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• ABSTRACT 

A new theory has been developed to exploit the satellite data 

• particularly the position vector and the relative velocity o f a 

satellite in the problem of obtaining the terrestrial gravity field 

with special consideration to its localised anomalous features. The 

• new theory makes use of the fact that the dynamical variable Hamiltonian, 

-associated with the satellite motion is time-invariant in the ideal : 

case when all the perturbing forces are neglected. With this as a 

• working premise, it is possible to take into account the effects of 

perturbing forces such as lunar attraction, air drag, radiation 

pressure and solar attraction. The ideal case ignoring all t he 

• perturbing forces, here called the 'simplified theory' and the more 

factual case allowing for the effect of the important perturbing 

forces, here called the 'extended theory' are both discussed in detail. 

• The potential function of the e arth appears additively in the 

Hamiltonian function and can be determined from observations of the 

position vector and the relative velocity of a satellite at a number of 

• points along a small segment of the orbit. Minimally, there must be as 

many observations as there are unknown coefficients in the expansion of 

geopotential but an abundance of measurements is desirable for the 

application of the least squares method. In case t he position vector 

and the relative velocity of a satellite are not available as directly 

observed quantities, the equations can be expressed in terms of the . - . orbital elements of the satellite . The theory emphasises the local 

features of the gravity field by allowing for the fact that a satellite 

• 
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• gives information weighted p rima rily by conditions in its immediate 

proximity and thus provides expressions for describing the gravitational 

potential of regions immediately below its orbit. Theoretically, it 

• appears possible to cover the surface of the earth by overlapping 

expressions of this type and hence to obtain an adequate descrip tion of 

the gravity field of the earth. The equations of condition obtained 

• when the theory is develope.d to include the effects of lunar attraction 

and air drag, are shown to remain valid when all the important pertur-
, I 

bations; i.e., lunar attraction, air drag, radiation pressure, solar 

• attraction, etc., are taken into consideration. The method of setting 

up the equations of condition appears to have the advantage of elimina-

ting the necessity of quantifying the perturbing factors, thus enabling 

• us to avoid some of the poorer approximations involved in the process. 

The new theory appears to of fer the possibility of exploiting the 

' short wavelength sensing potentiality' of the low altitude satellites 

• which cannot be used with advantage in the perturbation theory. If the 

geopotential coefficients can be determined to a fairly high degree of 

accuracy, the theory theoretically has the potential for determining 

• the time-variant part of the earth's gravity field and may be used to 

give some idea as to the differential rotation of the core and mantle 

if the core has a radial asymmetry of mass distribution as one resulting 

• from convection currents within the core. 

For purposes of comparison, a short review of the existing method 

to determine the geopotential using perturbation theory, is included as 

• . .. 

well as the results obtained by some other investigators in the field . 

• 
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CHAPTER I 

INTRODUCTION 

One of the major scientific objectives of the artificial satellite 

program was the better determination of the geopotential coefficients 

used for defining the geoid. Although surface gkvity measurements 
7\ 

permit the geoid to be determined, the fact that over 70% of the earth's 

surf ace is water and approximately 30% of the land surf ace is of difficult 

access has severely limited gravity coverage. Other limiting factors 

include uncertain vertical and horizontal control which restricts the 

reliability of the derived free air gravity anomalies required, and poor 

position control at sea which imposes a severe limitation in determining 

the Eotvos correction necessary for obtaining observed gravity values at 

sea. As a ship moves independently of the earth, its true motion relative 

to that of the earth is a significant factor in determining gravity and 

without precise navigation control 'to determine true course heading and 

speed, no reliable estimate of the Eotvos correction can be made. 

Although celestial navigation is adequate for traversing the oceans, 

it is an inferior system for determining accurate geocentric positio~s 

because of refraction effects and its susceptibility to local departures 

of the vertical, and the restrictions imposed by cloud coverage. Recent 

use of VLF and satellite navigation, however, is overcoming some of these 

disadvantages. 

Electronic navigation aids such as LORAN are also restricted in their 

usefulness by their limited coverage of the oceans and the uncertainties 

in base station positions which may be on different geodetic datums and 

also subject to local departure of the vertical effects . 
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Satellites appeared to off er a solution to most of these problems 

in that the orbit which is governed by the earth's external gravity 

field could be established with high·precision by having a suitable net­

work of tracking stations whose geocentric positions could be worked out 

independently from orbital data for a number of satellites and simulta­

neous transit observations between tracking stations without recourse to 

observations influenced by the local gravity field. 

By using perturbation theory to analyze tracking data it has been 

poss ible to determine the geopotential coefficients for the Earth out to 

the 15th degree. Although the complete set of coefficients for the 15th 

degree fit is classified, the published literature includes zonal harmo­

nics to the 14th degree and tesseral harmonics to the 10th degree plus 

some higher degree tesserals determined from the resonance of satellites. 

However, there is some question about the absolute reliability of some 

of the higher degree tesseral coefficients derived so far which show a 

dependence on the type of tracking data used and the assumptions made by 

different investigators. Even for an 8th degree fit some disagreement 

exists in some of the higher degree tesseral and zonal coefficients. In 

view of these discrepancies, the writer has used a mean set of coeffi­

cients (out to 8th degree) based on the values obtained by several 

investigators to determine a generalized representation of the geoid 

and the earth's gravity field. 

A comparison of two of the most pronounced anomalous features of 

the satellite results with the available surface gravity information of 

those regions shows that the satellite results agree with the surf ace 

gravity in general. They define broad areas of anomalous gravity where 

2 
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detailed gravity surveys and other pertinent geophysical studies should 

be undertaken. From a geodetic s tandpoint, the generalised picture of 

the geoid and the earth's gravity field has value in computing the effect 

of local anomalous masses defined by local gravity surveys on the local 

geo idal heights. However, a detailed comparison of the satellite and 

gravimetric results shows that there are significant differences in 

detail. The satellite results are too generalised and do not contain 

the short wavelength variation of the terrestrial measurements--a feature 

of great importance in many geophysical applications. Comparisons of 

the satellite and terrestrial gravity results carried out by other 

investigators (Kaula, 1966; Khan and Woollard, 1967) indicate the same 

general results . 

As pointed out above, many of the geophysical applications require 

that satellite data be used to define the earth's gravity field to a 

greater degree of detail than has been done up to now. There are inhe-

rent limitations in the perturbation theory to accomplish this. The low 

order harmonic representation of the gravity field does not give the 

required degree of detail, and the accurate determination of the higher 

degree tesserals to obtain a higher degree harmonic representation of 

the earth's gravity field is complicated in the perturbation theory for 

reasons explained later . 

In order to achieve the degree of detail required in the definition 

of the earth's gravity field, the method employed to obtain it must be 

sensitive to local anomalous features. This appears possible theoreti­
Q 

cally because the motion of a satellite at any instant is more ,iffected 

by the nearer mass anomalies than the distant one, and there are a 

3 
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number of dynamical variables associated with the satellite motion which 

can be used to exploit this relation. With this as a premise, a new 

theory is presented which gives expressions descriptive of the local 

gravity field in the region being traversed by the satellite. Since the 

new theory envisages a local description of the gravity field in con­

trast to the global description given by perturbation theory as being 

used now, it is expected that it will define the gravity field to a 

better degree of detail with due emphasis on local anomalies. Hopefully 

this descript'ion of the gravity field will give some of the subtler short 

wavelength fluctuations exhibited by terrestrial gravimetry and hence 

will be adequate for many geophysical applications. It may be emphasized 

that the new theory is entirely different from the existing perturbation 

theory in scope, method and principle. 

In the second chapter, a short review of the perturbation cheory 

is presented along with the results obtained from its application. I n 

the third chapter we discuss the development of the new theory, outlining 

its physical bases, its simplified form and its extension to include the 

effects of the different perturbing forces. The equations of condition 

are developed both for the 'simplified theory' and for the 'extended 

theory' and the domain of application in each case is defined as far as 

possible • 

It should be noted that the new theory has not been tested as yet; 

hence at this stage it is possible to discuss only the theoretical 

aspects of its applicability. It will be only after examination of the 

results obtained from the new theory that its real scope and limitations 

can be defined . 
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• CHAPTER II 

-. PERTURBATION THEORY FOR THE DETERMINATION OF GEOPOTENTIAL 

1. Review of the Perturbation Theory 

• Let R be the disturbing potential defined as that part of the 

geopotential which should be added to the potential of spherical 

attraction to define the total geopotential. The equations for the 

• variation of orbital elements in terms of the disturbing potential R 

are (Smart, 1961): 

. 2 ClR 
a=--

• na ClM 

1 2 ClR (l-e2) ~ ClR] e =-- [(1-e) -2 
na e aM aw 

• 
2 2 ClR (1) M 1-e ClR 

= n ----- --
- 2 
na e ae na Cla 

Q 
1 ClR = - 2 2 ~ na (1-e ) sin i Cli 

• (l-e22~ ClR cot i ClR 
w = - 2 - - 2 2 ¥ 

na e Cle na (1-e ) Cli 

• 
di 1 ~R ClR 
- - [cot i -0 - - cosec i -] - - 2 2 ~ 
dt na (1-e ) Clw ()Q 

where 

Q right ascension of the ascending node 

• a = semi-major axis of the satellite orbit 

n = mean motion 

e = eccentricity 

• i inclination 

w arg~ent of perigee 

• 
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M mean anomaly defined by M = n (t - T
0

) 

and 

T0 = time of perigee passage 

The disturbing potential R can be expressed in terms of spherical 

harmonics as: 

(2) 

where 

(3) 

00 

R = GM L: 
r n=2 

P (sin </>) 
nm 

n 
L: 
m=O 

a 
(~)n (C cos mA + S sin mA) 

r nm nm 

</>, A, r = latitude, longitude and the geocentric distance 

of point being considered 

a earth's equatorial radius 
e 

M mass of the earth 

G = universal constant of gravitation 

C S = conventional geopotential coefficients nm' nm 

P (sin <j>) = conventional associated Legendre's functions. nm 

The general term R of this expansion is: nm 
a 

R = GM (~)n (C cos mA + S sin mA) P (sin </>) 
nm r r nm nm nm 

By an essentially geometrical transformation, the general term R can 
nm 

be expressed in terms of the Keplerian elements. The final result of 

this conversion is (Kaula, 1961; Khan and Woollard, 1967): 

(4) R nm 

GMan n 
__ e L: 

n+l 
0 a p= 

+oo 
F (i) L: 

nmp q=-oo 
G (e) Z (w, M, a~ 8) npq nmpq 

or denoting one term of the above expression by R we get: nmpq' 

6 
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GMan 
(5) R = __ e F ( i ) G (e) Z (w, M, rt, e) 

nmpq n+l nrnp npq nmpq 
a 

where 

Fnmp(i) 

m 

L: 
s=O 

= (2n-2t) n 
L: 2n-2t (t) sin n-m-2t. 
t 2 (n-rn-2t)!n! 1 

s 1· cos 
c 

L: (n-m-2t+s) .( m-s ) (-l) c 
c p-t-c 

z (w, M, rt, e) 
nmpq 

C n-m even 
[ nm] cos [(n-2p) w + -S n-m odd 

nm 

(n-2p+q) M + m(rt-8)) + [C8nrn] n-m even sin [(n-2p) w + 
n-m odd nm 

(n-2p+q) M + rn (rt-e)] 

and the limits of the above sunnnations are defined as follows: 

p - summation: 

0 < p < n 

c - summation: 

p-t < m-s, 0 n-m-2t+s, p-t > n-rn-2t+s 
<c< 

p-t > m-s, p-t-m+s p-t p-t < n-m-2t+s 

t - summation: 
n-m 

for --' n-m even p, p < k 2 
0 < t < k = k, p > k n-m-1, 

for n-m odd 2 

The development of the functions G (e) depends upon whether the npq 

perturbation is long periodic or short periodic. For a long-period 

perturbation, n-2p+q=O. For this case the function G (e) becomes: 
npq 

p'-1 
1 n-1 (n+2d-2p') G (e) - 1 L: ( ) 

np(2p-n) - (l-e 2)n-~ d=O n+2d-2p' d 

• (~) n+2d-2p I 
2 

7 
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p for p 

p' = 
n-p for p 

n < -
2 

> .!l 
2 

For short periodic terms, n-2p+q#O and the development of G (e) 
npq 

becomes complicated. The resulting expressions are, however, of the 

form: 

where 

and 

Gnpq(e) = ( -1) I q I [ 1 + e 
2 

] n [ e l ] I q I 
(1+11-e2) 2 l+(l-e2 )~ 

00 

l: p Q [ e 
1 

] 2k 
k=O npqk npqk l+(l-e2)~ 

p 
npqk 

h 
l: 
r=O 

(
2p'-2n) (n-2p'+g') [l+(l-e2 )]~]r (-l)r 

h-r [ · 2 ·r! 

