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Abstract 

The Vulcanian phase of the 1912 eruption of Novarupta comprised only a very small part of 

the most voluminous eruption of the twentieth century, yet it served as an important 

transition from very powerful and sustained explosions to effusive dome growth.  The 

Novarupta eruption is divided into five episodes: Episodes I–III comprised, cumulatively, of 

60 hours of strong Plinian explosions that produced voluminous rhyolitic and dacitic 

ignimbrites and widespread, predominantly dacite, Plinian fall beds.  Episode IV produced a 

dacite block apron, interpreted as the product of complete destruction of a dacite plug/dome 

via Vulcanian explosions, before extrusion of a rhyolite dome in Episode V.  Compensatory 

caldera collapse during the Plinian episodes occurred 10 km from vent, preserving the ultra-

proximal deposits from Episodes I–IV to within 200 m from source.  This dissertation 

explores the pre- and syn-fragmentation conduit and eruption processes occurring throughout 

Episode IV through careful examination of the uniquely well-preserved Vulcanian block 

deposit.  Block distributions suggest that Episode IV consisted of multiple small explosions 

that disrupted only small regions of the dome and shallow conduit.  Significant textural 

heterogeneity, including dense, pumiceous, texturally banded, and breadcrusted blocks, and 

estimates of their source depths reveal that the texturally diverse magmas were juxtaposed to 

one another within the upper 400 m of the shallow conduit and/or dome.  Blocks representing 

magmas in varying stages of degassing and outgassing imply that very small packages of 

magma arrived to, and were stored at, their fragmentation depths at/for varying times and 

durations.  Pyroclast textures suggest that the rapid vesiculation of the pumice-forming 

magma after emplacement at shallow depths likely provided the energy for explosions 

throughout Episode IV.  
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C H A P T E R  1  

Introduction and Background 

 

1.1 Introduction 

On June 6, 1912, a vent opened on the floor of a valley between Trident and Griggs 

stratovolcanoes in a remote area of the Alaska Peninsula, initiating the largest eruption of the 

20th century.  Novarupta, Latin for “new vent”, has become one of the best studied eruptions in 

the world, as scientists from a wide range of specialties and disciplines have been attracted by its 

unique and defining characteristics.  Exceptional diversity of compositions in the juvenile 

eruptive products, suspected magma storage located 10 km from the penultimate eruptive vent, 

unique preservation of complex ultra-proximal deposits, and several large earthquakes prior to 

and concurrent with the eruption are just a few of these distinctive features.  This introduction 

reviews the results from previous works on understanding explosive volcanic eruptions and sets 

the stage for the work completed in this dissertation.  The chapter gives an overview of the 1912 

eruption of Novarupta, Alaska, and reviews the spectrum of explosive eruption styles and the 

controls on their intensities and behaviors.    

 

1.2 Explosive volcanic eruptions 

Volcanic explosions are broadly categorized into wet and dry eruptions.  Wet eruptions involve 

the interaction of magma with external water which can increase the thermal efficiency of the 

eruption whereas dry eruptions are driven by magmatic volatiles.  Dry eruptions involve a range 
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of intensities, durations (and magnitudes), and are classified into ‘eruption styles’ according to 

these characteristics (Figure 1.1).  Plinian eruptions are the most powerful, producing high, 

sustained, convective eruption columns containing a wide range of particle sizes and forming 

widespread sheet-like fall and pyroclastic density current deposits (Cioni et al. 2015).  Cone-

forming Hawaiian and Strombolian eruptions occupy the weak end of the spectrum, with 

generally low eruption columns and a predominance of coarse ejecta that fall mostly within 500 

m of the vent (Taddeucci et al. 2015).  Of particular interest to this study, short-lived Vulcanian 

eruptions — which are somewhat intermediate in size and intensity between Plinian and 

Hawaiian/Strombolian eruptions — are covered in greater detail later in this introduction.   

 

Figure 1.1 Spectrum of dry eruption styles.  Adapted from Cas and Wright (1987), originally by 

Walker (1973). 
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1.2.1 Controls on eruption style 

The dominant control on eruption style is the behavior of exsolved volatiles as magma travels 

towards the Earth’s surface, specifically whether or not the bubbles are capable of growing and 

escaping from the system.  This behavior is largely dependent on the viscosity of the melt and 

the magma ascent rate.  Hawaiian and Strombolian eruptions occur at volcanoes consisting of 

fluid mafic magmas, whereas Vulcanian, sub-Plinian, and Plinian eruptions involve more viscous 

and typically, but not always, felsic magmas. 

Magma ascent rates control the amount of time that bubbles have to grow.  Slow ascent 

rates supply more time for equilibrium bubble growth (or steady bubble expansion without 

overpressure) thus inhibiting explosive eruption.  During rapid ascent, equilibrium expansion of 

bubbles is suppressed and over-pressure builds within the system resulting in explosive 

eruptions.  This section covers the processes occurring during magma ascent that influence the 

style and intensity of explosive volcanic eruptions.  

1.2.1.1 Degassing and outgassing 

At depths of >6–10-km, a melt contains volatiles held in solution by pressure.  As the magma 

ascends, and pressure decreases, volatile solubility decreases promoting nucleation of the 

volatiles into a gas phase.  Degassing is thus the exsolution of volatiles from the melt during 

ascent (Sparks 1978).  Homogeneous nucleation involves the formation of bubbles uniformly 

throughout the melt whereas bubbles nucleate on a surface (such as a microlite or crystal) during 

heterogeneous nucleation.  High volatile supersaturations and thus high ascent rates are required 

to overcome the activation energy (the energy required to form a stable surface separating the 

gas and melt phases) in homogeneous nucleation, delaying vesiculation to pressures well below 
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the equilibrium saturation pressure (i.e. volatiles remained dissolved in the melt above their 

solubility levels for the ambient pressure; Mangan and Sisson 2000).  Heterogeneities such as 

Fe-Ti oxides are good nucleation sites because the surface tension between e.g., a crystal and the 

gas is less than the surface tension between the gas and melt alone.  Therefore, heterogeneous 

nucleation requires much lower supersaturations and promotes conditions closer to (but not at) 

equilibrium degassing (Hurwitz and Navon 1994).  The bubble nucleation mechanism influences 

the number of bubbles and their sizes because very high supersaturations (and homogeneous 

nucleation) facilitate high nucleation rates and smaller bubbles whereas lower supersaturations 

(and heterogeneous nucleation) tend to lead to less nucleation and larger bubbles (Mangan and 

Sisson 2000; Mourtada-Bonnefoi and Laporte 2004).   

 Bubbles grow through three processes: diffusion of volatiles into existing bubbles, 

expansion due to decompression, and coalescence.  The first two processes can be grouped as a 

‘free growth’ stage without interactions between adjacent bubbles.  Controls on free bubble 

growth include the number of the volatile molecules in the melt (or the volatile concentration), 

diffusion rate, and viscosity of the melt (Prousevitch et al. 1993; Toramaru 1995; Gonnermann 

and Manga 2007).  If volatile diffusion is slower than the decompression-driven solubility 

decrease, then a second stage of supersaturation may ensue favoring nucleation over growth.  In 

this case, bubbles grow by volume through expansion due to the drop in pressure rather than by 

the addition of molecules.  However, viscous resistance of the surrounding melt shell can limit 

expansion (Sparks et al. 1994; Toramaru 1995) causing the gas pressure inside bubbles to 

become significantly larger than the ambient pressure.  This buildup of overpressure increases 

the likelihood of an eruption becoming explosive.  Bubble coalescence involves the merging of 
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bubbles, requiring the rupture and drainage of melt from the film between two bubbles (Cashman 

and Mangan 1994; Klug and Cashman 1996; Gonnermann and Manga 2007).   

Open system degassing involves outgassing or the escape of gas from the magma.  In 

low-viscosity mafic magmas the bubbles can decouple from the melt due to buoyant rise.  If 

magma ascent rate is slow relative to bubble ascent, then gas bubbles may rise to the surface, 

burst and release gas to the atmosphere (Taddeucci et al. 2015).  In more silicic systems, 

viscosity inhibits buoyant ascent, but bubble growth, shearing, and coalescence may develop 

permeable pathways through which gas can escape (Mueller et al. 2005; Gonnermann and 

Manga 2007).  Laboratory experiments have shown that significant coalescence and the 

development of permeability can occur on timescales on the order of minutes to hours depending 

on the bulk viscosity (melt + bubbles) of the magma (Martel and Iacono-Marziano 2015).  Gas 

can also escape through fractures developed along conduit margins via brittle deformation of the 

ascending magma (Gonnermann and Manga 2003; Rust et al. 2004).  Once open-system 

degassing is initiated, the potential for an eruption to become or remain explosive is reduced with 

respect to effusive eruption.  However, the subsequent collapse of permeable pathways can close 

the system resulting in a build-up in pressure that can result in a shift to explosive eruptions (e.g. 

Matthews et al. 1997; Yokoo et al. 2013).   

1.2.1.2 Crystallization 

Crystals in ascending hydrous magmas nucleate and grow in response to undercooling which is 

the consequence of decreasing temperature or degassing (Hammer et al. 1999; Blundy and 

Cashman 2001, 2005).  As water exsolves from the melt in response to decompression, a 

corresponding increase in the liquidus temperature causes anhydrous phases to crystallize 
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(Geschwind and Rutherford 1995; Hammer et al. 1999).  Rates of nucleation of new crystals 

depends on the magma ascent rate.  The degree of undercooling increases with faster 

decompression rates, resulting in more crystal nucleation.  Conversely, lower degrees of 

undercooling due to slower magma ascent and decompression facilitate growth of existing 

crystals over nucleation (Hammer et al. 2002; Couch 2003).    

1.2.1.3 Fragmentation 

The type and efficiency of fragmentation has a direct impact on the style of dry eruptions by 

controlling pyroclast size and the proportion of gas within the erupted mixture.  Five models 

have been proposed for the mechanism of fragmentation (Gonnermann and Manga 2013).  First, 

a fragmentation threshold is thought to be met once the magma reaches a critical vesicularity, 

possibly due to some form of instability that develops in the thin bubble walls when the volume 

fraction of bubbles reaches ~0.75 (Sparks 1978).  Second, high-viscosity magmas may fragment 

when a threshold tensile stress is exceeded (Alidibirov 1994; Zhang 1999).  During bubble 

growth, the melt of the bubble walls must stretch to accommodate the volume increase of the 

gas.  If this stress on the bubble walls exceeds the tensile strength of the magma, then the magma 

will tear.  This occurs when there is a significant gradient between the ambient pressure and the 

bubble gas pressure (i.e. significant bubble overpressure, ΔP).  Third, the structural relaxation 

rate of the melt may exceed the rate at which strain is applied, causing the magma to cross the 

glass transition from ductile to brittle behavior (Papale 1999; Gonnermann and Manga 2003).  

Magma relaxation time increases with increasing magma viscosity; therefore, magma is more 

likely to fragment at high viscosities and strain rates.  Fourth, Namiki and Manga (2005) 

established a potential energy threshold above which fragmentation takes place.  Potential energy 
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depends on the magma’s vesicularity (φ) and the difference between the inside and outside 

pressure of the bubbles (ΔP).  It determines the velocity and style of expansion of the bubbly 

fluid during rapid decompression.  A larger potential energy due to a higher φ and larger ΔP 

causes faster expansion of magma which promotes fragmentation (Namiki and Manga 2005).  

Finally, inertial fragmentation applies to low viscosity mafic magmas, where the fragmentation 

mechanism is governed by fluid mechanics rather than brittle fracture or other processes that 

depend on the viscoelasticity of the melt.  During rapid expansion, bubbly mafic fluids expand or 

stretch, tearing into several pieces when the critical Reynolds number reaches ~1.  For these 

magmas, the inertia of the expanding melt ultimately controls whether the melt fragments into 

discrete particles or is allowed to increase vesicularity until it reaches a threshold of ~70% and 

becomes permeable (Namiki and Manga 2007).     

1.2.2 Vulcanian eruptions 

Vulcanian eruptions consist of transient, impulsive explosions that are generally unsteady (i.e. 

fluctuating mass eruption rates), episodic, and, with present knowledge, unpredictable.  Their 

intensities are considered moderate on the scale of explosive volcanic eruptions (Figure 1.1).  

The impacts associated with Vulcanian eruptions are typically less devastating than their steady 

and sustained counterparts, yet they are much more common and can pose protracted risks when 

they occur in sequences lasting weeks to decades (Clarke 2013).   

Vulcanian eruptions have been modeled as a consequence of the sudden decompression 

of a conduit containing a vertically stratified, rheologically heterogeneous melt in varying states 

of degassing and outgassing (Self et al. 1979; Turcotte et al. 1990; Fagents and Wilson 1993; 

Alidibirov 1994; Woods 1995; Stix et al. 1997; Clarke et al. 2002a, b; Druitt et al. 2002; Clarke  
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Figure 1.2 Schematic of the textural progression as magma rises within the conduit and shifts 

from closed- to open-system degassing prior to Vulcanian explosions. 

 
2013).  They can be triggered by the disruption of a sealing plug/cryptodome or dome by 1) 

failure of all or some portion of the dome, 2) pressurization of the underlying magma, and/or 3) 

sudden vaporization of externally-derived water.  This plug and the underlying rheologically 

heterogeneous melt are developed by a series of processes occurring within the conduit.  The 

pressure drop from the magma chamber to the surface drives the magma upwards at slow ascent 

rates.  Decompression due to ascent decreases solubility and drives volatile exsolution which 

increases the liquidus temperature and initiates crystallization of anhydrous phases (Geschwind 

and Rutherford 1995; Hammer et al. 1999).  Crystallization increases the concentration of 

residual volatiles in the melt, forcing further degassing, and provides sites for heterogeneous 

nucleation reducing the supersaturation pressure required to nucleate bubbles.  An increase in 

bubble and crystal number densities forces vesicles to coalesce and expand into the interstices 

between crystals enhancing coalescence and the development of permeable pathways (Figure 

1.2).  The system thus shifts from closed- to open-system degassing as volatiles are lost through 

these permeable networks.  This gas loss may reduce the stability of the magma driving bubble 

collapse and create the dense plug at the top of the magma body (Hammer et al. 1999; Cashman 

and McConnell 2005; Clarke et al. 2007).  Parts of the system becomes pressurized due to 
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continued magma ascent, a total increase in volume due to bubble nucleation and growth 

throughout the conduit, and possible development of overpressures as viscosity increases near 

the surface and prevents growth of bubbles (Sparks 1978, 1997; Stix et al. 1997; Melnik and 

Sparks 1999).   

In the models, three waves develop upon disruption of the conduit sealing plug or dome.  

A decompression wave travels downward at the local sound speed followed by a slower 

fragmentation wave.  The fragmentation wave quenches and breaks the magma apart creating a 

gas-pyroclast mixture that travels upwards and is expelled from the conduit at velocities of 50–

400 m/s (Self et al. 1979; Fagents and Wilson 1993; Clarke et al. 2002a, b).  The depth at which 

the fragmentation wave stops varies throughout the conduit and has been known to reach the 

magma chamber (Druitt et al. 2002; Coombs et al. 2010); it depends on when the conditions for 

fragmentation (section 1.2.1.3) are no longer met (Sparks 1978; Alidibirov 1994; Papale 1999; 

Zhang 1999; Melnik and Sparks 2002a; Gonnermann and Manga 2003; Namiki and Manga 

2005).  A shock wave travels outward and ahead of the pyroclastic mixture at a velocity greater 

than the local sound speed and is indicative of the significant pressure difference between the 

atmosphere and the gas-rich magma in the conduit (Chojnicki et al. 2006; Clarke 2013).  Once 

the explosion ends, the system is set to begin a new cycle of magma rise, plug formation and 

disruption, and sudden decompression (Voight et al. 1999).  This cycle has been recorded on 

timescales of hours to days and up to years (Hoblitt 1986; Matthews et al. 1997; Druitt et al. 

2002; Yokoo et al. 2013).   

Hazards associated with Vulcanian eruptions include dense ballistic blocks, airborne 

tephra and tephra fall, pyroclastic density currents (PDCs), and lahars.  Ballistic blocks range in 
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size from 10s of centimeters to 10s of meters in diameter and are ejected to distances typically 

<5 km from vent.  Notably, the largest block ejected during the 1975 eruption of Ngauruhoe, 

New Zealand, was 27 m long, 15 m wide, and weighed ~3000 tons (Morrissey and Mastin 2000).  

The explosion(s) may last only seconds to minutes and yield small volumes of tephra, yet they 

produce initial eruption plumes that typically rise to <10 km.  Particularly large events or a series 

of explosions may produce plumes that reach as high as 20 km (Self et al. 1979; Clarke 2013).  

Airborne ash can pose a hazard to aircraft as cruising altitude for commercial air traffic is 9–12-

km.  Lower altitude ash plumes pose a hazard when adjacent to airports or landing/take off 

corridors.  Tephra falls can greatly impact local communities through multiple hazards, 

including: building collapse due to the accumulated weight of tephra; destruction of crops and 

livestock; health impacts due to respirable ash and skin and eye irritation; and disruption to key 

utilities such as electricity, water, and transportation systems.  The transient and episodic nature 

of Vulcanian eruptions forms unsteady columns that often collapse into PDCs.  These gravity-

controlled, lateral flows of pyroclasts and gas can travel at velocities of 100–300 m/s and reach 

temperatures up to 1000° C (Hoblitt 1986; Cas and Wright 1987; Wilson and Houghton 2000).  

If externally derived water is involved in the eruption or if hot tephra falls on snow or ice, lahars, 

or water saturated debris flows, may form. They are often restricted to valleys, may travel 10s–

100s of km from source, and travel at velocities of 10s of m/s (Manville et al. 2013).  Both PDCs 

and lahars are completely destructive and permanently change the landscape.   

The deposits produced by ballistic block ejection, PDCs, and lahars are the most enduring 

products of this type of eruption.  This is simply because the thin, widely dispersed, and fine-

grained fall deposits are easily re-worked shortly after the eruption.  Flow deposits can be valley 
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filling at proximal-medial distances and <10–100s of cm thick and 10s of m across at the distal 

ends of individual lobes (Druitt et al. 2002; Vallance et al. 2010).  Block fields can cover areas 

up to several km2, with block size decreasing with distance from vent (Adams et al. 2006a).  A 

wide range of textures and juvenile and lithic components characterize the eruption products, 

including a range of dense to highly vesicular juveniles and brecciated and massive wall rock 

lithics, with a range of breadcrusting on varying proportions of all these components (Adams et 

al. 2006a; Clarke et al. 2007; Wright et al. 2007; Burgisser et al. 2010; Giachetti et al. 2010).  

This variation is the result of the fragmentation wave disrupting magma with varying degrees of 

viscosity, vesicularity, and crystallinity (Clarke 2013).  It may be assumed that the finer-grained 

eruptive products represent to some extent the pre-fragmentation state of the magma because 1) 

the fragmentation wave quenches the magma faster than volatiles can exsolve due to 

decompression, and 2) the magma may be considered stationary as the velocity of the 

fragmentation front is much greater than magma ascent velocity (which may have stalled by the 

sealing plug; Sparks 1978; Woods 1995; Clarke et al. 2002a, b; Melnik and Sparks 2002b; 

Clarke 2013).  It should be noted, however, that syn-explosion bubble nucleation and growth 

may increase vesicularity by several percent from its original state in the conduit (Giachetti et al. 

2010).  

 

1.3 Geologic setting 

The 2,500-km-long arc of the Aleutian-Alaskan subduction zone, formed by dipping of the 

oceanic Pacific plate below the North American plate, is the source of Alaska’s volcanoes.  The 

magma that was erupted in 1912 is thought to have been stored below Mount Katmai, which sits 
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mid-way along a 95-km-long linear segment of the arc (Hildreth and Fierstein 2000).  Katmai 

joins Alagogshak, Martin, Mageik, Griggs, and Trident in a group of small andesite-dacite 

stratovolcanoes called the ‘Katmai volcanic cluster’ (Figure 1.3).  All volcanoes of the group 

except Mount Griggs lie along a N65°E trend that defines the Quaternary volcanic front along a 

pre-existing range crest known as the Pacific-Bristol Bay drainage divide.  Elevations reach 

1,200–1,600 m along the pre-volcanic basement which is exposed within Katmai Pass and 

Kejulik Pass (Figure 1.3).  Mount Griggs is unique within the Katmai cluster in being centered 

12 km behind the volcanic front.  Alagogshak is the only volcano of the group that has not 

erupted in the Holocene and is considered to be extinct (Hildreth and Fierstein 2000).  

Strata beneath the Katmai volcanic cluster consist of ~5,500 m thick horizontally 

stratified Mesozoic sedimentary rocks.  Marine sedimentary rocks belonging to the Late Jurassic 

Naknek Formation are underlain by about 3,500 m of Triassic and older Jurassic sedimentary 

strata.  Marine siltstone, arkosic sandstone, and lesser lithic wacke and conglomerate comprise 

the 1,700–2000 m thick subhorizontal to gently warped layers of the Naknek Formation 

(Detterman et al. 1996; Hildreth and Fierstein 2012). 
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Figure 1.3 Regional location map showing the Katmai volcano cluster.  Solid triangles 

indicate volcanoes active during the Holocene; open triangles represent inactive cones from 

the Pleistocene; (A)Alagogshak; (Mr) Martin; (M) Mageik; (G) Griggs; (T) Trident (three 

extinct cones and one recently active cone); (K) Katmai.  Southwest of the cluster is (Kj) 

Kejulik volcano and northeast is the (S) Snowy Mountain volcano pair.  Solid circle (N) 

indicates Novarupta and shaded valley fill is the ignimbrite within the Valley of Ten Thousand 

Smokes.  Low points along the volcanic axis include (KP) Katmai Pass and (KjP) Kejulik 

Pass.  Inset shows the location of the Katmai group along the arc.  Figure from Hildreth and 

Fierstein, 2000. 
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1.4 Eruption background 

The deposits of the 1912 eruption of Novarupta are some of the best studied products of any 

large-volume eruption in the world to-date.  Several publications present data on the pre-, syn-, 

and post-eruption and depositional processes and this section provides a brief overview of those 

works.  An estimated 13 km3 of zoned magma was erupted over five recognized episodes during 

the 1912 eruption.  Stratigraphy and eye witness accounts reveal that the first three episodes 

consisted of 60 hours of strong Plinian explosions separated by lulls of at most a few hours that 

formed 1) a far-traveled eruption cloud, 2) a wide-spread tephra fall deposit, and 3) the valley-

filling ignimbrite known as the Valley of Ten Thousand Smokes.  The transition to weaker and 

unsteady activity throughout the fourth episode involved extrusion and explosive destruction of a 

dacite dome resulting in a discontinuous block and lapilli apron (Hildreth and Fierstein 2000; 

Houghton et al. 2004).  The eruption ended after stable lava effusion during the fifth episode, 

forming the rhyolite dome (Novarupta) that is present on the valley floor today and enclosed by 

an ejecta ring formed by the later stages of Episodes II and III (Figure 1.4).     

1.4.1 Contributions from early workers 

Immediate interest in the eruption of 1912 and its deposits prompted several field investigations 

into pre- and post-eruptive processes at Katmai and the Valley of Ten Thousand Smokes (VTTS) 

in the early 1900s.  George Curtis Martin, a field geologist familiar with the Katmai coast prior 

to 1912, was the first to collect witness accounts of the eruption impacts and to compile a 

regional isopach map of total fallout, noting three principal layers of tephra fall (Martin 1913;  
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Figure 1.4 Aerial panorama of Novarupta basin and the Valley of Ten Thousand Smokes, 

extending 20 km northwest from Novarupta dome to the ignimbrite terminus at the base of 

Mount Katolinat.  The three arms of the upper valley (River Lethe, Knife Creek, and an un-

named valley between them) are separated by Baked (BM) and Broken (BR) Mountains which 

are pumice mantled ridges of glaciated Jurassic siltstone.  Falling Mtn is a pre-1912 dacite dome, 

Mt. Griggs is a 2,330-m-high andesitic stratovolcano, Buttress Range and Mt. Katolinat are 

formed from subhoriztonal sedimanetary strata from the Naknek formation.  Figure from 

Fierstein and Hildreth (2012). 

 

Hildreth and Fierstein 2012).  Naming of the VTTS is attributed to Robert Fiske Griggs, a field-

based botanist who was the first scientist to visit and document Katmai caldera, Novarupta dome, 

and the VTTS.  His work into the impact of ash burial upon vegetation, the source of the VTTS 

and Novarupta dome, the changing nature and behavior of the fumaroles, and mapping of Katmai 

and surrounding volcanoes culminated into a book titled The Valley of Ten Thousand Smokes 

(Griggs 1922). 



 

16 
 

 

Griggs hypothesized that the VTTS was formed by a hot mudflow, but colleagues 

Clarence Fenner and Emanuel George Zies later proposed that the source was a dry flow of hot 

ash and pumice analogous to nuées ardentes (Fenner 1920; Griggs 1922).  Fenner, a petrologist, 

correctly noted that Katmai caldera could not have been the source of the VTTS ignimbrite; 

however, he erroneously attributed it to the injection of a great sill based on 1) the sill shattered 

the rocks above it and created openings or fissures through which magma could ascend, 2) 

“extrusion and inflation” of the magma formed the great “ash or sand flow”, 3) Novarupta, 

which formed by the extrusion of stiff lava similar to the spine of Pelée, formed within a 

parasitic cone that resulted from the enlargement of a channel along one of the fissures, and 4) 

the active fumaroles discharged volatiles from this large magma body (Fenner 1920).  The sill 

theory was disproved by geochemists Eugene Thomas Allen and Emanuel George Zies, whose 

papers on the composition of the fumarolic gases and the morphology, mineralogy, and 

chemistry of the vents and deposits concluded that most of the fumarolic steam was from 

vaporization of surface waters that had infiltrated into the hot tuff (Allen and Zies 1923; Hildreth 

and Fierstein 2012).    

Garniss Curtis, a field geologist, volcanologist, and geochronologist helped establish a 

modern volcanological framework through which the 1912 eruption could be interpreted.  He 

showed that the fumaroles in the VTTS came from within the ignimbrite sheet itself and 

estimated that the valley-filling ignimbrite might be more than 200 m thick.  Most notably, 

Curtis recognized that both the ignimbrite and the fallout sheet came from Novarupta basin 

through the generation of isopach maps for the deposits.  He was also the first to propose 
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hydraulic interconnections between the main vent at Novarupta and the collapse caldera 10 km 

away at Mount Katmai (Curtis 1968; Hildreth and Fierstein 2012).   

1.4.2 Chronology of the eruption 

The five episodes (Table 1.1) are recognized by their distinctive eruptive deposits and eyewitness 

accounts of initiation, pause, and termination of local lapilli- and ash-fall.  A wide range of 

compositions were erupted with changing proportions throughout the eruption (Figure 1.5), 

defining a chemical stratigraphy that enabled correlation of coeval products of variable transport 

mechanisms at widely spaced localities (Fierstein and Hildreth 1992).  The eruption broke out 

through the Naknek formation, which supplied the majority of wall-rock lithics identified in the 

deposits, and formed a series of three nested vents that were active during specific episodes 

(Hildreth 1983, 1987; Hildreth and Fierstein 2000). 

Table 1.1 Key characteristics of each eruptive episode (Ep.). 

Ep. Style Duration 
(hours) 

MER* 
(kg/s) 

Column ht. 
(km) 

Volume 
(km3) 

Deposits 

I Plinian 16 1.6x108 27–28 
8.8 fallout 

11 flows 

Fallout layers A–B; 

valley-filling ignimbrite 

II Plinian 7–9 1.7x108 27–28 4.8 
Fallout layers C–E; 

proximal PDCs 

III 
Plinian/ 

sub-Plinian 
10 1.1x108 24 3.4 

Fallout layers F–H; 

proximal PDCs 

IV 
Effusive/ 

Vulcanian 
u/k** u/k n/a*** <0.0005 Block apron 

V Effusive u/k u/k n/a 0.005 Novarupta lava dome 

*Mass eruption rate; **Unknown; ***Not applicable 
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Figure 1.5 Changing proportions of rhyolite, dacite, and andesite pumice that erupted 

concurrently within each episode. Figure from Hildreth and Fierstein, 2012. HI Horseshoe 

Island. 

 

Episode I was the largest and most powerful, erupting 70% of the eruption’s total volume  

including nearly all of the ignimbrite and roughly half of the fall deposits (Table 1.1).  

Concurrently emplaced deposits are comprised of two widespread fallout layers A and B and 

nine packages of the main VTTS ignimbrite.  Fallout of layer A to the east-southeast (Figure 1.6) 

and accompanying radial emplacement of ignimbrite forming PDCs (package 1) both contained 

juvenile material exclusively of crystal-poor rhyolite (Figure 1.7; Fierstein and Hildreth 1992).  

Increasing contributions of dacite and andesite to the sustained eruption column is reflected in 

the compositionally zoned layer B and main valley-filling ignimbrite.  Eight successive 

compositionally distinguishable packages of ignimbrite correlate with three sub-fall-units, the 

latter contain a lower andesite fraction indicating it was preferentially excluded from the high 

Plinian plume (Figure 1.7; Curtis 1968; Hildreth 1983; Fierstein and Hildreth 1992; Houghton et 

al. 2004; Fierstein and Wilson 2005).  A shift in the relative significance of emplacement 

mechanisms also marks the transition from phase A to B as 90% of A was deposited as fallout 

and 80% of B was emplaced as ignimbrite (Hildreth and Fierstein 2012).    
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Figure 1.6 Isopach maps (contours in cm) of the 1912 fall layers: A and B (Episode I); C–E 

(Episode II); F–H (Episode III).  Outline of VTTS is shown for reference.  Dots are sites of 

measured sections. NL, Naknek Lake.  Figure from Hildreth and Fierstein (2012). 
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Figure 1.7 Schematic diagram illustrating the correlation between compositionally equivalent 

fall units and flow packages of Episode I. Vertical scale is time; no thickness data intended. R, 

Rhyolite; D, Dacite; A, Andesite. Figure from Hildreth and Fierstein (2012).  
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Layers A and B are Plinian fallout; however they have markedly different defining 

characteristics.  In addition to the change in composition, Layer B is thinner than A (Figure 1.6) 

and unit A is fairly well sorted, with sorting improving downwind, whereas unit B shows 

variable sorting throughout its three subunits.  Subunit B1 is poorly sorted due to co-ignimbrite  

ash containment, B2 is moderately to well sorted with slight inverse grading, and B3 is fairly 

well sorted and inversely to normally graded (Fierstein and Hildreth 1992).   

Reports of a great explosion, earthquakes, and eruption cloud at 1300 Alaskan time on 

June 6, 1912 mark the beginning of Episode I.  It broke through the Naknek formation at the foot 

of Trident volcano, eventually forming a 2-km-wide open flaring funnel-shaped vent.  The 

truncated scarps of Falling Mountain (a Pleistocene dacite dome), distal Trident lava flows, and 

Broken Mountain (uplifted Jurassic sedimentary rocks) define the highest parts of the rim of the 

vent (Figures 1.4 and 1.8; Hildreth 1983; Hildreth and Fierstein 2000, 2012).  Layers of mud 

studded with Katmai-derived lithics are intercalated with Novarupta pumice fall layers and the 

timing of the first major seismic event (MS>6) indicate that initial caldera collapse at Mount 

Katmai occurred ~11 hours into the eruptive sequence.  This was after ~8.5 km3 of magma had 

erupted during Episode I (Hildreth 1991; Abe 1992; Hildreth and Fierstein 2000).  Episode I 

ended after ~16 hours, back-filling the <1.5 km deep flared vent with ejecta.   

