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ABSTRACT 

The parametric travel time equations are developed 

for layered media with linear velocity gradients in each 

layer. The parametric equations provide a straight 

forward means of reducing multi-layer data to the 

appropriate single layer case. The velocity-depth 

relation can then be estimated by using least squares to 

fit a non-linear model to the reduced data. The 

regression procedure provides information necessary to 

construct confidence regions about the estimates. 

The inherent inaccuracies of the method are 

investigated with model studies . Owing to an unsuccessful 

search for appropriate real data, a theoretical discussion 

is undertaken on the potential application of this pro­

cedure to the study of marine sediments . 
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I. INTRODUCTION 

The purpose of this thesis is to investigate the 

application of a non-linear, least squares regression 

procedure to the analysis of seismic travel time data. The 

procedure is applied under the assumption of a horizontally 

layered model, with a linear velocity gradient in each layer • 

Solutions for the three layer parameters, velocity at the 

top of the layer velocity gradient, and thickness, provide 

a more detailed determination of the velocity-depth function 

than has previously been possible. 

The layered model described above is particularly 

well-suited to the ~nconsolidated and semi-consolidated 

marine sediments (Layer 1 of the oceanic crust). Various 

investigations (Knox, 1965; Houtz~ al., 1968; Hamilton, 

~ al., 1974) have shown substantial velocity gradients in 

the sediments near the water-sediment interface; the 

magnitude of the gradient decreases with depth and is 

generally assumed to vanish at or near the top of the 

basaltic layer (Layer 2). The method presented here has 

been developed to deal spe~ifically with the detailed 

velocity structure of Layer 1 rather than the gross structure 

of the oceanic crust. 

Determinations of the velocity-depth function are of 

interest in several areas of investigation • The layer 

parameters are sought as descriptors of the sediment them-
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• selves . Efforts have been made (Hamilton, 1965, 1970; 

Naini and Leyden, 1973; Hamilton~ al., 1974) to correlate 

velocities, velocity gradients, and thicknesses with factors 

• such as sediment type, mode of origin, porosity, degree 

of lithification, and sedimentation rate. 

The velocity-depth function is als~ important in 

• acoustic propagation problems • In the case of low frequency 

(less than approximately 20 Hz) and long range, the propa-

gation of sound in the ocean involves not only the water 

• column but also the sea-floor sediments. An accurate 

knowledge of th~ velocity structure, including velocity 

gradients, will be necessary for the successful application 

of a general propagation theory. 

Previous Approaches 

• 2 2 
The T -X method for reflection data has long been the 

standard for investigating the sediment layer. 
I 

This 

approach was first formalized by Green (1938) and later 

• expanded upon by Dix (1955) and Le Pichon~ ai. (1968), 

among others. The use of reflection rather than head wave 

refraction data is dictated by the physical nature of the 

• sediment column. Clay and Rona (1965) have shown that the 

upper few hundred meters of Layer 1 have a complex 

structure of very thin layers . The acoustic impedence 

• contrast between these layers is low and velocity reversals 

are common. For these reasons, head wave refractions from 

interfaces within Layer 1 arc rarely observed • 

• 
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• Dix's (1955) major contribution was to demonstrate how 

the reflection travel time curve from any layer in a multi-

layer model could be reduced to the equivalent single layer 

• case if the overlying layers were already known. The Dix 

reduction is not exact in that it requires an asymptotic 

approximation to the travel time curve. The method 

• presented below requires the same reduction, but, by using 

the parametric travel time equations (cf. Le Pichon~~., 

1968), it can be accomplished in a more precise manner. 

• . 2 2 
Since the T -X approach solves only for the velocity 

and thickness of a layer, other methods, (e.g. as described 

by Ewing and Nafe, 1963) have been employed to determine 

• local velocity gradients. Most investigators (Knox, 1965; 

Houtz~~ .• 1968; Maynard, 1973; Hamilton, et~ .• 1974) 

instead make gradient determinations on a regional basis . 

• A large number of independent reflection records are taken 

over a specified area. The layer velocity and thickness 

are determined by the Dix method as modified by Le Pichon 

• et al. (1968). The velocities are plotted as a function of 

depth (in time or distanc~) and a least squares curve is 

determined . In many cases, the sediment velocity at the 

• sea floor is constrained to the regional value given by 

Fry and Raitt (1961). 

The non-linear least squares method than provides a • more consolidated approach to the problem. The velocity 

gradients can be determined directly from the travel time 

• 
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data on individual records, and thus can be specified 

locally. The procedure, in addition, computes limits on 

the accuracy of all parameter estimates • 

Other Investigations with the Parametric Equations 

At the outset of this investigation, it was hoped that 

the parametric travel time equations could be employed to 

solve for the degree of horizontal/vertical anisotropy 

within a layer. As detailed in Appendix A, it was found 

that for the case of elliptical anisotropy, such a solution 

was impossible. If one accepts the elliptical anisotropy 

model, this rather surprising result has disturbing impli­

cations regarding the accuracy of many previous thickness 

determinations. Kroenke (personal communication, 1974) has 

observed anisotropies of 5-10% in laboratory measurements 

on sediments from the Ontong-Java Plateau (DSDP Leg 30, 

Site 289). That degree of anisotropy could produce the 

same percentage error in seismic thickness solutions. 

It was also found that the parametric equations could 

provide a fast and simple method for the solution of the 

isovelocity reflection case (Appendix B). This development 

is of considerable use in removing the effects of the water 

column, which has a very small velocity gradient • 
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II . THE PARAMETRIC EQUATIONS . 

The General Integrals 

The parametric travel time equations will now be 

developed for ray paths in a single layer with a linear 

velocity gradient. The same equations have been derived 

by Slotnick (1959), by approaching the limit of infinitesi-

mally thin isovelocity layers. An alternate approach using 

Fermat's principle of extremal time is possible. Since 

Fermat's principle is central to ray theory, the alternate 

approach is somewhat more elegant and is presented below. 

Consider an isotropic half-space, within which seismic 

velocity varies linearly with depth (Figure 1). Taking 

coordinate axes at the upper surface (z axis positive 

downward), the velocity at z=O is band the variation of 

velocity with depth is given by v b + yz where y is the 

velocity gradient. 

Consider now two arbitrary points, A and B, within the 

half-space. The · travel time between A and B is given by 

the integral, 

T <ls 
v 

where ds 2 = dx
2 + dz

2 
and v = b + yz. 

(1) 

Fermat's principle states that energy will travel between 

A and B along the path for which T is a minimum • 
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Figure 1. General ray path in a half-space with a 

linear increase of velocity with depth. 

Figure 2. Reflection (PQR) and refraction (PQ'R') ray 

paths in a layer with a linear velocity 

gradient. 
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8. 

