with the plane of the orbit and the —}Zl axis points
toward perigee. 1In this coordinate system the coordinates of the

® satellite position are (il, —}EZ’ 0). The coordinate 3(-3 = 0 but for
purposes of generalization we will consider the case in which _)_(-3 is not
zero and later make the substitution §3 = 0 for the derivation of our

@ specific formulas. See Fig. 11 for illustration of this system.

If E be the eccentric anomaly, then it is obvious that

®
>
}_—J
]

(18)

>
I

a (cos E - e)

2.5
a (1-e”) “ sin E

9
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Now consider another system of coordinates Xi (i =1, 2, 3), the
XlXZ plane of which coincides with the equatorial plane of the earth
and the Xl axis is directed towards the mean vernal equinox (see
Fig. 11). This is the coordinate system to which the orbital elements
of an artificial earth satellite are customarily referred. The trans-
formation from the'ii system to the Xi system (i = 1, 2, 3), involves
a rotation of'coordinates which may be split up into the following
component rotations (see Fig. 11 and Fig. 12):

1. A rotation -w about the X3 axis given by the matrix A (-w):

cos w sin w 0
A (~w) = -sin w cos w 0
0 0 1

2. A rotation =i about the X'l axis (the transient position of

the Xl axis during the rotation from Xi system to the Xi system) given

by the matrix B (-i):

1 0 0
B (-i) = 0 cos i sin i
0 -sin 1 cos i

and

3. A rotation - about the X3 axis given by the matrix A (-Q):
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Ascending node

N
O&
X

FIGURE 11. ORBITAL AND EQUATORIAL COORDINATE SYSTEM FOR

AN ARTIFICIAL EARTH SATELLITE



Vernal
equinox

Xy

EQUG‘-’O"m\

Ascending node

plone

.\
Y
S

FIGURE 12. ORBITAL REPRESENTATION IN THE THREE DIMENSTIONS

[4°]
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e
cos Q sin Q 0
A (-Q) = -sin cos § 0
» 0 0 1
The complete transformation then is:
® = XXX » o -
(X1X2X3) (klhzx ) A (-w) B (-1) A (-9)
In the numerical applications, the product A (-w) B (-1i) A (-Q) is
e obtained first. This product in the matrix form is:
Pl P2 P3
. ) B L
By B By
o so that the transformation finally becomes
= T ¥ %3
(19) (X1X2X3) (Al 2X3, Pl P2 P3
®
Q Q0
Rl R2 R3
@
Pi’ Qi and Ri (i = i, 2, 3) are called the vectorial orbital
constants and are given by:
®
Pl= cosw cos @ - sinw cos i sin §
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* Ql=—sinw cos {{ — cosw cos i sin Q

Rl = sin i sin Q

P,=cosw sin & + sinw cos i cos Q

Q2=-sinw sin @ + cos w cos i cos @

(20)

R2 = = sin i cos

Y P3 = sinw sin i

Q3 = cos w sin i

L e _
. 3 = cos i
Note that the vectorial orbital constants are in reality the direction
& cosines of the axis S(_i relative to the axis Xi (i=1, 2, 3).
As is obvious from equation (18) and (19) the coordinates of the
satellite position at any time are (Brouwer and Clemence, 1961):
b
X, = a (cos E-e) P +a(l—e2)l§sinEQ
1 1 1
2.5 .
(21) X2 = a (cos E - e) P2 + a (1-e7) ° sin E Q2
2.4
. X, =a (cos E-¢e) P, +a (1-e")? sin E Q
) g 3 3
& ) Kepler's equation can be written as

-

I -e sinE=E(t—TO)
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o where
To = time of perigee passage
- y : : = 27
n = mean motion of the satellite defined as n = P—“ and
P = the period of revolution of the satellite in its orbit.

Differentiating Kepler's equation with respect to time

n
@ E_l—e cos E

Differentiation with respect to time of equation (18) and the

substitution of the above relation gives

[
-}'? __._a n sin E
£ l-e cos E
. = 2. %
[ £ an (l1-e7) ° cos E
X, = =
5 2 l-e cos E
Thus the absolute velocity components of the satellite are (Brouwer
® and Clemence, 1961):
}.( = n (-a sinE P, + a (l—ez);é cos E Q)
1 l-e cos E 1 I
. . - 1
X, = L (-a sinE P, + a (J.—e,?')/2 E )
(22) 2 l-e cos E 2 e QZ
}.( = n (-a sin E P +a(l—e2)1/2cosEQ)
3 1l ~-e cos E % 3