After a few hours break, initiation of subsequent explosive activity bore through the 

backfill ejecta to form a smaller, 450-m-wide nested vent that was active throughout the second 

and third episodes (Hildreth and Fierstein 2012).  Deposits of Episodes II and III consist of 

simple medial-distal Plinian fall layers and complex proximal, sector confined fall and PDC 

beds.  Similar to Episode I, Episode II’s fall deposits are distributed to the east-southeast of 
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Novarupta whereas Epidose III’s Plinian falls deposited over a broader area.  This slightly 

assymetrical accumulation toward the NE may be attributed to northeasterly drift of slow settling 

fine ash (Figure 1.6; Fierstein and Hildreth 1992). The flow deposits amount to no greater than 

1% of each episodes’ eruptive volumes.   

Curtis (1968) divided the Plinian falls into six units (Layers C–H) with virtually 

continuous pairs C–D and F–G deposited during Episodes II and III, respectively.  Proximally to 

medially, the paired beds contain characteristics of deposition from the umbrella cloud of a 

sustained Plinian plume: moderate sorting, aerodynamic equivalence among pumice and lithic 

clasts, and weak internal mantle bedding (Fierstein and Hildreth 1992).  Ash-rich layers E and H 

resulted from the slower settling of fines from Episode I–III Plinian plumes and small co-PDC 

plumes.  It is estimated that layer E formed during a temporary (few hours) shutdown of the 

stable plume between Episodes II and III, which is attributed to failure of the conduit/vent walls 

(Adams et al. 2006b).  This is evident in the proximal blast-like vent-clearing PDC deposits at 

the beginning of Episode III (Houghton et al. 2004) and constant vesicularity and bubble 

nucleation and growth textures in all pumices erupted throughout Episode II.  Conversely, 

increasing pumice density and textures indicative of more bubble growth and collapse (over 

nucleation) in clasts from layer G (end of Episode III) suggest a progressive shift to open-system 

degassing is responsible for the end of Plinian activity (Adams et al. 2006b).  This shift was 

likely due to a combination of 1) decreasing magma ascent rates and 2) shear fragmentation 

allowing limited permeable outgassing along the conduit walls and producing a low-porosity and 

high-viscosity magma annulus toward the end of episode III (Adams et al. 2006b; Nguyen et al. 

2014). 
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Compositional contrasts between the regional fallout and the coeval proximal deposits 

prevent confident correlation of their deposition in time.  Alternations of locally and regionally 

dispersed fall ejecta and thin flow and surge deposits that have no regional equivalents 

characterize the proximal deposits (Houghton et al. 2004).  Overall, dacite pyroclasts dominated 

the eruptive products of Episodes II and III, but the local fall and most of the proximal PDC 

deposits are richer in lithics and in andesitic and banded pumice than regional layers C–D and F–

G (Fierstein et al. 1997; Houghton et al. 2004).  Additionally, the locally dispersed fall deposits 

form sector-confined lobes and wedges that half in thickness within 100–300 m of the vent 

(compared to several kilometers for the medial-distal fall deposits; Houghton et al. 2004).   

The Episode II–III vent was backfilled by late-stage ejecta, and so the lava that was 

extruded in the fourth and fifth episodes reached the surface through a narrower conduit that was 

nested inside the larger backfilled vents (Figure 1.8; Hildreth and Fierstein 2012).  Episode IV 

comprised of extrusion and complete destruction of a dacite dome through Vulcanian explosions.  

Its deposit consists of an apron of decimeter to meter sized blocks and lapilli with a range of 

textures including pumiceous, dense, and flow-foliated dacites, and variably welded breccia 

(Adams et al. 2006a).  The juvenile components include small portions of andesite.  Vesicle 

textures, porosity, and permeability data suggest a continuation of outgassing processes that 

began in late Episode III ultimately resulted in extrusion of a dense/outgassed dome that enabled 

the system to become pressurized and primed for Vulcanian explosion(s) (see section 1.4.3.3; 

Adams et al. 2006a; Nguyen et al. 2014).   

The eruption terminated with extrusion of Novarupta lava dome, which is ~380 m in 

diameter, 65–70 m high, and circular in plan (Figure 1.4).  This steep-sided dome has a coarse  
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Figure 1.8 Conceptual cross section, to scale, showing the nested vent structure.  No vertical 

exaggeration. Figure from Hildreth and Fierstein (2012). 

 

blocky surface that is lacking any tephra (either uplifted by the dome or deposited subsequently) 

and a peripheral apron of coarse talus blocks.  95% of the Episode V dome is glassy, flow-

foliated rhyolite that carries the same assemblage of sparse phenocrysts as that erupted during 

Episode I (Figure 1.9; Hildreth and Fierstein 2012).  The remaining 5% consists of intermediate 

lava in the form of layers, lenses, and angular chunks of a darker brown color (compared to the 

pale to medium gray of the rhyolites).  Complex shaped voids in thin sections are similar to those 

of the Episode IV dense dacites, indicating prolonged partial outgassing (Adams et al. 2006a). 

The durations of Episodes IV and V are unknown as the dacite dome was never observed 

and the rhyolite dome was first observed on July 1916 when Griggs and Fenner first entered the 

VTTS and after lava extrusion had terminated.  Earthquakes continued after the end of local 

Plinian ash fall, with felt earthquakes recorded on 50 of the next 70 days through to mid-August  
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Figure 1.9 Middle section of Novarupta dome viewed from the west.  Note the blocky surface, 

the apron of talus blocks at the base, and the foliation in the large, pinkish blocks in the middle 

of the dome. 

 

(Martin 1913).  The most severe of these earthquakes were said to be on 11 and 21 June and 30 

July whereas the only remotely instrumentally recorded earthquake was a MS 6.2 event on 17 

June (Abe 1992).  Reports were also of continued dust at Puale Bay (called Cold Bay in 1912 

~60 km SSW of Novarupta) until 24 June, ‘smoke’ coming from the new crater, and smoke and 

acid fumes preventing getting close to the volcano (Hildreth and Fierstein 2012).  This activity 

could indicate continued activity within Novarupta basin at least through the summer of 1912, 

but it also could have been the result of 1) seismicity accompanying continued slumping of the 

steep inner walls of Katmai caldera, 2) continued dust due to the slow settling and resuspension 

of fines by strong winds, and 3) fumes and acid species coming from fumaroles at Novarupta, 

within Katmai Caldera, and the VTTS.  The only conclusive fact is that the Episode IV block 
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apron sits on top of shallow erosive gullies in layer H, indicating that the dacite dome was 

explosively destroyed after up to 50 cm of fines had accumulated locally and had been exposed 

to limited local erosion.  Geochemical and petrological evidence suggests that the rhyolite dome 

extruded less than a week after the Plinian eruptions (Hildreth 1983; Hammer et al. 2002), 

providing a much shorter time-frame for post-Plinian dome extrusion than has been observed at 

other volcanoes (e.g. the 2008 and 2011 eruptions of Chaitén and Cordón Caulle, Chile).  

1.4.3 Key previous volcanological findings 

Certain aspects about the eruption and its deposits have provided the opportunity to investigate 

pre- and syn-eruption dynamics in ways that are not available at most other volcanoes.  This has 

resulted in new insight into magma storage and transport, near vent column dynamics and 

sedimentation, and processes controlling transitions in eruption style.  This section addresses 

three key findings out of several that have contributed to advances in volcanology.  

1.4.3.1 Magma storage 

Studies into Novarupta’s production of a large volume of rhyolite within the wide compositional 

range of its products contributed to the highly debated subjects of storage within a zoned magma 

chamber and magma mingling processes.  A compositional gap of ~8 wt% SiO2 separates the 

juvenile rhyolite from a continuum between the dacite and andesite compositions of the 

remaining juvenile material.  Hildreth (1983) demonstrated that there is continuity in both 

magma temperature and oxygen fugacity among all 3 components (Table 1.2) suggesting 

physical contiguity of the pre-eruptive magma.  Coombs and Gardner (2001) and Hammer et al. 

(2002) conducted phase equilibrium experiments on the natural rhyolite and the dacite-andesite 
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ends of the continuum, respectively.  Their results (Table 1.2) support the theory of shallow 

storage of a single, physically contiguous, zoned magma body.  

Table 1.2 Composition and storage conditions of the 1912 rhyolite, dacite, and andesite. 

 SiO2 (wt%) Temperature* (˚C) Temperature** (˚C) Depth (km) 

Rhyolite 76.5–77.8 800–857 780–860 3–5 

Dacite 63.0–68.6 848–950 850–880 4–5 

Andesite 57.9–63.0 952–990 930–960 4.5–5.7 

* From Fe-Ti-oxide geothermometry (Hildreth 1983) 
** From phase equilibria experiments (Coombs and Gardner 2001; Hammer et al. 2002) 
 

The leading hypothesis proposes that this magma body was located under Mount Katmai.  

The evidence supporting this theory includes: 1) synchronous caldera collapse at Katmai, 10 km 

from Novarupta, 2) extrusion of the now submerged Horseshoe dacite dome within the caldera 

after the end of the Plinian episodes indicating that magma was present below Katmai, 3) the 

compositions of the 1912 products have consistent differences with those erupted at other 

volcanoes within the Katmai Volcanic Cluster (making these volcanoes less likely as candidates 

for the magma source), 4) Mount Katmai is the only volcano within the cluster to have erupted 

basalt and rhyodacite, with pyroxene dacite and silicic andesite predominant at the others, prior 

to 1912, 5) the 1912 suite has a closer affinity to the products erupted by the Southwest Katmai 

cone, the edifice that has produced the largest pre-historical Plinian eruption and the only pre-

1912 rhyodacite among the cluster, and 5) no evidence has been found to suggest recent magma 

storage beneath the Novarupta depression nor that more than one chamber erupted in 1912 

(Hildreth and Fierstein 2000). 
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  The currently favored pre-eruptive magma storage model is depicted in Figure 1.10.  The 

~3 km depth of the roof is constrained by the 4 wt% water saturated rhyolite estimated by 

Lowenstern (1993).  Formation of a 5.5 km3 caldera, which accounts for no more than 40–45% 

of the 13.5 km3 of magma erupted, and 1.2 km of vertical displacement at Mount Katmai 

necessitate that the storage chamber be at least that thick and areally more extensive than the 

caldera.  Shallow overburden and the horizontal bedding planes within the Mesozoic marine 

sedimentary rocks favor magma transport via a 6-km-long sill.  The magma had to crosscut strata 

as a dike in order to reach the 1912 vent site, but the dike could have been short (<5 km) 

considering Novarupta broke through a low-lying valley (Hildreth and Fierstein 2000).   The 

amounts of rhyolite, dacite, and andesite within the proposed storage chamber are based upon 

dense rock equivalents of each erupted component, and thus serve as a minimum for the 

estimated size of the chamber.  

The hypothesized reservoir is zoned from andesite at the base to rhyolite at the top based 

on 1) likely density contrasts for the different magma compositions and 2) the order in which 

differing components erupted.  Initial eruption of ~3 km3 of rhyolite in the first 3–4 hours of the 

eruption indicate that the conduit tapped the rhyolitic part of the reservoir first.  Conversely, 

rhyolite is sparse among all the Plinian fall layers of Episodes II and III except the lowermost 

part of C, suggesting the rhyolite was either exhausted or blocked from the conduit by the influx 

of dacite (Hildreth and Fierstein 2012).  This latter hypothesis is more likely considering the late-

stage production of a rhyolite dome during Episode V after the supply of dacitic magma was 

exhausted.  It is suggested that this rhyolite underwent partial open system degassing for an 

extended period (days-months, possibly since the close of Episode I) within some shallow 
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storage site and then was extruded passively after the Episode IV dacite was flushed (Hildreth 

and Fierstein 2012). 

 

Figure 1.10 Schematic of the plumbing system beneath Katmai and Trident; drawn to scale 

along N65°E volcanic axis, looking N25°W with no vertical exaggeration, after Hildreth and 

Fierstein (2012).  Elevations on profile are in feet. Wavy vertical lines indicate present-day 

fumarolic emissions.  Novarupta (N), Falling Mountain (FM), Mount Cerberus (MC), and West 

Trident (TW) are not along the section, and so their relative positions are indicated above profile.  

Jn, marine sedimentary rocks of Jurassic Naknek Formation; H.I., Horseshoe Island dacite dome; 

Agglut., remnant of pre-1912 agglutinated dacite fallout.  Magma reservoir for material erupted 

in 1912 is depicted as a contiguous chamber zoned from andesite (A) to dacite (D) to rhyolite (R) 

in proportions (1/4.5/7.5) erupted.  Chamber would have been larger to the extent that additional 

magma failed to erupt. 
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Alternatives to a long-lived zoned reservoir for the model of pre-eruptive magma storage 

and syneruptive transport include 1) multiple chambers and 2) the arrival of a new magma batch 

from depth.  Given the compositional gap between the phenocryst-poor rhyolite and porphyritic 

andesite-dacite continuum and the fact that the volume of the collapsed caldera accounts for less 

than half of the volume erupted, it is plausible that the 1912 magma involved the mixing of 

magmas from two or more discrete chambers (Curtis 1968; Hildreth 1983).  Hildreth (1983) 

proposed that 8 km3 of magma from Mount Katmai moved toward or into a system below 

Novarupta in response to eruptive losses suggesting a hydraulic connection between the two sub-

systems.  However, this would have required the systems to have the same thermal properties 

(given the thermal continuity of the three compositions) and for there to be a major heat source 

to maintain the rhyolite in its nearly aphyric condition (Hildreth 1983).  A major chamber 

directly beneath Novarupta now seems unlikely due to the rapid thermal decline of the vent 

region (Hildreth and Fierstein 2012).  

Eruptions may be triggered by the arrival in the magma chamber of a hotter, more mafic 

magma from depth.  Evidence of this generally occurs in the form of mafic enclaves that have 

chemical and mineral contrasts with the dominant melt composition.  No such mafic (or 

intermediate) material has been found in the deposits, but it has been proposed that the aphyric 

rhyolite served as such a trigger.  Eichelberger and Izbekov (Eichelberger and Izbekov 2000) 

proposed that a rhyolite dike rose from depth and simultaneously breached the surface at 

Novarupta and intersected a shallow andesite-dacite reservoir beneath Mount Katmai.  Hildreth 

and co-workers present three main lines of evidence against this hypothesis.  First, the east-west 

strike of the hypothetical dike would have been at a high angle to the closely coinciding vertical 
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jointing in the basement rock and plate-convergence vectors (Hildreth 1987; Wallmann et al. 

1990; Hildreth and Fierstein 2012).  Second, such a high volume rhyolite dike would have 

required partial melting of an equally high volume, deep, felsic pluton plus transport to the 

surface through mafic and intermediate mush pods without entrainment or mixing (Hildreth and 

Fierstein 2012).  Finally, the close thermal, isotopic, and glass-compositional continuity of the 

rhyolite with the dacite would have been merely coincidental (Hildreth and Fierstein 2012).     

Eruption of compositionally banded pumice (Figure 1.11) during Episodes I–IV and dark 

colored lenses and layers within the rhyolite dome are the result of mingling of confluent but 

compositionally distinct magmas.  Banded pumice represent 3–5% of all pumice produced in the 

eruption; however, their fraction varies between 0–37% in the individual subunits (Fierstein and 

Hildreth 1992).  Sharp contacts between compositional bands, e.g. glassy andesite chilled against 

the rhyolite (Curtis 1968), are indicative of short mingling times (minutes to hours prior to 

fragmentation) within the system feeding the eruption.  Confluence of magmas may have been 

limited to transport, but it was long enough for the andesite to be partitioned to a peripheral 

collar around the emerging jet (next section).  Rhyolite-andesite and dacite-andesite are much 

more common than rhyolite-dacite combinations, and pumice containing all 3 are rare.  This is 

more likely due to the difficulty in mingling the high viscosity dacite and rhyolite magmas than 

to transport processes.  The lower viscosity, higher temperature andesite may have been the key 

to unstable conduit flow promoting entrainment of the two high viscosity magmas (Fierstein and 

Hildreth 1992; Hildreth and Fierstein 2012).  
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Figure 1.11 Banded pumice clasts from the VTTS ignimbrite.  Knife is 8.5 cm long.  Figure 

from Hildreth and Fierstein (2012). 

 

1.4.3.2 Implications of proximal deposits 

Evidence in proximal deposits for near-vent processes is usually lost in large eruptions due to 

subsequent burial, erosion by PDCs, or caldera collapse.  Caldera collapse 10 km from 

Novarupta and subsequent dome extrusion with only minor fallout from Vulcanian explosions 

allowed for unprecedented preservation of the ultra-proximal deposits from Episodes II and III.  

They include the true proximal equivalents to the widespread Plinian fall deposits in addition to 

intercalated narrow lobes of proximal fallout and sector-confined proximal PDC deposits.  The 

ejecta ring, a 7–225 m thick asymmetric tuff ring surrounding the inner vent plugged by the 

Novarupta dome, was formed by these deposits during the second half of Episode II and all of III 

(Fierstein et al. 1997; Houghton et al. 2004). 

The stratigraphy of the proximal deposits is far more complex than the medial-distal fall 

sequence.  There are four characteristics unique to the proximal products (Houghton et al. 2004): 
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1) The fall ejecta are fines poor, moderately sorted, and show rapid changes in thickness 

over tens to hundreds of meters, both radially and concentrically with respect to 

Novarupta dome. 

2) The PDC deposits have poor sorting with variable amounts of ash matrix and their 

distributions vary locally in thickness in response to topographic relief. 

3) Conspicuous, outsized/meter-scale lithic or pumice blocks were emplaced 

ballistically. 

4) Sudden shifts or influxes in composition, particularly andesitic, rhyolitic, and banded 

pumices, are confined to sectors in both fall and flow deposits and contrast to the 

dominantly dacite medial and distal deposits. 

Fierstein et al. (1997) and Houghton et al. (2004) interpreted these deposits and their distinctive 

characteristics as the result of sedimentation from the margins of the jet and lower plume (Figure 

1.12).  These interpretations include (in order of the above list): 1) locally and confined fallout of 

clasts from the jet because they were not adequately supported by upward gas flow (Regime 3 of 

Houghton et al. (2004)), possibly in the form of an irregular ‘collar’ of low-fountaining ejecta 

partially sheathing the high-velocity dacitic core; 2) PDCs generated by small scale collapses 

around the plume margins and overspill from the vent because fountaining of all grain sizes 

prevents entrainment of enough air to attain positive buoyancy (Regime 2); and 3) direct lateral 

ejection of clasts detached from the rising plume (Regime 4).  In regards to the changing 

composition of the proximally deposited clasts relative to the dacitic Plinian fallout, Fierstein et 

al. (1997) suggest that the more mafic magma was positioned toward the conduit walls making it 

more likely to enter the lower velocity sheath of low fountaining ejecta.  This may have been due 
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to viscous segregation while in the conduit or deeper controls relating to the geometry of the 

conduit and where and how the andesite was released to the vent system.  The lateral changes in 

proportions of andesitic and dacitic pumices at least suggest limited mixing within the jet region 

(Houghton et al. 2004).   

Not only did these deposits reveal processes of early sedimentation from the jet and 

convective regions of buoyant plumes, but they also challenge certain assumptions made in 

eruption column models and provide insights to heterogeneities and instabilities within the 

emerging column (Houghton et al. 2004).  The deposits disprove the assumptions that 

sedimentation from margins of the ascending jet is negligible and that eruption style oscillates 

between fall and PDC activity (rather than simultaneous buoyant and non-buoyant states).  Also, 

models utilize a ‘top-hat’ velocity profile (Figure 1.13) for the plume and assume that velocity 

profiles and particle concentrations are axisymmetric.  Rapid lateral changes in 1912 proximal 

deposit thickness, composition, and transport mechanisms reflect heterogeneities in the emerging 

jet portion of the column due to complex ascent of the pyroclast/gas mixture.  The development 

of a slower annular zone of higher particle concentration that is more prone to fountaining and 

collapse relative to the turbulent core implies that a non-uniform (possibly Gaussian) velocity 

profile should characterize the material as it emerged from the jet (Houghton et al. 2004).  
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Figure 1.12 Diagram of the regimes of Houghton et al. (2004) that typified the proximal 

environment throughout Episodes II and III and produced the complex proximal deposits.  

Figure from Houghton et al. (2004). 
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Figure 1.13 Schematic diagram of a “top-hat” velocity profile. 

 

1.4.3.3 Transitions in eruption style 

A complete shift from closed to open system degassing generally explains the transition from 

explosive to effusive silicic volcanism; however, the Vulcanian phase during Episode IV 

indicates more complex degassing and outgassing processes during this shift.  Adams et al. 

(2006a) developed a conceptual model for development and fragmentation of the dacite dome 

through a vesicularity and textural analysis of the Episode IV block apron.  They suggest that, 

during Episode III, a partial shift to open system degassing led to the accumulation of slowly 

ascending dense, degassed/outgassed magma to line the conduit walls while melt along the axis 

continued to ascend rapidly, nucleating and growing vesicles at shallow depths.  The radius of 

the conduit gradually reduced until the degassed material effectively blocked the conduit, but the 

upward rise of the volatile-rich melt drove the outgassed material towards the surface resulting in 

a plug or dome (Figure 1.14).  Subsequent intrusion of hotter, vesiculating magma into the 

cooler, denser material resulted in a heterogeneous dome consisting of complex regions of 

variably degassed and/or outgassed material (Figure 1.15).  Adams et al. (2006a) thus suggest 

that coeval open and closed system degassing were active at similar levels within the shallow 

conduit.   
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Two modes of fragmentation of the dome are proposed by Adams et al. (2006a).  In the 

first scenario, the system became pressurized in response to loss of permeability due to 

catastrophic bubble collapse.  A fracture in the dome or partial gravitational collapse would 

release the pressurized gas and initiate a Vulcanian explosion.  Alternatively, infiltration of 

external water into the dome could have triggered and provided additional energy to the 

explosion.    

 

Figure 1.14 Illustrations of the processes that resulted in the shift in eruption style during 

Episodes III and IV.  As open system degassing progressed, dense, degassed magma 

progressively lined the conduit walls until the vent become blocked.  Continued ascent of 

vesiculating magma pushed this dense cap upwards and intruded into the dome/plug.  

Rectangular region in last panel is enlarged in Figure 1.15.  Figure from Adams et al. (2006a). 
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Figure 1.15 Enlarged region of the dome highlighting heterogeneity within the dome lava and 

the intruding melt.  Dome material is highly outgassed, whereas intruding melt is variably 

partially outgassed and/or actively degassing.  Figure modified after Adams et al. (2006a). 

 

1.5 Motivation for research 

The work of Adams et al. (2006a) on the Episode IV deposit was among the first studies to 

propose significant heterogeneity within very shallow depths prior to some Vulcanian 
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explosions.  It was also at the leading edge of research that provided evidence of the shift from 

closed to open system degassing that plays a significant role in the decline of powerful explosive 

eruptions.  However, development of new and improved laboratory-techniques (e.g. for porosity 

and permeability, or matrix glass water content) since that study (Rust and Cashman 2004, 2011; 

Wright et al. 2006; Burgisser et al. 2010; Le Losq et al. 2012; Shea et al. 2014; Drignon et al. 

2016) have provided an opportunity to expand on, and provide a greater understanding of, 

processes occurring within the shallowest conduit during Vulcanian explosions. Additionally, the 

2006 work brought about more questions in light of the results, including: 

• How did this heterogeneity develop in the shallow conduit/dome? 

• Quantitatively, what is the lateral and vertical length scales of this heterogeneity? 

• What was the trigger for the explosion(s) that destroyed the dacite dome? 

• How do the Vulcanian explosions of Episode IV compare to those observed in recent 

decades and to the theoretical and numerical models developed from those observations? 

• What implications do these results have for the decline of powerful explosive eruptions? 

The work for this dissertations addressed aspects of these questions through 1) more extensive 

field mapping and 2) greater inspection of the block lithologies and (in particular) the differences 

within individual component groups through the application of existing (bulk vesicularity, 

qualitative 2D micro-textures) and new/improved (porosity and permeability, matrix glass water 

measurements) laboratory techniques.  For example, breadcrusted and banded blocks are 

mentioned in the previous work but not studied in detail.  Understanding the processes that 

encouraged/enabled breadcrusting and banding can provide insight to processes occurring 

within, and the structure of, the conduit.  This work also addresses certain aspects of the previous 
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research that were left unresolved: such as whether or not there were multiple explosions 

throughout Episode IV.   

Although no near-vent observations from the time of the eruption are available for 

Episode IV, the rationale for focusing on this particular Vulcanian event is two-fold:  1) the 

preservation of its ultra-proximal deposit is unprecedented due to caldera collapse (a common 

consequence of large-volume eruptions) occurring 10 km away from the source vent and to it 

being the last preserved explosive deposit from the 1912 eruption and 2) observations and 

models of recent Vulcanian explosions were focused on events that dominantly disrupted long-

lived dome growth. In contrast, Episode IV involved relatively short-lived passive extrusion that 

was disrupted by relatively weak explosions that occurred at the end of much more powerful 

explosive activity.  The recent rhyolitic Plinian eruptions of Chaitén in 2008 and Cordón Caulle 

in 2011–2012 also concluded with lava extrusion and intermittent Vulcanian explosions, yet their 

deposits are not as easily accessible nor as well preserved.  Field and laboratory results from this 

study can, in the future, be combined with such 21st century observations to provide a clearer 

understanding of what causes these types of Vulcanian explosions. 
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CHAPTER 2 

Eruptive and shallow conduit dynamics during 

Vulcanian explosions: Insights from the Episode IV block 

field of the 1912 eruption of Novarupta, Alaska 
 

Published in Bulletin of Volcanology as: 

Isgett, S.J., Houghton, B.F., Fagents, S.A., Biass, S., Burgisser, A., Arbaret, L. (2017) Eruptive 
and shallow conduit dynamics during Vulcanian explosions: insights from the Episode IV 
block field of the 1912 eruption of Novarupta, Alaska. Bull Volcanol 79:58. doi: 
10.1007/s00445-017-1138-4 

 

Abstract 

The study of ~1,300 juvenile and lithic blocks from a Vulcanian phase of the 1912 eruption of 

Novarupta provides new insight into the state of the magma as an eruption passes from sustained 

Plinian to dome growth.  Blocks that were predominantly ballistically ejected were measured and 

sampled within an ~2–3-km radius from vent and supply a picture of a dynamic and complex 

shallow conduit prior to magma fragmentation in repeated small explosions.  Extreme conduit 

heterogeneity is expressed in the diverse range of dacitic block types, including pumiceous, 

dense, banded, and variably welded breccia clasts, all with varied degrees of surface 

breadcrusting.  We present new maps of block lithology and size, making Episode IV the most 

thoroughly mapped Vulcanian deposit to date.  Sectorial regions rich in specific lithologies 

together with the block size data suggest multiple, small explosions.  Modeling of block 

trajectories to reproduce the field data indicates that ejection velocities range from 50–124 m/s 
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with a median of ~70 m/s.  We propose that individual explosions originated from a 

heterogeneous shallow conduit characterized both by the juxtaposition of magma domains of 

contrasting texture and vesiculation state and by the intimate local mingling of different textures 

on short vertical and horizontal length scales at the contacts between these domains.  In our 

model, each explosion disrupted the conduit to only shallow depths and tapped diverse, localized 

pockets within the conduit.  This contrasts with existing models for repetitive Vulcanian 

explosions, and suggests that the dynamics of Episode IV were more complex than a simple 

progressive top-down evacuation of a horizontally stratified conduit. 

 

2.1 Introduction 

Vulcanian eruptions are short-lived, impulsive explosions that are generally episodic and 

unpredictable.  The impacts of individual Vulcanian explosions are typically less devastating 

than their larger, steady and sustained explosive counterparts, yet they are much more common 

and can pose protracted risks when they occur in sequences lasting weeks to decades.  Vulcanian 

explosions last seconds to minutes and evacuate only a portion of the magma resident in the 

upper conduit, producing small volumes of <0.1 km3 dense rock equivalent (DRE).  The 

resulting short-lived plumes typically reach heights of <10 km and may collapse to form 

pyroclastic density currents (Clarke et al. 2002b; Clarke 2013).  A striking feature of many 

Vulcanian deposits is an abundance of highly diverse juvenile pyroclasts in varying proportions 

and textures.  In a single eruption pyroclasts may range between dense and highly vesicular and 

from microlite-free to microlite-rich (Adams et al. 2006a; Clarke et al. 2007; Wright et al. 2007; 

Cassidy et al. 2015).   
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The best-studied recent Vulcanian eruptions involved short, more-intense intervals of explosive 

activity during long-lived dome building eruptions (Melnik and Sparks 1999; Druitt et al. 2002; 

Kennedy et al. 2005; Scheu et al. 2006, 2008; Clarke et al. 2007; Burgisser et al. 2010; Giachetti 

et al. 2010).  However, Vulcanian behavior can mark the opening stages of larger, sustained sub-

Plinian or Plinian eruptions, such as during the 1991 eruption of Mount Pinatubo, Philippines 

(Hoblitt et al. 1996), or provide a transition from sustained powerful explosions to lava effusion 

as it did during 1980–1982 at Mount St. Helens, USA (Christiansen and Peterson 1981).  At 

Soufrière Hills volcano, Vulcanian explosions during 1997 comprised short sequences of 

explosions that were part of longer lived dome growth and collapse (Druitt et al. 2002).  Smaller 

Vulcanian explosions can also occur daily over prolonged periods throughout decades-long 

dome building eruptions, such as the 1929–present eruption of Volcán Santiaguito, Guatemala 

(Sahetapy-Engel et al. 2008). 

Field observations such as ballistic range and clast size and density have been used to 

estimate eruptive conditions during transient explosions using models that apply the equations of 

motion and drag relationships.  Early models assumed that pyroclasts were ejected into a 

stationary atmosphere resulting in an overestimation of the atmospheric drag force early in the 

explosion and unrealistically high ejection velocities (Minakami 1942; Fudali and Melson 1971; 

Wilson 1972).  More-sophisticated computational schemes have been developed over the last 

three decades in an attempt to account for changes in the drag force due to moving volcanic and 

atmospheric gases (Fagents and Wilson 1993; Waitt et al. 1995; Mastin 2001; Alatorre-

Ibargüengoitia and Delgado-Granados 2006; de’ Michieli Vitturi et al. 2010; Alatorre-
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Ibargüengoitia et al. 2010, 2012; Benage et al. 2014; Bertin 2017) and have yielded velocities 

closer to those estimated from image analysis.   

Our current understanding of the initiation of Vulcanian events is firmly tied to models of 

such systems involving cyclic dome growth, development of a dense outgassed region in the 

upper conduit, conduit pressurization, dome disruption, fragmentation and conduit evacuation, 

and finally conduit refill (Druitt et al. 2002; Diller et al. 2006; Burgisser et al. 2010; Clarke 2013; 

Clarke et al. 2015).  In such models, Vulcanian eruptions are the consequence of the sudden 

downward decompression of a conduit containing pressurized, horizontally stratified, 

rheologically heterogeneous magma in varying states of degassing and outgassing (Self et al. 

1979; Turcotte et al. 1990; Fagents and Wilson 1993; Woods 1995; Clarke et al. 2002a, b).  

The variety of pyroclast densities and textures produced in Vulcanian explosions 

associated with large Plinian eruptions hints at a more complex conduit architecture than a 

simple horizontal layering (Adams et al. 2006a) and contrasts with the simple pyroclast textures 

seen in the associated Plinian phases.  Opportunities to study the degree of this complexity, and 

how it influences the style of the overall eruption, are limited.  Products of Episode IV of the 

1912 eruption of Novarupta provide a unique opportunity to assess conduit complexity as the 

deposits are exceptionally well preserved.  The Novarupta eruption consisted of five episodes 

ranging from strong Plinian (mass eruption rates of 1.1–5 x 108 kg/s) to dome effusion (Fierstein 

and Hildreth 1992; Hildreth and Fierstein 2000; Houghton et al. 2004; Adams et al. 2006b; 

Nguyen et al. 2014).  Sixty hours of Plinian explosions erupted first predominantly rhyolite 

(early Episode I) and then dacite with minor amounts of andesite (Episodes II–III).  Episode IV 

produced a dacitic block bed, interpreted as the product of complete destruction of a dacite 
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plug/dome via Vulcanian explosions, before extrusion of a rhyolite dome in Episode V (Hildreth 

and Fierstein 2000; Houghton et al. 2004; Adams et al. 2006a).  There were no direct 

observations of any part of the Novarupta eruption, only of events that affected surrounding 

communities such as earthquakes and ash/lapilli fall (Hildreth and Fierstein 2012).  Without 

direct observations, durations and other source parameters for Episodes IV and V are unknown 

and we are dependent on the deposits for further understanding.   

