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ABSTRACT  

 

Understanding the movement, distribution, and replenishment of groundwater is critical 

to sustainably managing this vital resource in Hawai‘i, USA, where groundwater meets more 

than 90% of freshwater needs statewide. Geochemical methods have been used increasingly to 

understand and model groundwater flow, but these methods are limited by the resolution of 

recharge measurements and the availability of precipitation chemistry data. Recent increases in 

climate data availability in Hawaiʻi allow water budgets to be examined with greater spatio-

temporal resolution than ever before. While the current estimates of groundwater recharge are 

limited to annual long-term averages provided by the USGS, this paper provides a method for 

producing island-wide, monthly estimates of groundwater recharge using daily precipitation and 

temperature raster data.  Recharge is calculated using a simple water budget: recharge ≈ 

precipitation – evapotranspiration – quickflow. Monthly precipitation, quickflow, 

evapotranspiration, and recharge are estimated for the island of Oʻahu between 1990 and 2014. 

Precipitation data are aggregated from recently published daily rainfall maps. Quickflow is 

calculated using simple regional regressions created by the USGS and compared with estimates 

from two different stream hydrograph baseflow separations. Evapotranspiration is calculated 

using a modification of the Thornthwaite equation, which was validated with local weather 

station data. The resulting estimates are compared with standards to quantitatively assess 

uncertainty and agreement. Our results show strong agreement with long-term average recharge 

estimates given by the USGS, and interannual climate trends further corroborate this agreement. 

These findings indicate that monthly estimates of groundwater recharge may be produced on 

Oʻahu via a low data intensity method with sufficient accuracy to better constrain recharge 

patterns for the island, and potentially improve groundwater management. These findings further 

suggest that the model presented here can be applied in any area where data on monthly 

precipitation, monthly temperature, and general quickflow trends are available. 

 

  



iv 
 

TABLE OF CONTENTS  

 

Acknowledgements……………………………………………………………………....ii 

Abstract……………………………………………………………………………….…iii 

List of Tables……………………………………………………………………………..v 

List of Figures……………………………………………………………………………v 

1. Introduction………………………………………………………………………...…1 

 1.1 Purpose…………………………………………………………………...…...1 

 1.2 Study Area Overview…………………………………………………...….....2 

 1.3 Methodology Overview…………………………………………………….....5 

2. Methods………………………………………………………………………...……...8 

 2.1 Drainage Basin Selection……………………………………………...……...8 

 2.2 Raster Analysis………………………………………………………...……..8 

 2.3 Error Analysis………………………………………………………....……..10 

 2.4 Quickflow……………………………………………………………………11 

 2.5 Evapotranspiration………………………………………………………….. 13 

 2.6 Fog Drip……………………………………………………………………...16 

3. Results & Interpretation .……………………………………………………....…...17 

 3.1 Overview……………………………………………………………………..17 

 3.2 Quickflow……………………………………………………………………23 

 3.3 Evapotranspiration……………………………………………………....…...25 

 3.4 Recharge……………………………………………………………………..27 

 3.5 Seasonality & Interannual Climate Variability………………………....…...28 

4. Conclusion…………………………………………………………………………....32 

Appendix A: Baseflow Separation Supplementary Material…………………....…..33 

Appendix B: Opae Ula Drainage Basin Water Budget Sample Code………………35 

Appendix C: Oʻahu Monthly Water Budgets Sample Code………….………...…...45 

References………………………………………………………………………...…….47 

 

  



v 
 

LIST OF TABLES 

 

Table 1. Average monthly water budgets for Kaukonahua, Hālawa, Opae Ula and Kahana 

drainage basins (pp. 18) 

 

Table 2. Average monthly water budgets for Mākaha Moanalua, Kuliʻouʻou, and Honouliuli 

drainage basins (pp. 19)  

 

Table 3. Error propagation through monthly water budget calculations (pp. 20)  

 

LIST OF FIGURES 

 

Figure 1. Digital elevation model (DEM) of the island of Oʻahu showing the location of the 

eight drainage basins analyzed in this study (pp. 3)  

 

Figure 2. Cross section through a hypothetical slice of the leeward side of the Koʻolau Range on 

Oʻahu showing an expected geohydrology (pp. 4)  

 

Figure 3. Cross section through a hypothetical drainage basin showing the components of a 

water budget (pp. 6)  

 

Figure 4. Conceptual depiction of the method used to generate daily average precipitation 

estimates from the daily rainfall maps in Longman et al. (2019) (pp. 9)  

 

Figure 5. Stream hydrograph baseflow separation for Opae Ula stream for September 1997 – 

March 1998 (pp. 13) 

 

Figure 6. Monthly water budgets derived from daily gridded precipitation data (Longman et al. 

2019) for the Moanalua, Kuliʻouʻou, and Honouliuli drainage basins (pp. 21)  



vi 
 

Figure 7. Annual water budgets derived from daily gridded precipitation and temperature data 

(Longman et al. 2019) for  Kaukonahua, Opae Ula, Hālawa, Kahana, and Mākaha drainage 

basins (pp. 22)  

 

Figure 8. Runoff coefficients (RC) derived from stream hydrograph baseflow separations for 

five drainage basins on Oʻahu compared with seasonal RC ranges given by the USGS (pp. 24)  

 

Figure 9. Precipitation trends for the Kahana drainage basin (pp. 25)  

 

Figure 10. Actual Evapotranspiration (AET) estimates for a weather station in the vicinity of 

Pearl City, HI from Jan. to Dec. 2020 (pp. 26)  

 

Figure 11. Cumulative annual recharge for five drainage basins on Oʻahu (Hālawa, Kaukonahua, 

Opae Ula, Kahana, and Mākaha) between 1997 and 2014 (pp. 28) 

 

Figure 12. Seasonal recharge for five drainage basins on the island of Oʻahu, Hawaiʻi, 1990 – 

2014 (pp. 29) 

 

Figure 13. Monthly recharge for the island of Oʻahu in 1991 (pp. 31)  

