
AC 
.H3 
no.H90 

ff.i~.Y 0 f.. i990 

Hood , Julie A. 
SOEST Library 

FRACTURE ESTIMATION IN ANISOTROPIC MEDIA 

RETURN TO 
HAWAII INSTITUTE OF GEOPHYSICS 

LIBRARY ROOM 

A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE 

UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT 

OF THE REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

IN GEOLOGY AND GEOPHYSICS 

MAY 1990 

By 

Julie A. Hood 

~~ 
Dissertation Committee: 

Gerard J. Fryer , Chairman 

Eduard Berg 

Frederick K. Duennebier 

Roy H. Wilkens 

Alexander Malahoff 

Dennis W . Moore 



We certify that we have read this dissertation and that in our opinion, 

it is satisfactory in scope and quality as a dissertation for the degree of 

Doctor of Philosophy in Geology and Geophysics. 

Chairman 

11 



ACKNOWLEDGEMENTS 

First and foremost, I want to thank my mother Joan for her encouragement and 

support during the past eleven years of college. Michael Schoenberg inspired my dis­

sertation research with his anisotropic enthusiasm and it became a reality through 

his gracious help and advice. I appreciate Gerard Fryer for his financial support (Na­

tional Science Foundation under grant OCE-8711646) and for the trust that I could 

and would produce something useful ; Ed Berg for sharing his wisdom and patience ; 

all my committee for their help and cooperation; Neil Frazer for introducing me to 

Michael Schoenberg; and Francis Muir of Stanford University for providing many 

helpful comments. I never would have completed this program without the support 

and welcomed distractions of my wonderful friends: the L.I.P.S. Club women and 

my special mainland friends and family. An especially big mahalo to Jo Ann Sinton 

for her unbounded kindness and Patricia Berge for her pragmatism and goddess-l_ike 

bitchiness. Bagus terima kasih untuk kesabaranmu clan pikiranmu yang manis terus­

menurus dari Wayan clan Ketut di Bali. Finally, extra-special thanks and hugs to 

Mary Wilkowski for all her laughter, love, and editorial assistance. To all future 

graduate students I offer Hood's Law: 

Bedenke stets, class man zu seinem Vorgesetzten nicht "!@7*&#*@!" sagt! 

lll 



ABSTRACT 

A heterogeneous mixture of isotropic elements may appear homogeneous and 

anisotropic when the scale of its fabric is smaller than the seismic wavelengths that 

measure it. This fabric can result from thin layering, aligned crystals, anisotropic 

background stress, aligned fractures, and/or oriented microcracks. Horizontal lay­

ering in sedimentary basins and the oceanic crust generates transverse isotropy, a 

hexagonal symmetry with a vertical symmetry axis, an extremely common form of 

anisotropy. The elastic properties of transversely isotropic media do not vary with 

azimuth. With the advent of multi-component seismometers and walk-around ex­

periments, however, azimuthal variation is now frequently observed as well. This 

azimuthal anisotropy usually results from steeply dipping aligned fractures or microc­

racks. Realistic earth models must include all the significant constituent anisotropies 

of fracture systems and the backgrounds in which these fracture systems are em­

bedded. The anisotropy increases in complexity as the number of different systems 

incorporated into the medium increases . Considering all possible combinations of 

constituents, a variety of anisotropies can result. For example, embedding a frac­

ture system into an isotropic background can produce anisotropy with a symmetry 

as simple as hexagonal or as complex as triclinic. Analysis of either fractures or the 

background requires separating the two anisotropic effects otherwise they interfere. 

As long as there is at least one symmetry plane in fractured anisotropic media, the 

contribution of the fractures to the elastic modulus matrix of the background can be 

removed. The fracture properties can be evaluated by imposing the background sym­

metry constraints. Once the fracture compliances are obtained, the elastic properties 

of the unfractured background and the complexity of its symmetry can be determined. 
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INTRODUCTION 

Fine-scale layering predominates in the Earth's crust. Two of its more com­

mon manifestations are sedimentary basins and regions of basaltic volcanism. When 

layers are substantially thinner than a seismic wavelength , their elastic response is 

anisotropic [Postma, 1955; Backus, 1962] and displays hexagonal symmetry with a 

symmetry axis perpendicular to the layering. After a rock mass is formed, it is sub­

jected to regional stresses that tend to open microcracks normal to the minimum 

compressive stress [Hubb ert and Willis , 1957; Crampin, 1985]. A system of aligned 

cracks will also induce an anisotropy. These crack systems are assumed to have 

created the frequently observed azimuthal variations in shear-wave travel times in 

continental studies [Willis et al. , 1986] and marine experiments [St eph en , 1985]. The 

resulting seismic response displays a compound anisotropy, with contributions from 

both the initial rock mass formation and the current stress field. Study of eit her the 

formational anisotropy or the anisotropy from stress-aligned microcracks requires a 

decomposition of the compound anisotropy into its individual elements. 

A similar situation occurs in the oceanic crust. Horizontal layering of lava flows, 

breccia zones , and pillow units induces an anisotropy that is enhanced by horizontal 

fractures [Fryer et al. , 1990]. The horizontal fracturing almost certa inly occurs at 

the time of crustal formation [Newmark et al. , 1985]. Uplift to form the rift valley 

further fractures the crust; this time the fractures are near verti cal [St eph en, 198.S ]. 

Again, the resultant anisotropy is a composite with contributions from the original 

formation and the fracturing. 

This work considers the problem of decomposing anisotropy into its individual 

components. Specifically, Chapter I examines transversely isotropi c rock whi ch has 

been subjected to vertical fracturing and shows how the fracture-indu ced azimuthal 

anisotropy can be separated from the original background anisotropy (transversely 
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isotropic is understood here to imply hexagonal symmetry with a vertical symme­

try axis). A set of parallel fractures vertically embedded in a transversely isotropic 

medium can result in a fractured medium that is equivalent to a homogeneous or­

thorhombic medium for long wavelengths. Using the group calculus formulation for 

layered media developed by Schoenberg and Muir [1989], the effects of the individual 

constituents can be separated arithmetically after the properties of each constituent 

are transformed. An outline of this calculus is given in the appendix. 

Seismic anisotropy is often defined in terms of stiffness moduli. If the anisotropy 

is at least partly caused by fractures, however, the use of compliances rather than 

stiffnesses may simplify calculations. In addition, by aligning the coordinate system 

of each fracture set with the coordinate system of the background medium, elastic 

properties of fractured media can be more easily calculated and the complicated 

group element transformation procedures utilized in Chapter I can be avoided. In 

particular, this use of compliances and appropriate coordinate rotations simplifies 

the decomposition of the effects of fractures from a given suite of elastic properties. 

Chapter II presents a simplified method to decompose fracture-induced anisotropy 

and offers an example in which the effects of fractures are removed from a material 

with orthorhombic symmetry. 

When sedimentary formations are tilted or when the minimum compressive stress 

is not horizontal, fracturing at angles non-vertical to the layering renders the medium 

monoclinic. In Chapter III, the technique of separating the fracture-induced az­

imuthal anisotropy from the original background anisotropy in orthorhombic systems 

is expanded to include monoclinic systems. 
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CHAPTER I 

ESTIMATION OF VERTICAL FRACTURING FROM 
MEASURED STIFFNESS MODULI 

Background 

Although the function that couples the separate effects of vertical fractures and 

horizontal fabric is complicated, Schoenberg and Muir [1989] have developed a cal­

culus that greatly simplifies the combination of the effects of layering and fracturing. 