Compensatory caldera collapse during the Plinian episodes occurred 10 km from vent, 

preserving the ultra-proximal deposits from Episodes I through IV to within 200 m from source.  

The Episode IV block and lapilli apron that caps the fine ash from the close of Episode III is the 

only evidence that a dacite plug/dome formed at this time.  The Episode IV deposit permits us to 

investigate the processes involved in the decline of a voluminous Plinian eruption during the 

transition from powerful, sustained explosive activity to stable extrusion of a lava dome. We can 

also contrast Episode IV with well documented Vulcanian explosions during recent dome-

building eruptions elsewhere, and address questions such as the following: what were the 

physical states, and their proportions, of the magma in the conduit; and did a single event destroy 

the plug/dome or did it involve a series of explosions?   

 

2.2 Methodology 

A total of 639 blocks was added to an existing data set (Adams et al. 2006a) yielding a new total 

of 1,273 mapped blocks (Figure 2.1).  The largest blocks within 20–60-m-wide square areas at 

any distance and azimuth from the vent were located with a handheld GPS.  Lithology, textures 

(including breadcrust rinds), and the three largest orthogonal dimensions were recorded, and an  
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Figure 2.1 (Left) Distribution of the Episode IV blocks according to lithology.  Black regions 

are locations for the componentry quantification.  Black dashed line delineates the area 

overlapping with the Episode IV block apron that contains dense andesites from the 1953–1974 

eruptions of Southwest Trident volcano.  Round feature in middle is the Episode V rhyolite 

dome.  (Right) Location map for the 1912 deposits, including the Valley of Ten Thousand 

Smokes (in purple) and the Episode V dome (in red).  Yellow star in bottom right denotes the 

location within Alaska. Figure modified after AVO/ADGGS. 
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average dimension was calculated from the measurements.  Fragments of blocks that broke apart 

upon landing and could not be reassembled were piled up and average dimension was estimated 

using the scaling factor of Adams et al. (2006a).  A separate componentry quantification was 

conducted in five areas chosen for their density of blocks, remoteness from post-eruptive 

channels, and representative radial direction from the dome (black areas in Figure 2.1).  Two 

areas northwest of the Episode V dome were mapped by Adams et al. (2006a) and three areas in 

the south and southeast were measured in this study; the region northeast of the dome is not 

represented because of the steep slopes beneath the 1912 ejecta in this area.  The 100 largest 

blocks (regardless of distance from one another) were measured along parallel transects within 

each area in order to ensure that the proportions of each component were accurately represented.  

Block densities were measured for a representative number of clasts within each componentry 

group, and an average density was calculated per group and applied to blocks that were not 

sampled. 

Maps of block distribution according to (i) lithology and (ii) average dimension were 

constructed in ArcGIS.  Note that these maps do not necessarily show the distributions of every 

large block on the ground surface.  For example, if the largest block size is 50 cm (average 

dimension), then any blocks <50 cm within a 20–60-m square were not mapped.  Care was taken 

to measure only blocks that were preserved in situ.  This explains the reduced number of data-

points along steep slopes and the major gaps in the regions to the east (a seasonal lake bed) and 

southwest (a fluvial pumice delta) of the Novarupta dome on our maps. 

Individual block trajectories were simulated using the algorithm of Fagents and Wilson 

(1993) to estimate initial ejection angles and velocities.  Due to the difficulty of constraining the 
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necessary conduit parameters for a detailed description of the drag regime close to the vent (e.g., 

conduit radius, gas volume fraction), we assume the ejection of blocks into a still atmosphere.  

We estimated the threshold, in terms of size and density, at which blocks could be treated as 

ejected into a stationary atmosphere, versus those blocks that were influenced by motions of the 

ambient (volcanic plus atmospheric) gases.  This enabled a narrowing of the results down to the 

most likely eruptive conditions during Episode IV.  A detailed description of the equations of 

motion is presented in Appendix A.1. 

 

2.3 Block data 

2.3.1 Episode IV block componentry 

Clasts forming the texturally diverse and chemically homogeneous block apron were categorized 

into the lithologic groups assigned by Adams et al. (2006a). The majority of blocks are textural 

variations on phenocryst-rich dacite, and less than 1% include a pumiceous andesite component.  

Dacites were classified as pumiceous dacite, dense dacite, banded dacite, or breccia. Within each 

lithologic group, breadcrusting may be present or absent.   

The pumiceous dacites are highly vesicular (average of 67%; Figure 2.2) and the 

dominant lithology in the field (Figure 2.3).  Non-breadcrusted pumices are microvesicular with 

textures very similar to the Episode III Plinian pumices.  Dense dacites are crystal-rich and 

vesicle-poor (Figure 2.2), with 9% average vesicularity, and are the second least abundant 

lithology by volume.  Their vesicle population is not visible to the naked eye.  A number of dark, 

crystal-rich, dense blocks in a restricted area between West Trident and Novarupta basin (within  
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Figure 2.2 (previous page) Clast lithologies observed within the Episode IV block field.  a Non 

breadcrusted pumice, N406.  b Dense dacite, B126.  c Breadcrusted dense banded, note that this 

block has mm banding and consists of dominantly darker gray, denser bands with lighter gray, 

lower density laminae, N113.  d Pumiceous banded with overall beige pumiceous texture and 

light gray slightly denser bands, N322.  e Mixed banded with bands of varying shades of gray 

and densities, note how the banding extends into the thin crusts on the outside edges of the flat 

faces, N197.  f Breadcrusted mixed banded block with sub-equal amounts of 

centimeter/decimeter thick dense and eroded pumice bands, B349.  g and h Samples from block 

B349, note how the centimeter thick dense and pumiceous bands contain laminae of different 

densities. Banding can be seen extending into the crust (left side of picture in g and at top of 

picture in h) in the form of darker/slightly more vesiculated crust that expands into interior 

pumice (red arrow in h).  i Lightly welded breccia, weathering of the red oxidized and friable 

ashy matrix has formed a textured surface of outcropping pumice, B297.  j Moderately welded 

breccia, B51.  k Densely welded breccia, N038.  l Inset of k highlighting the flattened pumice.  

m Dense vitrophyre with oxidized red lithics, N305. 

 

the dashed line in Figure 2.1) appear similar to the Novarupta dense dacites; however, they are 

andesites from the 1953–1974 eruptions of Southwest Trident volcano (Coombs et al. 2000).  

Banded blocks exhibit sharp textural banding of juvenile dense and pumiceous dacite and 

were subdivided into three categories based on the relative proportions of each texture.  A 

spectrum of flow banding types is present ranging from dominantly dense dacite (dense banded) 

to dominantly pumiceous dacite (pumiceous banded), and end-member vesicularities are 33% 

and 63%, respectively (Figure 2.2).  Other banded clasts contain sub-equal amounts of dense and 

pumiceous dacite (mixed banded), in often sharply delineated bands.  Banding may be on a 

millimeter or centimeter scale or both, and bands may show plane-parallel contacts to their  
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Figure 2.3 Proportions of each component according to volume (left) and number (right).  Each 

column is separated into lighter breadcrusted and darker non breadcrusted proportions.  The 

breccias and pumices are most dominant according volume, and the pumice blocks are 20% 

more numerous than any other lithology.  The pumice and banded blocks are significantly more 

breadcrusted than the breccias and dense dacites. 

 

neighbors or pinch and swell.  Strikingly, banding extends into rinds of breadcrusted samples 

(Figure 2.2).   

Breadcrusting, a variably cracked, quenched rind that generally is denser than the 

interior, is present on examples of all the lithologies, but especially on banded and pumiceous 

blocks (Figures 2.2, 2.4).  Breadcrusting is more prevalent amongst the largest pumices but not 

for the dense dacites or breccias (Figure 2.5).  Rind vesicularity ranges from microvesicular but 

dense pumice to material that resembles dense dacite.  The interiors of breadcrusted pumices are 

microvesicular but have significant numbers of centimeter-sized vesicles. There is always a  
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Figure 2.4a Breadcrusted moderately welded breccia, B347.  b Breadcrusted pumiceous dacite, 

N332.  c Cross-section of a breadcrusted pumiceous dacite, note the gradational change in color 

reflecting an increase in bubble size and number towards the interior, N120. 

 

 

 

 

Figure 2.5 Plot of the proportion of breadcrusted pumice (left) and dense dacite (right). Each 

lithology’s block population was ordered by increasing average dimension and divided into 

quarters.  The proportion of breadcrusted blocks was then calculated for each quarter. Note how 

the proportions of breadcrusted pumices increase with increasing block size whereas the dense 

dacites show no correlation between block size and the presence of breadcrusting. 
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gradual increase in number and size of the largest bubbles towards the block interior.  Rind 

thickness is directly correlated with the density contrast between crust and interior. 

Breccias are of two types.  The dominant breccia type (31% by volume) consists of 

dacitic pyroclasts and little or no wall rock in an ash matrix and exhibits a range of welding in 

the form of degree of pumice flattening and welding of the ash (Figure 2.2).  Lightly welded 

breccias have an average density of 1600 kg/m3 and are characterized by equant dacite pumices 

in a friable ashy matrix.  The moderately welded breccias are defined by a welded matrix 

showing clear pyroclast outlines with moderate flattening ratios averaging 3:1 and an average 

density of 1950 kg/m3.  The lithic-free dense breccias have an average density of 2200 kg/m3, a 

crystal-rich, vitroclastic matrix, and pumice flattening of 5:1 to 7:1.  Breadcrusting is present in a 

small proportion of these blocks.  A second, subordinate category of breccias includes densely 

welded blocks containing pumice and pre-1912 Jurassic siltstone wall-rock lithics, which are 

commonly oxidized brick-red, set in a dark gray or black obsidian-like matrix (Figure 2.2). They 

also occur in the Episodes II and III Plinian fall deposits and were inferred by Hildreth (1987) to 

be vitrophyric breccias formed in the Episode I vent.  These breccias will be referred to as ‘dense 

vitrophyre’ for the rest of this paper.   

2.3.2 Block distribution by lithology and size 

Adding our observations to those of Adams et al. (2006a) makes Episode IV globally the most 

comprehensively mapped Vulcanian block field (Nairn and Self 1978; Yamagishi and Feebrey 

1994; Waitt et al. 1995; Druitt et al. 2002).  We mapped the block distribution in terms of 

lithology and size (i.e., average dimension of the whole or reconstructed block), revealing a 

roughly N-S elongated elliptical deposit in which block size diminishes radially with distance 
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from vent.  The spatial distribution of blocks suggests preferential clustering along a few radial 

axes (Figure A.1 in Appendix A). In particular: 

 

• Dense dacites are present radially within 600 m of vent (which lies beneath the 

Episode V dome) and are particularly abundant to the northwest to west and 

southwest to south.  At distances >600 m the dense dacites are weakly and unevenly 

concentrated to the north and south and are sparse to the east and west. 

• Pumiceous dacites have a relatively even distribution to the north, east, and west and 

are moderately sparse south of the dome. 

• Episode I dense vitrophyres are mostly strongly concentrated in the northeast, with 

weaker dispersal north, west, and south of the dome. 

• Densely welded breccias are present in all radial directions within 600 m of vent, but 

are conspicuously richer in the south and absent from the north at distances >600 m. 

• Moderately welded breccias are distributed in all sectors within 800 m of vent, and 

are particularly densely concentrated in the northwest to west and southwest to south 

quadrants.  They are also noticeably absent to the north and present at greater 

distances to the south.   

• Lightly welded breccias are concentrated in the west and northeast sectors with a 

weaker dispersal to the south and are nearly absent north of the dome.   

• Pumiceous banded clasts have concentrations to the west, east, and southeast and are 

fairly sparse in the other sectors.  



 

55 
 

 

• Mixed and dense banded clasts have similar dispersals with stronger concentrations 

in the northwest to west and southwest to south sectors.  They have only a minor 

presence to the northeast and are conspicuously absent directly north of the dome.  

In summary, only the dense dacites and the densely and moderately welded breccias have a 

consistent presence in all sectors (to within 600 m) around the vent.  The pumiceous dacites have 

a distinct concentration in the northwest to northeast sectors which is not present for the other 

lithologies.  The remaining lithologies have sectoral confined distributions that usually 

(vitrophyre excluded) include more southerly (rather than northerly) distribution.  

Figures 2.6 and 2.7 are isopleth maps for groups of lithologies with closely overlapping 

density distributions.  These maps show proximal polylobate contours for the largest clasts and a 

smoothing of the smaller blocks’ isopleths.  The number, geometry, size distribution, and 

orientation of the lobes are correlated to block density.  Higher densities produced lobes 

extending the farthest and to a smaller size fraction.  The denser lithologies have six narrow 

lobes in the western and southern sectors whereas the lower-density components have fewer 

(five pumice, four banded, and three breccia) and broader lobes that point towards the NW, SW, 

SE, NE, and N.  The northern sector is characterized by a conspicuous absence of larger blocks 

and only one well-defined pumice lobe.   

The overlap in 125- and 100-cm contours in Figure 2.7 shows how distributions of 

different block types coincide in the northern sector.  This contrasts with individually directed 

lobes towards the south of the dome.  A broadening of fingers with decreasing block size results 

in a loss of distinct directionality especially in the southern sector, as is evident in the 

overlapping of fingers in the 75-cm contours.    
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Figure 2.6 Isopleth maps for the component groups. 
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Figure 2.7 Maps of overlapping isopleths of a single size from different lithological groups.  Arrows indicate directed lobes within the 

deposits. 
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Regardless of lithology or density, there is a general trend for block size to decrease with 

distance from the vent (Figure 2.8; Table 2.1). However, the spread in block sizes reaching a 

given distance suggests that this correlation is associated with a large uncertainty.  For example, 

block sizes present at a distance of 500 m in Figure 2.8 range between 25 and 120 cm. 

 

 

 

Figure 2.8 Average diameter versus distance for each of the lithologies (br = breccia).  Black 

dots represent blocks for which launch velocity exceeded the 600 m/s upper limit set within the 

model. 
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Table 2.1 Minimum, maximum, and the range of distances that the largest and smallest blocks 

traveled.  Note how smaller blocks travelled further and cover a much wider range of distances, 

regardless of density. 

Density 
group 

(kg/m3) 

Block 
size 
(cm) 

Minimum 
distance 

(m) 

Maximum 
distance 

(m) 

Range 
 

(m) 

<1000 ≥100 190 818 628 
<50 329 2423 2094 

1000–<2000 ≥100 206 902a 696 
<50 301 1791 1490 

≥2000 ≥100 204 942b 738 
<50 295 2264 1969 

aOutlier maximum of 1052 m 
bOutlier maximum of 1286 m 

 

 

2.3.3 Block trajectory modeling results 

2.3.3.1 General features 

Initial conditions were estimated with the trajectory-tracking model of Fagents and Wilson 

(1993) for 1,269 blocks by incrementally cycling through ranges of ejection velocities (between 

10 and 600 m/s) and launch angles (between 45 and 89° from horizontal) to find the 

combinations that reproduced observed block ejection distances within a buffer of ±10 m.  

Solutions were found for 972 blocks, while the remaining 297 (i.e., 23%) required implausibly 

high ejection velocities (greater than the 600 m/s limit set within the model).  The majority of 

these 297 blocks were small (<50 cm diameter), pumiceous (i.e., low-density), and landed >500 

m from vent (Figure 2.8).  Few higher density blocks gave unreasonable results and nearly all 

that did landed >1 km from vent; the three exceptions were particularly small with average 

dimensions ≤20 cm.  
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To analyze the model results, the blocks were split into low-density (<1000 kg/m3), 

intermediate-density (1000–<2000 kg/m3), and high-density (≥2000 kg/m3) groups and block 

size classes of small (<50 cm), medium (50–<100 cm), and large (≥100 cm) average dimension.  

Figure 2.9 displays the complete modeling results for these nine subclasses.  Each curve 

represents model results for one block, i.e., all combinations of ejection velocity and angle that 

produce the measured travel distance for that block. 

Clast diameter has a much more significant influence on the model results than clast 

density.  For all three density classes the largest blocks group tightly in Figure 2.9 and the 

inferred velocity is relatively insensitive to ejection angle up to 70°–75° from horizontal.  

Beyond 70–75°, model velocities increase steeply with ejection angle.  For intermediate sized 

blocks, velocities are more scattered and higher velocities are required at relatively shallow 

angles (55–65°).  These trends are even more apparent in the wide scatter of results for the 

smallest blocks. 

2.3.3.2 Median velocity 

We use the modeled velocities for an ejection angle of 45° to compare both median velocities 

and velocity ranges among the nine subclasses (Table 2.2).  Median velocity increases (from ~70 

m/s to >150 m/s) as block size decreases.  There is no simple relationship between median 

velocity and clast density. 

2.3.3.3 Spread in velocity 

The range in modeled velocity, represented by the separation of the 5th and 95th percentiles 

(range 2 in Table 2.2), narrows with increasing block size, from >350 m/s in the <50-cm-size 
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Figure 2.9 Modeled block ejection velocity versus launch angle for all size and density groups.  Each curve represents the 

combinations of initial velocity and launch angle that project a given block to the distances measured in the field. 
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Table 2.2 Summary of ejection velocities (in m/s and calculated for an angle of 45°) for each of 

the 9 size and density categories. 5th, 25th, 50th, 75th, and 95th percentiles correspond to p5, p25, 

p50, p75, and p95, respectively. 

Size range 
(cm) 

 <1000 
kg/m3 

1000–<2000 
kg/m3 

≥2000 
kg/m3 

<50 

p5 100 80 83 
p25 147 114 112 
p50 221 150 159 
p75 306 270 256 
p95 485 500 440 

range 1 159 156 144 
range 2 385 420 357 

50–<100 

p5 63 59 57 
p25 83 79 70 
p50 108 94 84 
p75 153 129 108 
p95 349 208 164 

range 1 70 50 38 
range 2 286 149 107 

≥100 

p5 50 53 55 
p25 56 67 63 
p50 70 74 71 
p75 81 82 83 
p95 111 120 124 

range 1 25 15 20 
range 2 61 67 69 

range 1 = p75-p25; range 2 = p95-p5 
 

 

class to 60–70 m/s in the ≥100-cm size.  No consistent relationship exists between density and 

the spread in velocity. 

2.3.3.4 Dependence of ejection velocity on launch angle 

Across all size classes, velocity is initially consistent across a range of angles and subsequently 

increases sharply for the steepest angles.  This sharp increase occurs at lower angles for smaller 

blocks (Figure 2.9), reducing the range of angles across which velocity is close to constant.  For 
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the smallest clasts, high ejection angles are not feasible at even extreme ejection velocities.  Also 

note how the velocity range in each class widens as angle increases. 

2.3.3.5 Velocity versus distance 

Given that the ejection velocity is relatively insensitive to a range of plausible ejection angles, 

the relationship between ejection velocity and landing distance is assessed in Figure 2.10 for an 

ejection angle of 45°.  The dataset for each size/density class is fit by a linear function and shown 

with the 95% confidence intervals.  For comparison, we have also included a gray shaded region 

in all plots that represents the 90% confidence interval of a linear fit performed on all blocks 

with diameters > 1 m (i.e., bottom row of Figure 2.10).  First, these plots emphasize that the 

smallest blocks covered a wider spread of landing distances and required an unreasonably high 

and broad range in velocities across all densities.  Note that a significant proportion of the low-

density, <50-cm population is not represented in Figure 2.10 because the model could not 

replicate their landing distances with any realistic ejection velocities (Figure 2.8).  Second, these 

plots show that velocity is predictably higher for the large blocks that traveled further.  Finally, 

lower density blocks require higher exit velocities to achieve any given distance in the small and 

intermediate size classes.   

  

2.4 Interpretations 

2.4.1 Block componentry interpretations 

The distinct textural types amongst the clasts within Episode IV are chemically identical and 

probably reflect contrasting degrees of vesiculation at the time of fragmentation. Breadcrusting 

indicates that the exteriors of some blocks had solidified prior to interior vesiculation reaching 
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Figure 2.10 Launch velocity versus ejection distance for an ejection angle of 45 degrees, overlain by the best linear fit (solid line, a = 

slope, b = intercept) and 95% confidence interval (dotted lines).  The gray shaded region represents the 90% confidence interval of a 

linear fit performed on all blocks with diameters >1 m.  Note how more blocks fall within this region with increasing size and density. 
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equilibrium.  Fine-scale flow banding of the range of physically distinct dacite types (e.g., 

dense/dense, pumiceous/pumiceous, pumiceous/dense; Figure 2.2) suggests complex and 

intimate mingling, on length scales of millimeters to centimeters, of magma that had undergone 

different amounts of degassing and probably outgassing within the conduit.  It means that 

mingling occurred at a very late stage and that insufficient time elapsed between mingling and 

eruption for diffusion of volatiles, thus precluding complete mixing of the disparate melts.  

2.4.2 Block distribution interpretations 

The pattern of isopleths shown in Figures 2.6 and 2.7 is not easily reconciled with a simple 

deposit from a single explosion.  Instead, the directional polylobate contours, especially for the 

larger blocks that were less susceptible to the moving volcanic and atmospheric gases (see next 

section), are most easily interpreted as the deposits of multiple sectorial-confined explosions 

especially directed towards the south of the vent.  A greater number of explosions directed 

towards the south is supported by the presence of a more continuous pumice lapilli bed in the 

southern (inferred upwind) region (Figure A.2 in Appendix A).   

The pumiceous dacites represent the only component group that is evenly distributed in 

the northwest to northeast region but this population is composed predominantly of blocks <75 

cm in diameter.  We propose that these smaller and low-density clasts were preferentially 

influenced by wind advection during the explosions.  It is impossible to know the near-surface 

wind field during the time of Episode IV (especially since the timing of its commencement and 

duration are unknown), but currently the wind blows from the south/southwest during 50% of the 

summer months.   

 



 

66 
 

 

2.4.3 Constraints on modeled ejection velocity and angle 

The modeling results and inverse correlation between block size and landing distance suggest 

that not all of the Episode IV blocks followed ballistic trajectories that were decoupled from the 

volcanic and atmospheric gases (Self et al. 1980; Sparks et al. 1997).  Instead, they were subject 

to varying aerodynamic drag forces throughout three stages of flight.  In the first stage, the 

blocks experience partial coupling with expanding magmatic volatiles within the shallow 

conduit.  Subsequently, they enter the envelope of air overlying the vent that is displaced by the 

explosions and thus also moving outwards.  Ballistic blocks experience reduced drag during 

these two stages due to lower relative velocities between the blocks and the ambient gas flow 

field (Fagents and Wilson 1993; Mastin 2001; de’ Michieli Vitturi et al. 2010).  In the final stage, 

the blocks are then transported through the ambient atmosphere which can be stationary or 

subject to a wind field.  Additionally, the blocks may be spinning which can influence their 

trajectory (see Appendix A.2).  The drag forces during this stage would thus depend on that wind 

field and angular velocity (Waitt et al. 1995; Alatorre-Ibargüengoitia and Delgado-Granados 

2006, Taddeucci et al. 2017).  We reiterate that these variations were not included in our model 

calculations, but their influences can still be seen in the results. 

There is a complex relationship between the aerodynamic properties (i.e., size, shape, and 

density) of a clast and how much drag forces vary according to the medium that it travels 

through.  We assumed a spherical shape in our model calculations and discuss below the role of 

block size and density.  Crucial shifts in the model results for the intermediate size class indicate 

a change in the magnitude of the surrounding medium’s influence on block trajectory.  Relative 

to the results for the smallest blocks, the median velocity decreases, the spread in velocity 
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narrows, and a linear relationship between velocity and distance develops as the density 

increases (Figures 2.9 and 2.10).  This suggests that the smaller and low-density clasts with high 

exit velocities are more readily influenced by the ambient flow field, suggesting that a more 

complex treatment of their aerodynamics is necessary in order to properly model their 

trajectories.  This also applies to the 297 small and/or low-density blocks with long landing 

distances that the model could not replicate with a range of plausible ejection velocities.  We 

interpret the gray shaded region in Figure 2.10 to represent the most accurate velocity versus 

distance relationship for our blocks traveling through a still atmosphere.  The model results for 

blocks that lie outside this region cannot be trusted and do not accurately reflect the true exit 

conditions throughout Episode IV.  Only minor variation in the largest clasts’ modeled median 

and spread in velocities (Figure 2.9) suggests they are minimally influenced by ambient motion.  

Their ratio of surface area to volume is lower, thus drag per unit mass is much lower, and so the 

largest blocks are capable of maintaining their inertia. 

Reynolds numbers (Re) were calculated for a subset of blocks along a transect from the 

rhyolite dome to the furthest blocks in the southern sector of the Episode IV deposit.  The 

parameters used in calculating Re include: average block diameter, ejection velocity calculated 

in the model for a 45° angle, and density and viscosity of the atmosphere (determined from the 

1976 standard atmosphere at 850 m elevation or approximately the current elevation of the 

rhyolite dome).  Only the highest and lowest density clasts (dense and pumiceous dacite) were 

analyzed due to their textural homogeneity and to highlight any differences due to density 

contrasts.  All Re are high (>2.8x108) indicating that the boundary layer around the blocks is 

fully turbulent.  Figure 2.11 presents a plot of the Re versus normalized landing distance.  The   
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Figure 2.11 (Left) Map of the pumiceous (red dots) and dense dacites (blue dots) for which 

Reynolds numbers were calculated.  The yellow dot in the southern corner of the map represents 

the block used for the maximum distance value employed in calculating a normalized distance.  

(Right) Plot of Reynolds number versus normalized distances for the blocks in the map. 

 

Re for the pumiceous and dense dacites overlap one another at normalized distances of <0.4.  At 

and above this value, the pumices shift to Re higher than the dense dacites.  Considering larger 

blocks landed closer to the vent than smaller blocks, the larger pumices had similar Re to the 

dense dacites, but the smaller and/or further travelled pumices required greater inertia to reach 

their landing distances.  This shift in the data is another indicator that density has a decreasing 

influence on ballistic transport as size increases.    



 

69 
 

 

We used the Eject! model (Mastin 2001) to assess the influence of the presence of a 

region of reduced drag by comparing the horizontal distance reached by particles i) in a 

stationary atmosphere and ii) in using a region of reduced drag with a radius above the vent of 

200 m.  Ejection velocity and angle were set at 100 m/s and 45°, respectively, and various sizes, 

shapes, and densities were considered.  Although the definition of the region of reduced drag as 

considered by Mastin (2001) is somewhat arbitrary, results suggest that such a region with a 200 

m radius has a greater effect on block travel distances for irregular shapes (cubes), smaller sizes 

(<1 m), and lower densities (<1000 kg/m3; Figure A.3 in Appendix A).  While our Eject! model 

runs illustrate how drag forces are dependent on the particle’s shape (Alatorre-Ibargüengoitia and 

Delgado-Granados 2006; Bagheri and Bonadonna 2016; Bertin 2017), cubes are likely to 

overestimate the drag.  Our results emphasize that velocities estimated using a still-air 

calculation are most accurate for the largest size class within the Episode IV blocks.   

Within individual density/diameter subsets (Figure 2.9), the range between the highest 

and the lowest ejection velocities for a given angle is related to a combination of 1) size and 

density within each group, 2) distance blocks traveled, and 3) relative landing elevation (the 

difference between projection and landing elevations).  A direct relationship between velocity 

and distance is confirmed in Figure 2.10.  The blocks in the smallest size class spanned a much 

larger range of distances than the larger classes (Figure 2.6).  Additionally, elevation varied 

irregularly but radially around vent, and so blocks commonly traveled equivalent distances but 

landed at different elevations.  The narrowing of the range of velocities with increasing block 

size can be related to 1) narrowing of the range of landing distances and 2) block size converging 

on a critical mass at which drag has a minimal influence.     
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The broad range of launch angles across which ejection velocity is relatively consistent 

for the largest and densest blocks suggests that angle was not a significant influence on their 

trajectories.  Combined with the widening of the range of velocities at higher angles, these model 

results may indicate that the high velocity/high angle combinations are likely unrealistic 

conditions for most of the largest blocks.   

 

2.5 Discussion 

2.5.1 Eruptive conditions at Novarupta and comparisons with historical 

Vulcanian eruptions 

We estimate a total volume of 2 x 105 m3 DRE for the Episode IV deposit by calculating the 

volume of blocks within each isopleth and then adding a rough volume estimate for the lapilli 

component in the far field, which was approximated by isopachs of 10 and 1 cm.  This 

corresponds to 73% ballistics and 27% lapilli fall.  An ash-sized component was not included in 

this calculation because there is no evidence that the plume(s) contained a significant fines 

population.  This volume equates to a hemispherical surficial dome diameter of 90 m or, 

alternatively, assuming a conduit radius of 10 m, a plug length of 600 m.  More plausibly, based 

on componentry, the explosions tapped a combination of a smaller dome and a smaller part of 

the underlying conduit, thus these numbers are maxima.  We can be sure that explosions reached 

into the conduit due to the presence of the Episode I dense vitrophyre blocks, but these estimates 

of dimensions suggest that only the shallowest regions were tapped.  In contrast, pressure 

estimates for Vulcanian activity at Soufrière Hills have been used to suggest explosions 
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evacuated to conduit depths of ≥2 km (Druitt et al. 2002; Melnik and Sparks 2002; Clarke et al. 

2007; Burgisser et al. 2011). 

Adams et al. (2006a) speculated that Episode IV involved cyclic activity of lava 

production and disruption, but could not conclude definitively that there was more than one 

explosion according to their block maps.  We suggest that each of the lobes defined from 

isopleth information represents the products of at least one discrete explosion.  It is possible that 

any lobe equates to more than one explosion; however, we estimate a minimum of 8–14 

explosions from the number of lobes within the 125 and 75-cm isopleths, respectively (Figure 

2.8).  This would equate to an average volume of 1.4–2.5 x 104 m3 DRE per explosion, which is 

roughly an order of magnitude smaller than other well documented Vulcanian events.  For 

example, each of the 88 Vulcanian explosions at Soufrière Hills volcano, Montserrat, in 1997 

discharged an average of 3 x 105 m3 of magma (Druitt et al. 2002).  Nine ‘cannon-like 

explosions’ at Ngauruhoe, New Zealand, on 19 February, 1975 produced a total of 2.0 x 106 m3 

DRE of ejecta (Nairn and Self 1978), which averages to 2.2 x 105 m3 per explosion.  This also 

suggests that individual explosions during Episode IV disrupted the conduit fill to only shallow 

depths.   

Transport and sedimentation processes during Episode IV contrasted with those from 

other transient explosions related to dome building eruptions.  In particular, the Episode IV 

deposit is purely a block and lapilli apron, i.e., there is no evidence of pyroclastic density 

currents, and there is no preserved ash fall.  Pyroclastic transport throughout Episode IV was 

predominantly governed by ballistic trajectory of the block-sized pyroclasts.  
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Table 2.3 Examples of componentry described in the Vulcanian literature. 
 