2 2 !.,; 
c2p') (n-2p'+q') [1+(1-e )] 2

] 1 
Qnpqk = ~=O 2-r [ 2 r! 

The summation limits in the above expressions are defined as: 

k+q' for q' > 0 
h 

k for q' < 0 

k for q' > 0 
2 

k-q' for q' < 0 

p' p for n p <-
q' q 2 

p' 2-p for p 
n 

> 
q' -q 2 

Differentiate Eq. (5) with respect to various orbital elements and 

substitute the result in Eq. (1). This would give the time rate of 

change of orbital elements. The resulting equations giving the time 

8 
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variation of the orbital elements corresponding to R would then be: 
nmpq 

(6) 

and 

d~ GMan F' G Z 
nmpg = e nmp npg nmpg 
dt - n+3 2 ~ . . na (1-e ) sin i 

dw 
nm pg G' 

npq 

z cot i nmpq F' G ] dt 

di 
nmpg 
dt 

da 
nmpg 
dt 

GMan F G Z' 
_ e nmp npg nmpg 

- nan+3 (1-e2 )~ sin i 

2GMan F G Z 
e nmp npg nmpg 

- n+2 
na 

de GMan F G Z' 
nmpg = ____ e ___ n_m~p ___ n~P~9~_n_m_p~g 
dt - n+3 

na e 

2 ~ - (1-e ) (n-2p)] 

(l-e2)~ nmp npq nan+3 

[(n-2p) cos i-m] 

(n-2p+q) 

2 
[ (1-e ) (n-2p+q) 

d M* GMan F Z 
nmpg = ____ e ___ n_m~p __ n_m_p_g~ 
dt - n+3 

na 

2 
[2(n+l)G - l-e G' ] 

npq e npq 

In the foregoing expressions: 

M* = perturbation of the mean anomaly = !~0 n dt-n(t-T0) 

F' 
nmp 

.. dF 
nmp 

= di 

dG 
G' = npg 

npq de 

Z' = the derivative of Z with respect to its :1rgument. 
nmpq nmpq 
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If it is now assumed that the dominant perturbations of the orbital 

elements are secular, it is possible to integrate the equations of motion 

to obtain the integrated changes in the orbital elements caused by the 

perturbing potential function. To get the expressions for the integrated 

changes, consider 

d 
dt [argument of Z'] 

zi 
JZ dt = Z = ---------

d 
dt [argument of Z] 

where Zi = the integral of Z with respect to its argl.llllent. 

Note that the integration in the above way is valid only if the 

orbital elements appearing in the argument of Z are linear functions of 

time. 

Substitution of Eq. (5) in the equations of motion and the subsequent 

integration with respect to time gives the desired expressions for the 

integrated perturbations due to the effect of R as follows: nmpq 

F' G zi 
= GM n nmp npg nm pg L".IS1 nmpq a +3 2 ' e -nan (1-e ) '2 sin i[(n-2p) w+(n-2p+q)M+m(S1 -8)) 

L".lw 
nmpq 

n = GMa --+-3 e-n 
na 

-1 2 ~ [e (1-e ) F G' -cot 
runp npg . 

[n-2p)w+(n-2p+q)M+m(S1-8)] 
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(7) 

td nmpq 

F G [ (n-2p) cos i-m] 
GMan _;;,,;nm~p~=n=p~q~~~~~~~~ 

e - n+3 2 \ 
na (1-e ) sin i 

z nm pg 

[(n-2p)w+(n-2p+q)M+m(n-a)] 

l:!.a nmpq 

f>.e hmpq 

2F G Z (n-2p+q) 
= GMan nmp npg nmpg 

e - n+2 · na [(n-2p) w+(n-2p+q)M+m(n-a)] 

= GMan F G Z e nmp npg nmpg 
- n+3 na e 

2 2 ~ 
[(1-e )(n-2p+g)-(l-e) (n-2p)] . . 

[(n-2p)w+(n-2p+q)M+m(n-a)] 

f>.M = GMan 
nmpq e 

F Zi 
nmp nmpg 
- n+3 
na 

[2(n+l)G -(l-e2)e-lG, ) 
npg npg 

[(n-2p)w+(n-2p+q)M+m(n-a)] 

For long-period variations, we must have n-2p+q = 0 or q = 2p-n. 

With this condition Z becomes Z (Z ) and is now independent nmpq nmp p-n 

of the terms in M. Further, if we are interested only in the effect 

of zonal harmonics, we have m=O and for the long-period effects of the 

zonal harmonics, the functions Z become: nmpq 

z nop(2p-n) 

= CnO cos(n-2p)w 

= CnO sin(n-2p)w 

n even 

n odd 

11 
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• -- For the long-period effects, G becomes G (2 )" While npq np p-n 

computing G, considerable labor can be saved by remembering that 

• Gn(n-p)(n-2p)" 

In the case of zonal harmonics, m=O and F becomes: nmp 

• F = E (2n-2t)! (n) sinn-2ti (-l)k E(n-2t)( 0 )(-l)c 
nOp t 22n-2t(n-2t)!n! t c c p-t-c 

The last binomial coefficient will be non-zero only if p-c-t = 0 or 

c = p-t. Thus for a particular value of p, there is only one value of c 

• corresponding to every value of t and the c-summation can then be 

substituted by that value. Thus F finally becomes: 
nOp 

• 
Now examine Eq. (6). Put m=O for convenience of discussion. Then 

• the expressions for n and w can be written as 

dt 

"' n-2 cos j w 
E E cnO xln xl . 
n=2 j=O nJsin j w 

j and n even 
drl 
-= 

• j and n odd 

(8) 

• 
<X) n-2 cos j w j and n even 

and dw = E E CnO X2n x2 . dt n=2 j=O nJ . j j and odd sin w n 

1· 

1· 

Where the X's can be obtained by comparing these expressions with the 

original Eq. (6). 

• Similar expressions can be written for the time-rate of change of 

other orbital elements and their integrated changes • 

• 
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It can be verified easily that Xlni and x2nl' the coefficients of 

1 the tenn sin w, contain a factor ~---­sin i 0 Also XZnl' the coefficient of 

s in is the expression for w, . 1 Hence this theory fails for w contains -. e 

5 
sin i = 0 or i 0 and e = o, i.e., the Eq. (6) ~ / invalid for orbits of 

zero inclination and zero eccentricity. This holds for Eq. (7) also . 

The physical explanation for this is simple. For zero inclination 

the position of the ascending node and for a circular orbit, the posi-

tion of the perigee cannot be defined and hence the above relations 

become meaningless. 

13 

In addition, all expressions in Eq. (7) (for the case of the secular 

or long-period effects of zonal hannonics) contain w in the denominator 

an d therefore are not valid for w = 0. To investigate this point a 

little further consider the effect of c20 on perturbation in w. The 

expression for w in this particular case is 

where K is independent of i. For w = O, i is roughly 63°26'. This 

value of i is called the critical inclination. Thus the equations for 

integrated changes are not valid for orbits with critical inclination. 

Note that in Eq. (8), the coefficient X represents the amplitudes 

2n 
of different perturbations of wave length -.-. For j = O, cos j w = 1 

J 

and hence the perturbations are secular. Note also that it is only for 

even values of n that the secular tenns appear in the expressions. For 

odd values of n , t he expressions contain only long-period terms . 



• 
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• 

• 

• 

• 

• 

• 

• 

• 

• 

Similar remarks can be made for other orbital elements. 

To sum up, the even zonal harmonics give rise to secular and long­

period changes in n, w, and M and long-period changes in e and i. The 

odd zonal harmonics produce long-period perturbations in n, i, e, w, and 

M. 

In practice, the even zonal harmonics are determined from the 

secular motion of the right ascension of the ascending node and argument 

of perigee, and the odd zonal harmonics, from the long-period changes in 

the orbital elements . 

Note that before the observed perturbations can be used in the above 

equations for determining zonal harmonic coefficients, they must be 

freed from the effects of variations from all other possible sources . 

14 

To avoid a serious interplay of the interaction terms among the different 

perturbations, satellites greatly affected by air resistance, lunisolar 

att raction and radiation pressure should not be used. Also if the motion . 

of the perigee is too slow, it may be hard to distinguish between the 

long period and secular effects. 

An accurate determination of the tesseral and sectorial harmonic 

coefficients is rendered more difficult because of the short periods 

and the small amplitudes of the perturbations involved. The occurrence 

of common periodicities in perturbations arising from different harmonic 

~ erms adds to the difficulty. The resonance method has been said to be 

fa irly sensitive in the determination of some tesseral harmonic coeffi­

cients but it can only be used f or specific satellites • 

The calculation of both the zonal and the tesseral harmonic 

coefficients using perturbation theory appears to show some degree of 
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sensitivity to the types of perturbations used, the method of removing 

t he perturbations originating from sources other than gravitational, 

the type, number and distribution of the satellite observations and the 

time interval of analysis. 

2. Method of Computing the Gravity Field of the Earth 

The Geo i dal Undulation: 

The geoidal undulation N at a point whose coordinates are (r, ~, and 

A) is given [Mueller, 1964] as: 

(9) 

where 

N 

00 n a 
~ [ [ [(__.£)n+l (~C cos mA + ~S sin mA) 
aegO n=2 m=O r nm . nm 

P (sin ~)] 
nm 

~ , A, and r = latitude, longitude and the geocentric 

distance of the point of computation, 

respectively 

a 
e 

earth's equatorial radius 

g
0 

normal gravity at the point of computation on the 

reference ellipsoid 

M = mass of the earth 

G universal constant of gravitation 

C S = conventional geopotential coefficients nm' nm 

P (sin ~) = conventional associated Legendre's functions 
nm 



• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

and 

flC 
nm 

flS nm 

C - reference C nm nm 

S - reference S nm nm 

If the reference surf ace is so chosen that all of its geopotential 

coefficients called the 'reference Cnm's' are zero except c
20 

and c
40

, 

then flC and flS can be replaced by the observed C and S except nm nm nm nm 

for n 2, 4 and m o. 