 

 

 

 



1 
 

1. Introduction 

1.1 Purpose 

This study provides a method to calculate island-wide monthly groundwater recharge 

using a simplified, easily reproducible technique that allows for thorough error analysis within 

the study area. Groundwater is a critical resource in Hawaiʻi, USA, supplying 99% of the 

domestic water needs statewide (Gingerich and Oki, 2000), and more than 90% of domestic 

freshwater needs on the island of Oʻahu (Nichols et al. 1996). The need to calculate groundwater 

recharge in general to understand water availability is clear, however the need for monthly 

estimates of groundwater recharge is, perhaps, less tangible. This need stems in part from the 

growing use of geochemical methods to understand the movement and distribution of 

groundwater in Hawaiʻi (Fackrell 2016; Scholl 1995; Scholl et al. 2002; Glenn et al., 2013). A 

key assumption in most geochemical groundwater studies is that the chemistry of precipitation is 

the same as, or approximately that of, groundwater recharge. Recent research has shown this is 

not the case. Several studies have highlighted the spatio-temporal heterogeneity and periodicity 

of precipitation chemistry in Hawaiʻi (Booth et al., 2021; Tachera et al., 2021; Dores et al., 2020; 

Scholl, Eugster, & Burkard 2011; Scholl et al. 2007). Intuitively, groundwater recharge also 

changes in both time and space, with higher recharge generally occurring when and where 

precipitation is greatest (Dunne & Leopold 1978; Visher & Mink 1964). The natural 

consequence of this heterogeneity is local volume-weighted differences in recharge chemistry. 

Few studies have attempted to account for this chemical variability (Jasechko et al., 2011). 

Matters are complicated further when we consider the subsurface behavior of water. Since 

groundwater flows from a starting point (recharge) to an ending point (well, spring, aquifer, etc.), 

and since recharge can occur at each point along the entire groundwater flow path, the ending 

chemical composition for a conservative species will be the recharge volume-weighted average 

of the precipitation chemistry integrated along the whole flow path (Fackrell 2016; Scholl 1995; 

Kendall & McDonnell 1999). Any mixing model that does not account for this spatio-temporal 

heterogeneity in recharge chemistry will have limited accuracy. Linking groundwater chemistry 

with precipitation chemistry thus requires an understanding of the spatio-temporal heterogeneity 

of both precipitation chemistry and recharge volume. This study seeks to meet the latter 

requirement by producing monthly estimates of recharge for the island of Oʻahu.  
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1.2 Study Area Overview 

This study was conducted on the island of Oʻahu, USA, the most populous and third 

largest island of the Hawaiian archipelago. Oʻahu lies between 21° and 22°N and 157° and 

159°W. The island is formed from the remains of two extinct shield volcanoes, Waiʻanae (4.0 to 

2.9 Ma) and the younger Koʻolau (3.0 to 1.7 Ma) (Sherrod et al. 2007; Figure 1). Both volcanoes 

are composed of successive layers of lava flows interspersed locally with pyroclastic and 

sedimentary deposits, and both have at least two rift zones emanating from a summit caldera 

(Sherrod et al. 2007; Stearns et al. 1946; Izuka et al., 2018; Figure 2). Erosion and mass wasting 

events have created severe topography characterized by steep, deeply incised valleys radiating 

from mountainous highland which terminate in flat board scrublands that drape coastal plains in 

the south and southwest (Sherrod et al. 2007; Figure 1). In terms of climate, two general weather 

patterns dominate on Oʻahu. First, the Hawaiian Islands sit in the path of the northeast trade 

winds, which are a circulation pattern associated with the North Pacific High (Giambelluca 

1983). The trade winds persist more than 90% of the time during summer months, and 

approximately 50% of the time during winter months. The trade winds create orographic 

precipitation in high elevation areas (Figure 2; Noguchi 1979; Wuhl 1935). Maximum mean 

annual rainfall exceeds 6,500 mm/year in the Koʻolau range and 2,000 mm/year in the Waiʻanae 

range (Giambelluca et al. 2013). The second dominant weather pattern is atmospheric 

disturbance-based storms (Longman et al. 2021). In the absence of trade winds, subtropical 

cyclones can bring heavier, more evenly distributed rainfall. These events are focused in the 

winter months and occur sporadically yet can supply more than half the annual rainfall in the 

drier, leeward areas of Oʻahu (Giambelluca 1983; Dores et al. 2020). Across the island of Oʻahu, 

mean annual rainfall can vary from 500-6,500 mm/year over less than 20 miles (Giambelluca et 

al. 2013). 
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Figure 1. Digital elevation model (DEM) of the island of Oʻahu showing the location of the 8 

drainage basins analyzed in this study outlined in black. Drainage basin selection was based on 

streamflow data continuity and overlap with high resolution gridded daily rainfall and 

temperature maps of Longman et al. (2019). Contour lines are mean annual isohyets from 

Giambelluca et al. (2013) for the 30-year period 1978-2007. The isohyet contour interval is 500 

mm, and the isohyet range is 750 – 6500 mm. The Waiʻanae and Koʻolau mountain ranges are 

labeled. UTM zone is 4N, and the projection is NAD 1983. 
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Figure 2. Cross section through a hypothetical slice of the leeward side of the Koʻolau Range on Oʻahu showing an inferred 

geohydrology. Figure not to scale. The length of arrows represents relative groundwater flow rate. Question marks indicate indirectly 

perceived aspects of the model. 
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1.3 Methodology Overview 

 Monthly recharge was estimated by creating a water budget model. A water budget is a 

tally of all the inputs to and outputs from a hydrologic system. The water budget model was 

tested in key areas of Oʻahu where it was possible to estimate each component of the water 

budget in at least two different ways, producing standard and experimental values for each. 