Block lithology 

Novarupta, 
1912 

Ngauruhoe, 
1975 

Tokachi-dake, 
1988–1989 Soufrière Hills, 1996–1997 

Guagua 
Pichincha, 

1999 
This study, 

Adams et al. 
2006 

Nairn and 
Self 1978a 

Yamagishi and 
Feebrey 1994a 

Robertson et 
al. 1998b 

Druitt  
et al. 2002c 

Kennedy et 
al. 2005d 

Clarke 
 et al. 2007d 

Burgisser et 
al. 2010d 

Giachetti et 
al. 2010d 

Wright  
et al. 2007a 

N
on

 b
re

ad
cr

us
te

d 

Homogeneous 
pumice X X X  X X X X X  

Banded X     X  X X X 

Dense juvenile X X X  X  X X X X 

Breccia X  X X  X     

Dense lithic X X  X X      

       Breadcrusted X X X     X X X 
a Componentry is for ballistic ejecta which has been distinguished from concurrent or subsequent pyroclast fall and flow deposits 
bDense and brecciated lithic clasts are inferred from vent-clearing Vulcanian explosions; vesicular to dense juvenile material erupted in subsequent sustained 
explosive eruptions 
cPyroclastic fall ejecta, including both ballistic and material from plume and umbrella clouds 
dThese textures are recognized only in pyroclastic flow deposits 
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No previous study has documented the detail of textural differences within and between 

component groups nor calculated their relative proportions for a Vulcanian ballistic deposit.  As 

such, the data pertaining to block lithology and proportions within the Episode IV deposit are 

unique when compared to other well-documented transient explosions (Table 2.3).  For example, 

a brecciated ballistic component is rarely mentioned in any of the Vulcanian literature (with the 

exceptions of Yamagishi and Feebrey 1994 and Robertson et al. 1998) and its abundance and 

role has not been quantified.  The proportion of brecciated blocks (by volume) is strikingly high 

at Novarupta and we attribute it to a combination of Episode I vitrophyric material derived from 

the conduit margin and syn-eruptive lithic-free, lightly to densely welded breccias (Adams et al. 

2006a).  

The degree and variety of banding present in the Novarupta blocks is either not present or 

not documented in other deposits.  Banded ejecta is recorded in recent studies (Table 2.3), but 

described only briefly as “dense parts with tabular shapes that form cm-thick streaks in a more 

vesicular clast” (Burgisser et al. 2010), “alternating bands of variable vesicularity” (Giachetti et 

al. 2010), or is not defined at all (Kennedy et al. 2005; Wright et al. 2007).  However, flow 

banding during eruption of silicic magmas is recognized as an important indicator both of 

viscous and brittle deformation due to shear and of mingling of texturally differing magmas 

(Seaman et al. 1995; Tuffen et al. 2003; Gonnermann and Manga 2005; Tuffen and Dingwell 

2005).  We recognize a range of mingled textures within juvenile pyroclasts of varying densities 

and calculated that they represent roughly 20% by volume of the blocks at Novarupta.  The 

existence of banded blocks of contrasting vesicularity means either (1) that these textures are the 

result of a single zone of magma that has undergone spatially variable shear-stresses which have 
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resulted in diverse vesiculation states and textures (Polacci et al. 2001; Gonnermann and Manga 

2005) or (2) that portions of the melt with different textures and presumably ascent histories 

were mingled at a very late stage prior to eruption. Contrasting degrees of post-fragmentation 

expansion between light (vesicular) and dark (denser) bands suggests that the relevant melts had 

different levels of residual volatiles, which favors (2) but not (1).  Previous studies have set 

precedents for the mingling and mixing of chemically distinct (e.g., Seaman et al. 1995; Perugini 

et al. 2004) and texturally diverse magmas (Seaman et al. 2009; Wright et al. 2011).  We 

interpret the banding in Episode IV to indicate the presence of co-existing magma domains that 

were at varying stages of degassing and outgassing and significant mingling over time periods of 

hours to days along the margins of these disparate magmas within the shallow conduit.  While 

Vulcanian eruptions commonly show heterogeneities in textures, the Episode IV banded clasts 

appear to have experienced a very high degree of mingling without complete 

mixing/hybridization.  We suggest this is the result of differing residence times within the upper 

regions of the conduit and dynamic conditions on short time scales prior to fragmentation that 

enabled the formation and preservation of local complex millimeter- to centimeter-scale banding 

between magmas of differing textures.  

While breadcrusted clasts are particularly characteristic of Vulcanian eruptions, their 

abundance has generally not been quantified.  They are typically described as a minor 

component within an otherwise pumice-rich deposit (e.g., Giachetti et al. 2010).  In comparison, 

the proportion of breadcrusted blocks in the Novarupta deposit is high at 25% by number or 37% 

by volume.  Predictably, a large proportion of the uniform and banded pumices are breadcrusted, 

whereas most of the breccias and dense dacites are not (Figure 2.3).  The banded dacite 
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component has the highest proportion of breadcrusted blocks at 83% by volume.  In this case, 

cracking of the dense exterior rinds on both dense and vesicular bands was likely due to the 

renewed vesiculation of the light colored vesicular bands, which are conspicuously more 

expanded than neighboring dark, denser bands (Figure 2.2g, h). 

The modeling results suggest that consistent exit conditions, and presumably conduit 

parameters, prevailed for numerous explosions throughout Episode IV.  The trajectories of the 

largest blocks were most reliably estimated with the model because they were minimally 

influenced by atmospheric motion that would have been difficult to constrain.  Hence, we focus 

on the results for the >100-cm-size class.  Our best estimated velocities range from 50 to 124 m/s 

with a median of ~70 m/s, which is relatively low when compared to the spectrum of velocities 

estimated for ballistic deposits (Table 2.4).  This, combined with the comparatively small volume 

produced per explosion, could reflect relatively less energetic conditions at Novarupta — 

perhaps due to greater complexity within the shallow conduit.  Our model velocity range is 

applicable across all radial sectors (i.e., does not vary with lobe direction).  This implies that the 

multiple explosions within Episode IV consistently ejected these blocks with a narrow range of 

velocities, and that the conditions that prompted an explosion did not vary substantially across 

the multiple events within this phase. 

2.5.2 Implications and comparisons with respect to other Vulcanian eruptions 

Conduit heterogeneity prior to Vulcanian explosions is generally modeled in the form of zoned 

magma that exhibits progressively decreasing states of degassing and outgassing and thus 

displays an orderly change in textures and densities with decreasing depth (e.g., Druitt et al. 

2002; Melnik and Sparks 2002; Clarke et al. 2007; Wright et al. 2007; Burgisser et al. 2010;   
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Table 2.4 Comparison of velocities calculated for ballistic particles. 

Eruption(s) 
year(s) Location Style 

Maximum 
landing 

distancea 
(m) 

Velocity 
(m/s) Reference 

1968 Arenal volcano, 
Costa Rica Vulcanian 5,000 300–400 Fagents and 

Wilson 1993 

1975 Ngauruhoe, 
New Zealand Vulcanian 2,800 220–260 Fagents and 

Wilson 1993 

1977 Ukinrek Maars, 
Alaska Phreatomagmatic 700 m 80–85 Fagents and 

Wilson 1993 

1992 
Crater peak 
vent, Mount 

Spurr, Alaska 
Phreatomagmatic 3,500 155–840 Waitt et al. 1995 

1997 
Soufrière Hills 

volcano, 
Montserrat 

Vulcanian 1,700 40–140 Clarke et al. 2002 

1999 
Guagua 

Pichincha, 
Ecuador 

Vulcanian 800 m 77–100 Wright et al. 
2007 

1998, 
2003, 2008 

Popocatepétl, 
Mexico Vulcanain 3,700 110–210 

Alatorre-
Ibarguengoitia et 

al. 2012 

2012 Upper Te Maari, 
New Zealand Hydrothermal 1,350 120–215 Breard et al. 

2014 

1888–1890 La Fossa 
volcano, Italy Vulcanian 1,000 100–150 Biass et al. 2016 

1912 Novarupta, 
Alaska Vulcanian 1,300b 50–124 This study 

aMaximum landing distance used in the modelling. 
b1,300 m refers to the maximum distance of the >1m blocks (from which the velocities were 
extracted). 

 

 

Giachetti et al. 2010).  Other authors have proposed an approximately vertical layering of the 

conduit, e.g., Kennedy et al. (2005) suggest that their banded and brecciated clasts originated 

from the conduit margin and the homogeneous pumice fragments came from the conduit center.  

Alternatively, Cassidy et al. (2015) proposed that a form of vertical layering develops when gas-

rich magma rises rapidly through a slowly ascending gas-poor magma located along the conduit 
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Figure 2.12 Models for the shallow conduit architecture prior to Vulcanian explosions.  a Zoned magma that is in progressively 

decreasing states of degassing and outgassing.  b Vertically layered conduit with older melt along the conduit walls.  c Complex 

conduit architecture involving domains of varying textures and vesiculation states.  Block pictures represent the products of these 

melts; note how the banded blocks originated along the margins of contrasting melt domains. 
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walls.  Instead of a simple layering, our data support the model proposed by Adams et al. (2006a) 

of a complex architecture within the shallow conduit involving both the juxtaposition of domains 

of contrasting texture and vesiculation state and the mingling of different textures on much 

shorter vertical and horizontal length scales (Figure 2.12).  Three key observations indicate that 

textural domains occurred on a range of scales: (1) the existence of uniform blocks, each 

representative of a single component type, which are up to >10 m in length, implies domains of 

at least these dimensions, (2) entire isopleth lobes dominated by blocks of a single lithology 

suggest that the largest domains may be even larger than the dimensions of these largest blocks, 

whereas (3) the banded blocks indicate mingling occurred locally on millimeter to centimeter 

scales.  In regards to (2), lobes consisting of a single component group may have tapped small 

individual regions in the conduit whereas multiple component lobes either formed by more than 

one explosion and/or tapped a particularly complex or larger region of the conduit.  As 

highlighted above, the banded blocks are indicative of dynamic conditions within the conduit 

probably along the margins of individual domains (Figure 2.12). 

2.5.3 General implications for modeling ballistic block trajectories 

Two types of ballistic blocks have been proposed within the literature:  1) those that are 

influenced by the motions in the vent, eruption column, and ambient atmosphere and 2) those 

that are not (Self et al. 1980; Sparks et al. 1997).  The first type of blocks require modeling 

transport through an expanding and decelerating gas stream and estimates of appropriate drag 

coefficients in order to accurately calculate their trajectories.  A simpler model can be used to 

approximate the trajectories of blocks that are not influenced by ambient motion.  However, the 

distinction between these two types of blocks is not clear; for example where is the threshold, in 
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terms of size or density, at which complex versus simple models must be applied?  The answer to 

this question depends on the energy of the explosion, amount of volcanic gas and ash (or plume 

density), and the atmospheric conditions.   

Our modeling results suggest that the ballistic trajectories of all blocks with diameters ≥1 

m projected through a low-density, ash-poor plume produced by relatively low energy 

explosions can be modeled without significant influence by the medium that they travel through.  

The eruption conditions throughout Episode IV differ from many of those in Table 2.4 in terms 

of shorter travel distances, reduced plume density, and weaker explosivity leading to reduced 

exit velocities.  In addition, a greater influence of the expanding gas phase and convective plume 

on block trajectories might be expected for more energetic eruptions.   

The Episode IV data suggest that the thresholds below which ballistic particles are 

influenced by motions of the surrounding medium are relatively high.  Blocks < 1 m and <2,000 

kg/m3 fall in a transitional regime where their range is influenced by the expanding magmatic 

volatiles, the weak convecting plume, the envelope of air overlying the vent that is displaced by 

the explosion, and the ambient atmosphere.  This result may in part reflect the weak energetic 

conditions inferred at Novarupta but perhaps has a broader application and requires modeling of 

the background flow field in order to accurately estimate block trajectories.  

 

2.6 Conclusions 

The Episode IV block apron and its significant textural diversity, despite chemical homogeneity, 

suggests that magma domains of varying degrees of degassing and outgassing were juxtaposed 

within the shallow conduit, with intimate mingling occurring along the margins of these 
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domains.  Some magma was newly arrived within the conduit, and possibly had not equilibrated 

at the depth of fragmentation as suggested by significant post-fragmentation expansion within 

breadcrusted pumiceous dacite and banded blocks.  Our data suggest that the ejecta of Episode 

IV are the product of multiple explosions.  These explosions tapped small portions of the conduit 

(horizontally and vertically), with many events directing ejecta towards the south of the vent.  

Block trajectory modeling revealed that ejection velocities were relatively low at 50–124 m/s, 

with a median of 70 m/s, and were consistent over a broad range of launch angles.  The modeling 

results were used to establish a size and density threshold between blocks that could be modeled 

with a simple ballistic trajectory and those that required a more complex treatment of motions 

within the surrounding gaseous medium.  Cumulatively, the field data and modeling results 

provide insight into conditions within the conduit during the critical transition from effusion to 

transient explosions at Novarupta that is a part of an overall downscaling from powerful steady 

Plinian explosions to lava effusion.  To better understand the conduit fill, it will be necessary to 

assess the microvesicular textures of the blocks and to measure residual water contents.  In 

particular, water contents could have implications for depths of fragmentation, degrees of 

degassing, and whether or not volatiles were able to diffuse between bands (during mingling) 

prior to fragmentation.
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CHAPTER 3 

Complex patterns of vesiculation, outgassing, and re-

vesiculation during a Vulcanian eruption: Implications 

for conduit processes 
 

In review for publication in Bulletin of Volcanology as: 

Isgett, S.J., Houghton, B.F., Gonnermann, H.M. Complex patterns of vesiculation, outgassing, 
and re-vesiculation during a Vulcanian eruption: Implications for conduit processes. 

 

Abstract  

We present evidence for complex conduit textures during the Vulcanian phase of the 1912 

eruption of Novarupta, Alaska.  Extreme diversity in clasts in the 1912 block apron suggests 

complex spatial variability of magma types in the shallow conduit.  Textural types at Novarupta 

include homogeneous microvesicular pumice and dense dacite as well as heterogeneous 

brecciated, breadcrusted, and texturally banded dacite.  Variable vesicularities, bubble textures, 

porosities, and permeabilities as well as fine-scale textural mingling in some blocks indicate 

disruption of magma that coexisted at various stages of both degassing and outgassing in the 

shallow conduit.  The microvesicular pumiceous dacite blocks contain vesicularities and bubble 

textures extremely similar to the pumice of the previous Plinian episode, and we suggest that 

they represent magma that was actively vesiculating at fragmentation.  The textures of all 

remaining juvenile block types reflect magma that underwent both partial degassing and 

subsequent outgassing well prior to fragmentation.  This suggests that different portions of the 
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magma stagnated at variable shallow depths and for varying durations prior to fragmentation.  

Even the least vesicular dense dacite blocks are permeable, despite low porosities indicating that 

the melt compacted yet retained a high degree of pore connectivity during outgassing.  The 

interiors of breadcrusted blocks show highly variable amounts of a second vesiculation after 

outgassing that post-dates fragmentation.  Banded textures formed during mingling between 

magmas with contrasting vesiculation histories, most noticeably between dense dacite and 

microvesicular pumice.  This mingling requires dynamic conditions within the shallow conduit.  

Diversity within the Novarupta block apron can thus be explained by a complex shallow conduit 

fill that consisted of newly juxtaposed texturally disparate magma domains.   

 

3.1 Introduction 

3.1.1 Vulcanian eruptions 

Vulcanian eruptions involve transient explosions that produce short-lived plumes and ballistic 

blocks and are sometimes accompanied by pyroclastic density currents and lahars.  These 

hazards are less devastating than those of stronger, sustained sub-Plinian and Plinian eruptions, 

but Vulcanian explosions still pose protracted risks due to their propensity to occur in sequences 

over prolonged periods of time and their greater frequency of occurrence (Clarke 2013).  Total 

eruptive volumes are typically <0.1 km3 and Vulcanian deposits are characterized by a wide 

range of textures (Figure 3.1) among juvenile and wall rock components, including dense to 

highly vesicular juvenile clasts, brecciated and massive wall rock lithics, and a range of 

breadcrust textures (Adams et al. 2006a; Clarke et al. 2007; Wright et al. 2007; Burgisser et al. 

2010; Giachetti et al. 2010).  
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Figure 3.1 Macro- and micro-scale examples of the broad range of juvenile textures in 

Vulcanian pyroclasts.  a, b Microvesicular pumice. c, d Dense juvenile. e, f, g Breadcrust texture 

with dense crust and vesicular interior. 
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 Early work suggested that magma-water interaction was the trigger for Vulcanian 

explosions, and this view was supported by a lack of evidence for gas-rich juvenile material 

(Schmincke 1977; Self et al. 1979; Woods 1995).  Most subsequent work has proposed that 

expansion of already exsolved magmatic volatiles within the conduit and/or lava dome provide 

the fragmentation mechanism for Vulcanian explosions (Sparks 1997; Stix et al. 1997).  In this 

scenario, a batch of magma ascends within the conduit and develops a horizontal ‘layering’ of 

progressively less outgassed magma with depth.  The densest uppermost material seals the 

shallow conduit allowing (i) magma pressure to increase due to rheological stiffening (Sparks 

1997; Melnik and Sparks 1999; Clarke 2013) and (ii) volatile pressure to increase due to 

viscosity-limited growth of gas pockets/bubbles (Sparks 1978; Tait et al. 1989; Stix et al. 1997).  

If the upper portion of the plug then fails or is removed, say by collapse, the model predicts that 

a decompression-induced fragmentation wave travels down into the conduit (Self et al. 1979; 

Turcotte et al. 1990; Fagents and Wilson 1993; Woods 1995; Clarke et al. 2002a, b).  Once 

fragmentation ceases, the conduit re-fills, and the cycle starts over (Druitt et al. 2002; Diller et al. 

2006; Burgisser et al. 2010; Clarke et al. 2015).  In this model, the potential energy for the 

explosions is stored in pockets of pressurized gas.  This concept is widely applied to Vulcanian 

explosions that are episodic increases in mass flux during long-lived dome extrusion (Clarke et 

al. 2002a; Druitt et al. 2002; Melnik and Sparks 2002b).  This Soufrière Hills-based model 

permits elegant one-dimensional analysis of the conduit conditions prior to unsteady, non-

sustained explosions (Melnik and Sparks 2002b; Diller et al. 2006; Mason et al. 2006; Clarke et 

al. 2007; Degruyter et al. 2012), but it does not set out to model three-dimensional complexity 

and heterogeneity.  Additionally, these models assume, for large Vulcanian explosions, that a 
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sudden pressure release at the top of the conduit (generally in response to a partial or complete 

dome collapse) is the trigger for the transition to Vulcanian explosions (Clarke et al. 2002a, b; 

Druitt et al. 2002; Melnik and Sparks 2002a, b; Mason et al. 2006).  However, several other 

volcanoes (e.g., Sakurajima, Japan; Santiaguito, Guatemala; Colima, Mexico; Reventador, 

Ecuador) have exhibited the sudden onset of often weaker Vulcanian explosive activity without 

any sign of such an external trigger (Global Volcanism Program 2005; Sahetapy-Engel et al. 

2008; Yokoo et al. 2009; Cassidy et al. 2015).  We document here, in unprecedented detail, the 

textural diversity for ejecta from an eruption episode at Novarupta which more closely resembles 

this latter pattern of activity accompanying the close of powerful Plinian eruption.  

3.1.2 Degassing, outgassing, and vesiculation 

Throughout this paper, we largely follow the terminology of Cashman and Scheu (2015), 

specifically we define:  

 

• Degassing: as the loss of dissolved volatiles from a melt by exsolution or diffusion  

• Outgassing: as the escape of exsolved gas bubbles from magma by permeable flow or 

buoyant rise 

• Vesiculation: as nucleation, growth, and coalescence of gas bubbles within magma 

 

Eruption style and the behavior of volatiles in the ascending magma are closely related.  

The history of those volatiles, such as the rate and timing of vesiculation relative to 

fragmentation and the conditions under which they exsolve from the melt, is often preserved in 

the vesicularity and bubble textures of the juvenile ejecta (e.g., Houghton and Wilson 1989; 
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Cashman and Mangan 1994; Hammer et al. 1998, 1999, Adams et al. 2006a, b; Houghton et al. 

2010).  Volatile solubility decreases in response to decreasing pressure as magma ascends from 

depth driving the nucleation and expansion of gas bubbles.  Bubbles evolve due to continued 

diffusion of volatiles, expansion due to decreasing pressure, and coalescence with other bubbles.  

Growth may be limited by the volatile content of the melt, rate of volatile diffusion, and/or 

viscous resistance of the melt (Toramaru 1995; Proussevitch and Sahagian 1998; Gardner et al. 

2000; Gonnermann and Manga 2007).  The resulting vesicularity and bubble textures depend on 

the rate of ascent, which also modulates eruption style (Eichelberger 1995).  With slow ascent, 

bubbles eventually form outgassing pathways in silicic magmas (Eichelberger et al. 1986; Klug 

and Cashman 1996; Burgisser and Gardner 2005; Takeuchi et al. 2009; Nguyen et al. 2014).  

This generally promotes effusion of lavas with low bubble numbers and complex bubble shapes 

reflecting outgassing and compaction.  With very fast ascent, diffusion into existing bubbles may 

be rate-limited allowing high rates of late bubble nucleation.  If viscosity is high, bubble growth 

is slow and in disequilibrium, which increases pressure within the bubbles and promotes 

explosive eruptions.  Resulting pyroclasts have high vesicle number densities and small bubbles.  

More complicated histories are often imprinted in clast vesicularity and texture.  For example, 

different portions of the source magma for Vulcanian pyroclasts experience different ascent rates 

and residence times in the shallow conduit and thus display a wide range of vesicularities and 

textures (Kennedy et al. 2005; Adams et al. 2006a; Cassidy et al. 2015).  It is through the 

measurement of clast vesicularity and detailed analyses of bubble sizes, numbers, and shapes that 

we can retrace parts of the vesiculation history and make inferences about magma ascent.   
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3.1.3 Porosity and permeability 

Porosity and permeability describe the proportion of the volume of an object that is occupied by 

pores and the ease with which fluid flows through those pores, respectively.  Permeability 

directly influences outgassing of silicic magmas and thus has the potential to modulate eruptive 

behavior, influence the characteristics of ash plumes and PDCs, and control the expansion and 

size distributions of pyroclasts (Eichelberger et al. 1986; Jaupart and Allègre 1991; Woods and 

Koyaguchi 1994; Klug and Cashman 1996; Rust and Cashman 2011; Degruyter et al. 2012).  

Controls on the permeability of silicic magmas include vesicle size and shape, pore aperture size, 

and tortuosity of pore pathways (Blower 2001; Rust and Cashman 2004; Mueller et al. 2005; 

Wright et al. 2006, 2009).  Over the last three decades a range of volcanic rocks have been 

analyzed for porosity, pore connectivity, and permeability, producing a relatively robust data-set 

for effusive and Plinian products (Eichelberger et al. 1986; Klug and Cashman 1996; Saar and 

Manga 1999; Jouniaux et al. 2000; Melnik and Sparks 2002a; Rust and Cashman 2004; Bernard 

et al. 2007; Wright et al. 2007, 2009; Platz et al. 2007; Bouvet de Maisonneuve et al. 2009; 

Nguyen et al. 2014; Kushnir et al. 2016) and a growing data-set from experimental samples 

(Westrich and Eichelberger 1994; Burgisser and Gardner 2005; Mueller et al. 2005; Takeuchi et 

al. 2009; Ashwell et al. 2015; Heap and Wadsworth 2016; Kennedy et al. 2016; Kushnir et al. 

2017).  However, comparable data-sets for Vulcanian pyroclasts are very restricted to one dense 

block and thirteen breadcrust bombs from Guagua Pichincha, Ecuador (porosity of crust and 

interior, permeability only of interior; Wright et al. 2007) and seven pumiceous blocks from the 

1912 eruption of Novarupta (Nguyen et al. 2014). 
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3.1.4 Breadcrusting 

Breadcrusting is a characteristic that is commonly found in Vulcanian eruptions (Adams et al. 

2006a; Wright et al. 2007; Giachetti et al. 2010; Benage et al. 2014; Isgett et al. 2017).  Current 

understanding of the post-fragmentation formation of breadcrusted clasts includes a) 

fragmentation and depressurization of magma that is only partially degassed, with immediate 

quenching of the exterior to produce a rind that preserves the micro-textures present at the time 

of fragmentation, b) vesiculation and expansion of the still hot interior in response to the drop in 

pressure, c) brittle cracking of the exterior to accommodate b), d) thermal contraction of the 

exterior, and possibly e) clast breakage in response to stresses applied upon impact (Walker 

1969; Wright et al. 2007).  The case for processes (a) through (c) is widely accepted as applying 

to those clasts that display a contrast in the vesicularities of the crust and interior.  The literature 

discusses the physical processes of cracking the exterior and attempts to estimate the time it 

takes for the entire rind to quench (Wright et al. 2007; Benage et al. 2014).  However, the 

chemical and physical state of the magma prior to breadcrusting is not well constrained or 

understood.  Hoblitt and Harmon (1993) and Wright et al. (2007) suggested that glassy rinds 

resulted from pre-eruptive degassing that delayed the nucleation of new bubbles.  Giachetti et al. 

(2010) model breadcrust interiors as forming from bubble nucleation of a largely bubble-free 

melt.  A common conclusion between these different studies is that the breadcrust rinds were 

largely degassed, however, they do not address any intervening step of shallow outgassing, that 

is, how the rinds became dense after they underwent a significant primary degassing.  

Understanding the balance between degassing and outgassing of breadcrust rinds can provide 

insight to their fragmentation depths and their role in the pre-fragmentation conduit processes. 
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3.1.5 Novarupta  

The largest eruption of the twentieth century, the 1912 eruption of Novarupta, produced an 

exceptionally well preserved Vulcanian block apron from its fourth episode (Adams et al. 

2006a).  After three episodes of powerful Plinian-style explosions, spanning a total of 60 hours 

(Hildreth 1983, 1987; Fierstein and Hildreth 1992), an ephemeral lava dome/plug was formed 

and completely destroyed by Vulcanian explosions in Episode IV (Figure 3.2).  The fifth and 

final episode consisted of passive dome extrusion, allowing for complete preservation of the 

earlier Vulcanian deposits.  The mappable Episode IV deposit consists of a roughly 4 x 2.5 km 

N-S elongated elliptical block apron (Figure 3.2) centered on the Episode V lava dome and 

lacking any deposits of pyroclastic density currents.  The Episode IV juvenile blocks are 

chemically homogeneous but texturally extremely diverse, from pumiceous, dense, and banded 

dacite to variably-welded breccia clasts, all with differing degrees of surface breadcrusting 

(Figure 3.3).  This diversity offers a window into the state of the magma within the shallow 

conduit during a critical transition: a decrease in discharge rate and style from steady Plinian 

eruption (Episodes I–III) to sustained dome effusion (Episode V).   

In this paper, we describe and interpret the contrasting block types.  In particular, our 

study of the breadcrusted and mingled clasts yields new insight to the physical state of their 

magma prior to fragmentation.  This allows us to draw conclusions regarding the pre-eruption 

vesiculation histories of the magma that filled the shallow conduit.  In addition, this study more 

than doubles the global set of porosity and permeability measurements on Vulcanian products 

and shows a new trend within the porosity and permeability relationships among the different 

block types.    
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Figure 3.2a Aerial photograph mosaic of the region proximal to the vent:  1,273 mapped 

Episode IV blocks are overlain in blue and the Episode V dome is the round feature in the 

middle. Modified after Isgett et al. 2017.  b Location map for deposits of the 1912 eruption: 

Novarupta dome (red), Valley of Ten Thousand Smokes (purple), Katmai Caldera (yellow).  

Inset with the yellow star shows the location of Novarupta within Alaska.  Modified after 

AVO/ADGGS.  c Image of the Episodes II and III Plinian deposits.  d Image of the Episode IV 

blocks (foreground) and Episode V dome (background).  Note, person for scale in middle, left of 

image. 
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Figure 3.3 (previous page) Categories of different clast types in the Episode IV block apron.  

Homogeneous blocks include (a) pumice, (b) intermediate, and (c) dense dacite.  Heterogeneous 

blocks include the breadcrusted, banded, and brecciated clasts.  The re-vesiculated breadcrusted 

blocks are divided into three groups as described in the text.  d Block N004 of group 1; note the 

cauliflower texture of the crust.  e Block N011 of group 2; note the clearly defined cracks and 

multiple generations of cracking outlined in red.  f Block N156 of group 3; note the deep cracks 

in the middle and multiple generations of cracking in the upper left polygon.  The banded clasts 

exhibit a range in textures that are grouped into (g) pumiceous banded, (h) mixed banded (image 

taken by Alain Burgisser), and (i) dense banded.   The brecciated clasts (j) are not discussed in 

this paper.  All types of clasts can be breadcrusted, as is exhibited in (k) the dense banded 

breadcrusted clast. 

 

3.2 Methodology 

3.2.1 Mapping and sampling 

We mapped the largest Episode IV blocks within 20–60 m-wide squares at fixed distances apart, 

across the entire deposit, and measured and sampled these blocks.  Lithology, texture (including 

breadcrust rinds), and the three largest orthogonal dimensions were recorded.  A subset of 

samples from each lithology were collected from a total of 169 blocks.  Care was taken to obtain 

a sample suite a) on which multiple laboratory analyses could be performed and b) that 

represented different textural zones of each block.  Samples of mingled bands were collected 

when they were thick enough for analysis.  Suites of “crust” (the outer dense, cracked rind), 

“transition” (the zone between the crust and interior exhibiting changing texture), and “interior” 

(the middle and/or most expanded zone of a clast) samples were assembled from representative 

breadcrusted clasts.  
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3.2.2 Bulk and 2D vesicularity 

Sample densities were measured following Houghton and Wilson (1989) and converted to 

vesicularities using a dense-rock equivalent (DRE) density of 2,600 kg/m3.  Qualitative vesicle 

size and shape analyses were performed on 9 clasts.  Back-scattered electron (BSE) images were 

collected using a JEOL-5900LV scanning electron microscope (SEM) operating at 15 kV 

accelerating voltage and 1 nA beam current.  Compositional mapping using the NORAN System 

SIX (NSS) X-ray microanalysis system was utilized in order to discern feldspar phenocrysts 

from the glass.  The NSS system was also used to collect full thin section scans by merging grids 

of images collected at 50x or 65x magnification.  SEM images were processed via converting 

glass to white, bubbles to black, and crystals to gray in Adobe Photoshop and are referred to as 

‘grayscale images’ in this text. 

3.2.3 Porosity and permeability 

Porosity and permeability were measured using the method following Nguyen et al. (2014) on 

cores of 1–3-cm diameter and 1–4.5-cm length from the same samples used for textural analyses.  

Helium pycnometry was performed in order to calculate connected (𝜑𝑐𝑐𝑐) and total (𝜑𝑡𝑡𝑡𝑡𝑡) 

porosities.   The cores were then mounted axially on plexiglass plates with their radial surface 

sealed with impermeable epoxy resin in order to assure axial flow during permeability 

measurement.  The permeability of the sealed cylindrical sample cores was determined using a 

Capillary Flow Porometer.  A more detailed description of the methodology is included in 

Appendix B.  
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3.3 Vesicularity data for juvenile clasts 

This paper presents data only on the juvenile clasts (i.e., no data for the brecciated clasts are 

presented).  We have divided the juvenile blocks into two categories: 1) homogeneous clasts, i.e., 

pumiceous, transitional, and dense dacites; and 2) heterogeneous clasts, which include 

breadcrusted clasts and banded dacites (Figure 3.3).  

3.3.1 Homogeneous clasts 

Microvesicular pumiceous dacites have vesicularities from 59–83% (Figure 3.4a).  They 

predominantly show “primary degassing textures”, i.e., bubble textures that can be shown to 

have formed prior to fragmentation or outgassing.  Vesicle textures are dominated by <100 μm 

bubbles but also contain a conspicuous volume fraction of >150 μm to larger than or equivalent 

to mm-size bubbles.  The numerically dominant small bubble population has round, elongate, or 

amoeboid shapes whereas the larger bubbles are very irregular (convoluted/polylobate) and/or 

elongate in shape (Figure 3.5).  Textural heterogeneity is limited to small domains either rich in 

<25 μm vesicles or elongated vesicles.  Note that the “microvesicular pumices” in this paper are 

referred to as “non-breadcrusted pumices” in previous papers (Adams et al. 2006a; Isgett et al. 