We can simplify Eq. (2) by making the following approximations: 

(i) GM = 
2 

a 
e 

(ii) r 

g
0 

which gives 
GM = a e 

a 
a which gives (~)n+l 

e r 1 

The error introduced by approximation (i) arises from the fact that 

t he equatorial value of gravity g computed on the basis of a spherical 
e 

ea rth with g 
e 

GM 
2 

a 
e 

using recent values of GM and ae, is not the same as 

g0 , the theoretical value of· gravity at the point of computation on the 

reference ellipsoid. The maximt.nn magnitude of this error is about 0.5% 

and occurs at the poles. Except for a narrow equatorial belt where the 

sign of this error will depend on the relative magnitudes of G~ and 
a 

e 

16 

theoretical equatorial gravity of the reference ellipsoid, the correction 

resulting from this error has to be subtracted from the computed value 
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of N in order to arrive at the correct value . 

The error due to assumption (ii) arises from the fact that a is 
e 

not equal to r as assumed. The total error e introduced in N from this 

source turns out to be: 

where 

and 

e = l: (n + 1) !:::.r N 
a n n e 

N = contribution to N due to the nth term 
n 

6r a - r 
e 

Since a > r, the computed value N of the geoidal undulation is 
e 

always less than its correct N . Thus 
c 

N 
c 

N + E (n + 1) fJr N 
a n 

n e 

Note that the error (e) increases with increasing values of n. 

Thus the error becomes important if the harmonic analysis is carried 

to a fairly high degree. Although N should decrease with increasing 
n 

values of n and hence should diminish the error (e) in its own right, 

the error may become a sizable fraction of N for higher degree terms, 
n 

and for very high values of n may equal the partial contribution N 
n 

itself. However, this is more of a theoretical limitation than a 

practical one, for harmonic analyses under consideration are not likely 

to be carried to such high degree terms in near future • 

17 



• 
18 

• The error e increases with t::.r which is a function of latitude. Thus 

the error is zero at the equator and a maximum at the poles for any.given 

value of n. Note that e also increases with n . 

• Since it is inconvenient to calculate Nn, it is helpful to express 

e as the mean of the percentage errors of the individual terms, i.e., 

• M f h -- l. " (n + 1) t::.r • 102
"% ean o t e percentage error u 

n a 
n e 

For harmonic analyses carried to the 8th degree, the maximum 

• magnitude of this mean percentage error is about 2%. A more detailed 

discussion of these errors is given in Khan and Woollard (1967). 

Neither of the above errors is significant in view of the present 

• accuracy of the satellite results. 

The above assumptions reduce Eq. (9) to the following form: 

• (10) N 
co n 

a l: l: (C cos mA + S sin mA) P (sin ~) 
e n=2 m=O nm nm nm 

Equation (10) has been used to compute the results reported in this 

• section. 

The Gravity Anomaly: 

• The gravity anomaly (t::.g) at any point can be computed from the 

following equation: 

oo n 

• (11) t::.g gs E E 
n=2 m=O 

[ (n - 1) .(C cos mA + S sin mA) P (sin ~) nm nm nm 

l' 

• 
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where g 
s 

GM 
2 

a 
e 

As Eq. (11) incorporates the same asstnnptions as in Eq. (10) for 

the geoidal undulations, it is influenced by the same sources of error 

and in the same degree • 

3. Discussion of Results 

Data Used: 

Table I gives the zonal harmonic coefficients obtained by Smith 

(1963, 1965), Kozai (1964), and King Hele, et. al (1965). Table II 

lists the tesseral harmonic coefficients obtained by Anderle (1966) 

Guier and Newton (1965) and Gaposhkin (1966). These values were chosen 

since they represent the most recent and presumably most reliable data 

available. Since some discrepancies existed in the corresponding 

values of the tesseral harmonic coefficients and some of the higher 

degree zonal harmonic coefficients in different sets, a 'mean solution' 

was obtained from a linear combination of these sets. The mean 

normalised coefficients are given in Table III . 

Geoidal Undulations: 

Table IV summarizes the magnit~de and location of the maximum 

elevations and depressions of the different geoids obtained using the 

different sets of geopotential coefficients given in Tables I to III. 

It should be noted that Table IV is made up of three sections. In the 

first section each geoid is ref erred to a reference ellipsoid whose c20 

and c
40 

parameters are those defined by the set of zonal coefficients 

l~ 
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• TABLE I: NORMALIZED ZONAL HARMONIC 

COEFFICIENTS CnO OF THE GEOPOTENTIALS 

• Smith Kozai King Hele et al 
(1963, 1965) (1964) (1965) 

n c 106 c 106 c 106 

• nO nO no 

2 -484.172 -484.174 -484.172 

3 0.923 o. 963 0.967 

• 4 0.567 0.550 0.507 

5 0.054 0.063 0.045 

6 - 0.202 - 0.179 - 0.158 

• 7 0.077 0.086 0.114 

8 0.112 0.065 - 0.107 

•• 

• 
/ 

• 

• 

• • 
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• TABLE II: NORMALIZED TESSERAL HARMONIC COEFFICIENTS 

c nm' s OF THE GEO POTENTIAL nm 

• Ander le Gui er & Newton Gaposhkin 
(1966) (1965) (1966) 

n m c s c s c s nm nm nm nm nm nm 

• 10-6 10-6 10-6 10-6 10-6 10-6 

2 2 2.45 -1. 52 2.38 -1.20 2.38 -1.35 

• 3 1 2 .15 0.27 1. 84 0.21 1. 94 0.27 
2 0.98 -0.91 1. 22 -0.68 0.73 -0.54 
3 0.58 1. 62 0.66 0.98 0.56 1. 62 

4 1 -0.49 -0.57 -0.56 -0.44 -0.57 -0.47 
2 0.27 0.67 0.42 0.44 0.33 0. 66 

• 3 1.03 -0.25 0.84 0.00 0.85 -0. 19 
4 -0.41 0.34 -0.21 0.19 -0.05 0.23 

5 1 0.03 -0.12 0.14 -0.17 -0.08 -0.10 
2 0.64 -0.33 0.27 -0.34 0.63 -0.23 
3 -0.39 -0.12 0.09 0.10 -0.52 0.01 

• 4 -0.55 0 .15 -0.49 -0.26 -0.26 0.06 
5 0.21 -0.59 -0.03 -0.67 0.16 -0.59 

6 1 -0.08 0.19 o.oo 0.10 -0.05 -0.03 
2 0.13 -0.46 -0.16 -0.16 0.07 -0.37 
3 -0.02 -0.13 0.53 0.05 -0.05 0.03 

• 4 -0.19 -0.32 -0.31 -0.51 -0.04 -0.52 
5 -0.09 -0.79 -0.18 -0.50 -0.31 -0.46 
6 -0.32 -0.36 0.01 -0.23 -0.04 -0.16 

7 1 0.33 0.08 0.13 0.09 0.20 0.16 
2 0.35 -0.19 0.46 0.06 0.36 0.16 

• 3 0.32 0.04 0.39 -0.21 0.25 0.02 
4 -0.47 -0.24 -0.14 0.00 -0.15 -0.10 
5 0.05 0.02 -0.06 -0.19 0.08 0.05 
6 -0.48 -0.24 -0.45 -0.75 -0.21 0.06 
7 0.09 -0.14 0.06 0.10 

• 
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• TABLE II: (Continued) NORMALIZED TESSERAL HARMONIC COEFFICIENTS 

C S OF THE GEOPOTENTIAL 
nm' nm 

Ander le Guier & Newton Gaposhkin 
(1966) (1965) (1966) 

n m c s c s c s nm nm nm nm nm nm 

• 8 1 -0.15 -0.05 -0.08 0.07 
2 0.09 -0.04 0.03 0.04 
3 -0.05 0.22 -0.04 0.00 
4 -0.07 -0.04 -0.21 -0.01 
5 0.08 0.00 -0.05 0.12 

• 6 -0.02 0.67 -0.02 0.32 
7 0.17 -0.07 -0.01 0.03 
8 -0.15 0.09 -0.25 0.10 

• 

• 

• 

• 

• 
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• TABLE III: NORMALIZED SPHERICAL HARMONIC 

COEFFICIENTS OF THE GEOPOTENTIAL c nm' s 
nm 

• (Mean Solution) 

n m c s n m c s 
nm nm nm nm 

10-6 10-6 10-6 10-6 

• 
2 0 -484.173 6 3 0.15 -0.02 

2 2.40 -1. 36 4 -0.18 -0.45 

3 0 0.951 5 -0.19 -0.58 

• 1 1. 98 0.25 6 -0.12 -0.25 

2 0.98 -0. 71 7 0 0.092 

3 0.60 1.41 1 0.22 0.11 

4 0 0.541 2 0.39 0.01 

• 1 - 0.54 -0.49 3 0.32 -0.05 

2 0.34 0.59 4 -0.25 -0.11 

3 0.91 -0.22 5 0.02 -0.04 

4 - 0.22 0.25 6 -0.38 -0.31 

• 5 0 0.054 7 0.07 -0.02 

1 0.03 -0.13 8 0 0.024 

2 0.51 -0.30 1 -0.11 0.01 

3 - 0.33 0.0 2 0.06 0.0 

• 4 - 0.43 -0.02 3 -0.04 0.11 

5 0.11 -0.62 4 -0.14 -0.02 

6 0 - 0.180 5 0.01 0.06 

1 - 0.04 0.09 6 -0.02 0.49 

• 2 0.01 -0.33 7 0.08 -0.02 

8 -0.20 0.09 

• 

• 
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TABLE IV: COMPARISON OF GEOlDAL UNDULATIONS OBTAINED FROM 

DIFFERENT SETS OF GEOPOTENTIAL COEFFICIENTS 

Ref. of t he Geo- Maximum Height Maximum Depression 
potential Coeff. Above the Reference Below the Ref. 
used to Compute Ellipsoid Ellipsoid 
the Geoidal 
Undulation Magnitude Location Magnitude Location 

in Meters Long. Lat. in Meters Long. Lat. 

Kozai (1964); 140° oo 75° oo 
+81 to to -98 to to 

Gaposhkin (1966) 150° 5°N 80° 10°N 

Smith (1963, 65); 350° SS 0 N 7S 0 10°N 
Guier & +6S to to -91 to to 
Newton (196S) 355° 60°N 80° 1S 0 N 

King-Hele (196S); 140° oo 70° so 
+83 to to -98 to to 

Anderle (1966) 150° S 0 N 80° 10°N 

Table III: Mean 14S 0 S0 S 7S 0 S0 N 
Coefficients +70 to to -9S to to 

15S 0 S0 N 80° 10°N 

• 

Total 
Range 

in 
Meters 

179 

1S6 

181 

16S 

' . • 

Parameters 
of the 

Reference 
Ellipsoid 

c & c 
ot0Tabl~OI 
Col. 2 

c & c 
ot0Tabl~oI 
Col. 1 

c & c 
ot0Tabl~OI 
Col. 3 

c20 & c40 
of 

Table III 

N 
~ 

• 

j 
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Ref. of the Geo-
potential Coeff. 
used to Compute 
the Geoidal 
Undulation 

Kozai (1964); 

Gaposhkin (1966) 

Smith (1963, 6S); 
Guier & 
Newton (196S) 

Mean Coeffi-
cients 

Mean Coeffi-
cients 

• • • • • • • .. 