Before discussing the components of the water budget, it is necessary to define the hydrologic 

system, which in this case is a drainage basin, synonymous with the terms watershed and 

catchment (Ward & Trimble 2017). A drainage basin is a surface area that drains through a given 

point on the land surface. All land area falls within a drainage basin. Drainage basins do not 

overlap, and do not share surface water. While water residence times may vary, surface water 

that enters and travels across a drainage basin will eventually pass through the point by which the 

drainage basin is defined. The components of a water budget within a typical drainage basin 

include precipitation (P), evapotranspiration (ET), infiltration (I), changes in soil moisture 

storage (ΔSMS), changes in groundwater storage (ΔGWS), groundwater recharge (R), rapid 

surface flow (overland flow), and shallow subsurface flow (interflow) (Engott et al. 2015; Figure 

3). Overland flow and interflow can be grouped together and are henceforth referred to as 

quickflow (QF) (Ward & Trimble 2017). In this study, the subsurface boundary of a drainage 

basin is assumed to be the boundary between the vadose and saturated zones (Figure 3). The 

overall water budget is simplified by assuming ΔSMS and ΔGWS are negligible. Recharge can 

then be estimated with only three parameters: P, ET, and QF (Expression 1). 

 

P = I + ET + QF ± ΔSMS ± ΔGWS                (1a) 

R = I ± ΔSMS ± ΔGWS       (1b) 

ΔSMS ± ΔGWS ≈ 0     (1c) 

I ≈ R      (1d) 

  P ≈ R + ET + QF               (1e) 

   R ≈ P – ET – QF                 (1f) 
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Figure 3. Cross section through a hypothetical drainage basin showing the components of a 

water budget. Figure not to scale, and modified from Figure 7-1, Dunne & Leopold (1978). 

 

The first step in creating the water budget model in this study was to obtain monthly 

estimates of P, ET, and QF. High-resolution gridded climate mean and time-series data has 

become available over the last several years, which has vastly improved our understanding of 

climate trends throughout the state (Giambelluca et al. 2013; Frazier et al. 2016). Mean monthly 

rainfall maps that provide 30-year averaged monthly precipitation estimates for the entire state at 

250m spatial resolution (Giambelluca et al. 2013) are available on the Rainfall Atlas of Hawai‘i 

at http://rainfall.geography.hawaii.edu/. Mean monthly evapotranspiration maps are also 

available (Giambelluca et al. 2014). These gridded datasets were interpolated from an extensive 

network of weather stations throughout the state, and have been meticulously curated, and 

widely applied in many Hawaiʻi studies (Engott et al. 2015; Longman, Diaz & Giambelluca 

2015; Wada et al. 2017; Krushelnycky et al. 2016; and others). Even more recently, daily 

gridded rainfall and temperature data have become available for the period from 1990-2014 

(Longman et al. 2019). These daily precipitation and temperature maps are the foundation of the 
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water budget model developed in this study, and their application here is the major distinction 

between this water budget model and previous ones. The monthly precipitation values used in 

the model developed in this study were taken directly from the daily rainfall maps from 

Longman et al. (2019). Monthly ET values were derived from the daily temperature maps given 

in Longman et al. (2019). Monthly QF values were taken directly from information given by the 

United States Geological Survey (USGS) (Engott et al. 2015, Figure 7). 

 We tested the water budget model by determining uncertainty for each component of the 

model, and then propagating this error through the monthly recharge calculations to provide both 

a recharge range and multiple measures of agreement with a standard. We compared our 

calculated recharge values with the annual recharge estimates given by the USGS (Engott et al. 

2015, Figure 10). Several factors make this USGS study an ideal standard for assessing the 

accuracy of the monthly water budget model developed in this study. First, the basic components 

of the USGS water budget developed by Engott et al. (2015) were generated using highly 

referenced datasets. Precipitation estimates were derived from the gridded rainfall data from 

Giambelluca et al. (2013) and then modified to match mean monthly precipitation from 

Giambelluca et al. (2013) (Engott et al. 2015, pp 16). Evapotranspiration estimates were taken 

from Giambelluca et al. (2014) (Engott et al. 2015, pp 27). Quickflow estimates for Oʻahu were 

derived from monthly precipitation maps (Frazier et al., 2016) and baseflow separations 

following Wahl & Wahl (1995) completed on 55 gauged streams across the Hawaiian Islands 

(Appendix A; Appendix B). These results were interpolated across ungauged drainage basins 

using regionally specific linear regressions (Engott et al. 2015, pp 20). Second, the USGS model 

accounts for many commonly neglected water budget components, like soil moisture storage, 

land cover variability, irrigation inputs, and septic-system leachate inputs (Engott et al. 2015). 

Finally, the USGS model differentiates between recharge during droughts and normal climate 

conditions, an important distinction that allows annual recharge to oscillate between two 

extremes depending on climate conditions (Engott et al., 2015). Together, these factors generate 

confidence in the accuracy of the USGS annual recharge estimates and justify using them as the 

standard for error analysis in this study.  
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2. Methods  

2.1 Drainage Basin Selection  

 We selected eight drainage basins on Oʻahu to test the water budget calculations 

following the methodology described just above. Drainage basins were selected based on 

streamflow data availability, continuity, and overlap with the daily rainfall and temperature maps 

from Longman et al. (2019), which cover the period from 1/1/1990 to 12/30/2014. Streamflow 

data were obtained from the USGS National Water Information Service available at 

https://waterdata.usgs.gov/hi/nwis/sw. Twelve streams on Oʻahu had at least one year of 

continuous daily streamflow discharge measurements that overlapped with the daily rainfall and 

temperature maps. The field of available streams was further pared to eight by removing those 

with diversions upstream of the gauge, leaving Upper Kaukonahua, Kuliʻouʻou, Kahana, Opae 

Ula, Honouliuli, Moanalua, Mākaha, and Hālawa (Figure 1). It should be noted that Kahana and 

Mākaha are both known to be impacted by groundwater withdrawals (Engott et al. 2015; State of 

Hawaiʻi 2019) . These were retained for analysis based on our assumption that changes to 

groundwater storage would have a negligible impact on QF, ET, and infiltration processes, and 

based on the exclusion of ΔGWS from the simplified water balance (Expression 1). 