Each constituent in a finely layered medium and each set of fractures can be repre­

sented by separate elements in a transform domain. In that domain, elements can 

be combined using simple addition, assuming that there is no nonlinear interaction 

between constituent layers and/ or fracture sets. The result is then transformed back 

to the physical domain to produce the elastic properties of the more complicated sys­

tem. Conversely, many complex anisotropic media can be decomposed in the trans­

form domain. Simple subtraction reveals the properties of the separate anisotropic 

constituents of the total system. 

The first section of this chapter uses the Schoenberg and Muir calculus to show 

how embedding vertical fractures in a transversely isotropic background results in 

a constrained orthorhombic medium. Although general orthorhombic media require 

nine elastic constants, only eight independent parameters are required to define this 

system. The necessary components of the Schoenberg and Muir calculus are presented 

in the appendix. 
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The section beginning on page 11, the focus of this chapter, shows that once 

estimates of elastic moduli for a region are determined, the unknown effects of the 

fractures can be subtracted from the background medium. The unknown fracture 

compliances can then be determined by imposing the constraint that the background 

be transversely isotropic. After these fracture compliances are evaluated, the elastic 

stiffness moduli of the transversely isotropic background medium can be found. 

A proposed scheme of measurements for estimating these moduli is outlined in the 

section entitled Measurements Sufficient to Determine Orthorhombic Stiffness Moduli. 

The symmetry planes can be determined by rotating the horizontal component data 

until there is a minimum of cross talk between cross-line and in-line data [Alford, 

1986]. The slower of the two symmetry planes is normal to the fractures. The three 

mutually orthogonal symmetry planes are then fixed as the horizontal plane, the 

vertical plane parallel to the fracture planes, and the vertical plane normal to the 

fractures. The corresponding coordinate axes are the x3 axis vertical, X2 parallel to 

the fractures, and x1 perpendicular to the fracture planes. Using compressional shear 

sources, the elastic moduli can be obtained by a series of downhole and cross-hole 

shots along the symmetry planes. 

Vertically Fractured, Horizontally Stratified Media 

Consider a transversely isotropic medium of density p with its symmetry axis 

along the vertical x3 axis (Fig. 1.1 ). The 6 x 6 matrix of elastic moduli in condensed 

notation (see, for example, Auld [1973]), specified by subscript b for background, is 

Cub C12b C13b 0 0 0 
C12b Cub C13b 0 0 0 

Cb= 
C13b C13b C33b 0 0 0 

(1) 
0 0 0 C44b 0 0 
0 0 0 0 C44b 0 
0 0 0 0 0 c66b 
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Figure 1.1 Transversely isotropic medium. 
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where 

(2) 

Following the Schoenberg and Muir calculus outlined in the appendix, the 3 x 3 sub-

matrices for Cb relative to the x1 direction are 

[ c~'• 0 
0 l [ c12, 

0 n, CNNb= C44b 0 ' CTNb = C13b 0 
0 Yl6b 0 0 

[ en. c13, 
0 l CTTb = C13b C33b 0 . (3) 

0 0 C44b 

From (A6) in the appendix, the G of a slab of thickness H (with the x1 axis normal 

to the slab) in this transversely isotropic background medium is the 5-vector Gb. The 

two scalar components and three 3 x 3 matrix components of Gb are given by 

96(1) = H, 96(2) =Hp, 

0 

Il 
0 

0 

Hl, (4) 

Embedded in this medium is a set of large vertical fractures perpendicular to the x1 

direction (Fig. 1.2), modeled by parallel slip interfaces [Schoenberg, 1980]. The elastic 

behavior of these slip interfaces is specified by a 3 x 3 nonnegative definite fracture 

compliance matrix Z. The matrix Z reveals the slip of the fractures in a unit thick­

ness as a linear function of the stress traction components acting across the fractures 

[Schoenberg and Douma, 1988]. This reference shows that parallel microcracks exhibit 

the same behavior. Corresponding to such a fracture set is a G-element G f, whose 
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Figure 1.2 Vertically fractured, horizontally stratified medium with x 1 normal to 

the fracture planes and x2 along fracture strike. 

7 



components are all zero except the third, g1(3). The components of G 1 are given 

explicitly [Schoenberg and Muir, 1989] by 

To retain orthorhombic symmetry in the fractured medium, the fractures themselves 

can be at most orthorhombic relative to the coordinate directions, x 1 , x 2 , x 3 . This 

causes Z to be diagonal and its diagonal elements to be non-negative. 

The physical significance of a diagonal Z is that the compliance normal to the 

fractures, ZN, is uncoupled from the tangential compliances, Z3 and Z2 . The tan­

gential vertical compliance in the x 3 direction, Z3 , is uncoupled from the tangential 

horizontal compliance in the x 2 direction, Z2 . The compliance in these two directions 

need not be the same and the tangential slip need not be parallel to the tangential 

part of the stress traction. The fracture compliance matrix is written 

z (6) 

where ZN, Z3, Z2 :'.:'.: 0. 

The G of the vertically fractured transversely isotropic medium is found by simply 

adding the G of the set of fractures to the G of the background, i.e., G = G1 + G b. 

Since all components of G f are zero except the third, all components of Gare identical 

to those of Gb as given by (4) except the third, g(3). Simple matrix addition gives 

g(3) as 

[

-
1 +ZN 

c11b 

g(3) = H ~ (7) 

This G-element satisfies constraints that specify the medium to be orthorhombic 

[Schoenberg and Muir, 1989], i.e., g(3) is diagonal, all elements of g( 4) are zero except 
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the 1, 1 and the 2, 1 elements, and the 1, 3 and 2, 3 elements of g( 5) are zero. The 

G-element can be transformed back to physical medium parameters using (A 7) of the 

appendix. This transformation leaves the density unchanged and gives the following 

3 x 3 equivalent moduli submatrices: 

CNN= [ 

c11~ 0 0 

l I+ZNC!lb 

0 
C44 2 0 

I+Z3c44b ' 
0 0 C662 

l+Z2cssb 

1 [ c12
0 0 n CTN= 

1 + ZNC11b 
C13b 0 (8) 
0 0 I ZNol,. ZNci2 2ci32 0 Cub - I+ZNcllb C13b - I+ZNc11b 

CTT = c - ZNC122CJ32 ZNci3 0 c 2 
13b I+ZNCllb 33b - I+ZNc11b 

0 0 C44b 

To simplify the representation of the 6 x 6 matrix of elastic moduli, the following 

dimensionless quantities are defined: 

(9) 

Note that 

( 10) 

These quantities relate the fracture compliance to the total compliance of the frac­

tured medium: 8N is that part of the total £ 1 resulting from the normal compliance of 

the fractures under the condition £2 = t 3 = O; 83 is that part of the total Es resulting 

from the vertical tangential compliance of the fractures, i.e., in the x3 direction, with 

no restrictions on the other strain components; 82 is that part of the total t 6 resulting 

from the horizontal tangential compliance of the fractures, i.e., in the x2 direction, 

again, with no restrictions on the other strain components. 
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Combining the submatrices of equation (8) with definition (9) gives the 6 x 6 

modulus matrix: 