TABLE IV: (Continued) COMPARISON OF GEOIDAL UNDULATIONS OBTAINED FROM 

DIFFERENT SETS OF GEOPOTENTIAL COEFFICIENTS 

Maximum Height Maximum Depression 
Above the Reference Below the Ref. 

Ellipsoid Ellipsoid 

Magnitude Location Magnitude Location 
in Meters Long. Lat. in Meters Long. Lat. 

360° 60°N 7S 0 oo 
+94 to to -128 to to 

3SS 0 70°N 80° 10°N 

34S 0 60°N 7S 0 S0 N 
+101 to to -118 to to 

3SS 0 6S°'N 80° 10°N 

340° 60°N 7S 0 S0°N 
+99 to to -12S to to 

3SS 0 70°N 80° 10°N 

13S 0 S0°S 6S 0 oo 
+69 to to -93 to to 

16S 0 1S 0 N 7S 0 20°N 

Total 
Range 

in 
Meters 

222 

219 

224 

162 

• 

Parameters 
of the 

Reference 
Ellipsoid 

Internation­
al reference 
Ellipsoid 

-do-

-do-

Best fit 
Satellite 
Spheroid 
Polar Flat­
tening = 

1 
298.2S 

N 
Vt 

• 

:1 
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TABLE IV: (Continued) CO}IPAklSON OF GEOIDAL UNDULATIONS OBTAINED FROM 

Ref. of the Geo­
po t ential Coeff. 
used to Compute 
the Geoidal 
Undulation 

Uotila' s geoid 
(1962) obtained 
from free air 
gravity anomalies 

Kaula's map (1966) 
obtained from a 
combination of 
satellite and gravi­
metric data. (Geopo­
tential coeff. for 
this case not given) 

DIFFERENT SETS OF GEOPOTENTIAL COEFFICIENTS 

Maximum Heigh t 
Above the Reference 

Ellipsoid 

Maximum Depression 
Below the Ref. 

Ellipsoid 

Magnitude 
in Meters 

Location Magnitude Location 

+60 

+76 

Long_._ Lat. in Meters Long . Lat. 

130° 
to 

150° 

135° 
to 

165° 

10°S 
to 

10°N 

15°S 
to 
5°N 

Other Results 

-60 

-90 

60° 
to 
80° 

65° 
to 
85° 

10°N 
to 

40°N 

10°S 
to 

10°N 

Total 
Range 

in 
Meters 

120 

166 

. . • 

Parame ters 
of the 

Reference 
Ellipsoid 

El lipso id 
with .nat­
tening 

1 ---
298. 24 

Ellipsoid 
with Flat­
tening 

l: 
298.25 

N 
0\ 

• 
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Ref. of the Geo­
potential Coe ff. 
us ed to Compute 
the Geoidal 
Undulation 

Zongolovich Geoid 
based on surface 
gravity data 

• • • • • • • . . 

TABLE IV: (Continued) COMPARISON OF GEOIDAL UNDULATIONS OBTAINED FROM 

DIFFERENT SETS OF GEOPOTENTIAL COEFFlCIENTS 

Maximum Height 
Above the Reference 

Ellipsoid 

1-{aximum Depression 
Below the Ref. 

Ellipsoid 

Magnitude 
in Meters 

Location Magnitude Location 

+80 

Long. Lat. in Meters Long. Lat. 

120° 3°s 
to to -60 

140° 12°N 

3 locations 
of egual value 

55° 0 
to to 
80° 22°N 

300° 18°S 
to to 

340° 20°N 

235° 12°S 
to to 

265° 35°S 

Total 
Range 

in 
Meters 

140 

• 

Parameters 
of the 

Reference 
Ellipsoid 

Russian 
Ellipsoid 

N 
........ 

• 
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• that are used to compute the individual geoid under consideration. 

Although each set of geoidal undulations was thus derived from a 

different reference surface, this dif ference is not significant because 

• the c20 and c40 values for the different sets of zonal coefficients are 

in fairly good agreement. Figure 1 shows the geoidal undulations 

obtained in this manner using the mean coefficients . 

• In the second section each derived geoid is referred to the 

international reference ellipsoid. Figure 2 is a plot of the geoid 

determined on this basis using the mean coefficient values. For • comparative purposes data are also given for a geoid derived using the 

mean coefficients and best-fitting satellite-derived reference spheroid 

• with a polar flattening value of 298 • 25 • This solution is shown in 
1 

Figure 3. 

In the third section comparative geoidal data are given as obtained 

• by Kaula (1966), Uotila (1962), and Zongolovich (1952). 

Kaula (1966) used a combination of satellite and gravimetric data 

to obtain his results. Uotila (1962) and Zongolovich (1952) both used 

• surface gravimetric data. For comparative purposes Zongolovich's (1952) 

geoidal map is shown in Figure 4. 

From an inspection of Table IV it is seen that broadly speaking, 

• the area of maximum geoidal depression defined by each geoid has much 

the same location, although there is some variation in magnitude 

values. The significantly lower magnitude found with the gravity 

• solutions, Uotila (1962) and Zongolovich (1952), can be attributed to 

the paucity and poor distribution of the gravity data available. In 

• 
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the case of the area of maximum geoidal elevation there is a significant 

dependence on the reference ellipsoid used. However, the scatter is 

restricted to one or two areas, the Solomon Islands-New Guinea region 

and the North Atlantic area immediately south of Iceland. This would 

suggest the gravity anomaly in the two areas is of similar magnitude. 

Actually the available data indicate the free air anomaly values in 

the Solomons area is at least locally considerably higher than in the 

North Atlantic area. A 15th degree fit of the data presumably would 

give a consistent pattern with the Solomons region being the area of 

maximum geoidal rise. 

It is to be noted that the geoidal undulations referred to the 

'best-fitting satellite ellipsoid' (whose reference c20 and c40 are 

equal to the observed ones) show a consistently different pattern 

f rom those referred to the international reference ellipsoid. As the 

equatorial radius and flattening of the "satellite ellipsoid" are 

smaller than the corresponding parameters of the international reference 

ellipsoid, the geoidal undulations referred to the "satellite ellipsoid", 

appear to show some accentuation of equatorial "highs" and damping of 

polar "highs." However, this argument may hold only for the general 

pattern of these differences and not give a systematic change in 

magnitude. At this stage this point has not been investigated 

adequately. 

The data of Table IV bring out one important point. Until 

recently it had been believed on the basis of gravimetric data that the 

maximum deviation of the geoid from the reference surface of the 
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• international ellipsoid was not more than 30 to 40 meters. As seen, 

the differences obtained are of the order of 100 meters or more for an 

8th degree fit . 

• I n connection with Figure 3 in which the geoidal undulations are 

referred to a 'best-fitting satellite derived spheroid' the reference 

geopotential (V
1

) was defined by 

• 
00 

GM [l + E 
ae n=2 

a 
(~)n+l C P 

r n n 
(sin cp)] 

• where C are the zonal harmonic coefficients and P (sin cp) the Legendre's 
n n 

polynomials. As is obvious, it is an axially symmetrical surface but 

not equatorially symmetrical. The maximum geoidal deviations are +69 

• meters and -93 meters in this case and are of almost the same magnitude 

as those computed by setting both c
20 

and c
40 

equal to zero . 

• Gravity Anomalies: 

Figure 5 gives the free air anomaly map obtained using the mean 

coefficients and referred to the International Gravity formula. Figure 

• 6 is a similar map obtained by Kaula (1966) using a combination of 

surface gravity data and satellite gravity information. Although these 

maps show broad-scale agreement on some features, there are significant 

• differences on others. These differences can be related, in part at 

least, to the difference in input data and the difference in some of 

the assumptions used . 

• The short wavelength component of the gravity field which is of 

interest to the geophysicist, is the one most poorly represented in 

• 
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these results, for as indicated earlier, with an 8th degree fit the 

results represent regional rather than local values. That they do 

accomplish this purpose is shown by a comparison of these results with 

the available surface gravity information expressed as free air anomalies. 

Figure 7 shows a free air anomaly map for the North Atlantic Ocean which 

takes in a portion of the gravity "high" defined south of Greenland and 

the gravity "low" defined in the eastern North Atlantic Ocean on all the 

satellite derived maps. Figure 8 shows regional variations in free air 

anomaly values in the Pacific Ocean in terms of areas having anomalies 

>+20 mgals, >-20 mgals, and with no dominant sign. The agreement of the 

satellite derived maps with the surface gravity anomaly maps is on the 

whole good, and as would be expected Kaula's map (Fig. 6) appears to be 

somewhat better, especially in the Atlantic Ocean, since his map was 

derived using the available surface gravity data. 

It is clear, therefore, that the satellite data are useful in 

determining areas of anomalous mass associated with the earth, or in 

defining the gravity field for areas remote from a point in using 

Stokes' theorem. Many other important geophysical applications, however, 

pre-require a degree of detail in the earth's gravity field representation 

which is not available in the satellite results at present. 

Moreover, the significance of the anomalpus areas of gravity is 

not too clear. Because of the long wavelengths portrayed, the anomalous 

mass could be deep seated and associated with the earth's core, or 

represent the integrated effect of a number of shallow mass anomalies 

located in the upper mantle or crust. In either case there would also 

be a contribution from surface topography. The fact that the topographic 
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effect only appears to be of secondary importance stresses the need for 

geophysical investigations in these areas. Some of them such as the 

positive anomaly area over the Mid-Atlantic Ridge are known to be 

characterized by anomalous geophysical relations: 

a sub-normal mantle velocity, pronounced magnetic anomalies, 

high heat flow along the crest of the ridge but sub-normal 

heat flow along the flanks. 

32 

However, it is difficult to reconcile these observations with the 

anomalous gravity field which conforms closely with the regional topo­

graphic relief and which the Bouguer anomalies indicate is compensated 

without postulating that the subnormal mantle velocity values are 

indicative of higher than normal density values or that there is deeper, 

as yet undiscovered, layering in the upper mantle. Worzel (1965) has 

shown three possible theoretical mass distributions, all in the upper 

30 kms of the crust to explain the observed gravity relations over the 

mid-Atlantic Ridge. Cook (1962) has postulated that the apparent sub­

normal mantle velocities are due to a mixture of crustal and mantle 

materials as a result of convection with attendent high heat flow • 

While eminently reasonable for the mid-Atlantic Ridge, these explana­

tions do not explain the relations in the Indian Ocean area where the 

satellite data define a broad negative anomaly area that appears to be 

related to a stable ocean basin region lying between a narrow volcanic 

ridge and a rise of the mid-Atlantic Ridge type which has many of the 

geophysical associations noted for the mid-Atlantic Ridge . 