Letting x = dx/dz, 

and equation 1 can be rewritten, 

z X.2)1/2 rzb 
T r b (1 + dz f(x,z) dz = J = J 

za b + yz 
z 

(2) 

a 

where za and zb are the z coordinates of points A and 

B. 

Examining equation 2, it is apparent that the integral T 

is now in the proper form to be minimized by using the 

calculus of variations. In the calculus of variations, it 

is assumed that the limits za and zb are fixed but the 

path of integration is to be determined; that is, the ray 

path x = x(z) is unknown. From this relationship will come 

the parametric travel distance equation • 

For T to be an extremum (in this case, a minimum) the 

partial differential equation, 

<H 
dX 

d 
dz c ~~) = 0 

must be satisfied. 

(3) 

df 
Substituting for f from equation 2 and noting that ax = 0, 

equation 3 becomes 

df 1 = ----Clx b + yz 
::: constant (4) 
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9 . 

From Figure 1, it can be seen that the angle between the 

vertical and the tangent to the ray path is given by 

Thus 

0 = arctan x 

tan 0 
sec 0 

= sin 0 

and it is clear that equation 4 is simply a statement of 

Snell's Law; 

sin 0 
b + yz 

= 
sin 0 

v 
= p 

where p = constant for a particular ray path and 

is referred to as the ray parameter . 

(5) 

We now rewrite equation 4, replacing the right hand with p, 

squaring both ;8 ides and rearranging terms to get, 

or 

dx 
dz 

= 
p (b + yz) 

(6) 

To calculate the range, x, traversed along a ray path from 

depth za to depth zb one need only rearrange equation 6 and 

integrate between the proper limits, 

p (b + yz) 
2 p2]1/2 [ 1 - ( b+yz) · 

dz (7) 
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10. 

Note that if x is speriified as the horizontal separ a tion 

of points A and B, equation 7 can be solved for the ray 

par a meter of the direct ray whicl1 connects the two points. 

1 Conversely, if a particular ray is specified, equation 7 

will obviously yield the horizontal travel distance. Note 

also that the ray paths described by equation 7 are arcs 

of a circle (Slotnick, 1959, p. 208) . 

Equation 7 is one of two parametric equations which 

together will determine the surface travel time - distance 

curve when appropriate limits are applied. A similar 

equation will be derived for the travel time. At this 

point, however, it is convenient to make a change of 

variable in order to simplify the integration. 

Let '¢ = p(b + yz), from which, dz = d¢/py . 

Equation 7 then becomes, 

x = 1 
PY 

d<f> 
(8) 

To develop the equation for the travel time, t, make 

the same change of variable in Equation 2. Then, 

- J<f>b<1 + *2)112 
t - <f> (<f>/p) 

a 

(9) 

Note that from equation 5 and the definition of <f> that 

• 2 
x = 

so that equation 9 becomes 
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(10) 

We will now investigate two choices of limits for equations 

8 and 10 • 

Consider now the case of a single layer; a lower 

boundary is imposed on the half-space at z = h (Figure 2). 

We will take the shot point to be at the origin and con-

sider rays in the region x ~ 0. 0 is the angle between 
0 

the vertical and the tangent to an arbitrary ray at the 

origin . Note that each ray leaving the shot point has 

associated with it a unique ray parameter, p, corresponding 

to its initial angle 0 : p = sin 0 /b. 
0 0 

The range 

0 < p < l/b describes all rays possible for a given layer • 

Reflections 

We will now compute the travel time and distance for 

the ray path PQR (Figure 2) which reflects from the lower 

interface. The ray path extends from z = 0 to z = h, 

which corresponds to limits ¢ = pb to ¢ = p(b + yh) in 

equations 8 and 10. 

From equation 8 

J
p(b+yh) 

x = 1 
PY pb 

= 1 

PY 

dcJ> 

p(b+yh) 

pb 
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• 1 [ (1-p2b2)1/2 ( 1 _ P 2 ( b +y h) 2) 1 I 2] = (11) PY 

and from equation 10 

• 
1 JP (b+yh) d<j> t = 

<I> (1-<j>2) 1/ 2 y 
pb 

• p(b+yh) 

1 
[ ln c 1+(1;4>2)1/2) = -

y 
pb 

• 1 
[ ln c l+(l-::b2)1/2) = -

y 

- ln 

• 
c l+(l-p2(b+yh)2)1/2) J 

p(b+yh) (12) 

We assume without proof that the ray path QR is 

identical to PQ so that the time and distance at the 

• surface are double the x and t given by equations 11 and 

12. The notation can be simplified by introducing 

• B = b+yh 

fro the ~elocity at the bottom of the layer. Thus, the 

• parametric equations which describe the reflection travel 

time curve at the layer surf ace are 

(13a) 

• 

• 
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• and 

t = ~ ln [ ~ (13b) 

• 
There is a restriction on the application of equations 

13a and 13b. They are valid only in th~ range 0 ~ p ~ l/S. 

• The ray p = l/S just grazes the lower interface, i.e . 

0 = TI/2 at Z = h. Rays for which p > l/S are totally 

refracted above the interface and are considered below . 

• 
Refr a ctions 

The ray path PQ'R' shown in Figure 2 is called a 

• total internal refraction to distinguish it from the so-

called head wave. The PQ'R' ray path "turns over" in 

the layer; that is, 0 = n/2 for some z < h. In order to 

• compute the surface tr a vel time curve, one need only 

modify the upper limit of integration used in equations 

11 and 12. 

• Instead of integrating down to z = h, the · integration 

is carried only to the depth at which the ray turns over, 

zt. Then, for the upper limit, 

• 

• but p = sin 0/v .. 

• 
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• since 0 == TT/2 at z 

Thus, <P = 1. 

Equations 8 and 10 then become, 

• 
x = 1 I 1 

PY . (14a) 
pb 

and 

• 

• (14b) 

• 

• 

• 

• 

• 

Again assuming Q' to be the midpoint in time and distance, 

the parametric equations become, 

x = 

t = 

2 
PY 

2 
y 

which are valid in the range l/B < p < ! 
b 

Extension to the Multi-Layer Case 

Following Slotnick (1959), the extension to the 

multi-layer case is straight-forward. Since the ray 

(lSa) 

(15b) 

parameter is constant over any given ray path (equation S), 

the total time and distance that a particular ray spans 

at the surface is simply the sum of the times and distances 

covered in the layers through which the ray passed • 
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15. 

Thus, the reflection travel time curve fo~ 

th reflections from the bottom of the n layer (Figure 3a) 

can be expressed (from equations 13a and 13b) as, 

n 

2 l : 1 [ (l-p2b2)1/2 {l-p28~)1/2 J x = 
py, j 

J j=l 

(16) 

n 
- f3 • l+(l-p2b:)1/2 

l 1 J t = 2 - ln L 2 J 

yj b. l+(l-p2f3:)1/2 j=l J 
J 

where x and t are the distance and time, 

.th . 
velocity gradient of the J layer, 

b. =velocity at the upper boundary of the jth 
J 

layer, 

f3j = velocity at the lower boundary of the jth 

layer • 

Following a similar argument, the travel time 

equations for the rays totally refracted in the nth layer 

are written as the sum of the "reflection" ray paths in 

layers 1 to n-1 and the refraction ray path in layer n 

(Figure 3b). That is, (from equations 13a and 13b and 

15a and 15b), 

n-1 

x = 2 l 
j=l 



16. 