Let p, ¢, A be the geocentric distance, latitude and longitude of
the observer. Then the cartesian coordinates of the observer (XlO’ XZO’

XBO) are
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Xlo =p cos ¢ cos (hGr + A)
(23) XZO =p cos ¢ sin (hGr + A)
X30 =p sin ¢
where h, = hour angle of the vernal equinox with respect to the

Gr

Greenwich meridian.
The absolute velocity components of the observer are obtained by
differentiating equation (23), i. e.,

XlO = - p hGr cos ¢ sin (hGr + A)
(24) XZO = 0 hGr cos ¢ cos (hGr + A)
Eag = 0

Note that hGr is the rotation speed of the earth in radians per
unit time used to express.ﬁ and the other derivatives.

Equations (22) and (24) give the relative velocity componeﬁts of
X2r’ X3r)’

the satellite (X i. e.,

1xr?

1% 1 10

B e
Il
e
I
>

(25) 2r 2 20

3t 3
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To summarize, if the position vector and the relative velocity of
the satellite appearing in the system of equations (15) are not available
as directly measured data, the same can be obtained from the orbital
elements of the satellite for a specific time with the help of equations
(21) and (25). Consequently we can write the position vector r and the

relative velocity v of the satellite as

2 iy 2 ’ 9 : 2
v o= (Xlr), -+ (er) + (XBr)

(26) T X

]

2 2 2
1 + X2 + X3

IR
1]

Xll + le + X3g

where i, j, k are the unit vectors in the direcfion of the axes Xl’ X2
and X3, respectively. These substitutions in the system of equations
(15) enable us to set up equations of condition when the initially
available data are only in the form of the orbital elements. Howéver,
this process of conversion of the equations of condition from the form
(15) to the form in which the position vector and the relative velocity
are expressed in terms of the orbital elements, involves some of the
assumptions of Keplerian motion which are used in the classical per-

turbation theory but which has been our basic concern to avoid in the

development of this new theory.
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) 6. Extended Theory--Inclusion of the
Lunar and Air Drag Effects
® Consider now the case of a satellite whose motion, though still
primarily controlled by the earth's gravitational field, is being per-
turbed by the air resistance and the lunar attraction.
& Let
m, = mass of the satellite
m, = mass of the moon
- M = mass of the earth
v, = relative velocity vector of the satellite with respect
. to the earth
® v, = relative velocity vector of the moon with respect to
the earth
I, = the radius vector of the satellite from the origin of
& the coordinate system
I, = the radius vector of the moon from the origin of the
coordinate system
® _vi = angular velocity of the earth
L = the total Lagrangian of the system
H = the total Hamiltonian function of the system
o " Then as before, the Lagrangian L of the system is
- (27) L=1/2ml(_\11+ﬂ><£l)2—mlUl+l§m2(12+_vi><£2)2
® ‘ Gm m
= iy Uy — s
|=1 2



The canonical momenta Py> P, are

5 Sk
B 8y_l
(28)
= ——-—aL
29 332
¥, and Y,

£
Xl - m_]_

)
l7'2 m, -

H=p * 3 +p -1
2
= ) ( ) .
=Py *Comw*xx) tp o ~ X XE) -~ %
1 my il 2 2 2 oy
Pg iy T
g g Yoy Wy Ty ke
‘. |51 T L2
or
2 2
(29) H=h=+%5=-p - (@xz)-p) " ®xr)+m

|

are thus given by

=
X

=
xX

2

U

il



G m, m

1™
+m, U, +——
R R Y

Partial differentiation of H with respect to Pys Bp> Iy and I yields

3B 1

= e p, S W ¥R
a_p_l Inl 1 i,
(30)
M _ Ll o yxy
APy, By % — =2
oH
TR R B
3H
5y, EL ¥Ry ~E tE,
where
’ __Gmer
=1 3 =1
1
__szM
22 7 5 =2
2
and
G m, m
g,
-512'+I£—r|3(£1'—r—2)
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Now define Hl as
(31) H. =p, * v, - %m, (v +w><r)2+mU
il 1 =1 R = =] i 1
L
2
iy o
_/2-5-—_21 o (w X'El) +mlUl
1
o
and similarly H2 as
(32) H =p, * v, - %m, (v +wxr)2+mU
& 2 2 =2 2 =2 = = =2 2 2
[
2
- g2 - (w X x,) + U
: “m, 22 L2/ T My T2
®
J From equation (31) we obtain
ok d
€ (33) i W Y. B ..
dt S_El dt 8;1 dt
Now the Hamiltonian equations of motions are
L
dps _ _ oH and drs _ oH
dt or dt op
s s
® With the help of these equations, equation (33) reduces to the form
B oH
- R RO T E _ n m
- dt op. or or 9p. 1?