2017).   

 Dense dacite blocks cluster on the low vesicularity end of the spectrum, with values 

ranging from 4–19% (Figure 3.4a).  Dense dacites are dominated by large regions of glass and 

phenocrysts and contain few intermediate-to-coarse pores (Figure 3.6) that are often aligned 

along phenocrysts and are very irregular in shape.  Note, we use the term ‘pore’ to describe 

cavities in the dense dacites and breadcrust rinds (described in the following section) as they no 

longer represent primary degassing processes.  In addition, a subordinate population of small  
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Figure 3.4 Bulk vesicularities for the different clast types.  There is no value to the y-axis in 

these plots.  Instead, each line represents the data for all of the samples collected from an 

individual block.  Asterisks indicate blocks for which SEM images were collected from polished 

thin sections (PTS).  a Vesicularities of the homogeneous clasts.  b Vesicularities of the 

revesiculated breadcrusted clasts.  c Vesicularities of the breadcrusted banded dacites.  Black box 

highlights blocks for which individual bands were sampled. 
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Figure 3.5 Grayscale micro-texture images of the pumice. Crystals are shown in gray, glass in 

white, and bubbles in black.  Red rectangles outline the location of the magnified images on the 

right and correlate with the colors used in Fig. 3.3a.  a Full thin section scan of block N182 with 

72% vesicularity.  b Zoom in of heterogeneous textures in block N182.  Arrows indicate small 

domains of small bubbles.  c Full thin section scan of block N406 with 68% vesicularity.  d 

Zoom in of heterogeneous textures in block N406.  Lower right arrows indicate a domain of 

elongate bubbles and top left arrow identify a domain of small bubbles. 
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Figure 3.6 Grayscale micro-texture images of dense dacites. Blue rectangles outline the location 

of the magnified images on the right and correlate with the colors used in Fig. 3.3a.  a Full thin 

section scan of block B126 with 7% vesicularity.  b Zoom in of collapsed outgassing pathway in 

B126.  c Full thin section scan of block B128 with 5% vesicularity.  d Zoom in of microcracks in 

B128.  e Full thin section scan of block N158 with 10% vesicularity.  f Zoom in of small bubbles 

focused around a phenocryst. 
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round bubbles exists in the glassy regions (Figure 3.6f) and there are pervasive micro-fractures 

throughout the glass and crystals.   

 A small assemblage of blocks with intermediate vesicularities span the gap between the 

microvesicular pumiceous and dense dacites (Figure 3.4a).  In every other way these blocks 

appear to be intermediate between the dense and pumiceous dacites.   

3.3.1.1 Vesicle size and number density data 

Quantitative bubble micro-texture analyses by Adams et al. (2006a, b) showed similarities 

between Episodes III and IV microvesicular pumices and sharp contrasts with the Episode V 

rhyolite dome.  As the classical interpretation of bubble parameters in the context of simple 

nucleation and growth cannot be applied to the Episode  IV dense clasts (due to the formation 

and collapse of permeable networks, as interpreted in section 3.5) only one quantitative analysis 

was conducted by Adams on an Episode V rhyolite dome sample to provide a comparison with 

the pumice.  Cumulative vesicle volume distributions (CVVDs) for the microvesicular pumices 

(Figure 3.7a) have smooth sigmoidal curves with little variation between the high, modal, and 

low density clasts from Episodes III and IV.  The steeper slope of the rhyolite dome sample’s 

CVVD reflects smaller contributions from both the larger (≥0.16 mm) and smaller (≤0.025 mm) 

bubbles when compared to the modal microvesicular pumices (Figure 3.7b).  Median vesicle size 

(determined at the intersection of the curves with the fiftieth percentile) range from 45–92 μm 

(Table 3.1).  For the pumices, median vesicle size roughly increases from high to low density; 

the dense rhyolite has the largest median.  Volumetric bubble number densities (Nm v, referenced 

to melt only) are commonly used as a proxy for nucleation and ascent rates (Toramaru 1995, 

2006; Mangan and Sisson 2000; Mangan et al. 2004; Mourtada-Bonnefoi and Laporte 2004). 
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Figure 3.7 (previous page) a Cumulative vesicle volume distributions (CVVDs) for the 

microvesicular pumices from Episodes III and IV.  Each line represents an individual clast with 

the color scheme of dark to light corresponding to high to low density clasts.  b CVVDs for 

modal density pumices for Episodes III and IV (blue and red curves, respectively) and for the 

Episode V dome sample (black curve). c-e Backscatter scanning electron microscope (SEM) 

images for the samples represented by the curves in b.  Data for the plots and SEM images were 

collected by Nancy Adams (Adams, 2005). 

  

 

Table 3.1 Median vesicle size and volumetric vesicle number densities referenced to the melt 

only (Nm v) for the Episodes III and IV microvesicular pumices (high, modal, and low densities) 

and the Episode V dome. 

 III high III mode III low IV high IV mode IV low V 

Median (μm) 44 59 74 45 84 68 92 

Nm v (cm-3) 2.1x109 3.8x108 2.8x108 2.6x108 8.0x108 4.9x108 1.0x108 

 

 

 

They are approximately one order of magnitude higher for the Episodes III and IV 

microvesicular pumice with respect to the Episode V rhyolite and the Episode IV modal density 

clast has a slightly higher Nm v than its Episode III counterpart. 

Here, we compare, for the first time, the Nm v data from Adams et al. (2006a, b) to the 

ratio of the volume of vesicles (gas) to that of glass (liquid; VG/VL after Gardner et al. (1996); 

Figure 3.8).  Given the high crystallinities of the Novarupta dacite, the correction for the volume 

fraction of crystals in Gardner et al. (1996) was employed.  The different stages of vesiculation 

are reflected in characteristic signatures on plots of VG/VL versus Nm v (e.g., Stovall et al. 2012).    
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Figure 3.8 Volumetric ratio of vesicles to melt (VG/VL) against vesicle number density 

referenced to melt (Nmv) for select modal density clasts from all episodes of the 1912 eruption of 

Novarupta (Nova.) and from a subset of units from the 1.8 ka Taupo eruption. 

 

Nucleation increases the number density of bubbles while only slightly increasing VG/VL 

whereas growth by diffusion and volume expansion without continued nucleation is reflected by 

increased VG/VL at constant Nm v.  Coalescence decreases the number of bubbles while keeping 

the volume of gas constant.  Bubble collapse decreases both the volume of gas and the number of 

bubbles.  Simultaneous processes of 1) bubble nucleation and growth and 2) growth and 

coalescence result in increasing the volume of gas but also increasing and decreasing bubble 

numbers, respectively.  The locations of the data points for all of the Novarupta pumices on 

Figure 3.8 define a linear trend suggesting the most vigorous nucleation and growth occurred 

during Episode I which has the highest mass discharge rate.  The Episode V data suggest that this 

material had undergone significant collapse and loss of bubbles with respect to all of the 

microvesicular pumices.  For comparison, samples of three units, three Plinian pumice (Units 2 
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and 5A) and a pumice from the dome carapace (Unit 7), of the 1.8 ka Taupo eruption (Houghton 

et al. 2010) show a similar contrast to that between Novarupta microvesicular pumice and dense 

rhyolite.  This highlights the significantly different vesiculation histories for the magma ejected 

in explosive and effusive phases of such large silicic eruptions.   

3.3.2 Heterogeneous clasts 

The Episode IV block apron is particularly rich in breadcrusted clasts and breadcrusting is a 

conspicuous feature among all lithologies (Isgett et al. 2017).  We refer to breadcrusted blocks 

with highly vesicular interiors, and which are not banded, as “re-vesiculated breadcrusted clasts”.  

This term replaces “pumiceous dacites with bread-crust exteriors” used by Adams et al. (2006a) 

and “breadcrusted pumice” in Isgett et al. (2017).  We have changed the terminology because 

this paper will show that the high vesicularity of the interiors formed 1) following earlier 

outgassing of the first bubble population formed in this material and 2) after fragmentation. Re-

vesiculated breadcrusted clasts have rinds that vary between 23% and 71% whereas the range of 

interior vesicularities is higher but narrower (47–82%).  For discussion purposes, the re-

vesiculated breadcrusted clasts are divided arbitrarily in Figure 3.4b into three groups according 

to crust and interior vesicularities.  In group 1, crust vesicularities are high (>47%) and they 

significantly overlap with their interiors (Figure 3.4b).  The total range of vesicularities within 

individual blocks is also narrowest in group 1, with samples spanning a minimum of 8% and 

maximum of 16%.  Group 2 has crust vesicularities that are intermediate (35–59%) and there is a 

clear distinction between crust and interior.  Group 3 encompasses the samples with the lowest 

crust vesicularities and a broad range in vesicularity from rind, to transitional, and to interior 

samples.   
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The intensity of breadcrusting increases from group 1 to 3 (Figure 3.3).  In group 1, rinds 

are thin, have a cauliflower texture, and have only one generation of cracking.  Crusts in group 3 

have deep cracks and multiple generations of cracking (i.e., shallower cracks set within polygons 

of crust separated by deeper cracks cf., Wright et al. 2007).  Micro-textures in the rinds show a 

similar progression in the size, shape, and number of pores and in the abundance of dense, glassy 

regions.  The volumetrically dominant bubble population in all groups is intermediate-to-coarse 

in size, but this population becomes less prevalent in groups 2 and 3.  

The sample from group 1 in Figure 3.9 is free of large glassy areas and has the greatest 

density of intermediate sized pores.  This crust appears similar to the non-vesicular breadcrusted 

clasts in terms of the diversity in bubble shapes and the focusing of different textures within 

regions.  One unique aspect of this crust is that it lacks the mm-sized bubbles that are present in 

all of the other crusts and in the microvesicular pumice blocks.  

There is a more significant textural shift between group 1 and 2 crusts than between 2 and 

3.  Elongate glassy regions containing few small bubbles are present in group 2, and the 

dominant intermediate-to-coarse population is stretched/elongate and amoeboid in shape and 

occurs in clusters (Figure 3.9).  Similar to the dense dacites, the mm-sized pores in group 2 are 

complex in shape and are associated with the phenocrysts.  The progression continues with group 

3; its most representative sample (N156-crust) contains large glassy regions that are bubble free 

or contain only few small bubbles.  The intermediate-to-coarse pore population is greatly 

diminished (compared to group 1) and pores are rounded to slightly elongate in shape.   

Groups 1 and 2 contain porous pathways that permeate in 2D throughout large regions of 

the thin section and have irregularly shaped, but rounded edges.  Some are filled with fine clastic   
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Figure 3.9 (previous page) Grayscale micro-texture images of the crusts. Colored rectangles 

outline the locations of the magnified images to the right and correlate to the colors used in Fig. 

3.3b.  a Full thin section scan of crust N004 with vesicularity of 53% and in group 1.  The large 

void in the middle of the image is a crack that formed via breadcrusting.  b Inset of a 

highlighting the focusing of different bubble textures in small regions.  Note the cluster of small 

bubbles in the lower right corner, the region of elongate bubbles of varying sizes in the middle, 

and the cluster of intermediate sub-rounded bubbles with thin glass walls in the lower, left of 

middle area of the image.  c Full thin section scan of crust N015 with vesicularity of 46% and in 

group 2.  d Zoom in of textures in c showing the glassy regions with few small bubbles (right 

side) and the irregularly shaped intermediate-to-coarse bubble population (left side of image).  e 

Full thin section scan of crust N011 with 46% vesicularity and in group 2.  f Inset of e showing 

an outgassing pathway and its collapse into a cluster of irregularly shaped pores in a range of 

sizes.  g Full thin section scan of crust N156 with 26% vesicularity and in group 3.  h 

Magnification of g highlighting the thick glassy regions that are bubble free or have few small 

bubbles and the cluster of irregularly shaped bubbles (middle, left of center) located between the 

phenocryst and the large bubble that may be the remnant of a collapsed pathway. 

 

debris whereas others are open (Figure 3.9f, Figure B.3 in Appendix B).  In group 2, some 

pathways terminate in clusters of complex-shaped intermediate-to-coarse pores (Figure 3.9f).   

Similar clusters are also located near phenocrysts and the mm-sized pores in group 3 (Figure 

3.9h).   

There are also contrasts in the textures of the interiors of the vesicular breadcrusted clasts 

(Figure 3.10).  The interior to the group 1 clast resembles the microvesicular pumices but 

contains regions of round, ~150–300 μm bubbles that contrast in shape with the population of 

intermediate to coarse (>150 to ≥ mm), elongate, amoeboid, and complex shaped bubbles (Figure 

3.10b).  This interior also contains many more of the small <100 μm bubbles than any of group 2  
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Figure 3.10 (previous page) Grayscale micro-texture images of the interiors to the crusts in 

Figure 3.6. Colored rectangles outline the locations of the magnified images on the right.  a Full 

thin section scan of N004 interior with 56% vesicularity.  b Inset of a highlighting a region of 

rounded ~150–300 μm bubbles.  c Full thin section scan of N015 interior with 57% vesicularity.  

d Inset of c highlighting sub-rounded bubbles.  e Full thin section scan of N011 interior with 

73% vesicularity.  f Inset of e highlighting the sub-rounded bubbles and the lack of small <100 

μm bubbles.  g Full thin section scan of N156 with 80% vesicularity.  h Inset of g highlighting 

the rounded bubbles and the lack of small bubbles. 

  

or 3’s interiors.  Vesicles in group 2 and 3’s interiors contrast more significantly with those in the 

pumices in terms of size and shape.  They are mostly sub-rounded in shape, and the few bubbles 

that are more irregularly shaped still have rounded edges.  Group 2 and 3 interiors have two 

volumetrically dominant bubbles sizes that are larger than those in the pumices: those that are 

500–≥1 mm and those that are 125–250 μm (Figure 3.10).  Group 2 interiors have fewer of the 

largest bubbles and slightly more complex shapes than group 3 interiors; however, they are still 

similar in their striking contrast with the microvesicular pumices.   

Dense breadcrusted blocks resemble dense dacites except for minor re-vesiculation of 

their interiors.  We sampled one dense breadcrusted block and it showed a 3% vesicularity 

difference between the crust (8%) and interior (11%).   

 Banded blocks contain sub-millimeter to centimeter wide bands of contrasting 

vesicularity.  Banding can appear as (Figure 3.3): i) dominantly highly vesicular (light-colored) 

blocks containing bands with slightly different vesicularities (pumiceous banded), ii) dominantly 

dense dacite blocks with a few lighter colored bands (dense banded), and iii) banded clasts that 

contain sub-equal amounts of dense and microvesicular pumiceous dacite (mixed banded, see 
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Figure 2 of Isgett et al. 2017 for further details).  Unfortunately, it was difficult to collect 

vesicularity data from individual bands as most were thinner than 2 cm, and so many of the data 

points in Figure 3.4c represent a mixture of bands.  For blocks in which individual bands were 

sampled, dark (or relatively dense) bands have vesicularities similar to dense or intermediate 

blocks.  Light colored (or more vesicular) bands have vesicularities similar to the pumices or the 

interiors of the re-vesiculated breadcrusted clasts (Figure 3.4c).  

 

3.4 Porosity and permeability data 

Episode IV samples span a uniquely wide range of porosity and permeability for any single 

eruptive episode of uniform chemical composition.  We have included in Figure 3.11 porosity 

and permeability measurements on Novarupta samples from Plinian Episodes I–III (Nguyen et 

al. 2014) and from Episode IV (this study).  For all samples, there is good agreement between the 

measured total porosities and the vesicularity measurements described earlier.  We use the ratio 

of connected to total porosity (defined as connectivity, 𝜑𝑐𝑐𝑐 𝜑𝑡𝑡𝑡𝑡𝑡� , Colombier et al. 2017) as a 

measure of overall pore connectivity in Figure 3.11.  Across all block types, the Episode IV 

samples have high pore connectivities at >0.8.  We highlight that the connectivity of the densest 

samples (homogeneous dense dacites and the rinds of breadcrusted blocks) is always high 

despite low total porosities.  There is a general trend of increasing connectivity across 

overlapping total porosities from Episodes I/II to III and from III to IV.  For individual blocks, 

there is a split between the number of blocks that show a marked decrease in connectivity 

between crust and interior and blocks that have similar or slightly higher connectivity from crust 
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Figure 3.11 Connectivity (left column) and Darcian permeability (right column) versus total 

porosity for the homogeneous blocks, Plinian pumices, and the 3 groups of the vesicular 

breadcrusted blocks. 
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to interior (Figure B.4 in Appendix B).  There is no correlation between clast type and the 

difference in crust and interior connectivity.   

 While significantly more scattered, permeability exhibits a direct correlation with 

porosity (i.e., permeability decreases with decreasing porosity), especially for the non-

breadcrusted blocks.  Microvesicular pumices from Episodes I, II, III, and IV each span multiple 

orders of magnitude in permeabilities and overlap significantly with each other in both porosity 

and permeability.  Episode IV microvesicular pumices include the highest permeabilities.  The 

dense dacites maintain measureable permeability down to <10% porosity.  The re-vesiculated 

breadcrusted clasts show an increase in permeability from crust to interior.   The crusts span a 

gap in connectivity, porosity, and permeability between the homogeneous microvesicular 

pumiceous and dense dacites. 

  

3.5 Vesicularity interpretations 

The contrasting block textures can be interpreted in terms of three distinct phases of vesiculation 

in portions of the melt: A) early (primary) degassing in the conduit, B) partial outgassing and 

loss of bubbles from the previous phase while still in the conduit/dome, and C) for the 

breadcrusted blocks only, renewed or ‘secondary’ vesiculation following fragmentation.  

Microvesicular pumice preserves vesicles and textures reflecting A without significant influence 

of B.  Dense dacites and the rinds on breadcrusted clasts preserve syn-fragmentation 

vesicularities formed during A and B whereas interiors of breadcrusted clasts have undergone A, 

B, and C. The complex pore textures of dense dacites and many breadcrust rinds indicate that 

their vesicles have matured well beyond A, i.e., the early stages of bubble nucleation and free-
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growth, and undergone extensive outgassing prior to fragmentation.  The range in vesicularity 

and a variety in vesicle textures within each block type imply contrasts in the duration and extent 

of A, B, and C (Figure 3.12). 

Previous work on silicic domes has found similar textural heterogeneity to that described 

here (Fink and Manley 1987; Vogel et al. 1989; Fink et al. 1992).  In particular, Fink et al. 

(1992) show that the extrusion of a texturally heterogeneous dome involves pre-eruption gas loss 

(outgassing) and syn-eruption degassing and vesiculation.  Multiple micro-analytical studies on 

natural and experimental silicic samples have shown that both degassing and outgassing play 

important roles in whether an effusive eruption remains effusive or becomes explosive 

(Eichelberger et al. 1986; Fink et al. 1992; Rust and Cashman 2004; Gonnermann and Manga 

2005; Adams et al. 2006a; Castro et al. 2012; Gaunt et al. 2014; Nguyen et al. 2014; Ashwell et 

al. 2015; Boudon et al. 2015; Farquharson et al. 2016; Kushnir et al. 2016).  Multi-parametric 

observations of lava domes have also provided evidence of heterogeneity in textures, locations of  

 

 
Figure 3.12 Schematic of relative durations of phases A) degassing, B) outgassing, and C) 

renewed vesiculation for the pumice, intermediate, dense, dense breadcrusted, and vesicular 

breadcrusted blocks.  Banded blocks are not included here due to their added complexity. 
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fumarolic activity, and deformation (Lavallée et al. 2012; Bernstein et al. 2013; Salzer et al. 

2017).  Here,and in chapter 4, we invoke similar processes for the formation of the Episode IV 

blocks, most likely over a similar depth range.   

3.5.1 Homogeneous clasts 

We emphasize that the microvesicular pumice textures are significantly different from the re-

vesiculated breadcrusted clasts’ interiors, indicating that the pumices cannot simply be explained 

as clast interiors that no longer have crusts.  Similarities in texture, bubble number density, and 

size distribution for Episodes III and IV microvesicular pumices suggest comparable vesiculation 

histories.  Adams et al (2006b) showed that the Episode III pumices underwent high nucleation 

rates and coalescence that overlapped in time with bubble nucleation and growth.  Our plot of 

VG/VL versus Nm v (Figure 3.8) suggests that the Episode IV pumice underwent similar short 

histories of rapid bubble nucleation, free growth, and coalescence.  Gonnermann and Houghton 

(2012) estimated decompression rates of <107 Pa/s through numerical modeling of magma ascent 

and vesiculation and replicating the bubble size distributions in the Episode III pumices.  Again, 

the quantitative data imply the Episode IV microvesicular pumices underwent comparable 

decompression rates and rapid, late stage vesiculation.  In sharp contrast, the data for the rhyolite 

dome would also support our qualitative data that the dense dacites underwent significant loss of 

bubbles reflecting a strong influence of phase B.    

3.5.2 Heterogeneous clasts 

The re-vesiculated breadcrusted clasts are much more diverse in vesicularity and complex in 

texture when compared to the homogeneous lithologies reflecting more complex vesiculation 

histories.  The crusts preserve the pre-fragmentation state of all of the magma that formed the 
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breadcrusted clasts (i.e., magma that is now crusts, transitions, and interiors).  The relatively low 

vesicularities and mature bubble textures within most crusts suggest extensive outgassing of the 

population of vesicles formed in phase A, in a manner resembling the magma which formed the 

dense dacites.  The interiors reflect the influence of C, i.e., post-fragmentation re-vesiculation, 

presumably as clasts in the conduit as well as during and after transport.  Their large, rounded 

bubbles are interpreted to be the result of a second vesiculation through diffusion, gas expansion, 

and bubble relaxation.  The first process implies the presence of some amount of residual 

dissolved volatiles in the melt after B and indicates that outgassing-induced collapse of 

permeable pathways followed only partial and arrested degassing, probably due to stagnation of 

the magma at some depth. 

Variability among crust and interior vesicularities and a progression in the diversity and 

complexity of micro-textures between the three re-vesiculated breadcrusted groups can be 

interpreted as the result of contrasting degrees of phases A and B prior to fragmentation (Figure 

3.12).  Group 3 blocks with the widest contrasts in vesicularity between crust and interior 

probably degassed to a lesser degree than those of group 1.  In this scenario magma forming the 

group 1 blocks was the most uniformly degassed during primary vesiculation and yet underwent 

relatively little outgassing.  The source magma for group 3 degassed the least and most 

significantly outgassed prior to fragmentation.  Crusts on group 2 clasts lie between those of 

groups 1 and 3 (Figure 3.4b).  The remains of connected pore pathways are present in the 

grayscale images of group 2 crusts, however, their termination into clusters of 

irregularly/complex-shaped pores (Figure 3.9f) suggests significant collapse of these pathways.  
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This suggests that similar clusters located near the extra-large pores in the crust in group 3 are 

also relict collapsed outgassing pathways.   

The rare dense breadcrusted blocks that show a slight vesicularity difference between 

crust and interior indicate that this source magma extensively but not completely underwent 

phase A and then was extensively modified by B in order to retain a small amount of volatiles 

that allowed limited expansion of the interior.   

In the banded blocks, the light-colored, vesicle-rich bands represent magma that had only 

partially degassed at the depth of fragmentation.  Dense bands were sourced from more mature 

magma that had both completely or near-completely degassed and partially outgassed.  The 

vesicular and dense banded blocks reflect only slight contrasts in degassing/outgassing history 

between adjacent bands, as is reflected in minor differences in vesicle texture and color. The 

vesicular banded clasts experienced phase A the least and the dense banded blocks most 

completely underwent A and B.  The mixed banded blocks contain more marked contrasts in 

degrees of A and B between adjacent bands, as represented by the sharp contrasts in band color.   

For the banded breadcrusted blocks, darker more outgassed bands pass outward into a crust of 

similar appearance and density whereas the light re-vesiculated bands pass outward into dark and 

dense crust.  The light bands were thus only partially degassed prior to undergoing B. 

 

3.6 Permeability and connected porosity interpretations 

The porosity data indicate that vesicles or pores in most of the Episode IV clasts (excluding 

breadcrusted blocks’ interiors) are more connected than those in the Plinian pumices (Figure 

3.11).  Increasing connectivity in pumices from Episodes I/II to III and III to IV coincides with 
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sharp declines in eruption intensity after Episode II and after Episode III (Adams et al. 2006b; 

Hildreth and Fierstein 2012).   

During outgassing of the magma that formed the crusts and dense dacites, most of the 

originally isolated vesicles became connected and remained connected.  We think that the high 

level of connectivity in the crusts and dense dacites is linked to the fact that the low vesicularity 

and complex textures reflect the influence of outgassing rather than an early end to bubble 

nucleation.   

 The wide range of permeabilities in the Novarupta samples reflects portions of the 

magma in the shallow conduit reaching different stages within phases A, B and C.  The 

microvesicular pumices have similar permeabilities (at roughly equivalent porosities) to the 

Episodes II and III Plinian pumices (Figure 3.11).  Nguyen et al. (2014) concluded that pre-

eruptive permeable outgassing was insignificant during Episodes I–III, and we suggest that this 

is also true for the Episode IV pumices.  Data from the dense dacites show that significant 

permeability was achieved and maintained during B even at porosities <<30%.  At any rate, the 

dense dacites represent the latter stages of B in which connectivity remained high and permeable 

pathways still existed, but their source magma had also lost significant porosity and undergone 

collapse and compaction.  The wide range of porosities and permeabilities among the crusts on 

re-vesiculated blocks confirms that they represent a variation in the extent of B ranging from 

recently developed permeable pathways (groups 1 and 2) to the initiation of pathway collapse 

and the loss of porosity during permeable outgassing (groups 2 and 3).  We discuss later the 

possibility that the extent is a function of both the depth at which the outgassing occurred and the 

residence time of the melt at this depth.  The transition and interior samples of the re-vesiculated 
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clasts show an increase in porosity and permeability after B. This process involving outgassing 

prior to renewed degassing (i.e., phase C) has not been described in detail for breadcrusted clasts 

in prior studies.   

 

3.7 Discussion 

3.7.1 Controls on degassing and outgassing of Episode IV magma 

The variable degrees of degassing and outgassing between and within the block types are related 

to contrasts in the depth and duration of residence for different magma in the shallow conduit.  

Solubility limits, and thus depth, determine the extent of degassing/vesiculation phase A, i.e., it 

fixes the residual volatile content of the melt which equates to volatile solubility at the depth 

where degassing occurs.  Duration in the shallow conduit is a strong control on the extent of B, 

i.e., outgassing, loss of porosity, and bubble collapse, as any partially degassed magma that 

resides at some depth will undergo first equilibrium degassing and then outgassing if it is 

retained at that depth for sufficient time.  However, the final micro-textures at the time of 

fragmentation are also influenced by the initial porosity reached during A, as is elaborated 

below.   

3.7.1.1 Microvesicular pumice 

The microvesicular pumice blocks are the only component of the Episode IV ejecta to show a 

simple history of bubble nucleation and growth that was not overprinted by development and 

collapse of permeable vesicle pathways.  Qualitative and quantitative bubble data suggest that 

conduit history was very similar in terms of rate and duration of bubble nucleation to 

microvesicular pumice from the preceding Episode III.  Gonnermann and Houghton (2012) 
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modeled the development of the majority of the Episode III bubbles as occurring over a very 

short time interval (approximately 0.1 s) just prior to fragmentation. We suggest that the source 

magma for the Episode IV microvesicular pumices underwent a similar sudden and rapid 

decompression with vesiculation and fragmentation occurring over a short depth range. These 

processes were probably what drove fragmentation during the Episode IV explosions? We leave 

further discussion of this hypothesis until we arrive at some constraints on depths of residence 

and fragmentation in Chapter 4. 

3.7.1.2 Dense dacite 

The completely or largely outgassed homogeneous blocks with porosities of <20% stagnated at 

varying but always very shallow depths.  Upon stagnation, their initial porosities would reflect 

their storage depths prior to outgassing and prior to fragmentation: shallower magma would have 

higher maximum porosities than deeper magma.  We hypothesize that the dense dacites 

stagnated at the shallowest depths and represent the most degassed and outgassed melt. We also 

infer the duration of stagnation for the dense dacites must have been long relative to the other 

homogeneous clasts in order to allow for the loss of most porosity and the collapse of permeable 

pathways during B (Figure 3.12).   

3.7.1.3 Breadcrusted blocks 

For the breadcrusted blocks, the availability of residual dissolved volatiles for re-vesiculation of 

their interiors suggests that they stagnated (and fragmented) deeper than the homogeneous 

blocks.  Variations in the extent of re-vesiculation and intensity of breadcrusting indicate that the 

magma for the breadcrusted blocks probably stagnated at a range of depths and hence volatile 

solubilities.  The more expanded interiors represent where the magma stagnated at the greatest 
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depths and vice versa.  Given that Isgett et al. (2017) implied that explosions tapped depths of 

<600 m, we are considering much shallower depths overall than those inferred for Vulcanian 

activity at Soufrière Hills (Druitt et al. 2002; Melnik and Sparks 2002a; Clarke et al. 2007; 

Burgisser et al. 2011).  The highest vesicularity crusts formed with the least storage time in the 

conduit.  Conversely, the lowest vesicularity crusts could have come from magma that started 

with low vesicularities and/or outgassed for longer durations.   

The increase in porosity from crust to interior in the few dense breadcrusted blocks 

suggests that this magma would have stagnated at depths slightly deeper than the homogeneous 

dense dacites such that some retained volatiles drove only limited re-vesiculation.  They also 

would have undergone prolonged outgassing in order to reach their very low vesicularity crusts. 

3.7.1.4 Banded 

The depths and durations of stagnation for the breadcrusted banded blocks are much more 

complex and this complexity contributes greatly to our understanding of processes in the shallow 

conduit.  See below for further discussion of this topic. 

3.7.2 Development of breadcrust textures 

Our study casts new insights into the processes effecting breadcrusted clasts.  In most 

publications, it is assumed that the exteriors of breadcrusted clasts preserve a vesiculation state 

immediately prior to fragmentation.  After fragmentation, the thermally insulated clast interiors 

vesiculate and expand, during and perhaps after transport, and the expansion is accommodated 

by cracking the exterior rinds.  The Episode IV clasts show clear textural evidence of a more 

complicated vesiculation history, preserving significant evidence for pre-fragmentation 

outgassing in addition to degassing.  Outgassing may have played an important role in the 



 

119 
 

 

formation of re-vesiculated breadcrusted clasts in many other Vulcanian eruptions, but it has not 

been addressed in the literature to-date.  The most striking feature of the 1912 breadcrusted clasts 

is that the rinds preserve collapsed-bubble textures indicating that they were at least partially 

outgassed before fragmentation. A logical conclusion is that the magma that is now preserved as 

the block interiors underwent a similar degree of outgassing, but their textures are overprinted by 

post-fragmentation vesiculation. This is the first documentation that breadcrusted blocks 

underwent significant outgassing and loss of porosity prior to fragmentation, and, as explained 

above, its extent has implications for the relative residence time of different portions of the 

magma within the shallow conduit. 

3.7.3 Juxtaposition of contrasting magma in flow-banded blocks 

The existence of blocks containing bands of contrasting vesicularity means that either (1) these 

textures developed in place perhaps due to variable shear-stresses on very short length-scales in 

the melt which resulted in the diverse vesiculation states and textures (Polacci et al. 2001; 

Gonnermann and Manga 2005) or (2) dynamically as rising portions of magma with different 

textures and presumably ascent histories mingled just prior to eruption (e.g., Lautze and 

Houghton 2005; Wright et al. 2011).  Contrasting degrees of post-fragmentation expansion in 

adjacent light (vesicular) and dark (denser) bands in single banded breadcrusted blocks suggests 

that the relevant magmas had equilibrated at different levels prior to mingling and retained 

different concentrations of residual dissolved volatiles after mingling (i.e., were still in 

disequilibrium at the time of fragmentation), which favors (2).  Mingling thus juxtaposed 

domains of magma with different vesiculation histories on time scales that precluded their 

diffusive re-equilibration after the mingling occurred.  Koyaguchi (1987) simulated conduit 
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mingling in an elastic conduit in the laboratory, developing textures similar to the 1912 mingled 

clasts.  This experiment showed that effective mingling can occur between fluids of different 

viscosities, at low ascent velocities, and where the volume of ascending magma is relatively 

small.  