Figure 3 

(a) Reflection ray path and travel time curve-­

multi-layer case. 

(b) Total internal refraction ray path and travel 

time curve--multi-layer case. 
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• (17) 

• 

n-1 
l+(l-p2b2)1/2 

l 1 
ln [ ~ t = 2 -

l+(l-p28:)1/2 J yj b. 
j=l J 

J 

2 
l+(l-p2b2)1/2 

+ ln [ b n J 
yn p n 

• 
Slope of the Travel Time Curve 

Finally, it is worthwhile to note an additional 

• property of the ray parameter, p. If we differentiate 

equations 13a and 13b with respect to p and then divide 

13b by 13a, it is easy to show that, . 

• 
dt/dx = p (18) 

The same operations applied to equations 15a and 15b 

• produce the same result. The linear nature of the 

differentiation operator makes it plain that the result 

also holds for the multi-layer cases . 

• The implications of equation 18 are important: the 

slope of the travel time curve at a given range, x, is 

• equal to the ray parameter of the ray which emerges at 

this point (Figures 3a and b). The result holds regard-

less of the number of layers or whether the ray was 

• reflected or totally refracted . This fact will be of 

central importance in correcting the travel time curves 

for the effects of overlying layers • 

• 
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• III. SOLUTION OF THE PARAMETRIC EQUATIONS 

Consider now the inverse of the problem presented 

in Section II; that is, given the surface travel time 

• curves from n layers, solve for the velocity, velocity 

gradient, and thickness of each. 

As in the standard methods of interval velocity 

• analysis, the parameters are solved for successively 

from the top layer downward. Each travel time curve is 

then reduced to the single layer case by applying the • results from overlying layers. The solution of the n 

single layer cases will be accomplished by fitting the 

• theoretica x curves from Section II to the observed data • 

The "best" fit will be determined by the least squares 

criterion. The nature of confidence regions about the 

• solution will also be investigated . 

Method 

1. Removal of effects from overlying layers • 

• Assume that solutions have been made for the 

parameters of layers 1 through n-1 and consider the 

travel time curve for reflections from the base of layer 

• n. Additionally, assume that the tangent to the travel 

time curve is known at all points. Using equations 16, 

• 
th 

the travel time and distance in the n layer can be 

written as, 

• 
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20. 
n-1 

R 
x-2 I 1 [o-p2b~)112 _ (l-p2~~)1/2] x = --

j=l 
pyj 

(19) 

n-1 

~ 
1+(1-p2b2) 1/2 

tR t-2 l 1 
ln[ j J = -

yj bj l+(l-p2f3~)1/2 
. j=l J 

where the R superscript refers to reduced distance 

and time. 

Since p is known over the whole travel time curve, it is 

R R 
evident that (x , t ) can be computed exactly from any 

(x, t). 

In practical applications, one does not have a 

continuous travel time curve but rather a set of 

observations, {(x.,t.), i=l,2, ... ,m}, from it. 
1. 1. 

Since 

equations 19 are valid for arbitrary (x,t) they are valid 

for all (x.,t.). 
1. 1. 

Since the (x.,t.) are discreet, however, 
1. 1. . 

no derivative is defined. Consequently, the ray parameter 

at each point must be estimated • 

A satisfactory estimate can be made by fitting a 

least squares polynomial to the set of points (x
1
,ti). 

Then pi, the ray parameter at x = xi is given from 

equation 18, 

= (dT/dx) 
x=xi 

where dT/dx is the derivative of the p6lynomial • 

(20) 



• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

21. 

Thus for any set of travel time and distance points 

R R 
(xi,ti) one can construct a set of reduced points (xi,ti) 

from equation 19 simply by replacing x by xi' t by t
1

, 

and p by pi. The reduced points can now be used to 

solve the single layer equations. Note that the proce-

<lure for reducing the multi-layer refraction travel time 

curve is exactly the same • 

2. The sum of squares function. 

We now wish to fit one of the theoretical models 

developed in Section II to a given set of reduced 

observed data. Since any set of observed data is 

subject to random errors, least squares will be used .to 

determine the best fitting model. Thus we seek to 

minimize, 

m 

E(y,b,S) = l 
i=l 

(21) 

where (Y. ,W.) is one observation pair of a reduced 
i i 

A 

travel time curve and Y(Wi,y,b,S) is a predicted 

value of Yi based on the parameters of the model 

and the observation Wi. 

Equation 21 was deliberately expressed in terms of a 

general observation pair (Yi,Wi) because there are three 

sets of observations, any two of which are sufficient to 

solve the problem . In addition to time and distance, 

there is the set of ray parameters, pi . The theoretical 
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models developed in equations 13 and 15 already relnte x 

to p and t to p. As will be shown below, a model is 

easily developed relating x to t. The choice of which 

pair of the three depends on what is mathematically most 

convenient. 

Reflections 

For the case of reflections we will minimize the sum 

of squares function, 

m 

E(y,b,13) = 

i=l 

2 
(x --­

i p.y 
]. 

where x. is reduced observed travel distance and 
]. 

pi is the ray parameter at x =xi . 

(22) 

The model (equation 13a) was chosen in terms of (x.,p.) 
]. ]. 

pairs because the procedure for minimizing E involves 

differentiation with respect to y, b, and f3, Equation 

13b, relating t and p, provides a model much more 

difficult to differentiate. The model directly relating 

x and t is more cumbersome still • 

Refractions 

For the refraction case, it is more convenient to 

use the relation between x and t . The desired relation 

can be obtained by eliminating the ray parameter, p, from 
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equations 15 . 

x = 

From Slotnick (1959), 

2b 
y sinh <1t> 

23. 

(23) 

for the theoretical single layer refraction. The sum of 

squares then beco~es, in the single layer case, 

m 

E(y,b) = l 
i=l 

yt 
( 2 b . h (--i) ) 2 xi- y sin 2 

At this point it is essential to note that the 

refraction travel time curve does not coritain enough 

information to completely solve the problem at hand. 

(24) 

Minimizing E(y,b) will provide no information about the 

total thickness of the layer (or, equiv a lently, velocity 

at the bottom of the layer). This should not be sur-

prising since the refraction ray paths never reach the 

bottom of the layer; they "know" nothing of its 

existence. 