It is this lack of consistency between gravity and other geophysical 

relations on a regional scale that raises doubts as to interpretations 
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that have been placed on the data and point up the need for more extensive 

geophysical studies in areas of anomalous gravity. In this respect 

whereas the satellite gravity results have proven their worth by out­

lining, in general, the anomalous areas, they do not exhibit any of the 

local variations shown by gravimetric results and fail to furnish the 

degree of detail required in many of the detailed geophysical studies . 

4. Limitations of the Perturbation Theory 

The method of determination of the geopotential using the 

perturbation theory has certain inherent limitations. The observed 

perturbations of the orbital elements arise from a composite effect of 

all disturbing factors and in order to accurately determine the geopo­

tential, it is necessary to isolate the portion arising solely from 

gravitational .sources. This separation of gravi tational component is 

r endered aifficult because of the uncertainties involved in identifying 

the component perturbations with their parent sources. As of now, our 

knowledge of the atmospheric structure, the radiation pressure, etc., 

is too inadequate to enable us to determine accurate corrections for 

these factors . The uncertainty in the corrections for the non­

gravitational factors results in the introduction of some interaction 

terms among the different perturbations which consequently can lead to 

an erroneous determination of the geopotential. Another problem is the 

separation of the perturbation effects of the individual harmonic terms. 

Common periodicities occur in the periodic motions originating from 

various harmonic terms. The decomposition of these periodic motions 
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into component parts and the assignment of these components to their 

legitimate sources is likely to introduce further uncertainty in the 

computations. Moreover, in t h e perturbation theory, any perturbation 

42 

is treated as the integrated effect of the mass anomalies of a certain 

wave-length and the theory does not appear to offer the potentiality of 

yielding adequate infonnation about the individual mass anomalies • 

Consequently, the results obtained from this theory give a rather smoothed 

picture of the gravity field • 
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CHAPTER III 

DEVELOPMENT OF THE NEW THEORY FOR 

DETERMINK .' ION OF GEOPOTENTIAL 

1. Physical Bas is of the New Theory 

The gravity effect of the anomalous masses decreases with height 

an d the rate of decrease is a function of the degree of harmonic term by 

which that specific gravity anomaly can be represented on the earth's 

surface. The shorter the wave length of the gravity anomaly, the 

faster the decrease of its effect with increasing height. Thus, a 

satellite will only sense those anomalies whose wave length is equal to 

or greater than the 'limiting wave length, ' here defined as the shortest 

wave length which can be discerned by a satellite at its altitude. The 

l i miting wave length is thus a fun ction of satellite altitude. The 

gravity anomalies having wave lengths s maller than the limiting wave 

length will have no effect on satelli t e motion and hence information 

about them cannot be retrieved from t he satellite data. The limiting 

wave length thus sets an upper limi t on t he degree of detail with which 

the geopotential can be derived from satellite motion. As pointed out 

earlier, the perturbation theory does not exploit this potentiality of 

satellite dynamics. It rather makes use of the orbital perturbation 

arising from the integrated effect of the mass anomalies o f a specific 

wave length, and the geopotential coefficient thus determined- reflects 

the cumulat i ve effect of thes e mass anomalies rather than their 

individual contribution. Hence, when geopotential is recomputed from 
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these harmonic coefficients, the contribution of each coefficient is to 

emphasize the rr.athematical pattern of its characteristic wave length and 

not the a ctual pattern of distribution of the individual mass anomalies 

of that wave length. This argument holds for any harmonic analysis 

carried to a finite number of terms . 

As a satellite is more affected by a nearby mass than a remote mass 

of the same magnitude, its motion should yield information primarily 

weighted in favor of the area over which the satellite is passing, unless 

of course, the more distant masses ?utsize the nearer masses considerably 

and consequently have greater gravitational effect . Any method for the 

determination of geopotential from satellite motion which aims at giving 

the maximum degree of detail down to the limiting wave length, should 

therefore, exploit these facts. To illustrate, see Fig. 9. Let S be 

the posit ion of the satellite, R/4 its height above the surface of the 

earth where R is the mean radius of the earth. The mass of the spherical 

part of the earth can be supposed to be concentrated at M and does not 

interest us in this investigation. We are looking for only the effects 

of the anomalous masses on the satellite.' Consider anomalous masses of 

equal magnitude fiM, located at P. (i=l, .•. 4). Let the disturbing forces 
1-

arising from these mass anomalies be fiF. (i=l, •.• 4). Then 
1-

16GliM 

41 R
2 
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• FIGURE 9. RELATIVE EFFECT ON THE SATELLITE S OF THE 

MASS ANOMALY ~M PLACED AT DIFFERENT LOCATIONS 
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Notice that in case the mass anomalies at P
1

, P
2

, P
3 

and P
4 

are of 

equal magnitude, the effect of the mass anomalies at P
2 

and P
3 

on the 

satellites will be only about 2.5% of that of the anomaly at P
1 

and that 

of the anomaly at P4 , about 1.25% of that of one at P
1

• In order that 

the contribution ~F4 be equal to ~F1 , the mass anomaly at P
4 

has to be 

81 times the one at P
1

• For closer satellites, this percentage contribu­

tion of the distant mass anomalies becomes still smaller and their 

magnitude has to be still larger in order to have a contribution 

comparable to t hat of the mass anomaly located at P
1 

(i.e., the point 

r i ght underneath the satellite) or its neighborhood. For example, f or 

the sat ellite whose height above the surface of the earth is equal to 

R/6, the contribution of the mass anomaly at P
4 

is only about 0.5% and 

of those at P
2 

and P
3 

about 1.25% of the anomaly at P
1

. In order to 

have the same contribution as that from P
1

, the mass anomaly at P
4 

has 

to be 169 times as large as the one at P
1

. Thus barring a few exceptions 

when t he mass anomalies located in the area over which the satellite is 

moving, are very much smaller in comparison to the distant anomalies, 

the anomalous masses in the neighborhood of points right below the 

satellite exert the controlling influence ·on the satellite. The instan-

t aneous elements of a satellite can thus be exploited, in principle at 

least, to yield information concerning the nearer mass anomalies. The 

new theo r y presented here exploi ts this potentiality of satellite motion. 

There exist a number of dynamical variables associated with the 
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• satellite motion which are approximateiy constant in time. One such 
+~~ 

variable is
0

Hamil tonian. In the ideal case which occurs when all the 

perturbations are ignored, it is pos siole to express the Hamiltonian as 

• a funct ion of the angular velocity of the earth as well as of the 

position and velocity of the satellite relative to the earth. With 

this as basis, however, it seems possible to take into consideration 

• the effect of perturbations such as those arising from moon, air drag, 

radiation pressure, etc., or to modify the calculational procedures so 

as to reduce these effects to a minimum . 

• The potential function of the earth appears additively in the 

Hamiltonian. It is this function we seek to determine. If we expand 

this function in terms of spherical harmonics or the elements of the 

• tensor of inertia, it is possible to determine the expansion coeffi-

cients which appear linearly as multiples of the spherical harmonics 

in the expansion. The determination of the expansion coefficients is 

• made possible by the fact that they are assumed to remain constant over 

a short segment of the satellite orbit and are expressive of the mass 

distribution in the region right below the orbital segment under 

• consideration. Minimally, there must be about as many observations as 

there are expansion coefficients. However, an abundance of measurements 

will be desirable to be able to apply the least squares method. In 

• this way, this new theory enables us to obtain expressions for the 

gravitational potential expressive of regions immediately below the 

satellite trajectory. The region for which the information is primarily 

• weighted has been termed as 'effective area' and can be defined by 

stipulating that it should extend only as far out as a point at which 

• 
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a certain mass anomaly would ceas e to have a certain minimum contribu-

tion. If this minimum limit is set at 50% of the contribution that 

the same mass anomaly would have if it were located right below the 

satellite, the area in question lies roughly within a circle whose 

center lies at the point immediately below the satellite and with a 

radius equal to the altitude of the satellite. If the minimum limit is 

20%, the above-mentioned circle has a radius of twice the altitude of 

the satellite. If the satellite altitude is higher, the effective area 

will be greater, though the degree o f detail with which the gravity 

field can be obtained will diminish with altitude. Theoretically, it 

is possib le to cover the surface of the earth by such effective areas 

and thus to obtain a description of the earth's gravity field . In 

principle, the description obtained in this way should show at least 

some of the subtler features exhibited by terrestrial gravimetry. 

In its initial form the new theory requires the measurement of the 

position vector and the relative velocity of the satellite at several 

points along a short segment of its trajectory. This could be done if 

Doppler and Interferometer measurements are simultaneously made at the 

same tracking station . The same could also hopefuily be accomplished 

with a simultaneous use of laser and Baker Nunn camera tracking. The 

latter technique is already being experimented with by the Smithsonian 

Astrophys ical Observatory, Cambridge, Massachusetts . However, the non­

availability of the position vector and the relative velocity as 

directly measured quantities is no big hurdle in the implementation of 

the new tteory . The position and velocity of a satellite at any time 

can be derived from its orbital elements which are available as the 

48 
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routine initial data and hence equations of condition can be set up in 

tenns of the orbital elements. In this conversion we have to forego 

some of the ideal conditions which hold for the new theory in its 

original fonn but because of the mathematical approach adopted, it is 

believed that even with the same input data the new theory will yield a 

better degree of detail than the perturbation theory . 

First, the ideal case ignoring all the perturbations is treated . 

A complete development of the equations of condition and the transfonna­

tion of the position and relative velocity of the satellite to orbital 

elements is given. The 'extended theory,' taking into account the 

perturb ing effects of the moon, the air drag, the radiation pressure, 

etc . , is then developed and the equations of condition are derived for 

this case which reduce these perturbation effects to minimum . These are 

the equations which should be used for any practical applications . 

2. Simplified Theory--The Ideal Case Ignoring 

All the Perturbations 

Consider the ideal case of a satellite moving in a closed orbit 

around the earth, its motion being controlled only by the earth's 

gravity field. Let V denote the absolute velocity vector of the 

satellite in an earth-centered, space-fixed system of coordinates, v, 

its relative velocity vector in an earth-centered, earth-fixed coordinate 

system, w, the angular velocity of the earth and r the radius vector of 

the satellite from the origin of the coordinate system which is supposed 

to lie on the axis of rotation of the earth. Then we know (Wills, 1958, 
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p. 54) that 

(1) V = v + w x r - - -

The Lagrangian L of the system is 

(2) L 12 m V • V - m U 

where 

m = mass of the satellite 

U potential energy of the earth at the location of the 

satellite. 

Substitution of (1) in (2) gives 

(3) L = 12 m (v + w x .E_) • (y + !?: x .E_) - m U 

The canonical momentum pi is given by 

ClL 
m (v + w x r). 

- - -1 

where v. have been chosen as the generalized coordinates. In vectorial 
1 

form the above equation is 

(4) .E. = m (v + !?: x .!,) 

The Hamiltonian H of the system is 

(5) 

Substitute (3) and (4) in (5) and get 
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H m (v + ~ x -~:) · v - ~ m (y + w x _E) • (v + ~ x I) + m U 

m ~ + ~ x ..r_) • [y - ~ (y + ~ x ..r_) ] + m U 

~ m <..:£ + ~ x _r) · ( v - w x .E_) + m U 

l [ 2 '!! ID V - (~ x ..r_) • (~ x ..r_) ] + m U 

Kaw 

~ x _r) • (~ x £) 

Hence 

(6) H 

H is constant in time if the secular decceleration in the earth's 

rotation is ignored. U is regarded independent of time . 