e e e R e e el e - B £ et e e A s e e Mt e ks T



® where (Hl, H) is the Poisson's bracket expression and is defined as
(H., H) = o, wm _PHy o
1° 8_1:‘_1 B_p_l B_Rl 8;1
®
From equation (31) we obtain
° e A PR
331 my 1 = =i
so that the Poisson's bracket expression can be written as
&
dH oH
1 oH i oH oH 3
(H., H) = = ( = ) = ¥ (B, = H)
1 dt 39_1 311 E)El B_Q_l 3;1 1
®
oH 9
s (35) g ¥ = e H o= B )
321 3;1 2 12
@ __8H Hy, i
331 811 8_21 35_1
where
@
G m, m,
H12 T r, -x
X1 T =2]
¢ oH
But . 0 which gives
- =1
® - o wm Mo
dt S_Rl 8;1
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Substitution of equation (30) in equation (36) gives

o WY N o
dt m = oL,
1
Now
Sle 2 (G my mz) B
ok 0x; I - I e

and hence we finally get

dH P
N .
gt - @ - wxxl-E,
1
(37)
=By " %

If we now take into consideration the effect of air drag, the

Lagrange's equations of motion become

d 3L _ 3L _ -
(a8} dt ° av or EDS ° i &
=75 =g
where ED is the generalized force. In this particular case E@ has the

dimensions of force because x has the dimensions of length. Note that
in the general case of Lagrange's equations of motion, the generalized
force appearing on the right hand side of the equation need not have

dimensions of a force.

Since the canonical momentum

13



74

The Lagrange's equations can be written as

dp
8 3 _ _
dt 8;@ = Epg B =l @

(39)

However, H was defined as
B=p "o ¥R * 5 - L

wherefrom

P . R R I/
dc ~de T TR Tar Tar Y27 B2 T e et
I A N . - T A
Bvl dt arl dt BXQ dt z, dt
I . TR | T ) ..
a8 "W Ta "% "o T Td& er, d

But from equation (39) we get

aw %y
&gl dt =D1
oL B
sz dt ~D2

. ; ; : : ddi .
These substitutions in the expression for qc &ive

aa D1 dp, L . By
- . ) — . - - v L] — — b )

e W ta LT 4T G T Em




‘u

dp
2 - _ 9L .
(40) ~¥ O ) e th - Iy

If L is independent of time, 2t obviously becomes
(41) <

qe ~ Xy rEpy TE r Eyp

Following the same procedure for H

1s e get
(42) ﬂ=ﬁ.v+ql.2—ﬁ
dt dt = =L dt 18 dt
where Ll has been defined as
(43) L. = %mn (v W X[I )2 -m, U
1 1l =l ==" =1 3 1
But
dL, oLy dyy ) 5L,  dr;
dt ayi dt arl dt
_ dzl aLl ,
21 - Tdc or; " 1

Substituting the above relation in Eq. (42), we finally

dH, dp, dv, dv, L
S m—— g, SRR P = Do s T S =
at " 7ar c W T Tde c BT R Tar g
(44) B W T
gt " =1 3z, "

1 « F .+ v, -

=D2



Now define a quantity L, such that

2

2 :
= 1 -
Lo =4y (9 +H ¥ g) ~uy Ty
and another quantity le as
12 \21—5_2! 12
Then
L = Ll -+ L2 + le
which gives
oL aLl 8L2 ale
dr.  or ® or * or
i
or
AL _aLl_ale
o,  dxr;  ar;
Substituting the above in Lagrange's equation of motion we obtain
flil__illl_+aH12=F
dt Qzl le =Dl
or
8L, dp;  OH,
3z, _ dt | sz, ~im
=1 =1
wherefrom
dt dt =l dt or. =Dl =]
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®
) (ale o
= or =p1’ " 41
5
® kas) “Ey .8 Ty o &

In view of Eq. (37) it is obvious that Eq. (45) takes into account

the effect of both lunar attraction and air drag.