 

2.2 Raster Analysis  

 The dimensions of each of the eight drainage basins were derived using the 

Environmental Systems Research Institute’s (ESRI) proprietary Hydrology toolset in ArcMap. 

Daily rainfall maps were selected to match the available stream data periods, and then clipped to 

the drainage basin dimensions. This manipulation produced eight raster stacks of daily 

precipitation data - one raster stack for each drainage basin (Figure 4). Within each raster stack, 

each daily rainfall map was then averaged to provide a daily mean precipitation measurement for 

the entire drainage basin (Figure 4). The daily mean drainage basin precipitation values and the 

daily stream discharge values were then merged by date to produce eight data tables to be used 

as inputs for the monthly water budget calculations - one data table for each drainage basin 

(Figure 4). This same procedure was used to produce mean daily temperature estimates for each 

drainage basin from the daily temperature maps. These daily estimates were then aggregated to 

the monthly timescale to reduce processing time.  
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Figure 4. Conceptual depiction of the method used to generate daily average precipitation estimates from the daily rainfall maps in 

Longman et al. (2019).  
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2.3 Error Analysis  

Uncertainty was propagated through the monthly water budget calculations to assess 

agreement with the USGS annual recharge estimates during both normal and drought-climate 

conditions. Quickflow uncertainty (δQF) was determined by taking the mean difference between 

the QF estimates in Engott et al. (2015, Figure 7) and estimates derived by completing stream 

hydrograph baseflow separations using daily streamflow measurements and the daily 

precipitation maps of Longman et al. (2019). Precipitation uncertainty (δP) was set as the median 

absolute deviation (MAD) from Longman et al. (2019, Table 3), which was 0.5 mm per pixel per 

day. Evapotranspiration uncertainty (δAET) was determined by taking the mean difference 

between the long-term average actual evapotranspiration (LTA-AET) maps of Giambelluca et al. 

(2014) and ET estimates derived using the Thornthwaite equation for potential 

evapotranspiration (PET). Monthly recharge uncertainty was determined by propagating each of 

these uncertainties through the monthly water budget calculations as follows: 

 

                  (2)  

 

In addition, three difference measures were calculated following Wilmott (1981, 1982a, 1982b) 

and Wilmott & Wicks (1980): Root mean square error (RMSE), mean absolute error (MAE), and 

index of agreement (d), calculated as follows: 

 

                                      (3)  

 

 

                                           (4)  

 

           

                              (5)  
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, where N is the number of cases, Ei is the experimental output (predicted recharge), Si is the 

standard output (USGS recharge), S'i = Si - Ē, Ē is mean of the experimental output, E'i = Ei – Ē, 

and 0 ≤ d ≤ 1 . For the index of agreement, d =1 indicates perfect agreement, and d = 0 indicates 

no agreement. 

To complete the error analysis, it was necessary to disaggregate the USGS annual 

recharge estimates from Engott et al. (2015) down to the monthly timescale. This was done by 

applying a simple weighting factor to annual recharge for a particular drainage basin. Annual 

recharge was divided into 12 portions. Each monthly portion was then weighted by monthly 

precipitation according to the expression:   

 

                                           (6)  

 

, where Rm is monthly recharge, Ra is annual recharge, Pm is monthly precipitation, and Pa is 

annual precipitation. Monthly precipitation for each drainage basin was determined by 

aggregating the daily precipitation maps from Longman et al. (2019) to the monthly timescale. 

This adjustment maintains annual recharge totals from Engott et al. (2015) but allows monthly 

recharge to fluctuate with precipitation. 

 

2.4 Quickflow  

Monthly QF for each drainage basin was calculated directly from information given by 

Engott et al. (2015) who estimated QF on Oʻahu using one of two techniques depending upon the 

availability of streamflow data within a drainage basin. For the 16 drainage basins with a long 

enough continuous record of streamflow data, Engott et al. (2015) estimated QF by completing 

stream hydrograph baseflow separations following Wahl & Wahl (1995). For drainage basins 

without sufficient stream discharge data, Engott et al. (2015) estimated QF using regionally 

specific linear regressions based on statewide point precipitation and streamflow data (Engott et 

al. 2015, Table 5). The end results of this work are two maps that give QF ranges for each 

drainage basin on Oʻahu, one map for the dry season (May - October) and another for the wet 

season (November - April) (Engott et al. 2015, Figure 7).  These ranges are given as runoff 

coefficients (RC), which are ratios of total QF to total precipitation. We took the mean of this RC 

range for each drainage basin to estimate monthly QF for the water budget model. 
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Quickflow uncertainty (δQF) was determined by taking the mean difference between a 

standard and an experimental value. The experimental QF in this study was the USGS seasonal 

QF estimates from Engott et al. (2015, Figure 7), previously mentioned. Standard QF was 

estimated using one of two procedures based on whether the stream within a drainage basin is 

ephemeral or perennial. For drainage basins with perennial streams, which included Upper 

Kaukonahua, Kuliʻouʻou, Kahana, Opae Ula, and Hālawa (Figure 1), we completed stream 

hydrograph baseflow separations to generate daily QF volumes for the period from 1/1/1990 - 

12/31/2014 (Figure 5). The baseflow separations completed in this study differ from those 

completed by the USGS in that they are an average of two distinct baseflow separation 

techniques (Figure 5; Appendix A; Appendix B). The first baseflow separation technique used, 

hereafter referred to as the fixed five-day window (FFW) method, follows Wahl & Wahl (1995) 

and Engott et al. (2015) (Appendix A; Appendix B). The second technique follows Koskelo et al. 