To remedy this situation an independent piece of 

data must be introduced. The vertical one-way travel 

time within the layer is sufficient. By setting p = 0 

(normal incidence) and rearranging equation 13b, it is 

simple to show that, 

yT 
h = b (e 0 

- 1) 
y 

where T is the one-way travel time. 
0 

(25) 
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The value of T is usually easy to determine from an ASPER 
0 

(see Maynard et~., 1974) or normal incidence profiler 

record • 

3 . Minimization of the sum of squares. 

In standard least squares problems the sum of 

squares function is minimized by first taking derivatives 

with respect to the parameters. Setting the derivatives 

to zero provides a set of N equations in N unknowns, 

where N is the number of parameters in the model. When 

the model is linear in the parameters, the normal 

equations are linear and easily solved. Equations 22 and 

24 are both obviously non-linear in the parameters y, b, 

and 8. The normal equations for this case are extremely 

complicated and unsolvable by exact analytical techniques. 

To minimize the sum of squares function we employ 

an iterative, numerical approach first published by 

Davidon (1959) and later expanded upon by Fletcher and 

Powell (1965) . The procedure was developed tQ find the 

local minimum of any function whose first partial 

derivatives can be expressed analytically. Consequently, 

the sum of squares, E, will be viewed simply as a function 

of the variables y and b (equation 24) or y, b, and 8 

(equation 22). 

It is convenient to think of the sum of squares 

function as defining a surf ace in an N+l dimensional 
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• space • N dimensions are defined by the N par~meters of 

the model; this subspace is termed the parameter space. 

The other dimension corresponds to values of the sum of 

• squares • 

Davidon's method is iterative; given an arbitrary 

first approximation of the location of the minimum, a 

• direction of search is determined. The direction is that 

of the gradient of the surface (the path of steepest 

descent) modified slightly in order to speed convergence. 

• Along this direction of search the minimum of the function 

is determined, and this point becomes the new approxima-
• 

tion . The procedure repeats until the change in the 

• location of the minimum's between successive iterations 

is less than some specified amount. The minimum of the 

least squares function will be denoted in parameter 

• space as 
A A A 

(y,b,B) or 
A A 

(y,b) and referred to as the 

least squares estimate of the parameter values. 

Davidon's method has several advantages. First, 

• Fletcher and Powell (1965) prove that convergence is 

assured if a local minimum exists. Second, convergence 

in the neighborhood of the minimum is swift . Third, the 

• method yields the second partial derivatives of the 

function at the minimum; these, as shown in the next 

section, are useful in computing confidence regions • 

• Finally, Davi<lon's method is presently implen1ented as a 

• 
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FORTRAN program in the IBM Scientific Subroutine Package 

(Version III, 1970). 

4. Confidence regions • 

The a% confidence region for a given estimate is 

that locus of points in parameter space which have an 

a% probability of including the true answer. Having 

arrived at an estimate of the parameters for a layer, it 

is important to exhibit the confidence region to 

illustrate the possible error in the determination • 

Beale (1960) defines the approximate a% confidence 

region as the set of points for which, 

E 

where 

and 

A 2 - E < N s F (N,m-N) (26) 
a 

A A A A A A 

E = E(y,b,S) or E(y,b) 

2 is estimate of the variance of the s an 

experimental error 

m is the number of observations 

N is the number of parameters estimated 

(2 or 3) 

F (N,m-N) is the a% probability point of the 
a 

F (variance ratio) distribution function with 

N and m-N degrees of freedom • 
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The confidence region defined by equation 26 will 

look something like it is shown in Figure 4. In Figure 

4 the refraction case was assumed so that tlle parameter 

space is the y-b plane . The disparity in magnitude 

between the major and minor axes indicates that one 

parameter (in this case, y) is not as well determined as 

the other . The fact that the ellipse axes are not 

parallel to the coordinate axes indicates that the two 

parameters are not entirely independent. It is because 

of the this dependence that the entire confidence region 

must be specified rather than merely confidence limits 

on each parameter • 

Equation 26 is an adequate approximation to the exact 

confidenc~ region only when the model is not too non-

linear . Beale's N
0 

statistic, a measure of non-linearity, 

was computed for both the reflection and refraction cases. 

In both cases, the criterion (Beale, 1960, eqn. 4.3, p. 

60) for satisfactory linearity was met by almost an order 

of magnitude. Equation 26 is then accurate within 2-3%. 

Actually computing the confidence regions, however, 

can be quite time consuming . We therefore assume that 

the sum of squares function can be approximated satis-
A A 

factorily in the neighborhood of (y,b) by a Taylor series 

expansion with second order terms . Following Beale 

(1960) nn<l again using the refraction case, 
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Figure 4. Confidence regions about an estimate y,b) 

for a = 75, 90 and 99%. • 

• 

• 

• 

• 

• 
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E(y,b) = E(y,b) + Ey 

y 

where Ey and Eb equal 
()E 

and ay 

Eyy a2E Eyb a2E = ayah ay 2 

A A 

L\y = y-y and L\b = b-b 

Note also (Beale, 1960), 

E 
m-N 

A A 

= E(y,b) 
m-N 

30. 

L\ b 

b 

A A (27) 
y,b 

()E 
respectively,. ab 

Ebb a 2E 
= 

ab 2 

(28) 

The definition of the confidence region can be revised 

by substituting equations 27 and 28 into equation 26 and . 

noting Ey = Eb = 0 and N = 2, so that, 

Eyy(y-y) 2 + 2Eyb (y-y) (b-b) 

(29) 

The confidence region is- now easily computed in the 

y-b plane by simply solving a quadratic equation at 

several points. The quantities Eyy Ebb and 
' ' 

A A 

E(y,b) are, as previously mentioned, direct results of 

Davidon's method . 
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• Acceptance Regions 

In order to evaluate the inaccuracies of the method 

we will now investigate the acceptance region corres-

• ponding to the defined confidence regions. We define a 

point in parameter space, (yT, bT) which is the true 

value of the parameters. The a% acceptance region for 
A 

A 

• (y T' bT) is the locus of estimates (y,b) whose a% 

confidence regions include (yT, bT). That is, if the 

estimation of the true parameter values were performed a 

• large number of times, the a% acceptance region defines 

that area in parameter space within which one would 

expect to find a% of the estimates. 

• In application of the estimation procedure to real 

data, it is desirable to have knowledge of the dependence 

of the acceptance region on pertinent experimental 

• factors. With this knowledge it is possible to specify 

criteria for the experimental method (e.g. the requisite 

timing accuracy) in order to be reasonably sure that the 

• estimation errors will be less than a certain magnitude. 