Cu C12 C13 0 0 0 
C12 C22 C23 0 0 0 

C= 
C13 C23 C33 0 0 0 

( 11) 
0 0 0 C44 0 0 
0 0 0 0 C55 0 
0 0 0 0 0 c66 

where 

Cu = Cub(l - ON) , C12 = C12b(l - ON) , 

8Nci2b 
C13 = C13b(l - ON) , C22 = Cub(l - 2 ) , 

Cub 

8Nc12b 8Nci3b 
C23 = C13b(l - ) , C33 = C33b(l - ) , 

Cub Cub C33b 

. C44 = C44b , C55 = C44b(l - 03) , 

The structure resulting from the much simpler case when the background is 

isotropic and the fractures are axisymmetric, i.e., Z2 = Z3 , was discussed in de-

tail by Schoenberg [1983]. The inequalities (10) imply that the absolute values of the 

moduli of the fractured medium are less than or equal to the corresponding moduli 

of the background transversely isotropic medium. The sole exception is led, which, 

if c12b is negative, increases with the addition of vertical fractures. In addition to the 

general stability conditions on orthorhombic media which result from c being positive 

definite, (10) and (2) imply that 

( 12) 

Moreover, the relationship among some of the elements of c , 

(13) 

is easy to verify by direct substitution. For an orthorhombic medium with its az­

imuthal anisotropy caused by vertical fractures , this relation reduces the number of 

independent parameters from nine to eight. 
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Extraction of Fracture Compliances from Measured 
Stiffness Moduli 

The previous section showed that adding a set of parallel vertical fractures (wi th 

at most orthorhombic symmetry relative to the coordinate axes) to a transversely 

isotropic background results in a medium with orthorhombic symmetry. This sec­

tion begins with the orthorhombic elastic moduli of a vertically fractured rock mass 

where the x 1 axis is normal to the fractures . A three-step method evaluates the three 

fracture compliances of (6) associated with the vertical fractures and determines the 

elastic moduli of the transversely isotropic background without these fractures. The 

section beginning on page 15 presents an outline to measure the orthorhombic moduli 

and to find the orientation of the vertical fractures. 

The G-element of the orthorhombic medium 

The 6 x 6 elastic modulus matrix of an orthorhombic medium is of the form 

C11 C12 C13 0 0 0 
C12 C22 C23 0 0 0 

C= 
C13 C23 C33 0 0 0 (14) 
0 0 0 C44 0 0 
0 0 0 0 C55 0 
0 0 0 0 0 c 66 

The assumption that these are the moduli for a vertically fractured transversely 

isotropic medium with the x 1 axis normal to the fractures implies that conditions 

(12) and (13) are satisfied. The submatrices of C relative to x 1 are 

0 l 0 . 
C44 

(15) 

A vertical slab (normal to the x1 axis) of thickness H , density p , has the corresponding 
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G-element , G = [g(l), g(2), g(3) , g( 4), g(5)], with components given by 

g(l)=H, g(2) =Hp, 

[ _1 
0 

,U H [ c,, 0 

~] , 
CJ! 

g(3) = H ~ 
_1 g(4) = - C13 0 ( 16) 
C55 

0 Cu Q 0 

[ ,, C23 - £U£U. 

C~4 l C22 - .::U. 
cu c:P 

g(5) = H c - £U£U. c 
C33 - .:::.U. 23 CJ! CJ! 

0 0 

Removing a set of fractures with unknown fracture compliances 

Using the Schoenberg and Muir calculus for decompositions , the removal of ver­

tical fractures from the medium can be represented as 

Background Rock = Fractured Rock - Vertical Fractures 

or, usmg G -elements G b = G - G 1, where G 1 and Gb correspond to the set of 

fractures and the unfractured transversely isotropic background, respectively. 

Since ( 5) shows that only the third component of the G corresponding to a set of 

parallel fractures is non-zero, G and Gb are the same, except for the third component. 

Thus, removing an unknown set of fractures that is at most orthorhombic is equivalent 

to subtracting an unknown G1 from G where G 1 is of the form of (5), with Z given 

by (6). The Gb in terms of the three unknown fracture compli ances is 

9b(l) = H, 9b(2) =Hp , 

0 
-

1 -Z3 
C55 

0 
~ l · gb(4) = !!.._ [ ~:: ~ ~o] , 

_1 _ z C11 Q Q 
C66 2 

( 17) 

0 
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Using (A 7) to transform back to physical parameters leaves the density unchanged. 

The three 3 x 3 submatrices are 

CNN,= [ 

CJJ 0 0 

l 1-ZNcll 

0 c~~ 0 
l-Z3css , 

0 0 Cgg 
l-Z2css 

1 [ C12 
0 

~ j CrNb = C13 0 ( 18) 
1 - ZNcu 0 0 

[ C + ZN°j, c + ZNC12CJ3 

cu 
22 1-ZNcll 23 1-ZNCJl 

Crrb = c + zNc12CJ3 C + ZNcf3 
23 1-ZNcll 33 1-ZNCJJ 

0 0 

defined in terms of the measured elastic moduli and the three unknown fracture 

parameters ZN, Z3, and Z2 • 

For brevity, the dimensionless quantities EN, E3, and E 2 are introduced: 

( 19) 

Combining submatrices (18) allows the 6 x 6 matrix of elastic moduli to be written 

as 
Cub C12b C13b 0 0 0 
C12b C22b C23b 0 0 0 

Cb= 
C13b C23b C33b 0 0 0 

(20) 
0 0 0 C44b 0 0 
0 0 0 0 C55b 0 
0 0 0 0 0 c66b 

where 

cub = cu ( 1 + EN) , C12b = C12(l +EN)' 
2 

C13b = C13(l +EN) ' 
C12 

C22b = C22 +EN-' 
Cu 

C12C13 
2 

C13 
C23b = C23 +EN--' C33b = C33 +EN-, 

Cu Cu 
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Noting that Cb - C is the same whether expressed in terms of measured moduli 

or background moduli, it is easy to show that 

(21a) 

or, conversely 

I<= N,3,2. (21b) 

So from (19) 

(22) 

and from (9) 

(23) 

The E are the ratios of strain components in the fractures to corresponding strain 

components in the background, with the proviso, as in the discussion following (10) 

on the meaning of the 8, that EN is the ratio of normal compliance in the fractures 

to 1:1 in the background when 1:2 = 1:3 = 0. 

Evaluating the unknown fracture compliances and background moduli 

The unknown fracture compliances can be evaluated by satisfying the four condi­

tions required for the background medium to be transversely isotropic: 

Condition (a) on (20) gives 

(24) 

or 
1 1 

Z3=---. 
C55 C44 

(25) 

Conditions (b) and (c) on (20) give 

c11(c23 -C13) =EN= ZNcn 

c13( en - C12) 1 - ZNcn 

Cn ( Cn - C22) 

2 2 
C12 - C11 

(26) 
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Due to (13), which must hold if the measured parameters are made on a vertically 

fractured transversely isotropic medium, the two expressions for EN are identical. 

Both yield 

Condition (d) on (20) gives 

C23 - C13 ZN = ------ (27) 

E
2 

=cu - c12(l +EN)- l = cuc23 - C12C13_1 = Z2c66 ( 2S) 
2c66 2c13Cs6 1 - Z2c66 

or 
1 2c13 

Z2 = - - ------
Cs6 CuC23 - C12C13 

(29) 

This process reveals the three fracture compliances in terms of the measured param-

eters. 

The dimensionless fracture parameters, EN, E3 , and E 2 , may then be substituted 

back into Cb, (20), giving the unfractured transversely isotropic background moduli 

in terms of the measured c;1. The 6 x 6 transversely isotropic elastic modulus matrix is 

C11b C12b C13b 0 0 0 
C12b Cub C13b 0 0 0 

Cb= 
C13b C13b C33b 0 0 0 

(30) 0 0 0 C44b 0 0 
0 0 0 0 C44b 0 
0 0 0 0 0 c11b - c12b 

2 

where the matrix elements are given by (20), completing the inversion for all the 

unknown parameters. 