(2012) and is known as the sliding average with rainfall record (SARR) method (Appendix A; 

Appendix B). The SARR baseflow separation method was selected because of its superior 

performance in capturing groundwater responses in small, flashy catchments in the mid-Atlantic 

region of the US (Koskelo et al. 2012). The results from these two techniques were averaged and 

aggregated to the monthly timescale. For ephemeral streams, which included Moanalua, 

Honouliuli, and Mākaha, no baseflow separation was necessary and all stream discharge was 

assumed to be QF. Despite excellent recent and on-going research, Mākaha stream’s baseflow 

remains poorly quantified (Mair 2009, 2010; Shade 1984, Safeeq 2012; and others) so Mākaha 

was analyzed as both a perennial stream and an ephemeral stream. The monthly QF volumes 

derived from these two procedures were then compared with the experimental QF volumes from 

the USGS runoff maps of Engott et al. (2015, Figure 7). The mean difference between the two in 

each drainage basin was taken as the δQF.
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Figure 5. Stream hydrograph baseflow separation for Opae Ula stream for September 1997 – 

March 1998. Stream discharge data were obtained from the USGS National Water Information 

Service available at https://waterdata.usgs.gov/hi/nwis/sw. Two baseflow separation techniques 

are shown. Baseflow estimated using the fixed five-day window (FFW) technique following 

Wahl & Wahl (1995) is depicted in blue. Baseflow estimated using the sliding average with 

rainfall record (SARR) technique following Koskelo et al. (2012) is depicted in red. These two 

values were averaged and then used as an experimental value in error analysis. 

 

2.5 Evapotranspiration  

Monthly ET for each drainage basin was calculated using the Thornthwaite equation for 

potential evapotranspiration (PET), which has the advantage of only requiring mean monthly 

temperature as an input. The Thornthwaite PET is given by the expression: 

 

 (7a) 
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, where m is the specific month, I is the annual heat index, T is monthly mean temperature in 

degrees Celsius, and 

 

 (7b) 

 

The annual heat index (I) is given by: 

 

 (7c)  

 

The monthly temperature (T) and the annual heat index (I) were calculated for each drainage 

basin using the daily temperature maps from Longman et al. (2019) (Figure 4). 

Potential evapotranspiration describes the maximum quantity of water that can be 

removed from the soil through evapotranspiration given a sufficient inventory of water. Actual 

evapotranspiration is the quantity of water that is actually removed from the soil after taking the 

available moisture into account. The Thornthwaite PET (Expression 2) was converted to AET in 

this study by limiting PET to the moisture available from precipitation, ignoring soil moisture for 

simplicity. The quantity of precipitation available for AET was derived directly from the daily 

rainfall maps in Longman et al. (2019). This technique is henceforth referred to as the 

precipitation-limited Thornthwaite actual evapotranspiration (PLT-AET) 

The Thornthwaite PET is not the preferred method for estimating PET so the decision to 

use it in this study had to be validated with empirical data (Dunne & Leopold 1978). The 

preferred method for estimating PET uses an equation developed by Penman (1948) and 

Monteith (1965) and is referred to as the Penman-Monteith equation for PET (Montieth 1965; 

Giambelluca et al., 2014; Engott et al., 2015; Dunne & Leopold 1978). Several forms of the 

Penman-Monteith equation exist. The one used in this study follows the American Society of 

Civil Engineers (Allen et al., 2005), and is given by the expression: 

 

 

 (8) 
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, where: 

PETPM is the reference evapotranspiration for short surfaces given in mm d-1, 

Rn is calculated net radiation at the crop surface given in MJ m-2 d-1, 

G is soil heat flux density at the soil surface given in MJ m-2 d-1, 

T is mean daily temperature at 1.5 to 2.5-m height (°C), 

u2 is mean daily wind speed at 2-m height given in m s-1, 

es is saturation vapor pressure at 1.5 to 2.5-m height (kPa), 

ea is mean actual vapor pressure at 1.5 to 2.5-m height (kPa), 

Δ is the slope of the saturation vapor pressure-temperature curve given in kPa °C-1, 

 γ is the psychrometric constant given in kPa °C-1, 

Cn is a numerator constant that changes with crop reference type and calculation time step, and 

Cd is the denominator constant that changes with reference type and calculation time step. 

 

The Penman-Montieth formula is an energy-balance which expresses the net energy 

accumulation at the soil surface as a measurement of PET. The amount of moisture this 

accumulated energy can remove from soil depends on vegetation, soil characteristics and 

available moisture. These physical characteristics are captured in a parameter called the crop 

coefficient (Kc), which varies by land cover, and can be multiplied by the Penman-Monteith PET 

to convert to AET (Montieth 1965; Allen et al. 2005). 

To assess the accuracy of the PLT-AET method and to determine δAET for the water 

budget model error analysis, we completed an additional ET micro-study using atmospheric data 

from a weather station in Pearl City, HI. In this micro-study we compared the PLT-AET method 

with the LTA-AET maps from Giambelluca et al. (2014), which were used to estimate annual 

recharge in the USGS study (Engott et al. 2015). Our goal was to determine which method (the 

PLT-AET or the LTA-AET maps) did a better job predicting AET at the weather station. We 

used the Penman-Monteith equation to calculate the standard AET at the weather station. We 

then assessed the agreement between the experimental values and the standard using the 

difference measures previously mentioned (Expressions 3-5). The stronger of the two 

experimental values was used to determine monthly AET, and the mean difference between two 

was set as δAET for the water budget model error analysis.  
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The Pearl City weather station dataset covered the period from December 2019 to 

December 2020, and included measurements of temperature, humidity, precipitation, windspeed, 

and solar radiation. These data were collected using an OnSet Computer Corporation© (Bourne, 

Massachusetts) portable weather station mounted on a 3-meter M-TPA-KIT portable tripod, 

equipped with the OnSet Computer Corporation© HOBO series of sensors, and powered by a 5-

watt solar panel and 12 volt storage battery.  Data were averaged over 15-minute intervals using 

a HOBO RX3000 Remote Monitoring Station running HOBOware Pro 3.7.22 software. Rain 

was measured with a HOBO 2-RGx-M002 tip bucket rain gauge that has a 15.4 cm receiving 

orifice and measures rainfall rates up to 20 mm/hour.  Solar radiation was measured with HOBO 

S-LIB-M003 silicon pyranometer with a measurement range of 0 to 1280 W/m2. Temperature 

and relative humidity were measured with a HOBO S-THB-M00X Temperature/Relative 

Humidity Sensor with a temperature range of -40 to 75 ˚C and an accuracy of +/- 0.2 ˚C. The 

relative humidity range was from 0 to 100 percent with an accuracy of ± 2.5 percent. 