Beaie (1960) provides an analytical definition of 

the acceptance region, but the necessary computations are 

• exceedingly difficult. For our purposes, an empirical 

estimate of the acceptance limits on each parameter will 

be sufficient. The following section describes model 

• studies undertaken to provide this estimate • 

• 
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Figure 5 is a flow chart of the computer program 

used to evaluate the problem. Details of the procedure 

are as follows: 

1) Travel time curves were generated from a given 

set of layer parameters by equations 16 or 17. Table 1 

shows the five different sets used. A typical set of 

layer parameters, displayed as a velocity-depth profile, 

is shown in Figure 6. As in all test models, the first 

layer is assumed to be an isovelocity water column 

(v = 1.5 km/sec). The layers under the water column all 

have the same vertical one-way travel time (for the model 

in Fig. 6, T = .12 sec.) 
0 

The gradient for each layer 

-1 
was chosen arbitrarily from the range 0.2- 2.0 sec and 

the veloc~ty at the top of the layer was chosen so that 

there would be only small discontinuities (both positive 

and negative). With the information given above, the 

layer thickness was fixed by equation 25. 

2) The effect of the water column was removed. Since 

an isovelocity approximation was found satisfactory, the 

water column was solved by the method described in 

Appendix B . It was found that the isovelocity solution 

was always accurate enough that it had no discernable 

effect on any solution for the lower layers. In later 

runs, therefore, the water column solution was simply 

assumed • 



33. 

Figure 5. Fl o w chart of the computer program used to 

evaluate acceptance limits. 
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Table l. 

Layer 

2 

3 

4 

5 

6 

7 

8 

9 

10 

• • • • • • • • 

The five parameter sets used to test the regression procedure. In every 
model, layer 1 is a water column (v = 1.5 km/sec, h = 4.0 km). 
gradients in sec-1, velocities in km/sec and thicknesses in km. 

Velocity 

Model 1 (T = .06 sec) Model 2 (T = .075 sec) Model 3 (T = .09 sec) 
0 0 0 

y b h y b h y b h 
- -- -- -- -- --

1. 5 1. 55 .097 1.9 1.51 .122 1. 5 1. 52 .146 

1. 2 1. 71 .106 0.9 1. 7 5 .136 1. 4 1. 74 .166 

1.4 1. 90 .119 1.7 1. 90 .152 1.3 1. 98 .189 

0.7 2.07 .127 1. 2 2.25 .177 1. 2 2.23 .212 

0.9 2.16 .133 0.6 2.47 .189 1.1 2.49 .235 

1.1 2.35 .146 0.8 2.59 .200 1. 0 2.75 .259 

0.8 2.51 .154 0.5 2.80 .214 0.9 3.01 .282 

1.3 2.64 .165 0.7 2.92 .225 0.8 3.27 .305 

1.0 2.87 .177 1.0 3.10 .242 0.7 3.52 .327 

(....) 

Vl 
• 

• 
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Table 1 (continued) 

Model 4 (T = .12 sec) 
0 

Layer y b h 
- -- -- --
2 1.7 1.50 .200 

3 1. 6 1.84 .243 

4 0.7 2.30 .288 

5 1. 2 2.51 .324 

6 0.6 2.92 .363 

7 0.5 3.25 .402 

8 0.4 3.46 .425 

9 1.1 3.65 .468 

10 0.9 4.17 .528 

• 

Model 5 

y 
-
1.4 

1.5 

0.8 

1.2 

1. 3 

0.9 

0.5 

0.4 

0.3 

• • 

(T = .15 sec) 
0 

b h 

1.53 .255 

1.89 .318 

2.37 .378 

2.67 .439 

3.20 .530 

3.89 .625 

4.45 .693 

4.79 .740 

5.09 .781 

• • • 

w 
°' 

• 
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Figure 6. Velocity-depth profile of typical test model 

(T = .12 sec). 
0 
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3) To a given set of ti values, normally distributed 

random numbers were added to simulate random measurement 

errors. The standard deviation of the random errors, 

(aN) was computed and stored. 

4) A polynomial was fit to the observations using 

least squares and the pi were calculated (equation 20). 

In practice it was found that a polynomial of the form 

(30) 

was sufficient to describe the data . Clay and Rona (1965) 

give a detailed justification for ne g lecting terms of 

odd order in the case of non-sloping layers. Note that 

the least squares polynomial has the additional effect of 

smoothing~ tending to average out the random errors 

introduced in step 3. The number of terms used is a 

compromise b~tween smoothing and adequately describing 

the data. Using the determinations of the p., the reduced 
1 

observations were computed by equation 19 . 

5) The sum of squares function (equation 22 or 24) 

was minimized by Davidon's method. The parameter estimates 

were compared with the known values and the relative errors 

recorded. 

6) The procedure returns to step 3 until all layers 

have been solved • 
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Results 

Trial and error with the above program indicated that 

as the magnitude of the timing errors incre a sed, so did 

the maximum relative error in the parameter estimates. It 

was also noted that for a given standard deviation of 

timing error, the maximum relative error for thick layers 

was smaller than that for thinner ones. On the basis of 

these two results, it was decided to use the ratio aN/T
0

, 

where aN is the standard deviation of the timing errors 

and T the vertical one-way travel time~ as a variable to 
0 

describe the behavior of the acceptance limits. It was 

hoped that the size of the acceptance limits would vary 

strongly with this ratio. The computer program was run 

with a lirge variety of layer parameters and error 

magnitudes in order to delineate this variation • 

The results of this analysis for the case of 

reflections were disappointing. There was no combination 

of circumstances (except aN = O) which would ensure 

consistent estimates. Even with timing errors of 

extremely small magnitude, correlations among the random 

numbers would cause huge (±100%) error in estimates of the 

gradient. Estimates of the velocity and thickness, 

however, were substantially better (at most ±15% error). 

This failure is not altogether surprising • 

Le Pichon ct al. (1968), in testing their interval velocity 

estimation procedure, note that the introduction of 
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. -1 

velocity gradients of up to 1.0 sec had no significant 

effect on their solutions. It is easy to demonstrate 

that the reflection travel time curve for a layer with a 

linear velocity gradient can be nearly identical to that 

for an isovelocity layer. Figure 7 shows various points 

on the travel time curves for a pair of two layer cases. 

In both cases, the first layer is an isovelocity water 

column (v = 1.5 km/s, h = 3.0 km). Both second layers 

are 300 m thick and have a time-average velocity of 

1.783 km/s. In one case, however, the second layer is 

isovelocity (v = 1.783 km/s) and in the other it has a 

substantial gradient (y = 2.0 sec-1 , b = 1.5 km/s). 

Examination shows that the two travel time curves 

are virtually indistinguishable over their entire extent. 

At any given range, the difference in travel time is 

always less than 10 msec . This discrepancy is not large 

when compared to even low magnitude of timing error 

(crN = .001 sec say) and therefore, estimates of the 

gradient will be poorly determined. 