3. Geopotential 

Consider a body M of finite dimensions and arbitrary mass distribu-

tion. Let _rc be the position vector of center of mass 0 of the body M, 

relative to a fixed coordinate system. Further, let (see Fig. 10): 

r x
1 

_i + x 2 i + x
3 

.1 = position vector of a material 

particle at P with mass m . 

x' i + x' .i· + x 1

3 
k = position vector of the mass 

1 - 2 

element dM at point Q of t h e body M . 

Then U, the potential of attraction of body M on the mass at P is 
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FIGURE 10. POSITION OF THE MASS ELEMENT dM, THE 

MATERIAL PARTICLE P AND THE VECTORS £, A and .e_ 
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given by 

U = G ! .Qfil d3 ( ) 
v !:!. 2.. 

where D(J2..) is the density function and the symbol f indicates that 
v 

integration is to be carried over the entire volume of the body. 

The expression of ~ = l.r. - 2..I in terms of Legendre's polynomials 

which are function of the analQ I • .fl.. is well-known and is given in a 
o rp 
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slightly modified form in any good text on the subject (MacMillan, 1958; 

Kellog, 1953). Consequently, U can be expressed as 

(7) 

where 

(8) 

u GM + GP • r + ~ G 
r 3 

r 

x.x. 
Q -2.......J.. + . . 5 

i, j lJ r 

p f 2.. D (.Q..) d3 2.. Mr 
-c 

~ 
'( 

> 

J (3 x'. x' 
2 

p .. ) D(.Q..) d3 .fl.. 
l J 

- p 
lJ 

Q .. 
lJ 

8 .. is the Kronecher 8 function, defined as 
lJ 

8 . . 
lJ 

1 for i = j 

0 for i =f j 

Note that the first term in equation (7) indicates the potential 

of the body if all its mass M were concentrated at its center • 

The second term vanishes if the center of mass 0 of body M is taken 

as the origin of the coordinate system because in that case .I.c = 0 
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• The moments of inert ia A, B, C and the products of inertia D, E, F 

are usually defined by the integrals 

• A = f ( I 2 + I 2) D(_e_) d3 ..Q.. x 2 x 3 

B f ( ,2 
x 3 + I 2) 

x 1 D(..Q..) d3 ..Q.. 

• 
c f ( ,2 

x 1 + I 2) 
x 2 D(..Q..) d3 ..Q.. 

(9) 

• D f x' x' D(..Q..) d3 £. = 2 3 

E f x' 3 
x' 

1 
D(..Q..) d3 ..Q.. 

• 
F f x' 

1 x' 2 D(..e._) d3 £. 

• By comparing the above expressions with equation (8), we get 

Qll B + C - 2A Q23' Q32 3D 

• 
(10) Q22 = C + A - 2B Ql3' Q31 = 3E 

• Q33 A + B - 2C Ql2' Q21 3F 

In the initial investigation we plan to determine only those 

• quantities which are shown in equation (7) . 

• 
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One of the fundamental properties of the potential function U is 

that for all points not belonging to the mass M, it satisfies the 

Laplace's equation. A particular solution of this equation enables us 

to express U in terms of the spherical harmonics and can be written as 

(Byerly, 1959) 

(11) GM u = -
r 

00 

E 
n 0 

n 

E 
m 0 

P (sin cP)] nm 

a n 
(~) (C cos mA + S sin mA) 
r nm nm 

If the center of mass of the body M is chosen as the origin of the 

coordinate system, the term f or n = 1 vanishes and the equation (11) 

reduces to the form 

(12) u GM [l + 
r 

00 

n 

P (sin ¢)] 
nm 

2 

n a n 

m 0 
(~) 

r 
(C cos mA + S nm nm sin mA) 

where P (sin ¢) are called the Associated Legendre's functions. The 
nm 
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first term in the expansion indicates the potential of the body M if all 

its mass were concentrated in its center . 

A comparison of equation (11) with equation (7) gives some useful 

relations between t he spherical harmonic coefficients C , S and the nm nm 

physical constants of the earth . For the first few harmonics these 

relations are: 
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• 
ClO 

Jx'
3 

dm x3c 
Ma a e e 

• Jx'
1 

dm xlc fx' dm x2c 
c11 811 

2 
= = = = Ma a Ma a e e e e 

(13) 

c20 
1 [C - ~2 (A+ B)] • Ma

2 
e 

c21 
E 

821 
D 

Ma2 Ma2 • e e 

c22 
B - A 822 

F 

4Ma2 
2Ma2 

e e • 
Note that in the foregoin g expressions r = x i + x2 i + x3 k -c le - c c -

where.!_, i, k are unit vectors in the direction of x
1

, x
2

, x
3 

respec-

• t ively. In principle, there should be no difficulty in carrying out 

t he development further to tie the highe r ha rmonic coefficients to the 

physical constants of the earth (Jung, 1956) . 

• Note that by a proper cho i ce of the reference system, we can 

eliminate the coefficients c10 , c11 , s11 , c21 and s21 . 

• 4. Equations of Condition for 

the Simplified Theory 

• We can substitute the expansion of geopotential fro m equation (7) 

or equation (11) in equation (6 ) depending upon whether our most 

immediate purpose is to determi ne the s pherical harmonic coefficients of 

• 
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geopot2ntial or elements o:: ..: .. 2 tensor of inertia. Substitution of 

equat ion (11) in equation (6) gives 

(14) 
H 
m 

00 n a n 
+ GM E E (~) (C cos mA. 

r 
0 0 

r nm 
n = m 

+ s sin mA.) p (sin cp) ] 
nm nm 

Let r. and v. (i = 1, 2, .•. i) be the measured values of the 
-i l 

position vector and the relative velocity of the satellite along a short 

segment of its orbit. Substitute thes e values in equation (14) and by 

successive subtractions get the equations o f condition as follows: 

00 

cos mA.i+l Pnm (sin cp ) 

n n [ ( (i+l) 
E O ae Cnm n+l 

m ri+l 

+ GM E 
n = 0 

2 
r.)] 

l 

cos mA.. P (sin cp) sin mA.i+l p 
nm 

(sin cp ) 
i nm 

-----r-~-+-~----- ) + Snm [ 

l 

s in mA.. P (sin cp ) 
i nm 

-n+~~ - )]=o 
r. 

l 

(i+l) 
n+l 

ri+l 

i = 1, 2,. .. i 
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• or 

00 n 
(15) [ [ (Crun grun + s h ) 

0 0 
nm run n = m = (i) (i) • 

f ·+1 . (v.+l ., ~. ..E.i+l i) i 1, 2, ... i. 
l. , l. l. , l. , 

• where 

grun f [GM, ae, r, cos A., p (sin <P)] nm 
(i) 

• 
cos mA. . 

1 
p (sin <fl) i+ nm 

. GM a: ( 
~i+l2 . n+l 

• ri+l 

cos mA.. p (sin <fl) 
l. nm 

(i) ) i 1, 2, ... i. n+l • r . 
1. 

(16 ) 

h f [GM, ae, r, sin A., p (sin <P)] nm nm 
(i) 

• 
sin mA.i+l p 

run 
(sin <P ) 

GM a: ( 
~i+l) 

n+l 
ri+l • 

sin mA.. p (sin <P ) 
1. nm 

(i i 1, 2, .. . i . 
n+l 

• r . 
1. 

• 
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and 

(17) f. +l . ( v. +l . , w, r. +l . ) l ,1 l ,1 - -i ,1 
- ~ 

i 

2 
[(vi+l 

2 
V.) 

l 

2 
r.)] 

l 

1, 2, ... i. 

2 !.: 
Minimally i-1 = (n+l) or n = (i-1) 2 

- 1. However, if it is desired to 

apply the least squares method of adjustment, i >> (n+l) 2 or 

!.: 
n « (i-1) 2 

- 1. 

5. Transformation of the Position Vector and the 

Relative Velocity of a Satellite into 

Orbital Elements 

Consider a coordinate system Xi (i = 1, 2, 3), the x1x2 plane of 

which coincides with the plane of the orbit and the x
1 

axis points 

toward perigee. In this coordinate system the coordinates of the 

satellite pos ition are (X1 , x2 , O) . The coordinate x3 = 0 but for 

purposes of generalization we will consider the case in which x
3 

is not 

zero and later make the substitution x
3 

= 0 for the derivation of our 

specific formulas. See Fig. 11 for illustration of this system. 

If E be the eccentric anomaly, then it is obvious that 

x 
1 a (cos E - e) 

(18) 

2 !.: 
x2 = a (1-e ) 2 sin E 
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Now consider another syster.1 of coordinates X. (i = 1, 2, 3), the 
l. 

x1x2 plane of which coincides with the equatorial plane of the earth 

and the x
1 

axis is directed towards the mean vernal equinox (see 

Fig . 11). This is the coordinate system to which the orbital elements 

of an artificial earth satellite are customarily referred. The trans-

formation from the X. system to the X system (i = 1, 2, 3), involves 
l. i 

a rotation of coordinates whLc h may be split up into the following 

component rotations (see Fig . 11 and Fig . 12): 

1. A rotation -w about the x
3 

axis ,given by the matrix A (-w): 

cos w sin w 0 

A (-w) -sin w cos w 0 

0 0 1 

2. A rotation -i about the x1

1 
axis (the transient position of 

the X axis during the rotation from X. system to the X. system) given 
l l. l. 

by the matrix B (-i): 

1 0 0 

B (-i) 0 cos i sin i 

0 -sin i cos i 

and 

3. A rotation -n about the x
3 

axis given by the matrix A (-n): 
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• FIGURE 11. ORBITAL AND EQUATORIAL COORDINATE SYSTEM FOR 

AN ARTIFICIAL EARTH SATELLITE 

. • • 

• 



• • • • • • • • 

X3 

'. 

Verna l node 

X1 

FIGURE 12. ORBITAL REPRESENTATION IN THE THREE DIMENSIONS 

• • 

X2 

°' N 

• 

J 



• 
63 

• cos Q sin Q 0 

A (-Q) - sin Q cos Q 0 

• 0 0 1 

The complete transformation then is: 

• 
In the ~umerical applications, the product A (-w) B (-i) A (-Q) is 

• ob tained first . This product in the matrix form is: 

." 

• A (-w) B (-i) A (-Q) 

• so that the transformation finally becomes 

(19 ) 

• 

• 
. . P ., Q. and R. (i = i, 2, 3) are called the vectorial orbital 

1. 1. 1. 

constants and are given by: 

• cos w cos Q sin w cos i sin Q 

• 
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• Ql - sin w cos D - cos w cos i sin n 

Rl sin i sin n 

• 
p2 cos w sin :;] + sin w cos i cos n 

Q2 = - sin w sin Q + cos w cos i cos Q 

• (20) 

R2 = - sin i cos n 

• p3 = sin w sin i 

Q3 cos w sin i 

• R3 cos i 

Note that the vectorial orbital constants are in reality the direction 

• cosines of the axis X. relative to the axis X. (i = 1, 2, 3). 
i i 

As is obvious from equation (18) and (19) the coordinates of the 

satellite position at any time are (Brouwer and Clemence, 1961): 

• 2 ~ a (cos E - e) P1 + a (1-e ) sin E Q1 

(21) 
2 k 

a ( cos E - e) P2 + a (1 - e ) 2 sin E Q2 

2 k 
a (cos E - e) P

3 
+ a (1- e ) 2 sin E q

3 

• Kepler's equation can be written as 

E - e sin E = ; (t - T0 ) 

• 
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• where 

T
0 

time of perigee passage 

- 2 n 
n mean motion of the s a tellite defined as n = p-- and 

P the period of revolution of the satellite in its orbit. 