Atmospheric pressure was measured using a HOBO S-BPB-CM50 Barometric Pressure Sensor 

with a range from 660 to 1070 millibar and an accuracy of ±3 millibar.  Wind speed was 

measured with a HOBO S-WSET-B wind speed/wind director sensor set.  This sensor set had a 

range from 0 to 76 m/s with an accuracy of  +/- 1.1 m/s or 4 percent of the sensor output, 

whichever is greater. Net radiation was calculated from solar radiation measurements using 

Equations 15, 16, 18, and 20 of Allen et al. (2005). Clear sky radiation was computed using the 

model of Bird and Hulstrom (1981). The climate monitoring station was in an area of cropped 

grass at 21.417299 N and -157.948142 W at an elevation of 154 m above mean sea level, with a 

Kc value of 1. Measured wind speed was corrected to a 2 m height using Equation 33 of Allen et 

al. (2005). 

 

2.6 Fog Drip  

Fog drip was accounted for in each drainage basin prior to estimating recharge. Fog 

estimates were obtained from Engott et al. (2015), who provided monthly fog estimates as ratios 

of fog drip to rainfall following Ekern (1983) and Engott & Vana (2007). These monthly fog 

estimates were normalized and then applied to the total annual fog drip from Engott et al. (2015) 

to provide monthly fog drip volumes for each drainage basin. These monthly fog drip volumes 

were added to precipitation totals in the water budgets.
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3. Results & Interpretation  

3.1 Overview 

The recharge estimates generated using the method presented here showed strong 

agreement with the annual long-term averages given by the USGS. Average monthly 

experimental recharge behaved as expected through most drainage basins, with higher recharge 

generally occurring during the wet season and lower recharge during the dry season (Tables 1 & 

2). Monthly experimental recharge peaked in March for most drainage basins and reached a low 

between July and September (Table 1 & 2). Several drainage basins showed a small spike in 

recharge during the month of July, which may be related to high historical consistency in the 

Northeast Trade Winds during this period each year (Table 1 & 2). Mean annual experimental 

recharge varied from 1.93 Mm3y-1 in Kuliʻouʻou to 16.87 Mm3y-1 in Hālawa (Table 3). 

Experimental recharge uncertainty (δR) was relatively high compared to total mean annual 

experimental recharge for several drainage basins, most notably in Kuliʻouʻou and Honouliuli, 

where δR was approximately 94% and 93% of total mean annual experimental recharge, 

respectively (Table 3; Figure 6). After correcting for an apparent anomaly in the Kuliʻouʻou 

drainage basin, agreements ranged from 0.62 in the Honouliuli drainage basin, indicating 

moderate agreement, to 0.96 in the Opae Ula drainage basin, indicating very strong agreement 

(Table 3; Figures 6 & 7). Interannual trends in experimental recharge matched periods of 

historical drought identified by Frazier et al. (in review; Figures 6 & 7). There were also notable 

departures from long-term average standard recharge in the Kahana and Mākaha drainage basins. 

The USGS long-term average recharge in Kahana is 26 Mm3y-1 during normal climate conditions 

and 20 Mm3y-1 during drought conditions. Mean annual experimental recharge was substantially 

lower (16 Mm3y-1; Table 3). The data show the opposite trend in Mākaha. Mean annual 

experimental recharge exceeded USGS long-term average recharge by 2.0 x 105 m3y-1 (Table 3). 

Agreements for both Kahana and Mākaha remained relatively high, 0.82 and 0.72 respectively, 

likely due to the high experimental recharge uncertainty in both drainage basins (Table 3).  
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Table 1. Monthly water budgets for Kaukonahua, Hālawa, Opae Ula and Kahana drainage basins on the island of Oʻahu. Drainage 

basins were selected for continuity and overlap with the daily rainfall maps in Longman et al. (2019). Abbreviations: P is 

precipitation; PLT-AET is precipitation-limited Thornthwaite actual evapotranspiration; QF is quickflow; Obs. QF is observed QF 

derived from either stream discharge measurements or completing stream hydrograph baseflow separations; R is recharge. All units 

are in million cubic meters per year (Mm3 y-1). 

  Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec Ann 

K
au

k
o

n
ah

u
a P 2.429 2.508 3.413 2.579 2.304 2.008 2.197 2.219 2.531 2.943 3.162 2.813 31.108 

PLT-AET 0.410 0.389 0.380 0.439 0.439 0.469 0.484 0.520 0.555 0.516 0.470 0.406 5.476 

QF 0.911 0.941 1.280 0.967 0.864 0.753 0.824 0.832 0.949 1.104 1.186 1.055 11.665 

BFS QF 0.590 0.533 0.815 0.674 0.575 0.555 0.734 0.590 0.632 0.639 0.871 0.731 7.939 

R 1.220 1.262 1.797 1.217 1.012 0.853 0.939 0.899 1.055 1.329 1.535 1.413 14.532 

H
āl

aw
a 

P 2.473 2.012 3.166 2.228 1.957 2.003 2.428 1.848 2.153 2.607 3.103 2.814 28.791 

PLT-AET 0.589 0.601 0.621 0.642 0.538 0.629 0.714 0.593 0.691 0.782 0.779 0.630 7.811 

QF 0.495 0.402 0.633 0.446 0.196 0.200 0.243 0.185 0.215 0.261 0.621 0.563 4.459 

BFS QF 0.421 0.269 0.619 0.273 0.237 0.124 0.188 0.157 0.152 0.248 0.501 0.471 3.660 

R 1.457 1.059 1.938 1.167 1.230 1.215 1.502 1.089 1.264 1.567 1.721 1.658 16.867 

O
p
ae

 U
la

 