® .
Integrate Eq. (45) between t = £y and t = tiv1 and get
Fivo
° Hy (Bgpg) ~ By (eg) = Jp  ~ Ep v Ep) " 3y d
i+l
; e 1 : — —
) Now if the intervals ti+l ti and ti+2 ti+l are not too large
¢ and ti—i—Z = ti—i—l = ti+l - ti, the integrand does not vary too greatly in
5
the interval ti+2 = ti+1 = ti+l - ti and hence we obtain by subtraction
E) (46) 2 Hl (ti+l) - Hl (ti) - Hl (ti+2) =0 o £ [P P §
7. Equations of Condition for the Extended Theory
»
Eq. (46) is the basic form of the observation equations. As
before, let x; and v, be the observed values of the radius vector and
@ the relative velocity of the satellite. Then substituting these values
in the expression for the Hamiltonian function, we obtain the
observation equations in the following form:
®
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o n 5 2 cos m Ai+l cos m Ai
oM i=0 i=0 %e “nm ( _n+l an - n+1 an
Ti+1 (i+1) £y (1)
cos m Ai+2 : . 2 sin m Ai+l sin m Ai
rn+l nm * nm ( rn+l an - n+1
i+2 (i+2) i+1 (i+1) Ty
sin m A
i+2 2 v .2 5, 2
nm rn+l an )1 + (vi+l I Vi+2)
(i) i+2 (i+2)
2 2 1 2
+ (@ ;) L wex) 5 (W r;,.)71]
2 2 g L 2 B d - .
W o lrgyy ~ T T =0 L= dy Gpraal
© n
+ = f i = -
(47) §=C ?=O [Cnm - . hnm] £, i=1, 2,...1
) i i

where the functions &om’ hnm and fi are defined as follows:

= 4 i

2 cos m A, cos m A,
= GM a® [ L o e X 1
gnm e rn+l nm n+1 nm
i i+1 (i+1) Iy (1)
cos m Xi+2 : ;
rn+l nm
i+2 (i+2)
2 sin m A sin m A
n i+l i
(48) hnm - M ae [ n+1 an - n+1 nm
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® tn @ A
- ) sin m A, ;
n+l nm
Ti42 (i+2)

and

®
_ 2 g & g 2 2 2
£ = Lvgyy -5 vy Vigg) T & L)t o s xy)
® i . 2 2 2 -
A TP R A Ty T Tyl
Note that the functions g__, h and f. defined above are
nm’ nm i

® i 1

different from those used in Eg. (15). Also note that, in the above

observation equations, v, denotes the relative velocity of the satellite
® . at time t2. This is not to be confused with the relative velocity of

* the moon for which the same symbol has been used in the theoretical

development.

*
8. Extended Theory--Inclusion of the Effects of Lunar and Solar
Attraction, Air Drag and Radiation Pressure

e

The equations of condition in the form given in Eq. (46) are
derived on the assumption that the only disturbing forces (other than
gravitational forces of the earth) acting on the satellite are air
drag and the moon's pull, but further development of the theory brings
out the interesting result that the equations of condition retain the
same form when, in addition to the lunar and air drag effects, the

effects of solar attraction and radiation pressure are taken into

account.



In addition to the symbols of the previous section, denote the

apparent velocity vector of the sun relative to the earth as v, and

its mass mye Also let L now denote the total Lagrangian of the new

system in which the satellite is moving in the gravitational field of
the earth under the perturbing influence of both the sun and the moon.
Let H denote the Hamiltonian function of the new system. Then

proceeding in the same way as in the previous section, we have

3 9 3 G m, m,
(49) L=% X m (Xi + w X Ii) -z m, Ui SR
i=1 i=1 |51 7 22|
. G ml m3 G m2 m3
B =) e )
Canonical momenta p. are
oL
B T, T M G + 2 *x,)
and the Hamiltonian function H is
S
H=1I p. ¥, = L
=1 = *
3 pi 3 3
(50) =% —-I p..@@xxr)+I m U,
i=1 T =1 i1 27
+H, +H,+H