For refractions, the method is considerably more 

stable than for reflections . Figures Sa and Sb show 

the absolute value of relative error for gradient and 

velocity of all solutions made plotted against crN/T
0 

• 

The results are not surprising: in order to maintain 

comparable levels of precision, thin layers must be timed 

more accurately than thick ones • 
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• 

• Figure 7. Comparison of reflection travel time curves 

and velocity-depth profiles between layers 

with and without a velocity gradient. Travel 

• times for the isovelocity case marked by 

dots; gradient case marked by o pen triangles . 
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• 

• 
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Figure 8. 

(a) Plot of errors in determinations of velocity 

gradient. Absolute value of relative error 

is plotted against aN/T
0

, where ON is the 

computed standard deviation of timing errors 

and T is the vertical one-way travel time in 
0 

the layer. Error bars represent two standard 

deviations of points between successive tick 

marks. 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 

• 



• 

• 

• .. 

.. 
• .. 

• 
.. 

• .. 

• .. 

• 

• 

• 0·001 

• 

.. 

.. .... 

.. " 
:r 
(IJ 

"' . G 

\\J 
(\J 

"\9 . 
Q 

.. Q 

" " ru GI .. . 
.. MN .f'Slfl Ci) 

.<t • a 

. 
G 

------l-. 
0 ·0'0 



46. 

Figure 8. 

{b) Plot of errors in determinations of velocity 

(see Figure 8a). 
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The bars on Figures 8a and 8b indicate two standard 

deviations of the errors between consecutive tick marks. 

The solid curve then is a rough estimate of the 95% 

acceptance limit for each parameter. 

Notice that the gradient is considerably less well 

determined than the velocity. However, the gradient can 

be estimated with reasonable accuracy (±20%) up to a 

crN/T
0 

ratio of about 0.014. For the determinations 

considered the velocity shows no appreciable trend after 

a jump at about crN/T
0 

= 0.008. Analysis of equation 25 

will show that the 95% acceptance limit for thickness is 

similar to that for velocity . 

This concludes the discussion of the inherent 

statistical limitations of the method. The next section 

will consider certain physical limitations and the problem 

of actually observing such refracted returns • 
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• IV. DISCUSSION AND CONCLUSIONS 

Sections II and III have provided a firm theoretical 

• basis for the analysis of refracted rays . The successful 

application of the method, however, hinges on the identi-

fication of such refracted returns in actual experiments. 

• Maynard et al. (1974) present an extensive qualitative dis-

cussion on the nature of total internal refractions (often 

termed R rays). 
s 

The authors exhibit theoretical travel 

• time curves for several two layer cases, encompassing a 

wide variety of physical situations. In addition, several 

pitfalls and complications of the analysis of real data 

• are e x amined in detail. 

Using Maynard's theoretical travel time curves as a 

guide, a review was made of numerous ASPER records . Records 

• from the Outang-Java Plateau were e x amined most closely 

because in this area substantial velocity gradients were 

suspected to exist in almost perfectly non-sloping layers 

• (Maynard, 1973). The findings were, unfortunately, entire-

ly negat~ve. At the expected times and distances any 

refracted arrivals present were totally obscured by noise 

• or reflected arrivals from other layers. 

The lack of real data leaves open the question of 

whether the method presented in this paper can be success-

• fully applied. In an effort to resolve this question, a 

discussion of both the potential problems and advantages 

• 
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• 

I 

·~ 

• 
Figure 9. Velocity structure and ray paths for model 

from Naini and Leyden (1973). Rays traced • 
from G = 20° to G = 85°. Dashed line 

0 0 

indicates solution when travel time curve 

from layer 4 is ignored. That the ray path • 
do ·not appear to be circular is an artifact 

of the computer program; the program computes 

critical points for each ray (i.e. point of • 
turnover or reflection and points of entry 

into layers) and connects them with straight 

lines. • 
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of the application of this method to the studj of marine 

sediments is warranted. Whereas the model studies of 

Section III have investigated only the statistical limita-

tions of the method, what follows will be primarily 

concerned with pr~ctical problems. We will illustrate some 

(certainly not all) of the physical limitations and comment 

on some possible improvements to the ASPER system. It 

should be emphasized that when the discussion is complete 

the question will not have been resolved. Only application 

will provide the answer; this discussion is undertaken to 

guide the experimenter. 

The major potential problems in applying this R arra­
s 

lysis to the study of marine sediments can be grouped in 

three categories: physical~ general~ and experimental. 

Following is a description and examples of each problem, 

along with the restrictions each imposes on the use of th~ 

method. 

Physical problems 

The - first class of problems arises from the physical 

nature of the velocity structure of the sediment column • . 

Two examples will be presented: the effect of irregulari-

ties in the velocity structure and the "bunching" of rays 

refracted in deep layers • 

Figure 9 shows a velocity structure taken from Naini 

and Leyden (1973). Their interval velocity solutions 
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• were plotted at t11e midpoint of the corresponding layers 

and velocity gradients were assumed in such a way as to 

minimize discontinuities. The most obvious feature of the 

• velocity-depth model is a thin, almost isovelocity layer 

which is of prominently higher velocity than the surrounding 

structure . To investigate the refracted rays in such a 

• structure, a computer ray tracing was performed (Figure 9). 

Examination of Figure 9 shows that there are apparent-

ly no rays refracted in layer 4. The ray ~ = 26° (9 is 
o a 

• the angle at which the ray leaves the shbt point) does 

0 
not turn over in the layer and the ray 9

0 
= 27 · reflects 

from the upper interface. The rays which do refract in 

• 0 (} 
layer 4 are in the range 9 = 26.34 to 9 - 26.77 ; since 

0 0 

they are from such a small range of angles~ they carry 

very little energy . Returns of such low a mplitude probably 

• would not be seen in the seismic signal. 

To investigate the consequences of missing a layer. 

• the travel time curves for the Naini and Leyden structure 

were analyzed with the method of this paper. The travel 

time curve from layer 4 (the anomalous layer) was ignored 

• and a solution for the .lowest layer was sought on the basis 

of the curve from layer 5. A typical result is shown as 

the dashed line in Figure 9. The gradient for this com-

• posite layer is some 40% too low and the velocity at its 

upper interface is somewhere between the velocities at 

the tops of the two actual layers. The thickness of the 

• 
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composite layer, however, is only 1% off the combined 

thicknesses of layer 4 and layer 5. This indicates that 

total internal refractions probably will not resolve 

severe irregularities in the veolocity-depth structure 

but that the solutions obtained will be a satisfactorily 

averaged approximation. 

The other problem arising from the physical velocity 

structure is illustrated by Figure 10. The model is an 

interval velocity solution from Maynard (1973) with gra-

dients assumed as before. What appears to be one large 

second layer is actually four layers with no primary 

discontinuities 
. -1 

and very similar gradients (1.6-2.0 sec ). 