P 2.256 2.153 2.976 2.282 2.095 1.878 2.079 1.832 1.950 2.388 2.746 2.545 27.180 

PLT-AET 0.441 0.451 0.447 0.501 0.474 0.523 0.540 0.517 0.538 0.590 0.552 0.461 6.036 

QF 0.846 0.808 1.116 0.856 0.419 0.376 0.416 0.366 0.390 0.478 1.030 0.954 8.054 

BFS QF 0.896 0.707 1.244 0.655 0.615 0.358 0.483 0.422 0.411 0.690 1.087 0.823 8.392 

R 1.198 1.067 1.505 1.017 1.224 1.117 1.226 1.018 1.079 1.331 1.221 1.256 14.260 

K
ah

an
a 

P 3.134 2.497 3.604 2.676 2.855 2.083 2.206 2.522 2.332 2.917 3.252 2.890 32.970 

PLT-AET 0.634 0.556 0.567 0.629 0.580 0.620 0.625 0.706 0.696 0.731 0.705 0.587 7.635 

QF 0.627 0.499 0.721 0.535 0.571 0.417 0.827 0.946 0.875 1.094 1.220 1.084 9.415 

BFS QF 1.231 1.126 1.943 0.939 1.410 0.368 0.650 0.561 0.694 0.990 1.481 1.176 12.569 

R 1.884 1.453 2.328 1.522 1.716 1.058 0.765 0.881 0.773 1.103 1.339 1.230 16.052 
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Table 2. Monthly water budgets for Mākaha Moanalua, Kuliʻouʻou, and Honouliuli drainage basins on the island of Oʻahu. Drainage 

basins were selected for continuity and overlap with the daily rainfall maps in Longman et al. (2019). Abbreviations: P is 

precipitation; PLT-AET is precipitation-limited Thornthwaite actual evapotranspiration; QF is quickflow; Obs. QF is observed QF 

derived from either stream discharge measurements or completing stream hydrograph baseflow separations; R is recharge. All units 

are in million cubic meters per year (Mm3 y-1). 

  Jan Feb Mar Apr May June July Aug Sep Oct Nov Dec  Ann  

M
āk

ah
a 

P 1.041 0.669 1.025 0.518 0.603 0.303 0.225 0.270 0.329 0.567 0.839 1.200 7.587 

PLT-AET 0.257 0.216 0.259 0.173 0.184 0.101 0.072 0.087 0.110 0.183 0.252 0.256 2.149 

QF 0.036 0.023 0.036 0.018 0.021 0.011 0.022 0.027 0.033 0.057 0.084 0.120 0.488 

BFS QF 0.105 0.075 0.140 0.035 0.026 0.004 0.002 0.001 0.001 0.007 0.028 0.116 0.540 

R 0.753 0.461 0.754 0.343 0.410 0.194 0.143 0.185 0.239 0.368 0.524 0.845 5.219 

M
o

an
al

u
a 

P 0.601 0.664 1.317 0.677 0.649 0.558 0.766 0.397 0.479 0.728 0.637 0.583 8.056 

PLT-AET 0.168 0.178 0.174 0.180 0.199 0.182 0.185 0.127 0.158 0.188 0.167 0.158 2.065 

QF 0.060 0.066 0.132 0.067 0.064 0.055 0.076 0.039 0.048 0.073 0.063 0.058 0.800 

Disch. 0.026 0.079 0.384 0.105 0.083 0.015 0.223 0.053 0.005 0.104 0.106 0.048 1.230 

R 0.374 0.420 1.011 0.430 0.385 0.321 0.505 0.231 0.273 0.467 0.406 0.367 5.191 

K
u
li

ʻo
u
ʻo

u
 

P 0.465 0.388 0.185 0.148 0.138 0.058 0.161 0.251 0.200 0.341 0.390 0.397 3.122 

PLT-AET 0.150 0.139 0.060 0.049 0.045 0.019 0.052 0.081 0.067 0.110 0.130 0.128 1.029 

QF 0.016 0.014 0.006 0.015 0.014 0.006 0.016 0.025 0.020 0.012 0.014 0.014 0.171 

BFS QF 0.006 0.003 0.006 0.006 0.003 0.002 0.005 0.030 0.004 0.018 0.070 0.031 0.185 

R 0.300 0.237 0.119 0.085 0.081 0.035 0.095 0.146 0.114 0.219 0.247 0.256 1.934 

H
o
n
o
u
li

u
li

 

P 0.699 0.252 0.474 0.313 0.911 0.198 0.231 0.110 0.283 0.453 0.152 0.320 4.395 

PLT-AET 0.225 0.087 0.151 0.103 0.293 0.066 0.073 0.033 0.089 0.142 0.048 0.101 1.409 

QF 0.024 0.008 0.016 0.011 0.032 0.007 0.023 0.010 0.027 0.044 0.014 0.031 0.248 

Disch. 0.009 0.004 0.001 0.001 0.006 0.000 0.003 0.000 0.004 0.016 0.001 0.009 0.052 

R 0.450 0.157 0.307 0.200 0.587 0.125 0.135 0.067 0.168 0.266 0.089 0.188 2.739 
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Table 3. Error propagation through monthly water budget calculations for eight drainage basins on the island of Oʻahu. Abbreviations: 

P is precipitation; δP is precipitation uncertainty; PLT-AET is precipitation-limited Thornthwaite actual evapotranspiration; δAET is 

actual evapotranspiration uncertainty; QF is quickflow; Obs. QF is observed QF estimates derived from either stream discharge 

measurements or stream hydrograph baseflow separations following Wahl & Wahl (1995) and Koskelo et al. (2012); R is recharge; δR 

is recharge uncertainty; USGS is United States Geological Survey; NC is normal climate; DC is drought climate; RMSE is root mean 

square error; MAE is mean absolute error. δP, δAET, δQF, and δR all describe annual uncertainty. RMSE, MAE and agreement were 

calculated following Wilmott (1981, 1982a, 1982b) and Wilmott & Wicks (1980), and reflect the variability in monthly recharge 

estimates compared to the recharge predictions given by the USGS (Engott et al., 2015). 