Most (83%) of the banded clasts are also breadcrusted containing bands exhibiting an 

inward increase in vesicularity (relative to the crust) ranging from 0–60%.  Like the dense dacite 

blocks, the darker bands that show no internal re-vesiculation are inferred to have equilibrated at 

shallower depths than the re-vesiculated bands.  This means that the source of the lighter-

colored, re-vesiculated bands had to rise to come in contact with the source of the dense bands.  

Mingling of these disparate magmas was followed by fragmentation without diffusive re-

equilibration of the volatiles between the magmas (which would have required days to hundreds 

of days, Table B.1 in Appendix B).  The banded blocks that contain the least textural contrasts 

between bands (i.e., dense/dense, pumiceous/pumiceous) are instances where mingling occurred 

between domains of magma with only slightly different degassing/outgassing histories.  

Conversely, blocks with major textural contrasts (pumiceous/dense) suggest significantly 

different histories for different bands.   

The banded blocks thus provide evidence that texturally distinct magmas interacted over 

only very short time scales prior to disruption.  The processes, length scales, and locations of 

mingling (i.e., how and where disparate magmas became juxtaposed) will be examined in greater 

detail in Chapter 4.   
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3.8 Conclusions  

Through the measurement of vesicularity, porosity, and permeability and the qualitative and 

limited quantitative analysis of vesicle textures, we have shown that the Episode IV blocks at 

Novarupta represent chemically homogeneous magma which was disrupted in various stages of 

degassing and outgassing.  This heterogeneity reflects differing histories of residence and 

stagnation in the shallow conduit prior to Vulcanian eruptions.  The existence of a complex 

conduit fill would require very dynamic, disequilibrium conditions.  Depths for these processes 

are discussed in Chapter 4 and will be combined with textural data from this chapter to propose 

an arrangement of texturally disparate magma domains in the shallow conduit during Episode 

IV.  
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CHAPTER 4 

Constraints from residual water contents on eruptive 

processes during the 1912 Vulcanian explosions at 

Novarupta, Alaska 
 

In preparation for submission to Bulletin of Volcanology as: 

Isgett, S.J., Houghton, B.F., Burgisser, A., Arbaret, L., Gonnermann, H.M. Constraints from 
residual water contents on eruptive processes during the 1912 Vulcanian explosions at 
Novarupta, Alaska 

 

Abstract 

This chapter of the thesis uses residual water contents of matrix glass in the ejecta from a series 

of Vulcanian explosions during Episode IV of the 1912 eruption of Novarupta, Alaska, to 

constrain depth (and timing) of syn-eruptive processes in the shallowest conduit.  It suggests a 

scenario in which texturally heterogeneous magma was fragmented over a relatively narrow 

range of depths (<400 m) and that volatiles in much of the ejected magma had only partially 

equilibrated to varying extents with the final depth(s) at which it was fragmented. In the absence 

of evidence for an external pressure release accompanying collapse of parts of an Episode IV 

edifice, we suggest that the explosions were triggered by vesiculation of actively degassing 

magma which formed the dominant pumiceous component of the Episode IV ejecta.  Hydrogen 

isotopic composition of glass from a range of ejecta textures implies limited secondary hydration 

of the pumice, leaving possibilities for future studies of rapid rehydration of young (~100 years) 

volcanic glass.  
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4.1 Introduction 

 This chapter builds on Chapters 2 (Isgett et al. 2017) and 3 by examining additional aspects of 

the Vulcanian Episode IV during the 1912 eruption of Novarupta, Alaska.  New data sets, 

namely the residual water content and hydrogen isotopic composition of glass in the juvenile 

Episode IV ejecta, are investigated in order to constrain depths of the shallowest syn-eruptive 

processes. 

4.1.1 Vulcanian explosions 

Transient and episodic in nature, Vulcanian eruptions range from weak explosions that form 

dilute, short-lived (~minutes) convective ash plumes with accompanying small ballistic blocks to 

larger explosions that produce denser, higher, and more persistent (~hours) plumes, blocks, 

pyroclastic density currents, and lahars (e.g., Druitt et al. 2002; Schipper et al. 2013; Cassidy et 

al. 2015).  Their ejecta are typified by a diverse range of juvenile and wall rock pyroclasts 

including dense to highly vesicular juvenile clasts, brecciated and massive wall rock lithics, and 

clasts showing a range of breadcrust textures.  These styles of eruption are inherently 

unpredictable, as they are associated with few measurable precursors.  Several well-documented 

examples of relatively large Vulcanian explosions were triggered by the sudden decompression 

of a plugged conduit, often in response to a partial or complete dome collapse, and involved the 

downward propagation of a fragmentation wave that evacuates the conduit in a progressive, 

orderly fashion (Clarke 2013).  In contrast, the sudden onset of weaker Vulcanian explosive 

activity is often observed without such an external trigger, such as at Sakurajima, Japan; 

Santiaguito, Guatemala; Colima, Mexico; Reventador, Ecuador (Global Volcanism Program 

2005; Sahetapy-Engel et al. 2008; Yokoo et al. 2009; Cassidy et al. 2015).  These explosions 
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sometimes do not disrupt material across the entire width of the conduit and instead are restricted 

to multiple discrete ‘vents’ within a dome or crater (Bluth and Rose 2004; Lavallée et al. 2012; 

Cassidy et al. 2015).     

4.1.2 Theoretical models of the Vulcanian conduit 

A well-established model of the pre-fragmentation structure of the magma-filled conduit was 

developed for the large 1997 Vulcanian explosions at Soufrière Hills volcano, Montserrat (Druitt 

et al. 2002; Melnik and Sparks 2002a, b).  The slow ascent of magma results in a horizontally 

zoned column with a dense, capping dome/plug (Clarke et al. 2015).  Magma filling the lower 

conduit is less degassed and is inferred to display an orderly change in densities and textures 

with depth (Druitt et al. 2002; Melnik and Sparks 2002a, b; Clarke et al. 2007; Wright et al. 

2007; Burgisser et al. 2010; Giachetti et al. 2010).  Either pressure builds within the shallow 

regions until it overcomes the overlying pressure of the dome or some portion of the dome fails 

initiating decompression-induced fragmentation (Sparks 1997; Melnik and Sparks 1999; Clarke 

2013).   

Textural heterogeneity of silicic magma in shallow conduits had been proposed for lava 

domes prior to detailed studies of Vulcanian products (e.g., Fink and Manley 1987; Vogel et al. 

1989; Fink et al. 1992), and observations of texturally diverse pyroclasts of Vulcanian eruptions 

(Yamagishi and Feebrey 1994; Adams et al. 2006; Clarke et al. 2007; Wright et al. 2007; 

Burgisser et al. 2010; Giachetti et al. 2010; Isgett et al. 2017) show a predictably similar textural 

range to dome samples.  This textural heterogeneity has been used to propose models of the 

structure of the magma column prior to Vulcanian explosions that are more complex than that 

used in models for Soufrière Hills by e.g., Druitt et al. (2002).  These include pulses of gas-rich 
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magma rising rapidly through other slowly ascending, gas-poor magma (Cassidy et al. 2015) and 

production of banded and brecciated pyroclasts along conduit margins (Kennedy et al. 2005).  

Burgisser et al. (2010, 2011) suggest that the magma structure is likely both vertically and 

horizontally more complex than a simple horizontal layering.  However, for modeling purposes, 

they also assigned depths to horizontal zones of magma including a heterogeneous zone at a 

specific depth.  Our previous work on the Vulcanian deposit at Novarupta, Alaska, has started to 

provide a qualitative picture of the structure of the magma column by providing evidence for the 

lateral juxtaposition of texturally contrasting domains of magma within the very shallow parts of 

the 1912 conduit (Adams et al. 2006; Isgett et al. 2017).  This scenario, however, currently lacks 

quantitative estimates of pre-eruptive pressures and fragmentation depths, which are the topic of 

this chapter. 

4.1.3 Glass H2O measurement and pressure/depth estimates 

The measurement of residual water trapped within glass (matrix glass or melt inclusions) can be 

used to determine quench pressures according to solubility laws (Tamic et al. 2001; Newman and 

Lowenstern 2002; Liu et al. 2005).  These pressures can then be converted to fragmentation 

(using matrix glass data) or storage (melt inclusion) depths.  For Vulcanian eruptions, estimates 

of fragmentation depths and the locations of the magma that formed the diverse pyroclast 

textures are crucial for understanding the rheology of the pre-explosion magma.  Understanding 

the state of the magma in the shallow conduit and/or dome may provide insight to why eruptions 

pass from effusive to explosive styles and vice versa.   

Two processes secondary to the degassing of volatiles influence the measured amount of 

water dissolved in the glass: secondary hydration by meteoric water at low or ambient 
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temperatures (DeGroat-Nelson et al. 2001; Giachetti and Gonnermann 2013; Nolan and 

Bindeman 2013; Giachetti et al. 2015; Dingwell et al. 2016), and/or syn-eruptive resorption of 

magmatic water vapor due to the increase in the equilibrium solubility of water as a consequence 

of temperature and pressure changes during quench (Yoshimura and Nakamura 2008; Watkins et 

al. 2012; McIntosh et al. 2014).  Studies have shown that isotopic variations of magmatic versus 

meteoric water impart distinctive signatures on the measured values for (e.g.,) hydrogen and 

oxygen isotopes which can thus be used to determine if pyroclasts have undergone rehydration 

by meteoric water (DeGroat-Nelson et al. 2001; Nolan and Bindeman 2013; Drignon et al. 2016; 

Seligman et al. 2016).  McIntosh et al. (2014) showed that systematic changes in molecular water 

(H2Omol) and hydroxyl (OH-) distributions relative to bubble rims can record processes of 

resorption and diffusive bubble growth, respectively.  However, if a glass has undergone 

rehydration by meteoric water then determining if resorption has also occurred becomes much 

more difficult due to the fact that both forms of rehydration involve H2Omol.  Given the potential 

for changes due to these processes, volcanic glasses must be tested for rehydration and/or 

resorption in order to insure against inaccurate depth estimates due to erroneously high water 

contents.  

The conversion from H2O content to pressure is based on the assumption of equilibrium 

degassing such that the volatile solubility pressure within the melt is in equilibrium with the 

ambient (magmastatic) pressure.  In disequilibrium degassing, the rate of volatile diffusion is 

slower than the decompression rate and the volatiles become supersaturated within the melt 

(Hurwitz and Navon 1994; Proussevitch and Sahagian 1996; Gardner et al. 1999; Mangan and 

Sisson 2000; Mangan et al. 2004; Mourtada-Bonnefoi and Laporte 2004; Burgisser and Gardner 
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2005; Gonnermann and Manga 2005a).  If the system is in disequilibrium, then pressure and 

depth estimates based on water content would be over-estimates. 

Disequilibrium degassing is inferred to play a role in models of Vulcanian explosions that 

either replicate sudden decompression of the top of a magma column (Melnik and Sparks 2002b; 

Mason et al. 2006; La Spina et al. 2017) — such as a dome collapse, sector collapse, or the 

development of an excess pressure at the top of the conduit that exceeds the fragmentation 

threshold.  In these models, disequilibrium degassing occurs because a downward propagating 

rarefaction wave causes a decrease of pressure that is too fast to be matched by diffusion.  The 

fragmentation threshold may be met if gas/bubble expansion cannot be accommodated due to 

viscous resistance.  Many Vulcanian eruptions are understood in the context of a sudden external 

trigger for decompression (i.e., a dome collapse); however, the potential for disequilibrium 

degassing in the initiation of Vulcanian explosions without an external trigger is not clear. 

4.1.4 Novarupta Episode IV 

Episode IV of the 1912 eruption of Novarupta, Alaska involved a series of Vulcanian explosions 

that completely destroyed a newly formed dacite plug/dome.  The deposit consists of a roughly 4 

x 2.5 km elliptical block apron that is uniquely and exceptionally well preserved, and this has 

allowed for detailed studies into the eruption and shallow conduit dynamics throughout Episode 

IV (Adams et al. 2006; Isgett et al. 2017).  The blocks are dacite and exhibit a wide range of 

pumiceous, dense, banded, breadcrusted, and brecciated textures (Figure 4.1). The banded blocks 

exhibit alternating bands of the juvenile pumiceous and dense dacite.  Breadcrusting is found on 

all block types, but it is most prevalent on the banded and vesicular breadcrusted clasts.  In 

Chapter 3, we showed, through textural differences, that the coarsely vesicular breadcrusted 
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clasts are genetically different from the microvesicular pumices in terms of their resident 

histories in the shallow conduit.   Each of the block types came from a different source within the 

shallow conduit, as is evident from their bubble textures (Chapter 3).  It has thus been proposed 

that the shallow conduit consisted of complex juxtaposition of magma domains with contrasting 

textures, but confirmation of their relative depths can only be established through the 

measurement of the volatiles trapped within the quenched glass. 

Episode IV occurred after 60 hours of powerful Plinian eruption, divided into three 

episodes, that produced voluminous rhyolitic and dacitic ignimbrites and widespread, 

predominantly dacite Plinian fall beds (Hildreth 1983, 1987; Fierstein and Hildreth 1992).  The 

eruption concluded with passive extrusion of a rhyolite dome in Episode V.  Episode IV thus 

provides insight to the ending of Plinian eruptions such as those observed at Mount St. Helens, 

USA, during 1980–1982 (Christiansen and Peterson 1981), Chaitén, Chile, 2008 (Castro et al. 

2012), and Cordón Caulle, Chile, 2011–2012 (Schipper et al. 2013).   

This manuscript combines evidence from block textures, vesicularities, 2D bubble micro-

textures (presented in Chapters 2 and 3) with measured glass water content to infer the magma 

column ‘stratigraphy’ and eruptive conditions throughout Episode IV at Novarupta.  The source 

mechanism for the initiation of explosions throughout Episode IV is also uncertain as there were 

no witnesses during the time of the eruption.  However, there are two lines of field evidence 

against an external trigger such as the sudden failure of a dome: a) there are no deposits from a 

dome collapse, and b) the sectorial confinement of block lobes and small volumes attributed to 

individual explosions (Isgett et al. 2017) precludes the presence of a single conduit-wide,   
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Figure 4.1 Examples of the block textures within the Episode IV deposit.  a Microvesicular 

pumiceous dacite, broken on impact with the ground, block N006. b Dense dacite, block N158.  

c Banded block exhibiting bands of dense (dark) and pumiceous (light) dacite, block N222. d 

Close up of the banded textures adjacent to a crust (left side of sample), from block B349.  Note 

how the overall dense crust extends into bands of differing vesicularities.  e Vesicular 

breadcrusted clast, block N005.  f Moderately welded breccia, block N299. 
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downward propagating fragmentation event.  This chapter will thus also attempt to establish a 

mechanism for the repeated initiation of fragmentation throughout Episode IV.  

 

4.2 Methodology 

4.2.1 Glass H2O measurement 

Measuring volatiles in silicate glasses can be achieved using a range of analytical and 

experimental methods (Ihinger et al. 1994).  The three main classes of volatile analysis are bulk 

extraction, energetic particle bombardment, and vibrational spectroscopy.  Each class has a range 

of techniques with varying accuracies, advantages, and disadvantages (see Ihinger et al. 1994; 

Shea et al. 2014).  Due to anticipated low water contents, we employed two bulk extraction and 

one vibrational spectroscopy methods for measuring residual glass H2O in our blocks. 

As the name implies, bulk extraction involves the measurement of the total volatile 

content within a sample.  Known as ‘loss on ignition’, this method involves subjecting the 

sample to high temperatures in order to remove physically all volatile elements and analyze them 

and/or the refractory residue (Ihinger et al. 1994).   

METHOD 1: We employed a bulk measurement apparatus that utilizes a gas 

chromatograph called the FLASH 2000 CHNS/O Analyzer (ISTO, Université dʹOrléans).  Cores 

1 cm in diameter were drilled from samples, and a portion was crushed with an agate mortar to 

obtain powder <30 μm.  The remaining core was used to make thick sections.  The powder was 

enclosed in a tin capsule and analyzed by the Flash 2000: samples were heated to ~1800°C in the 

presence of O2, and the released H was transported in H2O form to a gas chromatograph by 

helium flux and analyzed by thermal conductivity.  The certified standard SOIL was used for 
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calibration, and we ensured that each Novarupta sample measurement lay between the highest 

and lowest standard values (yields from variable weights of standard introduced to the FLASH; 

recorded at regular intervals throughout a measurement day).  Each sample was analyzed three 

times to yield a 1σ error relative to their average.  The thick sections were imaged with a 

petrographic microscope at 5x or 10x magnification (depending on the visibility of crystals).  

The crystals in the image were drawn in gray and the remainder of the sample was turned white 

within Adobe Photoshop.  ImageJ was then used to calculate the proportion of oxides (𝑥𝑜𝑜) and 

the proportion of all other crystals (𝑥𝑐𝑐) in the 2D images.  Measurements of bulk vesicularity, 

conducted via density analysis using the method of Houghton and Wilson (1989), were used to 

estimate the proportion of bubbles (𝑥𝑏𝑏).  Finally, the proportion of glass (𝑥𝑔𝑔) was estimated as 

 𝑥𝑔𝑔 = 1 −  𝑥𝑏𝑏 −  𝑥𝑐𝑐 −  𝑥𝑜𝑜. (4.1) 

Total H content was converted to H2O using H and O molar masses.  Bulk H2O (𝑋𝐻2𝑂
𝑏𝑏 ) was 

converted to glass wt% H2O (𝑋𝐻2𝑂
𝑔𝑔 ) by correcting for phenocrysts and oxides using the equation 

(modified after Drignon et al. 2016): 

 
𝑋𝐻2𝑂
𝑔𝑔 =  

𝑋𝐻2𝑂
𝑏𝑏 (𝑥𝑔𝑔𝜌𝑔𝑔 + 𝑥𝑐𝑐𝜌𝑐𝑐 + 𝑥𝑜𝑜𝜌𝑜𝑜)

𝑥𝑔𝑔𝜌𝑔𝑔
 (4.2) 

where 𝜌 is density (𝜌𝑔𝑔 = 2350, 𝜌𝑐𝑐 = 2650, and 𝜌𝑜𝑜 = 4720 kg/m3).  Water in amphibole was 

neglected due to the very low abundance of hornblende (Hildreth 1983; Hildreth and Fierstein 

2012).  The proportion of microlites was not used in equation 2 due to the minimal volume 

fraction they represent within the total crystal content in the Episode IV samples (Figure 4.2). 
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METHOD 2: The Thermal Conversion Elemental Analyzer (TCEA) continuous flow and 

sampling system at the University of Oregon stable isotope laboratory was also used for bulk 

extraction of both glass H2O content and δD (where D represents the ratio of the hydrogen 

isotopes deuterium and protium: D/H) following the methodology of Martin et al. (2017).  Six 

representative samples from each textural group (one dense, two pumice, two crusts, and one 

interior) were chosen for this method as a test for secondary hydration by meteoric water.  Prior 

to analysis, samples were lightly crushed, rinsed a minimum of three times with 18 MΩ H2O, 

and then dried in an oven at 110°C.  Individual glass shards were picked under microscope and 

then crushed to 50–250 μm (the range of particle sizes determined by Martin et al. 2017 to yield 

the best reproducibility of water content by the TCEA).  The densest samples had oxides that 

were too small to be separated from the matrix, and equation (2) was modified for only glass and 

 
Figure 4.2 A falsely colored scanning electron microscope image at 1000x magnification of a 

crust sample from block N004.  Bubbles are black, glass is white, and microlites are red.  Note 

the small proportion of microlites within the image and the heterogeneous distribution of mostly 

elongate vesicles.  The vesicle texture is indicative of outgassing and bubble collapse. 
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oxides in order to correct the bulk water measurement for an average oxide proportion of 0.01 

(determined from thick sections as described above).  Powdered samples were dried in vacuum 

at 130°C for two hours, and then 1–10 mg (depending on water content from Flash and Raman 

measurements) of sample was loaded into silver capsules and dried in the vacuum oven for an 

additional four days.  The samples were then loaded into the TCEA which introduces the 

samples to a high temperature furnace and analyses the released gases by a gas chromatograph 

and a Thermo Scientific MAT253 mass spectrometer (see Martin et al. 2017 for further details).  

For maximum reproducibility and precision, the peak intensity measured on the mass 2 of the 

MAT253 mass spectrometer was >1000 mV (Martin et al. 2017).  Standardization was 

conducted with USGS57 and USGS58 mica for solid standards, and a calibration using the 

offsets between measured and nominal δD values (with an R2 value of 0.9978) was employed to 

correct the raw δD measured for each sample. 

METHOD 3: The absorption and scattering of light due to the vibrational properties of 

volatiles’ species in glass can be used to quantify their content.  MicroRaman spectroscopy was 

attempted to conduct direct analyses of glass H2O due to its very high spatial resolution (~1–2 

µm2) and good precision (Le Losq et al. 2012; Shea et al. 2014).  Glass spectra were collected 

with a Witec® Alpha 300R confocal Raman microscope (University of Hawaiʻi at Mānoa) 

equipped with a green laser (532 nm wavelength) with a power of 5 mW.  Four spot 

measurements, with total acquisition times of 60 s, were collected within each region of a thin 

section, and three to four regions were analyzed per thin section.   

The regions of interest on the glass spectra are 1) the peaks between ~200–1,200-cm-1  

resulting from the vibrations produced by the aluminosilicate framework, the “ASF” band, and 
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2) a broad peak around 3,100–3,800-cm-1 attributed to the bending and stretching of H2O and 

OH molecules, the “H2O” band (Thomas 2000; Behrens et al. 2006; Di Muro et al. 2006).  

Calculating water content from the spectra was conducted following the methods of Le Losq et 

al. (2012) and Shea et al. (2012).  The areas (A) beneath the ASF and H2O bands were calculated 

after establishing a baseline and removing the influence of the epoxy mounting medium from the 

raw spectrum.  A raw water content is estimated by calculating their ratio (AH2O/AASF).  This 

ratio is then corrected by the slope of the best fit line to known H2O (determined by FTIR) versus 

AH2O/AASF collected for a series of standards that span the range of compositions (basalt to 

rhyolite, Figure C.1 in Appendix C). 

Water measurements were converted to quench pressures using the empirical solubility 

model of Liu et al. (2005) developed for rhyolitic melts at low pressures.  Although dacite in 

bulk composition, the matrix glass in the Episode IV blocks is rhyolitic, allowing for the use of 

such a model.  Depth was estimated from the quench pressures assuming magmastatic pressure 

and a density of 1,800 kg/m3. 

 

4.3 Results 

The total range of measured water values from all three methods is 0.11 to 2.89 wt% (Table 4.1).  

There are nonsystematic differences in the water values between the different methods for any 

single sample ranging from no overlap in water values (even between the error bars; numbers 2, 

4, 5, 6, 7, 8, and 10 in Figure 4.3) to the estimates being statistically indistinguishable for each 

method (numbers 1, 3, and 9 in Figure 4.3).  The six samples analyzed by the TCEA form a 

group with a narrow range of δD with the exception of one pumice with a lower δD and higher
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 Table 4.1 Summary of textural features (used in equation 2); Flash bulk and corrected, Raman, and TCEA H2O contents in interstitial glass; TCEA hydrogen isotope estimate; 
pressure; and depth for each of the analyzed samples.  Vesicularity, oxides, phenocrysts, and melt are proportions that sum to 1.  Pressure and depth were not calculated for 1) the 
transition and interior samples as their original H2O contents and vesicularities have been over-printed by post-fragmentation vesiculation and 2) the two pumice with H2O > 1 
wt% due to the influence of rehydration.  Final H2O (used for the pressure estimate) was calculated using the average of the multiple estimates if within error, otherwise the bulk 
H2O estimate was used.  Pressure was calculated using the solubility model of Liu et al. (2005) at 850 °C and PCO2 = 0. 

Sample 
𝑥𝑏𝑏 𝑥𝑜𝑜 𝑥𝑐𝑐  𝑥𝑔𝑔  

Flash bulk 
H2O error Flash glass 

H2O error Raman 
H2O error TCEA 

H2O error TCEA 
δD error Final 

H2O error Pressure standard 
deviation Depth standard 

deviation 

     (wt%)  (wt%)  (wt%)  (wt%)  (‰)  (wt%)  (Mpa)  (m)  
Dense                     
B126 0.07 0.017 0.46 0.45 0.26 0.03 0.58 0.1 0.47 0.01     0.53 0.07 2.51 0.61 168 41 
N158 0.10 0.015 0.31 0.57 0.09 0.01 0.15 0.04 0.39 0.03 0.11 0.01 -107.8 -5 0.13 0.01 0.17 0.03 11 2 
B125 0.17 0.012 0.27 0.55 0.23 0.01 0.37 0.08       0.37 0.08 1.30 0.52 87 35 
N159 0.04        0.16 0.03     0.16 0.03 0.26 0.09 17 6 

                     Pumice                     
N366 0.70 0.008 0.13 0.16 0.34 0.03 0.68 0.2       0.68 0.2 4.04 1.61 272 107 
N006 0.61 0.003 0.09 0.29 0.26 0.01 0.35 0.07 0.35 0.02 0.31 0.03 -109.5 -5 0.34 0.03 1.06 0.15 70 10 
N427 0.66 0.005 0.09 0.25 0.77 0.02 1.11 0.2       1.11 0.2     
N430 0.66 0.048 0.14 0.15 1.09 0.07 2.89 0.6   1.30 0.1 -131.5 -7 1.30 0.1     
N341 0.66        0.36 0.05     0.36 0.05 1.21 0.32 81 21 

                     Intermediate                     
N368 0.27 0.013 0.41 0.31 0.19 0.01 0.48 0.1       0.48 0.10 1.45 0.57 83 18 
N019 0.28        0.25 0.06     0.25 0.06 0.60 0.29 40 20 

                     Crust                     
N004 0.47 0.004 0.20 0.33 0.37 0.01 0.63 0.1 0.33 0.08     0.63 0.1 3.48 1.28 233 85 
N005 0.35 0.007 0.24 0.41 0.44 0.07 0.75 0.2 0.27 0.04     0.75 0.2 4.76 2.14 319 143 
N011 0.38 0.017 0.38 0.23 0.30 0.02 0.91 0.2 0.39 0.09 0.26 0.03 -109.5 -5 0.33 0.05 1.01 0.26 67 18 
N014 0.28 0.013 0.30 0.41 0.41 0.01 0.77 0.2 0.38 0.02     0.77 0.2 5.01 1.75 337 117 
N015 0.46 0.006 0.21 0.33 0.29 0.02 0.52 0.1       0.52 0.1 2.45 0.94 165 63 
N156 0.27 0.000 0.29 0.44 0.27 0.02 0.47 0.1 0.48 0.03 0.44 0.04 -102.2 -5 0.46 0.04 1.94 0.28 130 18 
N455 0.14 0.009 0.38 0.48 0.16 0.02 0.30 0.08       0.30 0.08 0.89 0.41 61 28 
B129 0.25        0.33 0.08     0.33 0.08 1.05 0.47 71 32 
N010 0.48        0.34 0.05     0.34 0.05 1.09 0.31 73 20 

                     Transition                     
N004 0.57 0.006 0.14 0.28 0.31 0.03 0.49 0.1       0.49 0.1     
N156 0.59        0.40 0.09     0.40 0.09     
N011 0.59        0.52 0.05     0.52 0.05     
                     Interior                     
N004 0.56 0.003 0.15 0.29 0.42 0.02 0.67 0.1       0.67 0.1     
N156 0.80        0.36 0.06 0.67 0.07 -114.6 -5 0.67 0.07     
N011 0.69        0.28 0.05     0.28 0.05     

135 



 

136 
 

 
 

Figure 4.3 Estimates of glass water content for samples on which multiple methods of 

measurement were employed.  Sample numbers are arbitrary. Error bars are smaller than symbol 

size when not shown and represent the combination of natural variability and analytical 

uncertainty for each sample and method.  There is no consistent relationship between the 

estimates using the different techniques. See text for full explanation. 

 

water content (Table 4.1).  Based on the hydrogen isotope data, discussed in Section 4.4, we 

have excluded this and all other water values >1 wt% H2O from further consideration in 

determining depth ranges for fragmentation.  The remaining data correspond to a pressure range 

of 0.2 to 6.7 MPa (Table 4.1).   

The water data from different clast types form partially overlapping groups on the plot of 

dissolved H2O versus vesicularity (Figure 4.4).  The lowest dissolved water contents (≤0.2 wt% 

H2O) are from two dense dacites.  The crusts of breadcrusted clasts include some samples with 

higher water values than the three pumices.  The crust, transition, and interior samples from an 

individual block (for blocks N004, N011, and N156) show no correlation with vesicularity and 



 

137 
 

 

 
Figure 4.4 Dissolved H2O versus vesicularity for the dense, pumiceous, and intermediate blocks 

and the crusts of the breadcrusted blocks (represented by different colors).  Water estimates for 

the different methods are represented by different symbols and connected by tie-lines.  Nine out 

of the 20 blocks represented in this plot were analyzed by multiple methods; two of those nine 

blocks have overlapping water contents and thus did not need tie lines (see Table 1). 

 

most have similar H2O values with overlapping error bars (Figure 4.5).  Pressure and depth were 

not calculated for the transition and interiors as their water values do not represent fragmentation 

conditions due to post-fragmentation continued vesiculation.  

Total crystallinities (phenocrysts + oxides) collected from thick sections show no 

relationship between water content (measured via the Flash 2000 — the method for which crystal 
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Figure 4.5 Dissolved H2O versus vesicularity for the crust, transition, and interior samples of 

blocks N004, N011, and N156.  Vesicularity of the crust decreases from block N004 to N156 

whereas transition and interior vesicularities increase, yet there is no correlation between 

vesicularity and water content. 

 

content was necessary) and crystallinity (Figure C.2 in Appendix C).  There is an inverse 

correlation with vesicularity; however, crystallinities referenced to solid (glass + crystals) only 

show no correlation with vesicularity and, in fact, span a wide range of values within a single 

textural group.   
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4.4 Interpretations 

4.4.1 Discriminating primary magmatic water from secondary hydration by 

meteoric water 

The wt% H2O and δD measured by the TCEA are plotted with modeled regions for closed 

system degassing, open system degassing/outgassing, and rehydration by meteoric water in 

Figure 4.6.  During degassing of water from the melt, deuterium is preferentially partitioned into 

the vapor phase.  This will cause subtle to extreme D/H fractionation depending on whether the 

system is closed or open, respectively, during degassing (Taylor et al. 1983).  If the system 

remains closed, the melt and the vapor remain in contact and thus are able to equilibrate and the 

D/H fractionation can be modeled using a linear mass balance equation (Taylor et al. 1983).  The 

removal of exsolved volatiles during open system degassing prevents isotopic equilibrium and 

drives strong D/H fractionation as described by the Rayleigh distillation equation (Taylor 1991).  