Measurements Sufficient to Determine Orthorhombic 
Stiffness Moduli 

Substituting a plane wave of frequency wand slowness components s 1 , s 2 , s3 , i.e., 

u; = U; exp(sjXj-wt), into the displacement equations of motion gives the Christoffel 

equation 

(31) 
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The set of all real eigensolutions s1 of equation (31) is the slowness surface of an 

anisotropic elastic medium. An orthorhombic medium with three mutually perpen­

dicular mirror symmetry planes aligned with the coordinate planes has an elastic 

modulus matrix, in condensed notation, of the form of (14). Substitution of (14) into 

(31) gives the Christoffel equations for orthorhombic media: 

(c12 + Cf56)s 1s2U1 + (c66si + c22s~ + C44S~ - p)U2 + (c23 + C44)s2s3U3 = 0, (32) 

(c13 + Css)s1s3U1 + (c23 + C44)s2s3U2 + (csssi + C44S~ + C33S~ - p)U3 = 0. 

The three vertical slownesses give c33, c44 and c55 by setting s1 = s2 = 0 in (32); 

c44 is evaluated from the faster and c55 from the slower of the two shear waves. The x1 

and x2 directio~s can be determined from the polarizations of the these shear waves. 

The polarization of the faster gives the strike of the fractures, x2 ; the polarization 

of the slower gives the normal to the fractures, x 1 • Alternatively, x 1 and x2 can 

be determined from the orthogonal directions in which SH and S V waves propagate 

without shear-wave splitting. The faster of these directions is in the plane of the 

fractures; the slower is normal to the plane of the fractures. 

For propagation in the x 1 , x 3 plane normal to the fractures (s 2 = 0), the use of 

(32) yields 

(cnsi + Csss~ -p)U1 + (c13 + css)s1s3U3 = 0 , 

(c66si + C44S~ - p)U2 = 0 ' 

(c13 + Css)s1s3U1 + (csssi + C33S~ - p)U3 = 0. 

(33) 

Then C()6 can be estimated from the slowness of a non-vertical SH wave using the 

uncoupled equation of (33); c11 and c13 can be estimated from the slownesses of 

two or more non-vertical in-plane waves (quasi-? and quasi-S V) using the co upled 

equations of (33). 
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For propagation in the x 2 , x 3 plane parallel to the fractures (s 1 = 0), the use of 

(32) yields 

(ct>BS~ + C55S~ - p)U1 = 0, 

(ens~+ C44S~ - p)U2 + (c23 + C44)s2s3U3 = 0, 

( C23 + c44)8283U2 + ( C448~ + C338~ - p )U3 = 0 ' 

(34) 

and c 22 and c 23 can be estimated from the slownesses of two or more non-vertical 

in-plane waves using the coupled equations of (34). 

The measurements made in these vertical symmetry planes supply estimates for 

eight of the nine orthorhombic parameters; c12 remains to be determined. Estimating 

c12 requires a measurement out of the vertical coordinate planes as c12 appears in (32) 

multiplied by 8 1 8 2 . Once all nine parameters are estimated, the assumption that the 

medium consists of a transversely isotropic background with parallel vertical fractures 

can be verified by examining whether constraint (13) is satisfied. 

Discussion 

Once elastic moduli are obtained, the foregoing method can be used to deter­

mine whether the medium results from vertical fractures embedded in a transversely 

isotropic background. The interdependence between some of the elastic parameters 

(equation (13)) provides a basis for determining how closely the subject medium con­

forms to a vertically fractured transversely isotropic model. If it does, these calcula­

tions determine the relevant fracture compliances and the moduli of the background 

without vertical fractures. If the fracture behavior is axisymmetric, i.e., Z2 = Z3 , 

then from (25) and (29), there is an additional relation on the measured Cij which 

can easily be checked. 

The Schoenberg and Muir calculus has been applied to derive explicit formulae 

for the fracture compliances and the background transversely isotropic elastic moduli 

as functions of the measured orthorhombic moduli of the long wavelength equivalent 
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medium. A remaining difficulty is to make a sufficiently accurate determination of 

these orthorhombic parameters in a reservoir or other subsurface region of interest . 
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CHAPTER II 

A SIMPLE METHOD FOR DECOMPOSING 
FRACTURE-INDUCED ANISOTROPY 

Background 

Fractures are typically modeled through their effects on elastic stiffness moduli . 

Elastic compliances, however, can be estimated as readily as elastic stiffness moduli 

and their use substantially simplify calculations if the anisotropy is at least partly 

caused by fractures. In addition, any system of parallel fractures suggests an 'eigenco­

ordinate' system (i.e., coordinate axes perpendicular and parallel to fracture planes). 

If the material properties of the resultant material are expressed in such coordinates 

further substantial simplifications can be made. In particular, this use of compliances 

and coordinate manipulations simplifies the separation of the effects of fractures from 

a given suite of elastic properties, and the complicated group element transformations 

of Schoenberg and Muir [1989] can be completely avoided. 

Aligned fiat ellipsoidal microcracks were first modeled by changes in the elasti c 

stiffness matrix of material [Garbin and Knopoff, 1973, 1975; Hoenig, 1978, 1979; 

Hudson, 1980, 1981]. Schoenberg [1983] modeled the elastic response of fractured 

material using parallel slip interfaces and used compliances to specify the fracture 

properties. The parameters that characterized the change from virgin to fractured 

material were defined, however, relative to background stiffness moduli . Schoenberg 
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and Douma [1988] extended this concept to all physically possible fracture systems 

and modeled the resulting anisotropies. Schoenberg and Muir [1989] used matrix and 

group theory to calculate long wavelength equivalent properties for complex multi­

constituent systems but still in terms of stiffness moduli. Using the Schoenberg 

and Muir calculus, Chapter I presented a method to obtain the elastic properties of 

the unfractured background by separating the effects of fractures from a fractured 

medium. Thus it becomes possible to analyze fracture effects separately, without 

interference from the background anisotropy. 

Nichols et al. [1989] modified the Schoenberg and Muir calculus by introducing 

compliances rather than stiffnesses. This substitution greatly simplifies the forward 

calculations of elastic moduli for composite media. 

Revisiting the Schoenberg and Muir Calculus 

Hooke's law for a general linear elastic medium, m condensed notation [Auld, 

1973], is 

E = Sa, (35) 

where the stress and strain tensor components in condensed and normal notation, 

respectively, are 

(36) 

and S is the symmetric 6 x 6 compliance matrix (the inverse of the stiffness matrix 

C). Superscript t denotes the transpose. 

In a layered medium with the x 3 axis normal to the layers (Fig. 2.1), tractions on 

the planes parallel to layering, i.e, a3 , a4 , a5 , and deformations in the planes of the 

layering, i.e., E1 , E2 , <:6 , are assumed constant through the stack of layers. Tractions 
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Figure 2.1 Vertical fractures in a layered medium. 
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in the planes of the layering, i.e., a 1 , a 2 , a6 , and deformations on the planes parallel 

to the layering, i.e., €3 , €4 , €5 , vary from layer to layer. 

Therefore it is convenient to subdivide S into the four parts relating stress and 

strain Normal and Tangential to the layering (indexed by N and T). Normal €ij 

and aij are those with either i or j equal to 3, or in condensed notation, €;,a; with 

i = 3, 4, 5. Tangential components ( €ij and a;j) have all i, j # 3 or in condensed 

notation, €;,a; with i = 1,2,6. 