Differentiating Kepler's equation with respect to time 

• E 
n 

1 - e cos E 

Differentiation with respect to time of equation (18) and the 

• substitution of the above relation gives 

- a n sin E 
xl = 

1 - e cos E 
: 

2 !.,:: - a n · (1-e ) 2 cos E 
x2 1 - e cos E • 

Thus the abso lute velocity components of the satellite are (Brouwer 

• and Clemence, 1961): 

n 
(- a sin E pl 

2 !-2 
Ql) xl = +a (1-e ) cos E 

1 - e cos E 

• 2 k n 
Q2) (22) x2 = (- a sin E p2 +a (1-e ) 2 cos E 

1 - e cos E 

n 2 k 
Q3) x3 1 - e cos E 

(- a sin E p3 +a (1-e ) 2 cos E 

Let p, ~' >.. be the geocentric distance, latitude and longitude of 

the observer . Then the cartesian coordinates of the observer (XlO' x20• 

x30) are 
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• 

• 

• 

• 

• 

__________ ..._, 

XlO p cos cp cos (hGr + !._) 

(23) x20 p cos ,7 s.:.n ihGr + !._) 

x30 p sin cp 

where hGr = hour angle of the vernal equinox with respect to the 

Greenwich meridian. 

The absolute velocity components of the observer are ob tained by 

differentiating equation (23), i. e:, 

(24) p hGr cos cp cos (hGr + !._) 

Note that hGr is the rotation speed of the earth in radians per 

unit time used to express n and the other derivatives . 

Equations (22) and (24) give the relative velocity components of 

the satellite (Xlr' x2r, X3r), i. e., 

(25) 

x 
1 
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To sununarize, if the position vector and the relative velocity of 

the satellite appearing in the system of equations (15) are not available 

a s directly measured data, the same can be obtained from the orbital 

alement s of the satellite for a specific time with the help of equations 

(21) and (25). Consequently we can write the position vector rand the 

relative velocity v of the satellite as 

(26) 

where 2:_, i• ~ are the unit vectors in the direction of the axes x1 , x2 

and x
3

, respectively. These substitutions in the system of equations 

(15) enable us to set up equations of condition when the initially 

available data are only in the form of the orbital elements. However, 

this process of conversion of the equations of condition from the fonn 

(15) to the form in which the position vector and the relative velocity 

are expressed in terms of the orbital elements, involves some of the 

assumptions of Keplerian motion which are used in the classical per-

turbation theory but which has been our basic concern to avoid in the 

development of this new theory . 



• 
68 

• 6. Extended Theory--Inclusion of the 

Lunar and Air Drag Effects 

• Consider now the case of a satellite whose motion, though still 

primarily controlled by the earth's gravitational field, is being per-

turbed by the air resistance and the lunar attraction. 

• Le t 

mass of the satellite 

mass of the moon 

• mass of the earth 

v
1 

relative velocity vector of the satellite with respect 

to the earth 

• relative velocity vector of the moon with respect to 

the earth 

..E1 = the radius vector of the satellite from the origin of 

• the coordinate system 

..E2 the radius vector of the moon from the origin of the 

coordinate system 

• w = angular velocity of the earth 

L the total Lagrangian of the system 

H the total Hamiltonian function of the system 

• Then as before, the Lagrangian L of the system is 

(2 7) 

• 

• 
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• 

• 

• 
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• 

The canonical momen~a ..£.
1

, ..£.
2 

are 

(28) 

ClL 
.12.1 = -- = m (vl + ~ x ..E.1) ay 1 1 

y 1 and y
2 

are thus given b y 

..£.2 
V =--w xr 
-2 m - -2 

2 

The Hamiltonian function H of t he system is 

H= n •v +n •v -L ..t:.l -1 ..t:.2 -2 

..£.1 ..£.2 
= ..£.1 • (ml - w x ..E.1) + ..£.2 • (m2 - w x r2) -

2 
p

2 
G m

1 
m

2 
• m2 + ml ul + m2 u2 + i .E.1 - .!.2 I 

or 

(29) H 
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• 

• Partial differentiat ion of H wi th respect to .Q.1 , .Q.2 , £.l and £2 yields 

• ( 30) 

• ClH 

ClH • 
where 

• 

• 

• and 

• 

• 
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• Now define H
1 

as 

(31) 

• 

• 
and similarly H

2 
as 

(32 ) 

• 

• 
From equation (31) we obtain 

• (33) 

Now the Hamiltonian equations of motions are 

• dps 3H --=---
dt 3r 

s 

drs 3H --=--and 
dt 3p 

s 

• With the help of these equations , equation (33) reduces to the form 

(34) 
dHl 3H1 --=---
dt d.£1 

3H 
-.._ - = (H

1
, H) 

0.£1 • 

• 
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• where (H
1

, H) is the Poisson's bracket expression and is defined as 
--

ClHl ol-1 3H1 =--·-----· 

• 
a.r1 a.£1 a.12..1 

From equation (31) we ob tain 

• 
so t hat the Poisson's bracket exp ression can be written as 

• 

• 
' (3 5) 

3H a 
(- H2 - Hl2) ---

d.£1 d.!1 

3H 
3H

2 3H 3Hl2 
--- ·----- . --• d.£1 d_El d.£1 d_El 

where 

• 
Hl2 

G m
1 

m2 

J.E1 - .E2 J 

3H2 
0 which gives But -- = 

ar1 

• 

• (36) 
dH

1 3H 3Hl2 
-- = - -- . --
dt d.£1 Cl_El 

• 



• 

• 

• 

• 
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' 

• 

• 

• 

• 

• 

Subst i tution of equation (30) in equation (36) gives 

Now 

dH 
1 --= 

dt 

and hence we finally get 

(37) 

If we now take into consideration the effect of air drag, the 

Lagrange's equations of motion become 

(38) 
d 
dt 
~ 
av -s 

31 ---
3r -s 

= F -Ds s = 1, 2 

where I.n is the generalized force. In this particular case I.n has the 

dimensions of force because ..r1 has the dimensions of length. Note that 

in the general case of Lagrange's equations of motion, the generalized 

force appearing on the right hand side of the equation need not have 

dimensions of a force . 

Since the canonical momentum 

s = 1, 2 
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The Lagrange's equations can be written as 

(39) 
d.Q. 

. __ s - lb_= F 
dt ar -Ds s = 1, 2 

-s 

However, H was defined as 

H=n •v +n •v -L ..i::.1 -1 ..i::.2 -2 

wherefrom 

a1 dv1 a1 d_rl 61 dy2 61 d_r2 
--- . -- --- ·-----

ayl dt a.r1 dt ay
2 

dt a_r2 dt 

a1 a1 • v 
-2 

But from equation (39) we get 

h . h . f dH . T ese suostitutions in t e expression or dt give 

dt dt 

d.£2 
• .Y1 + dt • v 

-2 
a1 

- - - v • 
at -1 

d_r2 . --
dt 
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• 
(40) 

d.£2 
- .Y2 (cit - £D2) 

• If L is independent of time, ~~ obviously becomes 

( 41) 

• Following the same procedure for H
1

, we get 

• (42) 

where L
1 

has been defined as 
: 

• (43 ) 

But 

• 

• 
Substi tuting the above relation in Eq. (42), we finally get 

• dH
1 d.£1 dv

1 d_yl ClLl 
--=-- . .Y1 +-- . .£1 - .E.1 . -- --- . vl dt dt dt dt d_El 

• (44) 
d..J2.1 ()11 

- -- vl - -- vl dt 
. 'I 

. 
o..E_l 

• 
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• ~ow define a quantity L
2 

such that 

• 
and another quantity L

12 
as 

• 
Then 

• L 

which gives 

• ,. 

or 

• 
Substituting the above in Lagrange's equation of motion we obtain 

• 
or 

• 

where from • 
dt dt 

• v -
- 1 

• v 
-1 

• 
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• 

• (45) F v + F v 
-12 • -1 -Dl • -1 

In view of Eq. (37) it is obvious that Eq. (45) takes into account 

the effect of both lunar attraction and air drag . 

• Integrate Eq. (45) between t = ti and t = ti+l and get 

• 
Now if the intervals ti+l - ti and ti+2 - ti+l are not too large 

• and t i+2 - ti+l = ti+l - ti, the integrand does not vary too greatly in 

the interval ti+2 - ti+l ti+l - ti and hence we obtain by subtract ion 

• (46 ) 0 i=l,2,. •• i 

7. Equations of Condition for the Extended Theory 

• 
Eq. (46) is the basic form of the observation equations . As 

before, let r. and v. be the observed values of the radius vector and 
-i --i 

• the relative velocity of the satellite. Then substituting these values 

in the expression for the Hamiltonian function, we obtain the 

observation equations in the f ollowing f orm: 

• 

• 
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• 

• 
: 

• ,. 

(4 7) 

• 
where the 

• 

• 

• (48) 

• 
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00 n 2 cos m Ai+l cos m I.. 
GM [ [ 

n [C ( p l p a 
n+l n+l n=O m=O 

e nm nm nm 
ri+l (i+l) r 

i (i) 

cos m \+2 
2 sin m \+1 sin m A.. 

n+l 
ri+2 

p 
nm 

(i) 

p ) + s ( p 
nm nm n+l 

(i+2) ri+l 

sin m Ai+Z 2 2 
p )) + (vl..+l - ~ Vl. n+l nm 

ri+2 (i+2) 

2 
(!?:. r.) 

-i 

nm n+l 
(i+l) r. l. 

2 2 
- w (r ., 1 

J.T 

2 
~ r. - ~ 

l 

2 
r '..L2) l1 

0 i 1 , 2, ... i. 

00 n 
[ [ 

n=O m=O 

functions 

gnm = GM 

i 

h GM nm 
i 

[C 
nm 

g + s h ] 
nm nm nm 

i i 

gnm' h and f. are 
nm l. 

i i 

2 cos m \+1 n [ p a 
n+l e 

ri+l 

cos m I.. 2 i+ p 
n+l nm 

ri+2 (i+2) 

2 sin m \+1 n [ p a n+l e 
ri+l 

f . 
l 

defined 

nm 
(i+l) 

nm 
(i+l) 

i 1, 2, ... i. 

as follows: 

cos m I.. 
l p 

n+l nm 
r. (i) l 

sin m A.. 
l p 

n+l nm 
r. (i) l 

l. 
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• 

and 

f. 
1. 

sin m \+2 
n+l 

ri+2 

p 
nm 

(i+2) 

- - -----------

2 
~ (~ • r.) 