The closed-system degassing and outgassing regions in Figure 4.6 were modeled using (Taylor et 

al. 1983; Taylor 1991; Castro et al. 2014):  

 𝛿𝐷𝑑𝑑𝑑𝑑𝑑 =  𝛿𝐷𝑖 − (1 − 𝐹)(1000)(𝑙𝑙𝛼𝑣−𝑚) (4.3) 

 𝛿𝐷𝑜𝑜𝑜𝑜𝑜𝑜 = (𝛿𝐷𝑖 + 1000)(𝐹𝛼𝑣−𝑚−1) − 1000 (4.4) 

for a melt initially containing 3 wt% H2O (estimated for the Novarupta dacite, Hildreth and 

Fierstein 2012), where 𝛿𝐷𝑖 is the initial δD of the melt, F is the ratio of the H2O remaining in the 

melt, and 𝛼𝑣−𝑚 = 1.0343 is the fractionation factor (from Martin et al. 2017).  Since the true 

value is currently unknown, degassing and outgassing curves were calculated for 𝛿𝐷𝑖 values 

ranging from -55‰ (dacite value from Mount St. Helens, Underwood et al. 2013) to -75‰ (the 

maximum value modeled by Castro et al. 2014 for the 2008 rhyolitic eruption at Chaitén) and 
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plotted as shaded regions.  At low temperatures, rehydration of meteoric water largely occurs in 

the form of H2Omol whereas (at low total H2O concentrations) magmatic water is in the form of 

OH-  (Newman et al. 1986; Silver et al. 1990; Giachetti et al. 2015).  The influence secondary 

hydration on the δD of the measured water in glass depends on the initial δD of the magma, the 

δD value of local meteoric water, and the degree of volcanic degassing that has occurred 

(Seligman et al. 2016 and references therein).  During rehydration, the δD of secondary water is 

depleted by 30–35‰ relative to that of local meteoric water at typical surface temperature and 

hydration conditions (Friedman et al. 1993a; Bindeman and Lowenstern 2016; Seligman et al. 

2016; Martin et al. 2017).  The rehydrated region in  Figure 4.6 was modeled for erupted glass 

starting with 0.2 wt% H2O using the equation of Martin et al. (2017): 

 𝛿𝐷𝑟𝑟ℎ𝑦𝑦 = 𝑋(𝛿𝐷𝑚𝑚𝑚 − 34) + (1 − 𝑋)(𝛿𝐷𝑑𝑑𝑑𝑑𝑑) (4.5) 

where X is the fraction of rehydration (meteoric water/total water), 𝛿𝐷𝑚𝑚𝑚 = -110‰ is the value 

for meteoric water at Katmai (unpublished data from Mike Hudak, University of Oregon), -34 

corresponds to 1000( 𝑙𝑙𝛼𝑣−𝑚), and 𝛿𝐷𝑑𝑑𝑑𝑑𝑑 is the starting δD estimated from the degassing 

model for 0.2 wt% H2O. There is therefore a range of 𝛿𝐷𝑑𝑑𝑑𝑑𝑑 as it was calculated for the range 

of 𝛿𝐷𝑖 in Equation 4.3 producing the shaded region of rehydration in Figure 4.6.  The four 

samples that cluster between -110‰ and -100‰ plot on the lower end of the closed system 

degassing region or between the closed and open degassing regions.  These samples are 

interpreted to represent complex degassing histories involving multiple events of closed system 

degassing and disruption that leads to outgassing (similar to the batched degassing proposed by 

Taylor 1991 and Castro et al. 2014).  While two of these data points lie at the beginning of the   
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Figure 4.6 Episode IV δD and water content plotted against modeled trends for closed system 

degassing (dark gray region), open system degassing/outgassing (light gray region), and 

secondary hydration by meteoric water (blue-gray region).  The initial δD of the magma at 

Katmai is currently unknown and so we included gray regions for the degassing and outgassing 

models for a range of 𝛿𝐷𝑖 (Equations 4.3 and 4.4) from -55‰ to-75‰.  The blue-gray shaded 

region represents the evolution of volcanic glass composition during rehydration assuming an 

initial H2O content of 0.2 and for the range of δDs calculated using the degassing model for 0.2 

wt% H2O water (starting δD of -85‰, -95‰, and -105‰ corresponding to 𝛿𝐷𝑖 of -55‰, -65‰, 

and -75‰, respectively).  See text for further details. 
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rehydration region, this specific region is for closed system degassing — if those pyroclasts did 

undergo batched degassing this would draw their δD values closer to the rehydration curve (i.e., 

closer to the outgassing region) without secondary hydration.  The interior sample with a δD of 

approximately -155‰ plots in the middle of the outgassing region but also extends into the 

region between the two degassing trends due to its wide range of water estimates.  This probably 

reflects the influence of a range of degassing/outgassing/rehydration events due to 1) the fact that 

the interior re-vesiculated from an outgassed crust (reflecting batched degassing), and 2) some 

rehydration might be possible due to the high water content and vesicularity, but its range of 

water values actually overlaps with that of its crust (the 0.45 wt% H2O crust) so this is left 

uncertain.  The pumice with a δD of -131‰ plots much closer to the rehydration trend; this 

combined with its high water content is taken to indicate secondary hydration by meteoric water.  

Given where these six samples plot relative to the modeled degassing, outgassing, and 

rehydration regions, we assume that it is prudent to assume any values >1 wt% measured by the 

Flash 2000 and the Raman reflect some amount of low-temperature rehydration.   

Due to continued problems with the apparatus, we were unable to use the Raman 

spectrometer to test samples with <1 wt% H2O for resorption that would manifest as increasing 

water content towards bubble walls.  However, McIntosh et al. (2014) observed such increases in 

H2O content of roughly 1 wt% (or more) within 10 μm of bubble walls.  If similar amounts of 

resorption occurred within the Episode IV clasts, then higher water contents than those that we 

have recorded should be expected.  In fact, in general, the low water contents measured here 

would suggest that resorption was not a major contributor to the majority of the Episode IV glass 

water contents.  This chapter will continue with the assumption that samples with <1 wt% H2O 
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can be confidently taken to represent the residual magmatic water in the glass at the time and 

depth of fragmentation.   

4.4.2 Implications of measured water contents 

The data show a range of residual water contents but one that is restricted with respect to many 

other Vulcanian eruptions.  The range of acceptable water data, of 0.11 to 0.91 wt%, presented 

here contrasts with: 0.2–2.79 wt% H2O at Soufrière Hills in 1997 (Burgisser et al. 2010); 0.4 to 

3.1 wt% H2O (with a majority ≤1.5 wt%) at Guagua Pinchincha in 1999 (Wright et al. 2007); 1–

1.7 wt% H2O at Volcán de Colima in 2013 (Cassidy et al. 2015) and is more consistent with the 

0.1–0.5 wt% estimated for 1991 Unzen Vulcanian pyroclasts (Kusakabe et al. 1999) and the 

0.73–0.95 wt% found in a tuffisite vein within a 2008–2009 Volcan Chaitén pyroclast (Saubin et 

al. 2016). At face value then, it would appear that a narrow and shallow range of depths of 

fragmentation is likely for the Novarupta samples.  

 Combined with vesicularity and micro-texture analyses, the water data can provide insight to 

the pre- and syn-fragmentation residence depths and times in the conduit for the magma 

producing the diverse suite of block textures.  With the exception of the interiors of breadcrusted 

clasts, the vesicularity and micro-textures of a clast reflect bubble nucleation, growth, and 

outgassing prior to fragmentation.  The residual water contents indicate the maximum depths at 

which these processes occurred.  We now apply these lines of reasoning to the Episode IV ejecta.  

4.4.3 Dense dacites 

The dense dacites contain comparatively few bubbles and, instead, show large regions of vesicle-

free glass.  The vesicle/pore population is volumetrically dominated by large, elongate and 

complex-shaped pores that are generally aligned along the margins of phenocrysts.  We know 
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that exsolution of only a small proportion of the volatiles (10–20%) is necessary for Novarupta 

magma to have reached vesicularities of 52 to 75 volume % (Gonnermann and Houghton 2012).  

Given that the pre-eruptive H2O contents in the storage region are estimated at 2–3 wt% 

(Westrich et al. 1991; Lowenstern 1993; Hildreth and Fierstein 2012), all of the water contents in 

Figure 4.4 indicate that all portions of the Episode IV magma underwent significant degassing 

prior to final fragmentation.  It was necessary, then, for the densest magmas to have also 

undergone outgassing to preserve measured porosities of <20%.  This is an indicator that the 

residual volatile content in the dense dacite magma was in equilibrium with solubility versus 

depth relationships at fragmentation, and the depth estimates are realistic values.  As such, the 

combination of low H2O contents and dense, outgassed textures in the dense dacites indicate 

their magma source underwent significant vesiculation followed by, and concurrent with, 

prolonged outgassing at depths of 170 m or less. 

4.4.4 Microvesicular pumices 

With micro-textures, bubble number densities, and size distributions similar to the Episode III 

Plinian pumice (Chapter 3), the Episode IV pumices contain a significant, population of very 

small bubbles that 1) was newly formed at the time of fragmentation and quenching, and 2) 

perhaps indicates bubble nucleation extended right to fragmentation (Adams et al. 2006; 

Gonnermann and Houghton 2012).  The residual water contents (0.31 to 0.68 wt% H2O) may 

indicate some combination of a narrow range of shallow fragmentation depths and also variable 

re-equilibration of the volatiles with the final depth of fragmentation (see Section 4.5.1).   
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4.4.5 Breadcrusted clasts 

With a wide range of vesicularities and corresponding bubble micro-textures that span from 

microvesicular to dense/outgassed, the crusts represent magmas that were resident in the shallow 

conduit for contrasting durations and achieved variable degrees of equilibration with their 

residence/fragmentation depths (Chapter 3).  All of the crusts except sample N004 have bubble 

textures showing elongate, permeable porous pathways which have undergone partial collapse or 

narrowing. 

 Sample N004, with the highest vesicularity (47%) of the crusts, exhibited evidence of a much 

lesser extent of outgassing than the other crusts.  It seems likely that it had a much shorter 

residence time at its final depth prior to fragmentation, to permit this to occur, and so its H2O 

content (0.63 wt%) could be in slight disequilibrium (similar to the pumices).   

 The banded breadcrusted blocks supply strong evidence for some magma in the conduit 

being in disequilibrium with its residence and fragmentation depth.  In these blocks, dense crusts 

extend into interiors with bands of different vesicularities (i.e., banding is more conspicuous in 

the interiors than in the crusts, Figure 4.1d).  One way of interpreting this is that bands 

underwent different amounts of post-fragmentation vesiculation which would be the result of 

adjacent magmas with slightly different chemical and/or physical properties (Chapter 3).   

Likely, the band that expanded was in chemical and/or physical disequilibrium with its 

fragmentation depth and its adjacent/non expanded band was in equilibrium. 
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4.5 Discussion 

4.5.1 Variation in measured water contents 

In considering variations in water estimates from the different methods, it is worth mentioning 

the difference in spot versus bulk measurement.  Due to its high spatial resolution, the Raman 

technique can detect heterogeneities within the sample (e.g., increasing water contents towards 

bubble walls).  During a measurement, care was taken to collect spectra on glass away from 

bubbles walls and to conduct multiple measurements on different regions in the thin section.  

Measurement of bulk samples averages all heterogeneities that we attempted to avoid in the 

Raman analysis.  Indeed thick sections of samples analyzed by the Flash show heterogeneities 

(in vesicularity/texture) that would yield an averaged result in the bulk analysis (Figure C.3 in 

Appendix C).  Shea et al. (2014) showed that water content varied with small-scale textural 

heterogeneities in 40% of pumices containing such contrasts in texture.  It is worth noting that a 

reliable water content could not be estimated for a few of the samples analyzed by the Raman 

due to large variability in the water content of different regions in the samples.  This existence of 

heterogeneities in a single sample could explain why there is nonsystematic differences between 

the Raman and bulk analyses.     

4.5.2 The rehydration problem 

The implications of secondary hydration by meteoric water for paleoclimate studies and for 

relating total H2O content to degassing histories has been studied for over half a century.  It is 

understood that volcanic glasses must be exposed to atmospheric conditions for prolonged 

periods of time (thousands to hundreds of thousands of years) for meteoric water to be 

incorporated into the aluminosilicate structure under ambient conditions (Friedman et al. 1966, 
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1993a, b; Dobson et al. 1989; Giachetti and Gonnermann 2013; Seligman et al. 2016).  Evidence 

for rehydration in 100 year old Novarupta pyroclasts thus poses a problem if it occurs under such 

conditions.  For example, 1 μm of hydration in 100 years requires diffusion rates of 10-22 m2/s 

and 15 μm requires rates of 10-20 m2/s.  These rates are considered fast compared to the average 

of 10-23 m2/s calculated for a range of timescales at ambient temperature by Giachetti and 

Gonnermann (2013).  Additionally, one pumice analyzed by the TCEA shows rehydration while 

the other does not, despite similar bulk vesicularities (Table 4.1).  The rehydration of a pumice 

relative to a young dense sample may be understandable due to the larger surface area of glass 

per unit mass exposed to the atmosphere (e.g., Giachetti and Gonnermann 2013).  However, the 

selective rehydration of one pumice over another may reflect bubble wall thickness (e.g., 

Seligman et al. 2016).  For example, 1 μm of rehydration will more greatly modify the bulk 

measurement of H2O and δD for a pumice with comparatively thin walls (such as 5 μm thick 

versus 15 μm) due to the smaller volume of glass.  There is potential for further research into 

diffusion rates at low temperature and the rehydration of young pyroclasts.  Water diffusion rates 

are much faster at higher temperatures (Newman and Lowenstern 2002 and references therein); 

however, this would require some pumices to remain at high temperatures after fragmentation or 

infiltration of meteoric water through the dome to reach the pocket of pumice-forming magma 

that resulted in the one measured rehydrated pumice. 

4.5.3 Architecture of the dome and shallow conduit  

The essential characteristics of our eruption scenario are: 

i) The magma was fragmented over a narrow range of depths of less than 400 m, one 

that is limited compared to larger Vulcanian explosions at long-lived lava domes, 
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ii) Some of the magma was not in volatile or physical equilibrium at the depth of 

fragmentation, i.e., volatile contents cannot be directly correlated with depths of 

stagnation or fragmentation, 

iii) Blocks with different textures still came from overlapping depths suggesting 

significant lateral textural heterogeneity of the magma at shallow depths, 

iv) Rapid vesiculation of the microvesicular pumice-forming magma is inferred to 

provide the energy required for the explosions.  

The water data support the structure of the shallow magma column proposed by Adams et 

al. (2006) and Isgett et al. (2017).  In it, magmas in different stages of degassing, outgassing, and 

volatile disequilibrium were juxtaposed and mingled with one another.  These data (Table 1) 

show for the first time that this heterogeneity occurred at depths of <400 m, possibly reflecting 

disruption of a texturally complex dome and its shallow roots.  This heterogeneity and estimated 

fragmentation depths are much shallower than those estimated for Vulcanian explosions at 

Soufrière Hills (Druitt et al. 2002; Melnik and Sparks 2002b; Clarke et al. 2007; Burgisser et al. 

2011). 

We cannot detect temporal shifts by applying a chronology to the mapped block deposit 

as there is no clear ‘stratigraphy’ due to lack of spatial overlap between products of discrete 

explosions and the eruption was not observed.  However, we can be certain of lateral textural 

heterogeneity in the magma (as opposed to the classical model of changing texture with depth) 

due to two lines of evidence.  First there are two scales of texturally variability — meter-scale 

homogeneous clasts (indicating homogeneous regions at least that large) and centimeter- to 

millimeter-scale banding in banded blocks (Isgett et al. 2017) which show that melts of 
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contrasting degrees of degassing and outgassing co-existed and mingled at single depths. Second, 

both volume estimates for individual explosions (Isgett et al. 2017) and the new water data 

suggest explosions tapping only shallow regions of the conduit implying the diversity of the 

ejecta must reflect spatial variability across the conduit and/or dome.  Additionally, the 

preferable ejection of the dense blocks towards the south of the vent (Isgett et al. 2017) may 

provide evidence of regions of heterogeneity in the dome.  Inclined explosions observed at 

Soufrière Hills volcano were attributed to an asymmetric vent/shallow conduit region that 

evolved in response to prior explosions (Cole et al. 2014).  At Volcán de Colima, explosion loci 

were discrete, and spatially variable within the crater and dome, which was related to 

heterogeneity in the conduit fill (Lavallée et al. 2012; Cassidy et al. 2015).   

We expand on this model by placing each block type in a more specific framework 

(Figure 4.7).  In this, the densest material has been intruded by multiple domains of newer 

magma of contrasting residence times and thus in differing stages of degassing and outgassing.  

Magma with lesser amounts of primary degassing formed the re-vesiculated breadcrusted clasts 

with the highest H2O contents.  Tongues of actively vesiculating magma that resulted in the 

pumices were restricted to meter-wide domains within the shallow conduit.  They intruded 

through, and locally mingled along their margins with, domains of the denser, cooler, more 

viscous magma in all stages of degassing and outgassing.  This mingling resulted in the banded 

blocks with sharply contrasting bands of dense and highly vesiculated material.  Vesiculated 

bands in banded breadcrusted blocks represent material that had recently intruded and was thus 

at disequilibrium (their source magma, represented by the crust, was dense and outgassed and the 

interior band re-vesiculated after fragmentation).  The conduit fill was thus constantly evolving  
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Figure 4.7 Theoretical model of the pre- and syn-fragmentation shallow conduit throughout 

Episode IV.  The densest material, that generates dense dacite blocks, is represented by dark 

gray, the magma source for pumices is represented by the bright orange intrusion, and the 

lighter purple-gray and orange intrusions represent the source magma for the breadcrusted 

blocks.  A: As the rising, actively vesiculating magma rose into the shallow conduit, shearing 

along its margins with the material that it was intruding formed the banded blocks (left inset). B: 

Sudden decompression of the actively vesiculating magma triggered fragmentation resulting in a 

small explosion that disrupted only a localized portion of the conduit-fill.  Due to the textural 

heterogeneity of the dome and shallow conduit, a wide range of pyroclast textures was produced 

despite the limited depth range for fragmentation. 
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throughout Episode IV at Novarupta due to the intermittent arrival of new magma.  This 

contrasts with the conventional view of a stagnant, horizontally layered conduit (Clarke 2013, p. 

132 and references therein) prior to Vulcanian explosions at long-established dome complexes.  

Studies of hybrid effusive-explosive activity following the cessation of powerful Plinian phases 

at Chaiten (2008) and Cordón Caulle (2012) have also inferred shallow fragmentation depths and 

shallow dome/conduit heterogeneity.  However, a crucial difference there is the presence of 

tuffisite veins that connect deeper gas-rich and degassing magma to outgassing pathways and 

become the source of ash-venting when they become blocked (Schipper et al. 2013; Castro et al. 

2014; Saubin et al. 2016).  No obvious tuffisite veins were observed in the Episode IV blocks at 

Novarupta.   

4.5.4 Magma ascent and storage histories 

4.5.4.1 Microvesicular pumice 

We suggest that the magma that formed the Episode IV microvesicular pumices underwent a 

sudden and rapid decompression with vesiculation and fragmentation occurring at similar depths 

(Chapter 3).  As hinted above, the ascent history for the Episode IV pumices is still unclear, but 

we can address the merits of certain options.  The pressure change could have occurred in three 

ways: 1) during ascent of the pumice-forming magma to the depth of fragmentation immediately 

prior to the eruption, 2) while the magma resided and equilibrated at some depth (i.e., at some 

pressure) and was disrupted in situ by a downward propagating rarefaction wave, or 3) when the 

magma was resident at shallower depths but held at some overpressure which was eventually, 

but very suddenly, released.  Residual water contents for the pumices (Table 1) suggest 

fragmentation depths of 70 to 270 m which rules out option 2).  Option 3) would involve some 
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unknown residence times at those depths (which would be supported by the small population of 

large, >1 mm, and complex-shaped bubbles observed in the microvesicular pumices).  In this 

scenario, the magma would have intruded into an already pressurized system without triggering 

significant vesiculation until just prior to fragmentation; however, there is no evidence of an 

external trigger such as dome collapse.   

We imagine that both options 1) and 3) are viable, and, considering the textural 

heterogeneity of the shallow dome and its roots, it could be a combination of these.  Both 

scenarios require the intermittent pulsed arrival of small batches of volatile-rich magma into the 

shallow conduit in order to produce the multiple explosions proposed by Isgett et al. (2017) that 

were localized to small portions of the conduit.  Geophysical and geochemical observations of 

inflation and fluid movement (i.e., intrusion) prior to Vulcanian explosions at Mount St. Helens 

in the summer of 1980, Soufrière Hills in 1997, and Sakurajima in 2009 are attributed to the 

arrival of new magma on varying but short time-scales (e.g., Calder et al. 2002; Cashman and 

McConnell 2005 and references therein; Williamson et al. 2010; Yokoo et al. 2013).  Periods of 

increased effusion rates at long-lived domes have also coincided with more frequent Vulcanian 

explosions (Calder et al. 2002; Melnik et al. 2009; Lavallée et al. 2012).  Rapid vesiculation in 

response to this ascent may trigger fragmentation directly, through bubble expansion and 

exceedance of the tensile strength of the bubble walls (option 1).  Alternatively, the arrival of this 

magma may still increase pressure of an already pressurized system until it overcomes the tensile 

strength of the dome rock (option 3).  Some batches of magma may remain at some level of 

volatile disequilibrium with ambient pressure after intrusion but prior to fragmentation.  This 
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allowed time to partially outgas and collapse any vesicles that formed during ascent ultimately 

resulting in some of the breadcrusted blocks. 

4.5.4.2 Complex combinations of degassing histories 

The evidence presented in Section 4.1.1 for batched degassing to have had a role in all block 

textures provides critical support for our argument that the magma in the very shallow conduit 

was in varying states of degassing and outgassing.  Closed system degassing occurs within 

isolated parcels of magma producing exsolved gas bubbles that remain coupled with the magma.  

Due to this mechanical coupling the exsolved fluid and melt remain isotopically equilibrated 

following the closed system degassing model in Figure 4.6 (Taylor et al. 1983).  If vesiculation 

occurs in an open system (resulting in outgassing) chemical equilibrium is not maintained, 

driving strong D/H fractionation according to the outgassing model in Figure 4.6 (Taylor 1991).  

In batched degassing, a parcel of magma may degas in a closed system producing exsolved gas, 

followed by extraction of the gas after an open system develops.  This can occur cyclically and 

gradually drive δD towards the outgassing trend, and so data reflecting batched degassing plot 

intermediate between closed and open system models (Taylor 1991; Castro et al. 2014).   

Batched degassing could have occurred in response to the multiple conduit-changing 

events throughout Episode IV: explosions and the pulsed arrival of new magma.  Clearly, 

intermittent explosions that disrupt small regions of the dome facilitate the removal of exsolved 

gas.  Shearing, along the margins of an intruding magma domain, can both open and close 

permeable pathways, resulting in the outgassing of local domains.  Shearing of magma can 

increase its permeability by deforming bubbles and increasing connectivity and also via brittle 

fracturing (Gonnermann and Manga 2003; Tuffen et al. 2003; Rust et al. 2004; Okumura et al. 
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2008, 2009, 2013; Namiki 2012; Shea et al. 2014; Shields et al. 2014; Kushnir et al. 2017).  

Shear-induced outgassing may have been locally variable across the shallow conduit due to the 

arrival of, and shearing along, narrow (meter-wide) domains of magma; however, depending on 

the extent of these shear zones, they may not have permitted complete outgassing.  A system 

may become closed again due to the collapse of the sheared bubbles into a dense material (e.g., 

Okumura et al. 2013; Shea et al. 2014) and the healing/annealing of the fractured network (e.g., 

Tuffen et al. 2003).  One can start to imagine how complex the degassing and outgassing 

histories may have been on very short length scales for magma in the conduit throughout 

Episode IV, especially considering how localized both explosions and the arrival of new magma 

were, resulting in magma domains in differing states of degassing, outgassing, and 

disequilibrium.   

4.5.4.3 Dense dacite 

Could the magma represented by the dense dacite blocks have been left in the conduit at the 

close of Episode III?  If so, what time was available for magma remaining in the conduit from 

the end of Episode III to evolve prior to fragmentation during Episode IV?  The duration of the 

pause between Episodes III and IV puts an upper limit on this.  As there were no direct 

observations of the eruption source, we must use the deposits to estimate the duration in 

question.  The Episode IV blocks lie directly on layer H which is a “muddy” ash layer that 

formed after the cessation of Episode III (Hildreth and Fierstein 2000; Houghton et al. 2004).  

Proximally, layer H consists of >50 wt% ash that is finer than 63 μm in diameter and 85–100% 

of the glass shards are dacite (Fierstein and Hildreth 1992).  We estimate a total of 22 hours for a 

63 μm diameter, irregularly shaped (elongation of 0.7) ash particle with a density of 2500 kg/m3 



 

155 
 

 

to fall from a plume height of 25 km (Fierstein and Hildreth 1992).  If, instead the ash fell as 

loose aggregates then this time estimate is reduced; for example, an aggregate that is 600 μm in 

diameter, has a density of 750 kg/m3, and an elongation factor of 0.7 would have a fall time of 2 

hours (fall times calculated using the formulations of Bagheri and Bonadonna 2016 and Bagheri 

et al. 2016).  These fall times are minimum estimates for the duration of the pause, considering 

≥50% of the ash in layer H is smaller than 63 μm in diameter. 

In addition to fall times, small erosional gullies within the Episode III tephra and 

underlying a few Episode IV blocks are indicative of a longer time period between the 

accumulation of layer H and the onset of Episode IV.  Thunderstorms, which occur in King 

Salmon (64 miles from Novarupta) on average of <1 per month during the summer months 

(Western Regional Climate Center, https://wrcc.dri.edu/cgi-bin/clilcd.pl?ak25503) would have 

caused significantly more erosion.  Instead, the gullies are likely the product of minor sheet wash 

accompanying more frequent but minor rain storms and indicate a pause of deposition on the 

order of weeks between Episodes III and IV.  This is ample time for the melt forming the densest 

blocks to reach diffusive equilibrium and to undergo significant loss of porosity due to 

outgassing.  

4.5.5 Formation of textural differences in banded clasts 

Banding within pyroclasts can form through the mixing/mingling of two different magmas (e.g., 

Perugini and Poli 2012 and references therein) or variability in degassing within a magma in 

space and time (e.g., Gonnermann and Manga 2005b; Shea et al. 2012).  As highlighted by 

Perugini and Poli (2012) mingling, defined as the physical dispersion of one magma within a 

host magma, rarely occurs without chemical exchanges due to the increase in contact area 
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between the two fluids.  Mixing, or the simultaneous mingling and diffusion between two 

magmas, is thus much more common.  The literature largely addresses mixing between magmas 

of different compositions between which large chemical and temperature gradients occur 

(Eichelberger 1980; Seaman et al. 1995; Flinders and Clemens 1996; Perugini et al. 2003, 2004, 

2007; Perugini and Poli 2012).  However, the kinematics of mixing/mingling can be applied to 

magmas of different textures (as throughout Episode IV) assuming the magmas were in their 

contrasting textural state prior to mingling.   

We address two kinematical processes of mingling: chaotic mixing and instabilities 

formed along margins of one magma traveling through another.  Mixed/mingled rocks that 

exhibit lamellae across a range of length scales are in fact fractals formed by repeated events of 

stretching and folding (Flinders and Clemens 1996; Perugini et al. 2003).  The basic dynamics 

leading to chaotic behavior in fluids is stretching and folding, and modeling of chaotic mixing 

has produced structures and morphological features similar to those found in natural samples 

(Perugini et al. 2003; de Campos et al. 2011).  Stretching and folding within the conduit would 

indicate quite dynamic conditions that could form in response to disruptions to the system (e.g., 

very localized explosions and subsequent reorganization of the conduit or injection of magma 

from below). 

Fluid dynamical experiments and inferences from natural samples have demonstrated that 

the mingling of texturally and/or compositionally contrasting magma through flow within a 

conduit can play the key role in the formation of banded clasts (Blake and Campbell 1986; 

Freundt and Tait 1986; Koyaguchi 1987; Wada 1995; Perugini et al. 2004; Rosi et al. 2004; 

Lautze and Houghton 2005).  Early research showed that as a lower viscosity fluid flows through 
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a higher viscosity fluid, the diameter of the former increased and the margins became unstable.  

This instability promotes entrainment of one fluid into another (Figure C.4 in Appendix C; Blake 

and Campbell 1986; Freundt and Tait 1986) and repeated shearing and folding results in banding 

(Wada 1995; Perugini et al. 2004; Rosi et al. 2004).  In particular, Wada (1995) showed through 

fractal analysis that their compositionally heterogeneous clasts characterized by bands, vortices, 

and blebs with fingering patterns have similar fractal dimensions to those of fluid turbulent 

structures such as clouds or jets.  For their system, they interpreted this to mean that the lower 

viscosity magma was ‘drawn’ into the higher viscosity magma as the eruption began, and that the 

two magmas ascended through the conduit in a turbulent state (Wada 1995). 

Further fractal analyses of compositional banded clasts and fluid-dynamical experiments 

showed an inverse relationship between estimated Reynolds numbers (𝑅𝑅) and mixing intensity 

(Koyaguchi and Blake 1989; Perugini et al. 2004), i.e., the higher the turbulence the lower the 

mixing between two magmas.  More efficient mixing results in a more homogeneous fluid so 

poor mixing efficiency would mean a starker contrast between two fluids (i.e., mingled but not 

mixed).  This is confirmed by the dimensionless parameter 𝐼𝑚𝑚𝑚 defined (for the sub-turbulent – 

turbulent regime) as: 

 
𝐼𝑚𝑚𝑚 =  

4(𝜌𝑟 −  𝜌𝑚)𝜌1
𝑘 ∆𝜌 𝜌𝑚

 𝑅𝑅1−1 (4.6) 

where 𝜌𝑟 is the density of the country rock, 𝜌𝑚 is the density of the bulk magma, 𝜌1 is the 

density of the upper magma, ∆𝜌 is the density difference between magmas, 𝑘 is a friction factor 

(Koyaguchi and Blake 1989).  Equation 4.6 was analyzed for fluids with viscosity ratios between 

1 and 103 and 102 < Re < 106 in a conduit in which a more viscous magma overlays a less 

viscous magma.  Length scales investigated by Koyaguchi and Blake (1989) for 𝐼𝑚𝑚𝑚 are on the 
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order of 10-2 m.  This inverse relationship contrasts with that found for mixing in magma 

chambers (Huppert et al. 1986; Campbell and Turner 1989)(Campbell and Turner 1989; Huppert 

et al. 1986) and is similar to experimental models for shear layers and pipes (Dimotakis 2000).  

This suggests similar conditions between magmas of different viscosities ascending within a 

conduit (Koyaguchi 1987; Koyaguchi and Blake 1989; Perugini et al. 2004).   

Viscosities calculated by Gonnermann and Houghton (2012) using a temperature of 

850°C and the formulation of Hui and Zhang (2007) estimate values of ≥108 Pa s for Novarupta 

dacite magmas <0.25 wt% H2O and <107 and >106 Pa s for H2O contents of >0.7 wt% and <1 

wt%, respectively.  We apply these values to the shallowest and most outgassed magmas and the 

pumice-generating, actively degassing magmas, respectively.  Realistic (lower) temperature 

estimates for the shallowest magmas would increase this contrast by up to another order of 

magnitude which yields a total viscosity difference of two the three orders of magnitude. Under 

these circumstances, the rising, actively vesiculating magma would be significantly less viscous 

than the surrounding magma such that it intruded via propagation of elastic fractures.  We 

propose that mingling occurred along the margins of these two texturally contrasting fluids due 

to shearing induced by the high velocity gradients (Figure 4.7 inset).   

Banding may also form without the mingling of two disparate magmas.  As described 

above, shearing can locally alter the texture of a magma by 1) increasing porosity and 

permeability and 2) inducing bubble collapse and thus decreasing porosity (Shea et al. 2012, 

2014).  Studies have shown that repeated fracture and healing along shear zones can lead to 

banded material containing sharp boundaries between highly texturally diverse (dense versus 

vesicular, microlite poor versus microlite rich) layers (Figure C.5 in Appendix C; Gonnermann 
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and Manga 2003, 2005b, Tuffen et al. 2003, 2008).  While these shear zones are generally 

attributed to conduit margins (Polacci et al. 2001; Rosi et al. 2004; Wright et al. 2011), these 

zones could have also occurred along the margins of narrow domains of intruding magma.   