The strain-stress relation, equation (35), can then be rewritten 

(37) 

with 

[ 

533 834 835 l · [ 813 814 

SNN = s34 844 845 , SrN = 823 824 

835 845 855 536 846 

where the 8;j are the symmetric elements of S . Note that the compliance matrix in 

this system, equation (37), is also symmetric. It is important to realize, however, that 

this notation is general and holds for any orientation of the coordinate system with 

respect to the layering. 

Nichols et al. [1989] followed the Schoenberg and Muir procedure using Backus' 

averaging techniques [1962] to determine the long wavelength equivalent compliances 

for layered media. We, therefore, follow essentially that procedure. 

A depth section of thickness H is composed of layers (in welded contact) with 

different densities and elastic moduli. Several of the interleaved layers (in H) may 

have the same properties (indexed by i). The averaging technique lumps all layers of 

identical properties (in H) together, making up a total thickness H;, with property 

i, so that H = L; H;. The geometrical and physical model parameters of the ith 

constituent in H for the long wavelength approximation are H; , (p,SNN,STN,Srrt 
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The physical properties transform to the group element of Gi by 

[ 
s~N l --+ [ SNN -S~NJ:r}sTN l = [ ~g~ l 
SrN -SrrSrN g(4) 
Srr . sr-r1 

. g(5) . 
t t t 

(38) 

For any G; where g(5)i1 exists, the physical model parameters are returned by: 

[ 

g(2) l G ---+ g(3) +g( 4)tg(5)-1g( 4) 
t -g(5)-lg( 4) 

g(5)-1 . 
' 

(39) 

To avoid confusion, the original Schoenberg and Muir indexing for elements in G 

is conserved. The long wavelength physical properties of the total section H are 

therefore described by the group elements G where 

or 

This gives, for example, the average density 

and 

- H · 
P = g(2) = 2: - 1 

Pi . H 
t 

sTT ~ [~ isr}r . 

( 40) 

( 41) 

( 42) 

This is essentially the same group element formulation presented by Schoenberg 

and Muir [1989] except that the elements are defined in terms of compliances rather 

than stiffnesses, and the geometrical parameters, Hand H;, have been separated from 

the physical properties expressed in G and S . 
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The Fracture Model 

The strain-stress relation of any fracture set embedded in an elastic medium can 

be characterized by a symmetric, non-negative definite 3 x 3 matrix [Schoenberg and 

Douma, 1988], requiring only six parameters to completely describe the most general 

elastic response due to the fractures. These parameters are the components of the 

fracture compliance matrix 

(43 ) 

The elements of Z correspond to the slip of the fractures in a unit thickness as a lin­

ear function of all the traction components acting normal to the fractures. Therefore, 

while the traction across a surface is continuous, the displacement can be discontin­

uous to first order. Call the G-element corresponding to such a fracture set G f . The 

components of G f were first given explicitly by [Schoenberg and Muir, 1989] and for 

our modified formulation are 

g1(2)=0, g1(3)=Z, g1(4)=0 , g1(5)=0. (44) 

With the exception of g1(3), the components of G 1 are all zero. Therefore, g(3)i of 

a Gi is the only element that changes as a result of fracturing. Since g1(4) and g1(5) 

are zero, fracturing only affects SNN; but does not affect STN; or STT;· Consequently, 

as equation (37) shows, only the elastic response EN to CJN is modified in a fracture 

oriented coordinate system. Therefore, as long as a primed (fracture oriented) coor­

dinate system is chosen so that the normal to the fracture planes is aligned with the 

normal (the x~ axis) defining these submatrices (now SNN' SyN, and Syy) , fracturing 

rock is as simple as adding the fracture system F' to S~, the rotated background 

system Sb. This process yields the same results as the revised Schoenberg and Muir 

transformations derived by Nichols et al. [1989] but with fewer calculations. 

For a set of fractures in which the x; axis is perpendicular to the fracture planes, 
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Nichols et al. [1989] showed that the change in the compliance matrix is 

0 0 0 0 0 0 

0 0 0 0 0 0 

.6.S' F' 0 0 Zu Z12 Z13 0 EtzE 
0 0 Z12 Z22 Z23 0 

(45) 

0 0 Z13 Z23 Z33 0 
0 0 0 0 0 0 

with 

[O 0 1 0 0 OJ 
E= 000100 

0 0 0 0 1 0 
( 46) 

The following calculations show that eigencoordinates and compliances of different 

fracture sets can be transformed individually to those of the background compliances 

Sb. Therefore any number of sets can be included, provided there is no nonlinear 

interaction between constituent fracture systems. 

A coordinate change for a compliance matrix S' is obtained by the Bond trans­

formation [Auld, 1973], so that 

s ( 4 7) 

where 

2 
axx 

2 
axy 

2 
axz axyaxz axzaxx axxaxy 

2 
ayx 

2 
aYY 

2 
ayz ayyayz ayzayx ayxayy 

2 2 2 
azyazz azzazx azxazy 

N= azx azy azz 

2ayxazx 2ayyazy 2ayzazz ayyazz + ayzazy ayxazz + ayzazx ayyazx + ayxa z y 

2azxaxx 2azyaxy 2azzaxz axyazz + axzazy axzazx + axxaz z a xx a zy + a x ya zx 

2axxayx 2axyayy 2axzayz axyayz + axzayy axzayx + axxayz axxa yy + axy a yx 

( 48) 

The aij are the direction cosines of the 'new' coordinate axes , (x 1 , x2 , x 3 ), with respect 

to the 'old' coordinate axes, (x~, x~, x;) in which the fracture compliance matrix F' , 

equation ( 45), is defined. 

The fracture compliance matrix Z in F' contributes only to the SNN portion of 

S' that appears linearly in the g(3) element of equations (38) or (39). Therefore, 

(in x~, x~, x~) the long wavelength equivalent S' of a fractured transversely isotropic 
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medium is then simply the sum of the fracture matrix F' and the transformed back­

ground compliance matrix , S~ = N- 1sb(Nt)- 1
, 

( 49) 

Transforming S' back from fracture eigencoordinates (x~, x~ , x;) to ( x 1 , x2 , x3 ) then 

yields 

(50) 

The fracture contribution ~S to the compliance S appears as being rotated from its 

eigencoordinates into those of our observations. Different fracture sets have different 

physical properties, F:, and eigencoordinates (expressed by the N i). As long as there 

are no nonlinear interactions, the compliance matrices for the background medium 

and the rotated fracture F' add together so that for n fracture sets 

n 

S = Sb + 2: ~Si . (51) 
i=l 

Example Involving Vertical Fractures 

A horizontally layered medium (transversely isotropic) embedded with vertical 

fractures has orthorhombic symmetry (see Chapter I). In the observation coordinates 

of Fig. 2.1, the compliance matrix is therefore 

Su 812 813 0 0 0 
812 S22 S23 0 0 0 

Sb+ ~S = S = 813 823 833 0 0 0 
(52) 

0 0 0 844 0 0 
0 0 0 0 855 0 
0 0 0 0 0 866 

and the fracture contribution, ~S, can be separated from the background contribu­

tion, Sb. 