Examination of the ray tracing shows that rays re-

fracted in the deeper layers emerge at the surf ace over a 

very limited range. Rays refracted in layer 5 emerge 

between 4 . 4 and 4.9 kmi fr?m layer 4 between 4.9 and 5.6 km; 

from layer 3 between 5.6 and 8,2 km; and from layer 2, 

rays emerge from 8.2 km outward . It is probable that 

the travel time curves from layers 4 and 5 would not be 

observed in actual experiments due to their extremely 

short length. This result indicates that the R method 
s 

probably will be limited to the interpretation of arrivals 

from the first few hundred meters of sediments. However, 

this restriction is not as severe as it sounds since in 

many areas the sediment cover is very thin • 
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Figure 10. Velocity structure and ray paths for model 

from Maynard (1973). Rays traced for 

e = 30° toe = 85°. 
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• General problems 

Problems of the general type arise from the devia-

tion of real media from the simple geometric model upon 

• which the theory is based. This category includes such 

phenomena as dispersion, anisotropy, and attenuation, and 

it ultimately limits the application of all seismic 

• methods. The two problems most widely discussed in rela-

tion to wide-angle reflection work are topography and 

water column structure • 

• Local topography is the most serious. Its deleter-

ious effects have been discussed by nearly every author 

• on the subject (e.g. Dix, 1955; Le Pichon et al., 1968; 

Maynard, 1973). The requirement of reasonably flat, non-

sloping layers already limits the use of the ASPER method 

• over much of the ocean floor • 

The fine velocity structure of the water column 

becomes a problem in applying the method to thin layers. 

• Bryan (1974) points out that the erroneous assumption of 

constant velocity in the water introduces errors directly 

to the reduced travel time data for the layers below. 

-• When the layer thicknesses become less than 8-10% that of 

the water column, these errors produce unacceptable inter-

val velocity solutions • 

• To test the effect of a layered water column, refrac-

tion travel time curves were calculated for two cases of 

• 
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• Maynard's velocity-depth model shown in Figure 8. One 

case assumed a layered water column with velocity gra-

dients (Fry and Raitt, 1961, p. 592) and the other an 

• isovelocity water column with an equivalent average 

velocity (1.485 km/s). In both cases the column was 

1.70 km thick. 

• As expected (Le Pichon et al., 1968), the layered 

water column made little difference except at wide angles 

of incidence. At ranges out to 8 km, travel times between 

• the two cases differed by less than 3 msec; at a range of 

17 km the difference had increased to about 10 msec. 

Ref erring to the ray tracing of this particular structure 

• (Figure 8) it is evident that most of the error occurs in 

ray paths refracted in the second layer. Since the one-

way travel time in the second layer is only about .06 sec 

• (approximately 5% of the water column), it is evident that 
. 

this discrepancy is significant. Some options presented 

by this problem are, a) accept the 8-10% minimum criterion, 

• b) assume a water column structure and correct travel 

times accordingly, or c) use an ocean bottom receiver to 

cut the effect by half • 

• Experimental problems 

The final category of problems arises from the nature 

• of the ASPER experimental system (Maynard et al., 1974). 

There arc several drawbacks in the system at present. For 

• 
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instance, the data collected is often noisy. Also, since 

the facsimile record is made on wet paper, it is subject 

to some amount of distortion with time. By far the major 

problem, however, is the pulse length of the sound source • 

The pulse length of a typical air gun can be as much as 

• 10 to .25 sec. Maynard et al., (1974) show that R . 
s 

arrivals approach reflection arrivals asymptotically as 

range increases; since the difference in arrival time is 

often on the order of hundredths of a second, it is 

apparent that refracted arrivals will frequently be lost 

in the pulse train of the reflected return. This is no 

doubt the major reason that no R rays were identified on s 

the records reviewed. 

There are some indications, on the other hand, that 

the refraction ray path method can be successfully applied • 

First, R returns have been used to estimate velocity s 

gradients in previous experiments using explosive sound 

sources (Hill, 1952; Katz and Ewing, 1956; Ewing and Nafe, 

1963). In these experiments, the seismic signal was re-

corded ~s a waveform on a chart recorder; this mode of 

recording facilitates identification of the R returns 
s 

and allows accurate timing of its arrival. The major 

drawbacks of this type of experiment are the relatively 

low data density and the inconvenience of working with 

explosives and large numbers of chart records • 
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shows good statistical accuracy in estimating the gradient 

for the upper layers of geologically reasonable models • 

Travel time curves were generated for Maynard's velocity 

structure (Figure 10) and analyzed with the program des-

cribed in Section III~ Table 2 shows estimates of the 

velocity gradient of each layer below the water column 

for various magnitudes of timing error. Considering only 

layers 2 and 3, notice that the worst estimate is about 

27% too low. Note also that for a = .002 sec (a reason-

able estimate of the present accuracy of the system) the 

errors are not far beyond 10%. It appears that the R 
s 

method will be quite accurate in solutions for the upper 

sediment layers but it should be noted that these results 

were obtained without any physical complications to the 

simple, plane-bounded model. 

At this point, the evidence indicates that the method 

probably is not, at present, generally feasible: no 

applicable data was found, and model studies show there 

to be s~veral restrictions to the method's application. 

The lack of data most iikely _can be attributed, however, 

to the experimental problems discussed before. The success 

of previous investigators in using R data is probably due 
s 

to their mode of recording. It would be advantageous if 

the accuracy of the chart recorder could be coupled with 

the efficiency and high data density of the ASPER system • 
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Table 2. 

Layer 
--
2 

3 

4 

5 

• • • • • • 

Estimates of the velocity gradient in layers of model taken from 
Maynard (1973) (ASPER D-12). 

Estimated y 
-

True y a = .001 a = .002 a = .003 a = .004 

1. 60 1.64 1. 42 1.16 1.62 

(2.4%) (-10.9%) (-27.6%) (-1.1%) 

1. 80 1. 89 1.67 2.10 1. 77 

(5.2%) (-7.2%) (16.5) (-1.8%) 

1. 87 .58 1. 64 1.68 0 

(-69.3%) (-12.4%) (-10.1%) (-100%) 

2.00 1.45 1. 81 1.73 1.36 

(-27.5%) (-9.5%) (-13.4%) (-32.0%) 

• 

O'\ 
...... 