One common aspect of the varied processes described in this section is that banding 

requires dynamic conditions and often occurs within shear zones.  Due to the complexity of the 

Episode IV dome and shallow conduit and the varied disruptions to the metastasis, shearing 

would have occurred in various locales across the width of the conduit resulting in both the 

mingling of two texturally diverse magmas and the in-situ development of heterogeneous 

textures (Figure 4.7 inset).  Further analyses into the diversity of banding (i.e., blocks that are 

banded across the entire clast and exhibit bands across a range of length scales — potential 

fractals — versus blocks that contain only one or a few bands that contrast in texture with the 

dominant texture of the block) are needed to confirm this hypothesis.   

 

4.6 Conclusions 

Our scenario contrasts in four ways with the theoretical model and analytical and numerical 

simulations of pre- and syn-Vulcanian-explosion conduits in the case of long-lived dome-

forming eruptions.  First, the use of 1D or 2D simulations (e.g., Clarke et al. 2002a, b, Melnik 

and Sparks 2002a, b; La Spina et al. 2017) typically precludes analysis of lateral heterogeneity in 

the conduit.  Two-dimensional modeling of heterogeneities within domes during effusion is 

within its nascent stages (e.g., Hale et al. 2009; Chevalier et al. 2017) and we hope that the 

evidence for great complexity in the very shallow conduit presented here will foster further 

development of numerical simulations that can replicate conditions such as those of Episode IV.  



 

160 
 

 

Second, slow ascent rates selected for modeled magma ascent and dome extrusion prior to 

fragmentation means internal bubble pressure remains in equilibrium with ambient magmastatic 

pressure (e.g., Melnik and Sparks 2002a).  This is almost certainly not the case for the 

breadcrusted blocks with re-vesiculated bands in contact with dense outgassed bands and 

possibly not so for portions of the microvesicular pumice component of the Episode IV ejecta. 

Third, the external initiation of fragmentation through a rapid pressure drop near the top of the 

conduit (Clarke et al. 2002a, b; Druitt et al. 2002; Melnik and Sparks 2002a, b; Mason et al. 

2006) is not a potential trigger for fragmentation throughout Episode IV.  Another option is 

through the internal development of overpressures in isolated bubbles within localized pockets 

of actively vesiculating magma.  Finally, current models simulate large explosions that evacuate 

across the entire width of the conduit to depths of kilometers whereas we propose that only a 

small volume of magma within the conduit was disrupted in each Episode IV explosion.   

A small number of papers propose similar variations on the standard model.  For 

example, Kennedy et al. (2005) and Burgisser et al. (2010, 2011) proposed more complex and 

variable  melt textures in the conduit at Soufrière Hills volcano in 1997.  Cassidy et al. (2015) 

suggested that batches of fast-ascending, gas-rich magma rose through a slowly-ascending, 

homogeneous gas-poor magma at intermediate depths in the conduit (i.e., >250 m to the shallow 

storage region at ~1 km) at Volcán de Colima.  Finally, Williamson et al. (2010) proposed that 

the injection of new vesicular magma into the dome at Soufrière Hills on 21 September, 1997 

triggered both a dome collapse and explosive activity.  While this scenario still involves the 

external trigger of fragmentation through decompression via the dome collapse, it aligns more 

closely with our hypothesis that actively vesiculating magma intruded into the shallowest regions 
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of the 1912 conduit.  Validating the hypothesis for Episode IV requires more complex and time-

consuming numerical simulations that are not tractable in the context of this study; however, we 

stress the importance of showing that Vulcanian explosions can result from a variety of different 

magma ascent histories, conduit lengths and architectures, and initiation mechanisms for 

fragmentation.   

Numerical modeling of rates of bubble nucleation and growth, and the volatile 

overpressures needed to initiate fragmentation of the microvesicular pumice, are the next 

segment of the Novarupta study.
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CHAPTER 5 

Conclusions 

 

Due to unique preservation, the Episode IV block apron at Novarupta allowed for unprecedented 

mapping and sampling of the ballistic pyroclasts from a Vulcanian eruption.  It is an excellent 

case study for highlighting the diversity in Vulcanian explosions in terms of eruption and conduit 

processes.  Key differences of interpretation from models of Vulcanian eruptions associated with 

long-lived dome-forming eruptions include: 

1) The pre- and syn-eruptive conduit is filled with a complex three dimensional assemblage 

of magma with varying physical and chemical (in terms of residual volatiles) properties, 

2) These magma ‘domains’ reflect variable residence times at their final depths of 

fragmentation, 

3) Triggering of a Vulcanian explosion does not have to be external (i.e., via the failure of 

the conduit-capping plug or dome), but instead can initiate internally through vesiculation 

of newly arrived magma. 

These contrasts are elucidated in greater detail within each of the chapters.  

Chapter one sets the scene for the study in the context of both the powerfully explosive 

1912 eruption and of Vulcanian explosivity globally. 

Chapter two (Eruptive and shallow conduit dynamics during Vulcanian explosions: 

Insights from the Episode IV block field of the 1912 eruption of Novarupta, Alaska) presents the 

most complete delineation of a Vulcanian ballistic deposit to-date, detailed documentation of the 

diverse clast types and their proportions within the block apron, and uses size-density-range data 
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to model ejection velocities and trajectories.  The componentry study revealed the diversity of 

brecciated, banded, and breadcrusted clasts that has not been previously documented for other 

Vulcanian eruptions and which can be used to infer complexity of conduit dynamics.  The 

mapping and modeling showed that Vulcanian explosions at Novarupta were relatively weak and 

small when compared to other well-studied and observed Vulcanian eruptions.  It also showed 

that the conditions that promoted explosions did not vary substantially across the multiple events 

within this phase.  Estimated velocities, Reynolds numbers, and measured travel distances 

indicate that density has a decreasing influence on ballistic transport as size increases.  This 

highlights how more sophisticated models of ballistic trajectory are required for pyroclasts <1 m 

in diameter.  My study has shown that more real time observations of rotating pyroclasts and 

better constraints on rotation rates and their influence on trajectory are needed to enhance 

numerical modelling. 

Using vesicularity data, porosity and permeability measurements, and qualitative and 

limited quantitative analysis of vesicle textures for each of the juvenile block types, Chapter 

three (Complex patterns of vesiculation, outgassing, and re-vesiculation during a Vulcanian 

eruption: Implications for conduit processes) showed that magma in the shallow conduit was in a 

variety of stages of both degassing (exsolution of volatiles from the melt) and outgassing (escape 

of the degassed volatiles).  Dense dacite clasts represent magma that was largely both outgassed 

and degassed whereas the source magma for the pumice clasts was at the peak of its degassing, 

without significant outgassing at the time of fragmentation.  Breadcrusted blocks came from 

magma that has experienced both partial degassing and outgassing.  This implies that magma 

domains in the shallow conduit with these contrasting textures had different residence times at 
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their depth of fragmentation, with the pumice-forming magma most newly arrived and the dense 

dacite magma stored for the longest durations at the depth of fragmentation.  Blocks with bands 

which are either pumiceous or dense indicate that there was local mingling along the margins of 

magma domains close to the time of fragmentation, and this was interpreted as a consequence of 

very late juxtaposition of magma domains with contrasting ascent and residence times.   

Chapter four (Constraints from residual water contents on eruptive processes during the 

1912 Vulcanian explosions at Novarupta, Alaska) provides depth estimates for all the processes 

outlined above, based on residual water content for glasses in each block type.  The blocks came 

from a relatively narrow and shallow range of depths (<400 m deep) compared to Vulcanian 

explosions that disrupt long-lived dome growth complexes to depths of several kilometers.  

There is also significant overlap in the source depths for each block type, proving that their 

magma domains were closely adjacent to one another at the time of fragmentation.  Hydrogen 

isotopic composition of dissolved water in glass from a range of ejecta implies limited secondary 

hydration of the pumice and possibly the interiors of breadcrusted blocks (which opens the 

possibilities for future studies of rapid rehydration of young, ~100 years, volcanic glass).  This 

indicates that the pumices with >1 wt% H2O actually have lower magmatic water contents that 

may be closer to the range of the other block types, and emphasizes their similar source depths 

(even accounting for disequilibrium).  Vesicle textures, and lack of evidence for an external 

trigger (such as dome collapse), suggest that the rapid vesiculation of the pumice-forming 

magma after emplacement at shallow depths was likely the source of fragmentation.   
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5.1 Future directions 

5.1.1 Further micro-analytical approaches to Episode IV 

An important aspect currently missing from this study is the measurement of volatiles trapped 

within the glass of crusts in contact with internal bands of contrasting vesicular and dense 

textures.  If they show significantly different water contents (i.e., higher water contents above the 

vesiculated bands than those above the dense bands), then this would prove local disequilibrium.  

An extension of this would involve collecting profiles of the water across the transition (within 

the crust) from one band to another, which could be used to establish diffusion profiles.  Volatile 

diffusion has been established as a chronometer that acts on very short timescale such as minutes 

to weeks (Humphreys et al. 2008).  Such a tool could be applied in determining timescales of 

mingling prior to fragmentation.  One limitation to this is the possibility of rehydration of 

meteoric water, which occurs largely via the diffusion of molecular water (over hydroxyl) into 

the quenched glass (McIntosh et al. 2014; Giachetti et al. 2015).  New micro-analytical 

techniques that determine the speciation of dissolved water do not have this limitation and could 

be used to further this study.  

5.1.2 Breadcrusted blocks 

One question left un-answered in this dissertation is why do some blocks breadcrust and others 

do not?  The water data presented in Chapter 4 contrasted with my expectations for the 

breadcrusted blocks.  I expected the blocks that show the greatest amount of post-fragmentation 

expansion to have the highest water contents, as this would provide more volatiles for re-

vesiculation and make expansion easier due to lower melt viscosity.  However, the two crusts 

associated with the most expanded interiors contained the lowest water content of all crusts.  
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Further study is need to understand how and why post-fragmentation vesiculation occurs, 

possibly with a focus on other physical or chemical differences with the non-breadcrusted 

blocks.  This could have implications for the differences within their magma sources and thus 

provide further insight to conduit dynamics.  

5.1.3 Numerical modeling 

Some questions arising from the theoretical model of the magma within the conduit in Chapter 4 

are: What overpressures were necessary to initiate fragmentation of the microvesicular pumice?  

What decompression/ascent rates were achieved by the pumice-forming magma?  If bubble 

nucleation and growth occurred in the last few hundred milliseconds of ascent, what depths does 

this equate to?  How did the pumice-forming magma travel through a conduit filled with colder, 

higher viscosity magma?  What conditions promoted the transient and unsteady nature of the 

explosions throughout Episode IV?  Why were explosions constrained to narrow and shallow 

regions of the conduit?  Such questions could be addressed using numerical models that replicate 

magma ascent, volatile diffusion, bubble nucleation and growth, and overpressures (e.g., 

Gonnermann and Houghton, 2012).  This would require a simplification from the three-

dimensional complex organization of the magma column, but could provide first order 

constraints on certain fragmentation and ascent conditions.   

5.1.4 Integration with further micro-textural data from Episode III 

Other questions arising out of this dissertation are: How is the arrival of new magma in the 

shallow conduit throughout Episode IV related to the end of Plinian activity?  Does it represent 

an attempt to continue with sustained explosions but something inhibited this process?  The 

answers to these questions could have implications for how and why a voluminous Plinian 
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eruption ends.  Was the magma or gas source exhausted?  Did a blockage form deeper in the 

plumbing system?  All of these are viable questions considering 1) the 1912 eruption ended after 

a switch from dacite extrusion and evacuation via Vulcanian explosions to rhyolite extrusion, 

and 2) the inferred storage region was located laterally 10 km from vent.  A current study into 

the details of the end of Episode III via micro-textural analyses could be integrated with the 

results of this study to further understand the decline of the Novarupta eruption.  

5.1.5 Extension of these approaches to other Vulcanian eruptions 

A useful application of the findings of this study is to other historical Vulcanian eruptions that 

show no evidence of an external trigger.  In well documented examples, other observations such 

as geophysical data and measurement of gas flux could be combined with the scenario of the 

conduit presented here to assist with forecasting the shift from effusive to explosive activity.  

This could be applicable first to scenarios like Novarupta 1912 where a plug/dome forms at the 

end of a sustained explosive eruption under conditions of highly variable magma ascent rates.  
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APPENDIX A 

Chapter 2 Supplementary Material 

 

A.1 Modeling methodology 

We used the model of Fagents and Wilson (1993) in order to simulate the trajectory of 

the blocks assuming they are not influenced by an expanding gas phase, i.e. the blocks were 

projected through a still atmosphere.  The trajectory calculation algorithm employs the 

computational scheme of Wilson (1972).  The horizontal and vertical components of velocity 𝑣 

are given by 

 𝑣𝑥 = 𝑣 𝑐𝑐𝑐𝑐 (A.1) 

 𝑣𝑦 = 𝑣 𝑠𝑠𝑠𝑠 (A.2) 

where 𝜃 is the trajectory angle measured from horizontal.  The motion of the projectile of mass 

𝑚 and cross-sectional area 𝐴 are defined by solutions of the rate of change of 𝑣𝑥 and  𝑣𝑧: 

 𝑑𝑣𝑥
𝑑𝑑

=
−𝑣𝑥 𝜌𝑎(𝑧)𝑣 𝐴 𝐶𝑑

2𝑚
 (A.3) 

 𝑑𝑣𝑧
𝑑𝑑

=
−𝑣𝑧 𝜌𝑎(𝑧)𝑣 𝐴 𝐶𝑑

2𝑚
− 𝑔 (A.4) 

where 𝑡 is time,  𝜌𝑎(𝑧) is air density as a function of altitude, 𝐶𝑑 is the drag coefficient on the 

block and 𝑔 is gravitational acceleration.  The cross-sectional area is calculated by  

 
𝐴 =  𝜋(

𝐷𝑎𝑎𝑎
2

)2 (A.5) 

where 𝐷𝑎𝑎𝑔 is the mean of the three orthogonal dimensions measured in the field.  The mass for 

each block was calculated by multiplying the volume of the block (each of the blocks dimensions 
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multiplied together) by the density; block densities were measured for a representative number of 

clasts within each componentry group and an average density was calculated per group and 

applied to blocks that were not sampled.  The drag coefficient is dependent on the Reynolds 

number 𝑅𝑅 which is defined as 

 
𝑅𝑅 =  

𝐷𝑎𝑎𝑎 𝑣 𝜌𝑎(𝑧)
𝜂𝑎(𝑧)

 (A.6) 

 where 𝜂𝑎(𝑧) (air viscosity) and  𝜌𝑎(𝑧) are calculated from a standard atmosphere.  Per the 

method of Wilson (1972), equations 3 and 4 were integrated throughout the trajectory using a 

fourth-order Runge-Kutta method.  The block trajectory was calculated until the vertical position 

was equal to that of the block’s landing elevation.  The velocity and angle combinations that 

projected the block to within ±10 m of its measured horizontal distance were retained.  The 

model was limited to 𝜃 = 45 − 89° (as it is assumed that the majority of blocks had to escape 

from the ejecta ring and possibly from some depth in the conduit) and velocities <600 m/s.  The 

source location was set at an elevation of 771 m which is at the base of the current Novarupta 

dome.  The horizontal source location was determined by calculating where the slopes of the 

ejecta ring theoretically meet below the dome as the Episode IV plug/dome pushed up through 

the Episode III backfill and it can be assumed that the latter would have filled the conduit 

according to the slopes present on the inside of the ejecta ring. 
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A.2 Spinning ballistics 

Observations of spinning pyroclasts have shown that an angular velocity can influence 

the travel path of a ballistic (Chouet et al. 1974; Waitt et al. 1995; Vanderkluysen et al. 2012; 

Taddeucci et al. 2017).  Namely, spinning can curve the trajectory of a ballistic according to the 

Magnus force (Chouet et al. 1974; Waitt et al. 1995; Taddeucci et al. 2017), enhance conductive 

heat loss/cooling (Vanderkluysen et al. 2012), influence the velocity of and drag force exerted on 

the pyroclast, and cause changes in shape or stretching/tearing of more fluidal projectiles 

(Taddeucci et al. 2017).  These interpretations are based largely on observations of explosions at 

Stromboli volcano which produces more mafic compositions of lower viscosity than the common 

products of Vulcanian explosions.  The influence of spinning on Vulcanian pyroclasts is more 

likely to be in the form of the Magnus effect on the particles’ trajectories.  For example, Waitt et 

al. (1995) interpreted deviations of impact craters away from the straight line trajectory from the 

vent at Mount Spurr volcano (Alaska) as due to an angular velocity in the direction of the 

deviation.  This has serious implications for the method of inferring vent locations from ballistic 

distributions.  Cumulatively, the influence of spinning on a pyroclast’s trajectory can add errors 

to numerical models that do not account for rotation.  However, Bertin (2017) suggests that the 

Magnus force may be neglected at very small ratios of air density/particle density and/or at low 

angular velocities.  More observations of rotating pyroclasts and better constraints on rotation 

rates and their influence on the trajectory, especially in Vulcanian explosions, are needed to 

better understand how it can be accounted for in numerical models.   
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A.3 Additional figures 

Figure A.1 Block maps for each of the components.       

Pumiceous dacite 

 

Dense dacite 

 
Pumiceous banded 

 
 

Mixed banded 
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Figure A.1 continued.  

Dense banded 

 

Dense vitrophyre 

 
Densely welded breccia 

 

Moderately welded breccia 
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Figure A.1 continued.  

Lightly welded breccia 
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Figure A.2 Images of density of the pumice lapilli bed.  

B051: ~475 m SSW of dome center; thick pumice lapilli/small-block bed. 

 

 

 

Top of Ziess: ~925 m SSE of center of dome: person is sitting on top of the Episode IV pumice 

lapilli bed, also in foreground.  Thick, dense pumice lapilli/small-block bed.  
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Figure A.2 continued. 

K14-02: ~490 m SE of center of dome, picture taken looking towards vent; thinner pumice 

lapilli/small-block bed. 

 

N010: ~450 m west of center of dome; pumice lapilli/small-block apron is no longer continuous. 
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Figure A.3 Difference in horizontal distances between Eject! runs using 1) a stationary 

atmosphere and 2) a radius of reduced drag of 200 m above the vent for various block diameters 

and densities and for spheres and cubes. Velocity and angle were set at 100 m/s and 45°, 

respectively.   
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APPENDIX B 

Chapter 3 Supplementary Material 

 

B.1 Porosity and permeability methodology 

B.1.1 Porosity measurement 

Helium pycnometry was performed using a Micromeritics AccuPycII 1340 © at Rice 

University, which measures the sample’s skeletal volume using the gas displacement method.  

The skeletal volume is the sum of the volumes of the three-dimensional solid skeleton and the 

isolated pores, which are the volumes of the sample that are inaccessible to the gas during the 

measurement.  Helium is used because of its small atomic size and because it is inert and the 

most ideal gas.  

 A measurement is conducted by sealing the sample in a calibrated chamber of known 

volume (𝑉) and releasing the helium into the compartment.  Pressure (𝑃) is measured as the gas 

fills any space not occupied by the sample and then is released into a second empty chamber also 

of a known volume.  The 𝑃 ∝ 1
𝑉
  relationship of Boyle’s law is employed to calculate the volume 

of the gas.  The difference between the volume of the sample chamber and the volume of gas that 

filled any voids in the sample is the skeletal volume (𝑉𝑠𝑠𝑠).  The AccuPyc repeats this cycle in 

order to purge water and other volatiles from the sample until consecutive measurements 

converge on a consistent result.  This method is also used on powderized samples of known mass 

in order to calculate the density of the skeleton.  This dense rock equivalent (DRE) is then 

divided by the mass of the cylindrical sample core in order to determine the volume of its solid 
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skeleton (𝑉𝑠𝑠𝑠𝑠𝑠).  The volume of connected pores (𝑉𝑐𝑐𝑐) is calculated by subtracting 𝑉𝑠𝑠𝑠 from 

the volume of the cylindrical sample core (𝑉𝑠𝑠𝑠𝑠𝑠𝑠).  The volume of isolated pores (𝑉𝑖𝑖𝑖) is then 

calculated by subtracting 𝑉𝑠𝑠𝑠𝑠𝑑 and 𝑉𝑐𝑐𝑐 from 𝑉𝑠𝑠𝑠𝑠𝑠𝑠.  Finally connected (𝜑𝑐𝑐𝑐) and total 

(𝜑𝑡𝑡𝑡𝑡𝑡) porosities are calculated as: 

 𝜑𝑐𝑐𝑐 = 𝑉𝑐𝑐𝑐
𝑉𝑠𝑠𝑠𝑠𝑠𝑠

  (B1) 

 
𝜑𝑡𝑡𝑡𝑡𝑡 =

(𝑉𝑐𝑐𝑐 + 𝑉𝑖𝑖𝑖) 
𝑉𝑠𝑠𝑠𝑠𝑠𝑠

 (B2) 

B.1.2 Equations governing permeability 

The permeability of a rock sample is determined using Darcy’s law (Rust and Cashman 

2004, and references therein), i.e. a constitutive equation that describes the flow of fluid through 

a porous medium:  

 ∆𝑃
𝐿

=
𝜇
𝑘𝑎
𝑣 (B3) 

where ∆𝑃 is the change in pressure over the sample length (L; Figure B.1), 𝜇 is the fluid 

viscosity, 𝑘𝑎 is apparent permeability, and 𝑣 is the filter velocity.  The variable 𝑣 is measured as 

 
𝑣 =

𝑄
𝐴

 (B4) 

where 𝑄 is the volumetric flow rate and 𝐴 is the cross-sectional area of the sample orthogonal to 

fluid flow (Figure B.1).  This equation only calculates an apparent permeability because it is only 

valid for laminar or low-Reynolds number flow in which there is a linear relationship between 

the pressure gradient and the fluid velocity.  In laminar flow, energy loss is entirely due to 

viscous effects, which result from internal friction due to shear along the no-slip boundary 

between the fluid and the sample.  This criterion becomes insufficient for determining 
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permeability when energy is also lost due to inertia at higher flow rates, causing a decrease in the 

apparent permeability calculated using Darcy’s law. 

 

Figure B.1 Schematic of fluid flow through a sample during a permeability measurement. The 

sample core is of length L, cross sectional area A, and the outside is sealed by impermeable 

epoxy resin (dotted cylinder).  Air is injected at increasing flow rates by increasing the inlet 

pressure (Pi); the outlet pressure (Po) is atmospheric. 

Rust and Cashman (2004) first recognized that the parabolic relationship between flow 

rate and the pressure gradient proposed by Reynolds (1900) and Forcheimer (1901) is necessary 

to determine the permeability of volcanic rocks as high flow rates are used in the measurement.  

The Ergun equation calculates a viscous (𝑘1) and inertial (𝑘2) permeability in the form of: 

 ∆𝑃
𝐿

=
𝜇
𝑘1
𝑣 + 

𝜌
𝑘2
𝑣2 (B5) 
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where 𝜌 is the fluid density.  Lower resistance due to viscous effects increases 𝑘1(which has 

dimensions of length-squared) whereas decreasing resistance to flow from inertial effects 

(including turbulence) increases the 𝑘2 value (dimensions of length).  The equation reduces to 

Darcy’s law as 𝑘2 → ∞ indicating that inertial effects are negligible. 

Due to the compressibility of the fluids used to measure permeability, the fluid expands 

as it travels from the high to low pressure ends of the sample increasing the gas velocity at the 

exit.  The Forcheimer equation is thus a modification of equation B5 in order to account for 

compressible fluids: 

 𝑃𝑖2 − 𝑃𝑜2

2𝑃𝑃
=
𝜇
𝑘1
𝑣 +  

𝜌
𝑘2
𝑣2 (B6) 

In this equation 𝑃𝑖 and 𝑃𝑜 are the pressure at the sample entrance and exit, respectively, and 𝑃 is 

the pressure at which velocity and viscosity are measured or calculated.  Often, 𝑃 = 𝑃𝑜 = 1 

atmosphere so that 𝜇 and 𝜌 equate to values at atmospheric pressure.  Viscous and inertial 

permeabilities are derived from the coefficients of a second degree polynomial curve that is fit to 

a plot of the volumetric flow rate versus the pressure gradient.  

B.1.3 Permeability measurement 

The permeability of the cylindrical sample cores was measured using a Capillary Flow 

Porometer (Model CFP-1100AXL-AC, Porous Media, Inc. ©) at Rice University.  The samples 

were mounted on plexiglass plates and their outside edges were sealed with impermeable epoxy 

resin.  They were placed in a cylindrical chamber and sealed except at the base (the inlet) and the 

top (the outlet).  Air was injected at increasing pressure (𝑃𝑖𝑖) and flow rate at the inlet, whereas 

the outlet remained at atmospheric pressure (𝑃𝑜𝑜𝑜).  In order to measure flow rates over several 

orders of magnitude, to achieve optimal accuracy, each sample was analyzed with 2–3 
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interchangeable flow meters.  The measured volumetric flow rate of air (𝑄) ranged between 

3x10-3 and 5x10-7 m3/s with an accuracy of ~5x10-8 m3/s (~1% of the minimum measured flow 

rate). 

 The viscous and inertial permeability were estimated by fitting the Forcheimer equation 

for a compressible gas to a plot of  𝑄 versus ∆𝑃 (Figure B.2).  In this equation, 𝑃 =  𝑃𝑜𝑜𝑜 =1 

atmosphere and so the corresponding air viscosity and density are 𝜇 = 1.86x10-5 Pa s and 𝜌 =

 1.28 kg/m3.  A grid search was used to find the 𝑘1 and 𝑘2 combination that minimized the root-

mean-square error between the measured and predicted values of 𝑄(∆𝑃), defined as 

 
𝜒 =  �

1
𝑁
�(1 −

𝑄𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
𝑄𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

)2
𝑁

1

�

1
2�

 (B7) 

where N is the number of data points for a given sample.  

 

Figure B.2 Estimation of permeability by fitting the Forcheimer equation (red line) to the 

measured volumetric flow rate as a function of pressure difference across the sample. 

  

𝑘1 = 7.59 x 10-13 m2 

𝑘2 = 8.97 x 10-9 m 

𝜑𝑡𝑡𝑡𝑡𝑡  = 0.69 

𝜑𝑐𝑐𝑐 = 0.64 
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B.2 Images of porous pathways in thin section 
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Figure B.3 (previous page) Examples of porous pathways within grayscale images of the crusts.  
Colored rectangles outline the locations of the magnified images on the right.  Images a, c, and e 
match those in Figure 3.6 of the main paper.  b Example of a porous pathway with rounded 
edges.  d(i) Example of a porous pathway that is filled with fine clastic debris (i.e. crystals and 
glass).  d(ii) A porous pathway of varying throat size as it is connected with (or ‘travels 
through’) bubbles of different sizes.  f(i and ii) Examples of clear porous pathways of varying 
throat size. 
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B.3 Additional data 

Figure B.4 Connectivity and permeability for individual breadcrusted blocks 

Vesicular breadcrusted group 1 
Block N004 

  
 
Vesicular breadcrusted group 2 

Block N005 
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Figure B.4 Continued. Vesicular breadcrusted group 2 

Block N010 

  
Block N011 

  

Block N015 
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Figure B.4 Continued. Vesicular breadcrusted group 3 

Block N156 

  

Breadcrusted mixed banded 
Block B281 

  
 

Block B129 
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Figure B.4 Continued. Breadcrusted mixed banded 

Block B349 

  
 

Breadcrusted banded pumice 

Block B119 
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Table B.1  Timescales for diffusion of water in a low water content (<2 wt%) rhyolite melt 

  
Time (days) for given distance 

H2O 
(wt%) 

D*  
(m2/s) 1 mm 1 cm 1 m 

0.1 2.70E-13 21.4 2139.4 2.14E+07 
0.5 1.35E-12 4.3 427.9 4.28E+06 
1 2.70E-12 2.1 213.9 2.14E+06 

1.5 4.06E-12 1.4 142.6 1.43E+06 
2 5.41E-12 1.1 107.0 1.07E+06 

*Diffusivity calculated using the equation for water 
diffusivity from Baker et al. (2005), modified after 
Zhang and Behrens (2000), and using a temperature 
of 1123 K and for low pressure (<5 MPa). 
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APPENDIX C 

Chapter 4 Supplementary Material 

 

C.1 Additional figures 

 

 

Figure C.1 The H2O versus band ratio calibration curve used for the estimate of glass water 

content via microRaman spectroscopy.  The band ratio is the area underneath the H2O band 

divided by the area under the ASF band. Error bars not shown are smaller than symbol size. 
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Figure C.2 Phenocryst crystallinities (vesicle-free, i.e., referenced to glass + crystals) versus 

water content (left) and vesicularity (right) for clasts measured by the Flash 2000 (water contents 

are measured by Flash 2000 only). 
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Figure C.3 Reflected light image of textural heterogeneity in thick section C43 from the crust of 

breadcrusted block N455 (see Table 4.1 for bulk properties).  Vesicles/pores are shown in black; 

oxides are white, all other phenocrysts are generally a lighter olive-yellow color than the glass; 

however, some phenocrysts are the same color as the glass and are discernable only by texture.  

Diameter of the thick section is 1 cm.  Note how the lower half of the section appears more 

porous than the upper portion. 
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Figure C.4 Photographs of the development of instabilities between lower viscosity (dark 

interior) and higher viscosity (lighter exterior) fluids traveling through a pipe under changing 

flow conditions (𝑄′ =  𝑄𝑜/(𝑄𝑜 + 𝑄𝑖) where  𝑄𝑜 is the flow rate of the outer fluid and 𝑄𝑖 is the 

flow rate of the inner fluid.  The outer more viscous fluid was either glycerol or an aqueous 

carboxymethylcellulose (CMC) solution.  The less viscous inner fluid was made from 28% 

aqueous potassium carbonate solution ± glycerol or from dilute aqueous NaCl solutions if the 

outer fluid was CMC solution.  The authors did not specify which fluids were utilized in these 

photographed experiments.  The densities were equal and the ratio of kinematic viscosities for 

the outer (𝑣𝑜) and inner (𝑣𝑖) fluids is 𝑣0 𝑣𝑖⁄ ≅ 40.  Outer diameter of the pipe is 19 mm and flow 

direction is from top to bottom.  a 𝑄′ = 0.84; note the development of periodic pinch and swell 

structures. b 𝑄′ = 0.68; with increasing flow rate of the  lower viscosity fluid the edges of the 

swell structures become sheared off into eddies on their upstream side. c 𝑄′ = 0.45; at even 

higher  𝑄𝑖 the instabilities become amplified such that wavy streaks of  the inner fluid become 

entrained into the more viscous outer fluid.  Over a range of viscosity and flow rate ratios across 

numerous experiments, instability and mixing/mingling proceeded when Re (calculated using the 

properties of the inner fluid: 𝑅𝑅𝑖 =  𝑄𝑖/𝜋𝑣𝑖𝑅𝑖  where 𝑅𝑖 is the radius of the inner fluid) was 

greater than ~3 if 10–90% of the total fluid was composed of the more viscous fluid.  Figure and 

observations/data from Blake and Campbell (1986).  
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Figure C.5 Conceptual model of Gonnermann and Manga (2005) for the in-situ formation of 

texturally contrasting bands.  a Brittle deformation during simple shear results in a single 

fragment that has undergone a change in texture (represented by the dark color).  b The 

fragments then weld back together.  c-e Viscous deformation in response to simple shear 

stretches the welded fragment into light and dark colored bands.  f Brittle deformation alters the 

textures of adjacent bands resulting in a second generation texture.  Continued cycles of brittle 

and viscous deformation results in multifractal bands.  Figure from Gonnermann and Manga 

(2005).
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