Vertical fractures with at most orthorhombic symmetry can be represented in their 

eigencoordinates as 

1] (53) 
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and, consequently, 

6S = NF'Nt = NEtZENt 
' 

( 54) 

where E is given in equation ( 46). The horizontal x2 axis is chosen along the surface 

strike of the fracture plane and is identical to x~. Choosing the eigen axis x; normal 

to the fracture planes (horizontal with x; = x1 ), the transformation of F' from the 

(x~ = -x3, x~ = x2, x~ = x1) into the (x1, x2, x3) system requires a¢= -7f /2 rotation 

about the x2 axis (Fig. 2.1 ). Equation ( 48) gives 

0 0 1 0 0 0 
0 1 0 0 0 0 

N= 
1 0 0 0 0 0 
0 0 0 0 0 -1 

( 55) 

0 0 0 0 -1 0 
0 0 0 1 0 0 

Therefore, 
ZN 0 0 0 0 0 
0 0 0 0 0 0 

6S = NF'Nt = 
0 0 0 0 0 0 
0 0 0 0 0 0 

(56) 

0 0 0 0 Z3 0 
0 0 0 0 0 Z2 

The long wavelength equivalent medium of a transversely isotropic background 

embedded with a set of vertical fractures is S = Sb+ 6S, equation ( 49). Removing 

a set of vertical fractures is accomplished by Sb = S - 6S: 

Sub S12b S13b 0 0 0 sn -ZN S12 S13 0 0 0 

S12b snb S23b 0 0 0 S12 S22 S23 0 0 0 

Sb= 
S13b 823b 833b 0 0 0 813 823 833 0 0 0 

(57) 
0 0 0 844b 0 0 0 0 0 844 0 0 ' 
0 0 0 0 855b 0 0 0 0 0 855-Z3 0 
0 0 0 0 0 s66b 0 0 0 0 0 s66-Z2 

where the 5;j can be determined from seismic velocity measurements following the 

section of Chapter I entitled Measurements Sufficient to Determine Orthorhombic 

Moduli, page 15. 
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The unknown fracture compliances, Z;, can be determined by satisfying the four 

conditions required for the background medium to be transversely isotropic , 

1 
S44b = S55b ' S13b = S23b ' Sub = S22b ' S12b = Sub - 2s66b. (58) 

Equation (57) then gives for s44b = s 55b and sub = s 22b, respectively, 

(59) 

(60) 

and for s 12b = sub - ~s66b, using the result for ZN of equation (60), 

( 61) 

The condition s 13b = s 23b reveals that, rather than the usual nine parameters required 

to define general orthorhombic media, only eight independent parameters are neces­

sary to define a vertically fractured, horizontally stratified medium. This reduction 

enables a simpler experimental design to recover the Sij from independent wave ve­

locity measurements. However, if nine independent measurements are available, then 

the condition s13b = s 23b provides a test for determining whether and how close the 

subject medium conforms to the model. 

The compliance matrix, S, is the inverse of the stiffness matrix, C. The fracture 

effects were isolated in Chapter I but were defined in terms of measured stiffness 

moduli. To verify these results, the measured compliances of equation ( 52) must be 

defined as functions of Cij. The stiffness matrix of an orthorhombic medium is 

Cu C12 C13 0 0 0 

C12 C22 C23 0 0 0 

C= C13 C23 C33 0 0 0 
(62) 

0 0 0 C44 0 0 
0 0 0 0 C55 0 
0 0 0 0 0 c66 

The inverse of this matrix gives the elements of S of equation (52) as functions of 
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2 
C11C23 - C12C13 

2 
C13 - C11C33 C12 - C11C22 

822 = x 823 = x 833 = x 
1 1 1 

(63) 844 = - , 855 = -, 866 = - , 
C44 C55 Cs6 

where X is the determinant of the 3 x 3 submatrix of C: 

(64) 

Substituting the s;1 of equation (63) into equations (59), (60), and (61) we obtain 

(65) 

(66) 

and 
1 2c13 

Z2 = - - ------ ( 67) 
c66 C11C23 - C12C13 

The condition 8 13b = 8 23b of equation (58), with the relations of equation (63), gives 

(68) 

Results (65)-(68) are identical to those determined in Chapter I, equations (25), (27), 

(29), and (13), but with fewer calculations by avoiding altogether the Schoenberg and 

Muir transformations. 

Discussion 

Fracture-induced anisotropy is more easily understood when defined in terms of 

compliances rather than stiffnesses. In particular, isolation of the effects of a single 

fracture set, as demonstrated in Chapter I, becomes both mathematically simple and 

computationally concise. Although not specifically demonstrated here, it is clear that 

this treatment generalizes to multiple fracture sets. 

29 



CHAPTER III 

SEPARATING CONSTITUENTS IN COMPLEX 
ANISOTROPIC MEDIA 

Background 

This chapter presents a separation technique applicable to general fracture sys­

tems. We assume that the global elastic moduli have been 'measured' by some 

method. The technique can then be applied to separate out the contributions of 

the fractures and the background, and to determine the fracture dip angle. The 

method reveals several new relationships among the measured elastic constants which 

constrain the complexity of the constituents' symmetry. 

Once elastic compliance moduli for a region are estimated from seismic velocity 

measurements, the unknown fracture dip angle, and the unknown fracture and back­

ground compliances can be determined separately following the method presented 

in Chapter II by imposing the symmetry conditions of the background, all of which 

constrain the global elastic constants of the compound medium. 

The number of symmetry constraints increases as the background becomes more 

symmetric. Additional constraints (from higher symmetry backgrounds) reduce the 

effective number of elastic compliance constants. These constraints provide tests for 

evaluating whether and how well the real medium conforms to the model. 

30 



Modeling a Fractured Medium 

Building on the Schoenberg and Douma results [1988], Nichols et al. [1989] showed 

that, for any background medium, a set of horizontal fractures will change the com-

pliance matrix of the background by 

0 0 0 0 0 0 
0 0 0 0 0 0 

F' = EtzE = 0 0 ZN ZNH ZNv 0 
(69) 

0 0 ZNH ZH ZHv 0 
0 0 ZNv ZHv Zv 0 
0 0 0 0 0 0 

with 

[ ~ 0 1 0 0 

~ l E 0 0 1 0 (70) 
0 0 0 1 

The subscripts N, H, and V correspond to compliance components in the normal, 

horizontal, and vertical directions, respectively, relative to the fracture planes. 

The goal of this chapter is to find the physical properties of the fractures and 

of the background material (expressed in Sb) by removing the fracture contributions 

(F) from the overall compliance matrix S, in equation (35). Consider a set of parallel 

fractures in which </> is the fracture dip angle (Fig. 3.1 ). This geometry gives rise to 

monoclinic symmetry. In plan view, the plane of symmetry is vertical, normal to the 

fracture strike. Since only elastic SH waves decouple in the single symmetry plane, 

the direction in which this occurs fixes the observation coordinates (x 1 , x2 , x3 ). We 

choose x 1 as horizontal normal to the fracture strike, x2 horizontal along strike, and x3 

vertical upward. We must now determine the compliance contribution of the fracture 

system, F, relative to the observation coordinates in which S has been 'measured'. 

The starting point is the fracture compliance F' in the eigencoordinates of the fracture 

In the fracture eigencoordinates (the primed system), the global compliance matrix 

S' is given by 

S' = S~ + F'; (71) 
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Figure 3.1: Geometry of the Monoclinic System: 

(a) General 3D fractured, layered medium. 

(b) The vertical x1-x3 plane shows </> as the fracture dip angle. 

(c) Plan-view shows the fracture strike parallels the x 2 axis. 
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simple addition of the unfractured background and fracture compliances, where F' is 

given by equation (69) and Sf, is the compliance matrix of the unfractured background 

material (in primed coordinates). A coordinate change of a compliance matrix (from 

S' back to S) is obtained by the Bond transformation matrix N [Auld, 1973, p.75] so 

that 

S = NS'Nt = N(S~ + F')Nt =Sb+ NF'Nt =Sb+ F. 