-i 

No te that the functions gnm' hnm and fi defined above are 

i i 

different from those used in Eq. (15). Also note that, in the above 
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observation equations, v2 denotes the relative velocity of the satellite 

at time t
2

. This is not to be confused with the relative velocity of 

the moon for which the same symbol has been used in the theoretical 

development • 

8. Extended Theory--Inclusion of the Effects of Lunar and Solar 

Attraction, Air Drag and Radiation Pressure 

The equations of condition in the form given in Eq. (46) are 

derived on the assumption that the only disturbing forces (other than 

gravitational forces of the earth) acting on the satellite are air 

drag and the moon's pull, but further development of the theory brings 

out the interes ting result that the equations of condition retain the 

same form when, in addition to the lunar and air drag effects, the 

effects of solar attraction and radiation pressure are taken into 

account. 
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• 

In ::.ddition to the symbols of the previous section, denote the 

app arent velocity vector of the sun relative to the earth as v
3 

and 

its mass m
3

. Also let L now denote the total Lagrangian of the new 

system in which the satellite is moving in the gravitational field of 

the earth under the perturbing influence of both the sun and the moon. 

Le t H denote the Hamiltonian function of the new system . Then 

p roceeding in the same way as in the previous section, we have 

(49) L 
3 

~ L: 
i=l 

m. 
]. 

Canonical momenta .E.· are 
]. 

2 
(v. + w x r.) 
-i -i 

m. (v. + w x r.) 
]. -i -i 

and the Hamiltonian function H is 

3 
H L: .£. V. - L 

i=l ]. -i 

3 
2 

3 
(SO) 

pi 
~ L: - L: .I?..· (~ x r.) 

i=l ]. -:L 
i=l m. 

]. 

where 

3 
L: 
i=l 

+ 
3 
l: 

m . 
]. 

i=l 

G m
1 

m
2 u - ----

i j..E.1 - ..E.2 j 

m. u. 
]. ]. 
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.· 
Hl2 

G m1 m2 

1r1 - r21 

(51) Hl3 

G m1 m
3 

Jr - r I -1 -3 
• 

and 

This gives 

• - w x r. 
- --i 

i 1, 2, 3. 

• 
(52) 

• where 

• 
(53) !13 

3H
13 3Hl3 

---=--
d.!_l d.!_3 

• 3H23 3H23 
E23 

-----
3r1 d.!_3 

Define H. as 
l 

2 
p. 

H. l l 
(~ x r.) + m. u. =::Z--.E_. 

]_ m. i --i l ]_ 
l 
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Differentiate this expression to obtain 

a 
3_E.l [ - H2 - H3 - Hl2 - Hl3 - H23] 

(54 ) 

Note that in the above expressions E12 and !_
13 

are the forces 

acting on the satellite arising from the disturbing effects of the moon 

and t he sun respectively. 

Now let En and ER be the gene ralised forces arising from the 

dis turbing ef fect of the air drag and the radiation pressure, then the 

Lagrange 1 s equations of motion expressed in terms of canonical momenta 

become 

(55) 
d~ 
dt - -- = FD. + FR. 3r. -i -i 

--i 

Note that in this particular case E.n and ER have the dimensions 

of force, but they do not have to be essentially potential-derived. 

If we denote H
12 

112 and H
13 

= - 1
13 

and define 1
1 

as in the 

31 
previous section, the expression for -~- becomes 

o.E_l 
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• 
(56) 

• which on substitution in equations of motion gives 

• 
where from 

(5 7) . -
011 

If this value of a;- is substituted in Eq. (44), we obtain 
-1 

• 
dt dt 

• v -
-1 

• 

• (58) 

As may be noted, Eq. (58) allows f or the forces arising from the 

• four most important factors perturbing the satellite motion; i.e., lunar 

and solar attraction, air drag and radiation pressure. 

If Eq. (58) is integrated between t = ti and t = ti+l' we get 

• (59, a) 

• 
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• Similarly integration between t ti+l and t ti+2 gives 

• (59' b) f i+2 [ ] 
i+l K12 + K13 + FDl + KRl · vl dt 

Now if ti+2 - ti+l = ti+l - ti = ~t where ~t is a small interval of 

• time during which the integrand does not vary too greatly, we get 

(60) i 1, 2 ... i. 

• Thus it may be seen that the equations of condition set up on the 

pattern of Eq. (46) should eliminate approximately the perturbing 

effects of air drag, radiation pressure and lunar and solar attractions, 

• provided these effects can be considered constant or approximately so 

over short consecutive intervals of equal duration . 

• 9. Applicability of the New Theory 

The method of setting up the equations of condition in the new 

theory is primarily designed to cancel out (at least approximately) the 

• effects of the disturbing forces, thus eliminating the necessity of 

computing the corrections arising from them. With our present knowledge 

of the atnosphere and radiation pressure at satellite altitudes, the 

• computation of these corrections is an estimate at best and often 

involves some poorly- determined parameters . Thus the elimination of 

the necess ity of computing these corrections enables us to avoid a • potentia~ source of error. Note however, that the equations of 

condition in the new theory are based on the assumption that the 

• 
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integrand of the disturbing forces remains constant over short consecutive 

intervals . This may not be true in cases when the satellite is ente ring 

f rom a rarified atmosphere at ~ high a~titude to a relatively denser 

atmosphere near perigee, or when it is entering or leaving the 'shadow 

zone', in other words whenever its position is such that the effect 

of the air resistance and/or radiation pressure is likely to vary 

substantially over short intervals of time . However, by some selective 

process it should be possible to eliminate those data which were 

recorded when the satellite was in any of these 'critical transit 

positions ' . However, if at some future time our knowledge of the 

a tmospheric structure and solar radiation mechanism grows to a level 

where we could be assured of the necessary degree of accuracy required 

in the computation of the air drag and solar radiation corrections, 

it may be simpler and more convenient to use the equations of conditio:::. 

de rived for the 'simplified theory' with due allowance for the luni­

solar attraction. 

Another major advantage of the new theory seems to be that it can 

be used for low alti tude satellites because of the invariance of the 

equations of ~ondition to the magnitude of the disturbing forces (i.e. 

the equations of condition would remain valid as long as the integrand 

of the disturbing forces is constant over the observation interval 

irrespective of their magnitude). This appears to offer the possibility 

for exploiting the 'short wave length sensing potentiality' of a low 

altitude satellite which cannot be done with advantage using perturba­

tion theory . This factor coupled with the fact that the information 

yielded by the new theory reflects primarily the effect of the mass 
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anomalies of the region immediate ly below the satellite, appears to 

provide a means for obtainihg a representation of the earth's gravity 

field from satellite data which would show at least some of the 
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s ubtler s hort wave length features exhibited in terrest rial measurements. 

Since t he limiting wave length of a satellite is a function of its 

altitude, the satellites at different altitudes will 'sense' the 

earth's gr avity f ield to differen t degrees of detail and hence the 

geopo tential coefficients des c rip tive of t he gravity field of Lhe 

region in the vicinity of the satellite projection on the ground will 

be a funct ion of altitude also. Thus each set of coeff icien ts will 

re flec t the degree of detail of gravity field as 'sensed ' by the 

satell~te (f rom the measurements of which t hat particular s et of 

coeff icients has been obtained) a t its particular height. This offers 

the possibility of studying the p roblem of the upward continuation of 

the earth 's gravity field to greater heights . 

The theory also appears to provide an app lication in applied 

geophysics. If surface gravity me asurements in an area are available 

and i f one is only interested in anomalous gravity composed of wave 

lengths shorter than a specific 'limiting wave length', one can obtain 

the desi red part of the gravity field by simply subtracting the gravity 

f ield determined from a satellite with the above 'limiting wave length' 

f rom the observed gravity field . This seems to offer an effective way 

of removing the regional effect and to re duce the observed gravity to 

:ave le::igths of geological interest • 

The time variant part of the gravity fie ld .can be determined if 

we can observe a satellite moving at a constant altitude over a long 
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period of time . However, this phas e of s tudy may be handicapped by the 

f act t hat a satellite is continually changing its altitude i n t he 

s uccess ive transits over the same station. But if the variation of 
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the gravity field could be accurately t ied to altitude changes, we could 

study the time variation inspite of changes in satellite height. 

Applying t he same principle , there is a possibility of studying any 

radial asymme try in mas s distribution o f t he core such as one caus e d 

by t he conve ction currents. The theory could also be used i n principle 

t o detect any differential rot a tion be t ween the core and t he mantle 

p rovi ded an asymmetry of the type desc r i be d above e xists in the core. 

But any study of the above type will probably put very stringent 

restrictions on the accuracy of t he observed data and a lso r equire a 

h ighl y accurate knowledge of some of the hitherto poorly-determined or 

s till unknown parameters . 

As th e 'limiting wave l ength ' is a function of satellite height 

and since each set of mea surements on a satellite at a certain altitude 

will yiel d a different se t of geopotential coefficients for an y specific 

region, a random combination of several s ets of observations of 

satellites at different hei ght s may no t be possible in t he s ame solution 

and t his may l imit the use of t he new theory . This l imi tation can 

obviously be overcome by making a sufficient number of measur ements on 

t he s ame satellite and by combining data from s .atellite s having the 

same height. However, this limitation may not prove to be a s serious 

in pra c ti ce as it appears to be in theory . 

I t is important to note tha t the above discussion outl i nes the 

theoret i cal development only and the theory has not been tested as yet . 
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Hence all the problems associated with the actual application of this 

theory cannot be foreseen at present. The applicability of the 

theory-- its scope and limitat i on s --will o e defined with more confidence 

when it is applied in practice . 
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APPENDIX 

ERROR ANALYSIS IN A TYPICAL CASE 

In order to have an idea about the minimlllTl limit of accuracy 

required in the measurement of position vector and the relative 

velocity of a s atellite for obtaining meaningful second differences, 

consider a satellite moving in an elliptical orbit. Then under the 

ideal conditions of elliptical motion without any perturbation effects 

of any sort, assuming a sampling interval of one second, let us have 

v 10 km/sec 

r 10,000 km 

6v 10 meters/sec 

6r 300 meters/sec 

Le::. m and m be the errors in the measurement of r and v. Then, 
r v 

assuming the simplified case in which m and m are independent, the 
r v 

error m in H is given by 

2 
m 2 (ClH)2 + 2 (ClH)2 

= mr ar mv av 

If n be the number of H's involved in an expression, the final error 

m for that expression will be 
n 

m 
n 

k 
m(n) 2 

with the assumption that the error m is the same for the quantit ies 

H
1

, H
2

, .... Rn. For the second difference d
2
H therefore, the error 

m
2 

will be 
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and thus we should have 

Utilizing this restriction , it has been found for the case 

considered above, that the minimum accuracy required in the measuremen t 

of the position r is not critical and is well above the limit attain­

able at present . The error in v, however, appears to be critical for 

t:.:1 is case and the minimum accuracy required in the measurement of v 

comes out to be be tter than roughly a cm/sec or so . This minimum 

l~~it can be raised by increasing the sampling interval but that will 

reduce the n umber of observations available for any given orbital 

sc::..,;nen'.:. I n the actual application of the t heory, therefore, a 

balance: will have to be worke d out in view of the accuracy of the 

available data, the magnitude of 6 r and 6v and the wavelength of the 

gravity anomaly desired to be studied • 
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