where
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1° T2
G ml m
(51) Mg ™ st
1515, =
and
. ) G m2 m3
23 |1, - r
=
This gives
oH _ _1 -
Bp_l m;L ‘E'l =
*;H = w X R —
a_l = 1
oH
(52) 3t =W X Rz -
=2
where
T
=12 a;l
oH
13
(53) £13 T B,
=i
I~
e S_El
Define Hﬂ_. as
p2
N Vil
Hl T % By
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Differentiate this expression to obtain
dHl oH o
i " 3p, * 3z, [ " Hy By~ Hyy = Hig = Hys)
& il i |
) oH ale oH 3}113
(54) " T %p, " 8r, op, © 9
21 1 B 1
®
=y . U +Ejl
Note that in the above expressions F and F are the forces
Y =12 =13
acting on the satellite arising from the disturbing effects of the moon
and the sun respectively.
o Now let _F_D and 'ER be the generalised forces arising from the
disturbing effect of the air drag and the radiation pressure, then the
Lagrange's equations of motion expressed in terms of canonical momenta
® become
d_Bi oL
L35 dt " or,  Epi T Epg
s
. .
Note that in this particular case _F_D and -ER have the dimensions
of force, but they do not have to be essentially potential-derived.
o If we denote le = - le and H13 = - L13 and define Ll as in the
; : . oL
. previous section, the expression for o becomes
=1.
® -
oL ) BLl 8“12 Lis
dr.,  or " or J or
=1 =, =, =1

b
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8L, i 8H, , i 3H, ,
9r;  8xy 9x,

(56) -

which on substitution in equations of motion gives

dpy 9Ly . OH, , . OH, 5 .
dt 811 331 351 =Dl =~ “RL
wherefrom
3 ) of
_— e W ¥ R &
_a;l dt 811 8£l —=pl =Rl
oL
If this value of Szf-is substituted in Eq. (44), we obtain
=,
dHl _ de ) ) (dEl . 3H12 . 3H13 C B =@ Az
dt ~ 4 1 Y4t 9y,  er; <Dl =Rl T
e e SRR
=k le 3;1 =Dl —RL
(58) Big "G T Eyy "G Yy G Yy N
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As may be noted, Eq. (58) allows for the forces arising from the
four most important factors perturbing the satellite motion; i.e., lunar
and solar attraction, air drag and radiation pressure.

If Eq. (58) is integrated between t = ti and t = , we get

t,
;i 3

2w _ = ¢Eq i . N
(59, a) H \ti+l) Hy (ti) fti-l-l [_F_12 + Eiq + Epy +3Rl] v. dt
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- imilarly integration between t = ti+l and t = ti+2 gives
(59, b) H(t.)—H(t.)=fi+2[F T F B+ F .1 . v 4F
- L “1+2 i A € 41 *=12 " =13 ~ =Dl " <Rl =i,
N i —_ = - = 1 7
ow if ti+2 ti+l ti+l ti At where At is a small interval of
° time during which the integrand does not vary too greatly, we get
60 2 H E. - H t.) — H : = i = 5 eidis
(e 1 (b)) - B (8 - Hy (£, ) =0 1=1, 2.4
o Thus it may be seen that the equations of condition set up on the
pattern of Eq. (46) should eliminate approximately the perturbing
B effects of air drag, radiation pressure and lunar and solar attractioms,
& provided these effects can be considered constant or approximately so
- over short consecutive intervals of equal duration.
O 9. Applicability of the New Theory
The method of setting up the equations of condition in the new
theory is primarily designed to cancel out (at least approximately) the
®
effects of the disturbing forces, thus eliminating the necessity of
computing the corrections arising from them. With our present knowledge
of the atmosphere and radiation pressure at satellite altitudes, the
L
computation of these corrections is an estimate at best and often
o involves some poorly—determined parameters. Thus the elimination of
. the necessity of computing these corrections enables us to avoid a
P

potential source of error. Note however, that the equations of

condition in the new theory are based on the assumption that the
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integrand of the disturbing forces remains constant over short consecutive
intervals. This may not be true in cases when the satellite is entering
from a rarified atmosphere at a high altitude to a relatively denser
atmosphere near perigee, or when it is entering or leaving the 'shadow
zone', in other words whenever its position is such that the effect

of the air resistance and/or radiation pressure is likely to vary
substantially over short intervals of time. However, by some selective
process it should be possible to eliminate those data which were
recorded when the satellite was in any of these 'critical transit
positions’. However, if at some future time our knowledge of the
atmospheric structure and solar radiation mechanism grows to a level
where we could be assured of the necessary degree of accuracy required
in the computation of the air drag and solar radiation corrections,

it may be simpler and more convenient to use the equations of condition
derived for the 'simplified theory' with due allowance for the luni-
solar attraction;

Another major advantage of the new theory seems to be that it can
be used for low altitude satellites because of the invariance of the
equations of condition to the magnitude of the disturbing forces (i.e.
the equations of condition would remain valid as long as the integrand
of the disturbing forces is constant over the observation interval
irrespective of their magnitude). This appears to offer the possibility
for exploiting the 'short wave length sensing potentiality' of a low
altitude satellite which cannot be done with advantage using perturba-
tion theory. This factor coupled with the fact that the information

yielded by the new theory reilects primarily the effect of the mass
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anomalies of the region immediately below the satellite, appears to
provide a means for obtaining a representation of the earth's gravity
field from satellite data which would show at least some of the

subtler short wave length features exhibited in terrestrial measurements.