Fig. 3 .1 shows that the coordinate transformation from ( x~, x; 
( x 1 , x 2 , x3 ) is a simple rotation about the x 2 axis by the angle </>: 

x =Ax' 

with 

where 

c = cos </> , s = sin </> . 

(72) 

(73) 

(74) 

The elements of A are the direction cosines required for the 6 x 6 Bond transformation 

N of equation ( 48). 

As equation (72) shows, fracturing rock is as simple as adding the contribution of 

the fractures relative to observation coordinates, F, to the background rock, Sb. By 

expanding NF'Nt = F we obtain 

Fu 0 F13 Fi4 Fis Fl6 
0 0 0 0 0 0 

F= 
Fi3 0 F33 F34 F3s F36 

(75) 
Fi4 0 F34 F44 F4s F46 
Fis 0 F3s F4s Fss Fs6 
F16 0 F36 F46 Fs6 F66 
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The elements of F are 

F13 = -c2s2 Zv + c2s2 ZN + cs(c2 
- s2 )ZNv, 

F33 = c2 s2Zv + c4 ZN - 2c3 sZNv, 

F15 = cs( c2 
- s2 )Zv + 2cs3 ZN+ s2 (3c2 

- s2 )ZNv, 

F35 = -cs(c2 
- s2)Zv + 2c3sZN + c2 (c2 

- 3s2 )ZNv, 

F55 = ( c2 
- s 2

)
2 Zv + 4c2 s2 ZN + 4cs( c2 

- s2 )ZNv, 

F44 = c2 ZH, F46 = csZH, F66 = s2 ZH, 

F14 = cs2 ZNH + c2 sZHv, F16 = s3 ZNH + cs 2 ZHv, 

F34 = c3 ZNH - c2 sZHv, F36 = c2 sZNH - cs 2 ZHv, 

F4s = 2c2 sZNH + c( c2 
- s2 )ZHv, F56 = 2cs 2 ZNH + s( c2 

- s2 )ZHv· 

(76) 

The matrix Fin equation (75) represents the change of compliance resulting from 

the presence of a single fracture set. Its form indicates that even an isotropic back­

ground containing a set of general fractures (where at least five of the six elements of 

Z are nonzero) has triclinic symmetry. 

This chapter addresses media with at most monoclinic symmetry, since lower sym­

metries are too complicated to be of much geological interest. To obtain monoclinic 

symmetry, the fracture slip along strike must be uncoupled from the normal slip and 

from the tangential slip in the x1 direction, i.e., ZHN = 0 and ZvH = 0, respectively. 

When ZvH = ZHN = 0 in (75) then Fi4 = F4 j = 0 for all i,j, so that F will generate 

an equivalent medium that is monoclinic with the x1 , x3 plane as the plane of mirror 

symmetry. The s 12 , s22 , and s23 compliances are not affected when the fracture strike 

is the x 2 axis. Since s25 = 0, the number of parameters in S is reduced from thirteen 

to twelve. 

Any number of fracture sets can be included in a medium. Once each fracture 

system is aligned with the coordinates of the background compliance matrix, F need 
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only be added to Sb to find the equivalent properties of the fractured medium, S. 

Since the change in compliance is independent of the background properties, adding 

and removing fractures is commutative as long as there is no nonlinear interaction 

between the fracture sets. The compliance matrix for n fracture sets is 

n n 

S =Sb+ LNiF~N~ =Sb+ LFi. (77) 
' i=l 

When a fractured medium has hexagonal symmetry, it has only two indepen­

dent fracture parameters. These parameters are the normal compliance, ZN, and the 

tangential compliance, Zr ( = Zv = ZH ). In a fracture system with hexagonal sym­

metry, the tangential fracture displacement is colinear with the tangential component 

of the traction and the normal and tangential responses are uncoupled. Note that if 

Zr 2 ~ZN 2 0, then fractured isotropic media can be simulated by isotropic layering 

[Schoenberg and Douma, 1988]. 

Three parameters, ZN, ZH, and Zv, define an orthorhombic fracture system. 

The tangential fracture displacement and the tangential component of the traction 

are not co linear, so Zv =f. Z H. The normal compliance, ZN, however, is uncoupled 

from the tangential compliances and each of its elements, ZNH, ZNv, and ZHv, is 

zero. A monoclinic fracture system requires four independent parameters. Although 

ZNH = ZHv = 0, the slip in the x1 direction could be uncoupled from the normal 

slip, i.e., ZNv =f. 0. For practical purposes, however, it is assumed that ZNv = 0. 

Therefore the fracture system for this model has at most orthorhombic symmetry. 

A Procedure for Extracting Fracture Compliances 

from Measured Moduli 

After the compliance moduli are measured, this separation method reveals the 

three fracture compliances, the fracture dip angle, and the elastic moduli of the 

unfractured background. 
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Compliance measurements from a fractured transversely isotropic medium has a 

strain-stress matrix with this monoclinic symmetry: 

Su S12 S13 0 S15 0 
S12 S22 S23 0 0 0 

S= 
S13 S23 S33 0 S35 0 

(78) 
0 0 0 S44 0 S46 

S15 0 S35 0 S55 0 
0 0 0 S46 0 s66 

We wish to find the fracture matrix Z, the fracture dip angle </>, and the background 

compliance matrix. So the result is 

Sb= S - F. (79) 

Therefore, for 

~ ] , 
Zv 

(80) 

the elements of Sb in the observation coordinates are 

2 2z 4z Sub = Su - c s v - s N' 
2 2z 2 2z 

S13b = S13 + C S V - C S N, 

2 2z 4z S33b = S33 - C S V - C N, (81) 

If the background is transversely isotropic, the three unknown fracture compli­

ances and angle </> can be determined by imposing the background symmetry condi­

tions: 
1 

S44b = S55b ' S13b = S23b ' Sub = S22b ' S12b = Sub - 2s66b ' 

(82) 
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With the geometric constraint c2 + s 2 

ZN, Zv, and</>. We obtain 

1, we can find analytical solutions for 

(83) 

(84) 

and 

.::_=tan</>= 2 (s11 - s22) + (s13 - S23) , 
C 815 + S35 

7r 7( 

-- < </> < - . 
2 2 

(85) 

We also obtain the constraint 0 1 = 0, where the dimensionless quantity n1 is defined 

by 

f1l = tan </> __ 1 __ ~ S15 - S35 = O . 
tan</> 2 s13 - s23 

(86) 

Transversely isotropic symmetry also demands that s 46b = 0, which allows us to solve 

for the remaining unknown, ZH. We obtain 

(87) 

The first condition of equation (82), s44b = s55b, allows us to define a second constraint, 

n2 = 0, where 

(88) 

The condition, s12b 

0 3 = 0, where 

s 11 b - ~s66b, of (82) allows us to define a third constraint , 

ri A- 2(s22 - s12) - s66 
0 ~ ~3 = tan '+' + = . 

846 
(89) 

How close the dimensionless quantities ni actually approach zero is a useful test of 

the model and a measure of the quality of the inversion. 

A fracture system displaying hexagonal symmetry is axisymmetric, i.e., Zv = ZH, 

which provides an additional constraint, n4 = 0. If the background is isotropic, the 

three additional conditions 

(90) 
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force three more non-dimensional quantities, D5 , D6 , and D7 , to equal zero. These 

relationships constrain the in version for the background and fracture systems. 