• 
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A large step toward this goal would be accomplished 

by digitally recording the signal. With the signal in 

digital format, several different types of processing can 

be employed to substantially improve the quality of the 

record. First, the signal can be frequency filtered 

selectively to enhance returns from a specific depth. By 

doing this, an optimum tradeoff between resolution and 

penetration can be achieved. Second, timing accuracy can 

be increased because the signal can be displayed as a 

waveform. In the waveform representation the onset of 

an arrival can be identified more exactly than in the 

equivalent facsimile record • 

The most important improvement will come from predic­

tive deconvolution to remove the reverberation effects 

from a seismic source, Most of the difficulty in picking 

travel times from ASPER records is due to interference 

among overlapping wave trains. The problem is particularly 

acute at large ranges where closely spaced arrivals are 

obscured by the strong first bottom return. Deconvolution 

would clarify the record . by shortening the wave train of 

each return • On a deconvolved record, it would be, for 

instance, much easier to differentiate reflections, total 

internal refractions and head wave refractions. In many 

cases, arrivals from these ray paths are very close in 

time. Maynard, et al., (1974) discuss the consequences 

of misidentifying the ray path • 
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On the assumption that the experimental procedure 

can be improved, it is important to note that the R 
s 

method has a major potential advantage. That is, it 

provides a consolidated approach to the estimation of 

velocity gradients from ASPER data. Most previous investi-

gators (e.g. Knox, 1965; Hamilton et al., 1974) have 

estimated gradients by performing a large number of 

reflection experiments and plotting the interval velocity 

solutions as a function of depth. The plotted points are 

then fit with a polynomial by least squares, and from this 

the gradient is calculated. 

Using that approach, a large number of determinations 

must be made to assure a statistically accurate result. 

Thus the velocity gradient can only be specified on a re-

gional basis. The analysis of R rays, on the other hand, 
s 

can determine gradients from individual ASPER records wit~ 

good statistical accuracy. The velocity gradient, at 

least in the upper sediments, then can be specified locally • 

The new method is also potentially useful in resolving 

the velo~ity in the sediments at the interface with the 

water column. Different inve~tigations of this parameter 

give markedly different results. For instance, working in 

the Bay of Bengal, Naini and Leyden (1973) project the 

sediment surface velocity to be 1.83 km/sec. Hamilton 

et al. (1974), working in the same area, assume the velo-

city at 1.48 km/sec. Since our theoretical model is 
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parameterized in terms of the velocity at the top of the 

layer, b, an analysis of R rays should provide informa­
s 

tion to help resolve this discrepancy • 

Conclusions 

In the summary, then, it has been shown that the 

parametric travel time equations are a convenient repre-

sentation of multi-layer travel time data because they 

provide a precise method for point-by-point reduction to 

the single layer case. The single layer case is then 

readily solved using a non-linear model and Davidon's 

method . Whereas for reflection data the procedure is 

not effective for estimating gradients, acceptable 

results can be achieved using R travel times. 
s 

Whether or not the procedure can be successfully 

applied to real data is still not known. That the proce-

<lure is potentially a very accurate way of studying the 

upper sedimints indicates that it should be tested . 

Before this test is possible, however, the ASPER system 

must be improved. 

As a guide to conducting an evaluation of the method, 

the following suggestions are offered. First, and most 

obvious, the data should be taken over a sediment column 

which is as close an approximation to the model as possible • 

In this regard, the Ontong-Java Plateau appears a good 

choice • As noted before, the layers are flat and almost 
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non-sloping and most likely have strong velocity 

gradients. In addition, the water column is relatively 

shallow (roughly 2 km) and the area h a s been well drilled 

(DSDP sites 64, 288, and 289). 

Second, as discussed before, the signal should be 

recorded digitally over a wide frequency range. The 

wide-band recording will allow various filtering 

strategies to be employed after the experiment. Also, 

even with little or no processing, e x amination of the 

signal as a waveform might help identify R returns. 
s . 

Finally, the reflection/refraction experiments should be 

additionally conduct e d at very high fr e quency (3.5 kHz) . 

While sacrificing penetration, the high frequency sound 

source yields both high resolution and an extremely 

short pulse t rain (10 msec) • 

Even with the successful identification of R 
s 

r e turns, it is app a r e nt that the method is not compre-

h e nsive; there are restrictions on the appli~ation of 

the method over the whole sediment column. However, 

used in conjunction with reflection and head wave 

refraction data, R data analysis can provide a check 
s 

for internal consistency and a more complete use of 

all the information available on ari ASPER record • 



• 
66. 

• APPENDIX A: Parametric Travel Time Equations 

Elliptically Anisotropic Case 

The parametric equations for reflections in an • anisotropic layer are derived in the same way as the 

equations of Section II. Again assume a flat, homogeneous 

• layer as in Figure 2. In this case, however, the seismic 

velocity varies elliptically with angle; 

sin '-' . 2 0 )-1/ 2 
(Al) 

• 
where vv = velocity in the direction 8 = 0 

VH = velocity in the direction 8 = TT/2 

• Application of Fermat's principle and the calculus of 

variation~ leads to the parametric equations for 

reflections from the lower interface of the layer: 

• 
(A2) 

• 
where h = layer thickness and p is the ray parameter 

and again is constant over a given pay path. 

• Note that in the anisotropic case, 

sin 8 v(G) sin 8 
p = = 

2 2 2 2 
VH VH cos 8 + sin 0 1/2 

( 2 2 
) 

• vv VH 

If the parameter p ls eliminated from equations (A2), a 

single equation defines the travel time curve: 

• 



• 

• 

• 

• 

• 

• 

• 

• 

• 

•• 
• 

• 

67. 

2 
t (A3) 

2 2 Equation A3 describes a straigl1t line in t -x which is 

indistinguish a ble from the travel time curve of an 

isotropic, i s ovelocity layer. A straight line has only 

two degrees of freedom but the anisotropic case requires 

three parameters. Therefore, the problem is under-

determined. 

An erroneous assumption of isotropy (vV = vH) thus 

introduces error in the determination of thickness. 

Therefore, if one assumes elliptical anisotropy, the 

5-10% anisotropies observed by Kroenke (personal commu-

nication, 1974) could mean 5-10% errors in many thick-

n e ss determinations. Vossler (Vossler and Castain, 

1972; personal communication, 1975), on the other hand, 

argues that the model of elliptical anisotropy is not 

physically realizable and proposes instead a model of 

transverse anisotropy . His simulations, however, show 

that P waves are very insensitive to the degree of 

anisotropy and suggest that shear wave data are required 

to solve the problem . 
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APPENDIX B: Interval Velocities--Parametric Approach 

Slotnick (1959, p. 180, equation (5)) gives the 

parametric travel time equations for reflections in a 

flat, homogeneous isotropic layer as 

x = 
(Bl) 

where v = velocity of layer 

h = thickness 

Consider again m observations of a travel time 

curve, (x., t,; i = 1, ... , m). 
l. l. 

Assume that the 

associated p. have been calculated by fitting a least 
l. 

squares curve as described in Section III. For some 

arbitrary xi, ti, and pi' simple algebra shows that, 

from equation (Bl), 

v = (B2) 

Thus, determinations of the interval velocity can be made 

at m points along the travel time curve. The technique 

has several advantages, among_them: 1) random error can 

be minimized by averaging the m estimates and 2) trends 

in the estimates as a function of range can be use<l to 

judge the validity of the isovclocity assumption. Note 

that the method is valid in the multi-layer case when the 

(x
1
,t

1
) are reduced time and distance • 
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