Since the limiting wave length of a satellite is a function of its
altitude, the satellites at different altitudes will 'sense' the
earth's gravity field to different degrees of detail and hence the
geopotential coefficients descriptive of the gravity field of the
region in the vicinity of the satellite projection on the ground will
be a function of altitude also. Thus each set of coefficients will
reflect the degree of detail of gravity field as 'sensed' by the
satellite (from the measurements of which that particular set of
coefficients has been obtained) at its particular height. This offers
the possibility of studying the problem of the upward continuation of
the earth's gravity field to greater heights.

The theory also appears to provide an application in applied
geophysics. If surface gravity measurements in an area are available
and if one is only interested in anomalous gravity composed of wave
lengths shorter than a specific 'limiting wave length', one can obtain
the desired part of the gravity field by simply subtracting the gravity
field determined from a satellite with the above 'limiting wave length'
from the observed gravity field. This seems to offer an effective way
of removing the regional effect and to reduce the observed gravity to
rave lengths of geological interest.

The time variant part of the gravity field can be determined if

we can observe a satellite moving at a constant altitude over a long
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period of time. However, this phase of study may be handicapped by the

fact that a satellite is continually changing its altitude in the

" successive transits over the same station. But if the wvariation of

the gravity field could be accurately tied to altitude changes, we could

study the time variation inspite of changes in satellite height.

Applying the same principle, there is a possibility of studying any

radial asymmetry in mass distribution of the core such as one caused
by the convection currents. The theory could also be used in principle
to detect any differential rotation between the core and the mantle
provided an asymmetry of the type described above exists in the core.
But any study of the above type will probably put very stringent
restrictions on the accuracy of the observed data and also require a
highly accurate knowledge of some of the hitherto poorly-determined or
still unknown parameters.

As the 'limiting wave length' is a function of satellite height
and since each set of measurements on a satellite at a certain altitude
will yield a different set of geopotential coefficients for any specific
region, a random combination of several sets of observations of
satellites at different heights may not be possible in the same solution
and this may limit the use of the new theory. This limitation can
obviously be overcome by making a sufficient number of measurements on
the same satellite and by combining data from satellites having the
same height. However, this limitation may not prove to be as serious
in practice as it appears to be in theory.

It is important to note that the above discussion outlines the

theoretical development only and the theory has not been tested as yet.



Hence all the problems associated with the actual application of this
theory cannot be foreseen at present. The applicability of the
theory--its scope and limitations—-will be defined with more confidence

when it is applied in practice.
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APPENDIX

ERROR ANALYSIS IN A TYPICAL CASE

In order to have an idea about the minimum limit of accuracy
required in the measurement of position vector and the relative
velocity of a satellite for obtaining meaningful second differences,
consider a satellite moving in an elliptical orbit. Then under the
ideal conditions of elliptical motion without any perturbation effects

of any sort, assuming a sampling interval of one second, let us have

v = 10 km/sec
r = 10,000 km
Av = 10 meters/sec
Ar = 300 meters/sec

Let m_ and m be the errors in the measurement of r and v. Then,
assuming the simplified case in which m and m  are independent, the

error m in H is given by

2 2 ,0H,2 2 ,0H.2
e mr (ar) * mV (Bv)

If n be the number of H's involved in an expression, the final error

m for that expression will be

X
4
2
m = mn

()

with the assumption that the error m is the same for the quantities

H 'Hn' For the second difference d2H therefore, the error

1 Haunos

m2 will be
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and thus we should have

dzH > 2m

Jcilizing this restriction, it has been found for the case
considered above, that the minimum accuracy required in the measurement
of the position r is not critical and is well above the limit attain-
able at present. The error in v, however, appears to be critical for
this case and the minimum accuracy required in the measurement of v
comes out to be better than roughly a cm/sec or so. This minimum
limit can be raised by increasing the sampling interval but that will
reduce the number of observations available for any given orbital
sezment. In the actual application of the theory, therefore, a
balance will have to be worked out in view of the accuracy of the
available data, the magnitude of Ar and Av and the wavelength of the

gravity anomaly desired to be studied.
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