The process outlined above defines the fracture compliances and </> as functions of 

the measured parameters. The fracture compliances, ZN, Zv, ZH, and the fracture 

dip angle </> may then be substituted back into Sb. This gives the background moduli 

in terms of the measured s;j of S and completes the inversion for all the unknown 

parameters. 

Discussion 

The foregoing method derives explicit formulae for the fracture compliances, frac­

ture orientation, and the background elastic moduli. These formulae are functions of 

the measured moduli of the long wavelength equivalent medium. 

Once elastic moduli are obtained, the fracture dip angle and the complexity of 

the background symmetry can be determined. Assuming a particular background 

symmetry, implies a set of relationships the measured moduli S;j must satisfy. For 

example, specific relationships among the measured moduli result, namely, for a trans­

versely isotropic background equations (86), (88), and (89) must hold. These provide 

the bases for determining how closely the subject medium conforms to the specified 

symmetry. The dimensionless quantity 

(91) 

will be a useful measure of how well the model fits the data. If (91) is suitably 

small, these calculations will estimate the fracture dip angle, the relevant fracture 

compliances, and the moduli of the unfractured background. 
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CONCLUSIONS 

The foregoing methods can be used to determine whether a medium results from 

fractures embedded in an anisotropic background. The interdependences among 

some of the elastic parameters provide bases for determining how closely the sub­

ject medium conforms to the model. If they do, these calculations determine the 

relevant fracture compliances, the fracture orientation, and the moduli of the back­

ground without these fractures. Specific relationships among the measured moduli 

constrain the symmetry of the background medium. Additional relations on the mea­

sured moduli may hold and would constrain the fracture behavior. 

If the azimuthal anisotropy is believed to be caused by parallel long wavelength 

fractures, then each fracture compliance corresponds to the ratio of the displacement 

discontinuity across a typical fracture per corresponding unit stress to the mean spac­

ing between the fractures . If it is assumed to be caused by aligned flat ellipsoidal mi­

crocracks [Hudson, 1981], the 8 of equation (9) are related to the product of the crack 

density and a parameter that depends on the elastic properties of the background 

and the nature and properties of the infilling material. For circular , axially symmet­

ric cracks, this dimensionless crack density e is defined as the number of cracks per a 

volume given by the mean crack radius cubed. Hence e may be written 

e = 3</Jc/ 47ra , (92) 

where <Pc is the crack porosity and a is the mean aspect ratio of the fiat ellipsoidal 

inclusions [Schoenberg and Douma1 1988] . Since the parameter separation method 

does not differentiate between long parallel fractures and aligned microcracks, it is 

applicable to either model. 
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APPENDIX 

Outline of the Schoenberg and Muir Calculus 

Hooke's law for a general linear elastic medium in condensed notation [Auld) 1973] 

lS 

(}" 1 Cu C12 C13 C14 C15 cl6 E1 

0"2 C12 C22 C23 C24 C25 C26 E2 

0"3 C13 C23 C33 C34 C35 C36 t3 (Al ) 
(}" 4 C14 C24 C34 C44 C45 C46 t4 

0"5 C15 C25 C35 C45 C55 C56 t5 

0"6 cl6 c26 C36 C46 C56 c66 t6 

where the stress components are defined as 

(A2 ) 

and the strain components are defined as 

(A3) 

The O"ij and Eij are elements of the stress and strain tensors, respectively. Superscript 

t denotes the transpose. These six equations can be written in a form that decomposes 

internal and external stress and strain components relative to a sp ecified preferred 

direction. Schoenberg and Muir [1989] considered layered media with the x 3 axis 

normal to the layering, and thus defined the external stress and strain components 

40 



relative to that axis. No essential changes result from assuming that this layering is 

normal to any other coordinate axis, however, when this method is applied to vertical 

fractures, it is natural to call the horizontal normal to the layering the x1 axis and 

decompose relative to that direction. The external stress and strain components 

contain the subscript 1 in the full notation (i.e., terms with subscripts 1, 5, and 6 

in condensed notation) and are denoted by N for normal. The internal components, 

those not containing subscripts 1 in the full notation, are denoted by T for tangential 

(i.e., terms with subscripts 2, 3, and 4). In other words, external components are 

11 ~ 1, 13 ~ 5, and 12 ~ 6 and internal components are 22 ~ 2, 33 ~ 3, and 

23 ~ 4. The stress-strain relations (Al) can now be rewritten as 

(A4) 

[ ~: l CTN [ :: l + Crr [ : l 
with 

[ C11 
C15 

c,. l CNN= C15 C55 Cs6 

C16 C56 C66 

[ c,, C25 
c" l CTN= C13 C35 C36 cNT = c~N, (A5) 

C14 C45 C46 

[ c,, 
C23 

C24 l 
CTT = C23 C33 C34 

C24 C34 C44 

The subscripts NN, TN, NT, and TT describe the components of stress and 

strain to which the submatrices refer. N N relates stress and strain components 

acting on the plane normal to x 1 (i.e., the 1, 5, 6 components); TN relates stress 

components acting in the plane normal to x 1 (i .e., the 2, 3, 4 components) to the 

normal strain components; NT, indicating the transpose of the corresponding TN 
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submatrix, relates normal stress components to tangential strain components; and 

TT relates tangential stress components to tangential strain components. Note that 

CNN and CTT are symmetric. 

A layered medium composed of several constituent media, each in general anisotro­

pic, is elastodynamically identical to an equivalent homogeneous anisotropic medium 

if the layered medium is statistically stationary over any sample of layering as thick 

or thicker than the shortest wavelength [Backus, 1962]. The information required to 

determine the properties of the equivalent medium are density, elastic moduli, and 

the concentration of each constituent. 

Consider a region of thickness H composed of layers with welded interfaces where 

the x1 axis is perpendicular to the layering. The total thickness of all layers of the ith 

constituent is H times the concentration of that constituent. Let this total thickness 

be Hi , the density be Pi, and the three elastic moduli submatrices be CNN; , CT N;, and 

CTT; according to (A5) . The quantities Hi, Pi, CNN;, CTN;, and CTT; are the physical 

model parameters of the ith constituent. These physical model parameters map into 

a 5-vector Gi, consisting of scalars and 3 x 3 matrices. The first two components of 

Gi are scalars and the third, fourth and fifth components are 3 x 3 matrices . The 

third and fifth are symmetric. The mapping is 

Hi Hi gi(l ) 
Pi Hi Pi 9i(2) 

C NN; ---+ HiCN1rv; gi(3) Gi. (A6) 
CTN; HiCTN;CN1rv; gi(4) 
cTT; Hi [cTT; - cTN;C"N1rv;cNT;] gi(5) 

For any Gi with 9i(l) -=/ 0 and gi(3) invertible, the set of physical model parame­

ters are returned by the inverse mapping: 

9i( 1) 
9i(2)/gi(l) 
g;(l)gi(3t1 

g;( 4)gi(3)-1 

[gi(5) + gi(4)gi(3)-1gi(4)t] /gi(l) 

H 
' 

Pi 
C NN, 
CTN; 
CTT; 

(A 7) 

This formulation is powerful because the 5-vector G of the homogeneous medium 

equivalent to a layered medium composed of n constituents is simply the sum of the 
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5-vectors of then constituent media, i.e., 

n 

G = l:Gi. (AS) 
i=l 

In the domain of these 5-vectors, addition corresponds to combining layers. The set of 

physical model parameters of the equivalent medium is found by applying the inverse 

mapping (A 7) to G . 
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