 Units Kaukonahua  Hālawa Opae Ula Kahana Mākaha  Moanalua  Kuliʻouʻou Honouliuli  

Area Mm2 6.59 10.37 7.81 9.67 5.93 2.39 3.30 4.86 

P Mm3 31.11 28.79 27.18 32.97 7.59 8.06 3.12 4.39 

δP mm d-1 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 

δP Mm3 1.20 1.89 1.43 1.76 1.08 0.44 0.60 0.89 

PLT-AET Mm3 5.48 7.81 6.04 7.64 2.15 2.06 1.03 1.41 

LTA-AET Mm3 5.64 9.27 7.17 8.86 5.53 2.17 2.72 3.81 

δAET Mm3 0.17 1.46 1.14 1.23 3.38 0.10 1.69 2.40 

QF Mm3 11.67 4.46 8.05 9.42 0.49 0.80 0.17 0.25 

Obs. QF Mm3 7.94 3.66 8.39 12.57 0.54 2.46 0.37 0.10 

δQF Mm3 3.73 0.80 0.34 3.15 0.05 1.66 0.20 0.14 

R Mm3 14.53 16.87 14.26 16.05 5.22 5.19 1.93 2.74 

δR Mm3 3.92 2.52 1.86 3.82 3.55 1.72 1.81 2.56 

R USGS NC Mm3 15.37 16.68 14.16 25.68 5.03 3.94 1.57 1.42 

R USGS DC Mm3 12.10 13.46 10.23 19.51 2.19 2.73 0.51 0.40 

RMSE 104 m3 39.98 61.31 31.21 102.82 37.89 11.20 11.93 13.19 

MAE 104 m3 25.48 41.53 23.04 66.65 19.23 8.04 10.28 10.64 

Agreement DN 0.92 0.83 0.96 0.82 0.72 0.79 0.17 0.62 

  



21 
 

 
 

Figure 6. Monthly water budgets derived from daily gridded precipitation data (Longman et al. 

2019) for the Moanalua (7A), Kuliʻouʻou (7C), and Honouliuli (7B) drainage basins on the 

island of Oʻahu. USGS recharge was disaggregated to monthly timescale by volume-weighting 

according to monthly precipitation. Recharge estimates are taken from Engott et al. (2015). (7A) 

Annual recharge for the Moanalua drainage basin was 5.2 土 0.6 Mm3 y-1. USGS annual 

recharge is 3.9 Mm3 y-1 during normal climate conditions, and 2.7 Mm3 y-1 during drought 

conditions. (7B) Annual recharge for the Honouliuli drainage basin was 2.7 土 2.6 Mm3 y-1. 

USGS annual recharge is 1.4 Mm3 y-1 during normal climate conditions, and 0.5 Mm3 y-1 during 

drought conditions. (7C) Annual recharge for the Kuliʻouʻou drainage basin was 1.9 土 1.8 Mm3 

y-1. USGS annual recharge is 1.6 Mm3 y-1 during normal climate conditions, and 0.5 Mm3 y-1 

during drought conditions. 
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Figure 7. Annual water budgets derived from daily gridded precipitation and temperature data 

(Longman et al. 2019) for Kaukonahua (6A), Opae Ula (6B), Hālawa (6C), Kahana (6D), and 

Mākaha (6E) drainage basins on the island of Oʻahu. USGS recharge estimates are derived from 

Engott et al. (2015) and oscillate between drought and normal climate conditions. (6A) Mean 

annual recharge for the Kaukonahua drainage basin was 14.5 土 3.9 Mm3 y-1. USGS annual 

recharge is 15.4 Mm3 during normal climate conditions, and 12.1 Mm3 during drought 

conditions. (6B) Mean annual recharge for the Opae Ula drainage basin was 14.3 土 1.9 Mm3 y-

1. USGS annual recharge is 16.7 Mm3 during normal climate conditions, and 13.5 Mm3 during 

drought conditions. (6C) Mean annual recharge for the Hālawa drainage basin was 16.9 土 2.5 

Mm3 y-1. USGS annual recharge is 14.2 Mm3 y-1 during normal climate conditions, and 10.2 

Mm3 y-1 during drought conditions. (6D) Mean annual recharge for the Kahana drainage basin 

was 16.1 土 3.8 Mm3 y-1. USGS annual recharge is 25.7 Mm3 y-1 during normal climate 

conditions, and 19.5 Mm3 y-1 during drought conditions. (6E) Mean annual recharge for the 

Mākaha drainage basin was 5.2 土 3.5 Mm3 y-1. Estimated annual recharge is 5.0 Mm3 y-1 during 

normal climate conditions, and 2.2 Mm3 y-1 during drought conditions.  
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3.2 Quickflow Error 

 Temporal resolution and uncertainty play important roles in assessing the agreement 

between observed QF and the standard. At the seasonal timescale, both the SARR and FFW 

baseflow separations performed well, producing strong agreement with the runoff coefficients 

from Engott et al. (2015). In contrast, monthly observed QF estimates were poorly constrained, 

fluctuating more widely about seasonal means than expected, particularly for Kahana and 

Mākaha where more than 70% of monthly estimates exceeded the RC ranges in Engott et al. 

(2015) (Figure 8). Throughout all drainage basins, no more than 48% of monthly QF estimates 

fell within the RC ranges from Engott et al. (2015). These discrepancies produced large 

uncertainties in drainage basins with high QF (Table 2). It is likely that systematic differences 

between the long-term average precipitation maps from Giambelluca et al. (2013) and the daily 

rainfall maps from Longman et al. (2019) contributed to this large uncertainty (Figure 9). These 

systematic differences could be the result of a long-term shift in precipitation trends throughout 

the state, or they could simply indicate that the long-term average data are not a good 

representation of the period examined. It is also possible that the baseflow separations simply 

produced poor results for some drainage basins. Since a baseflow separation is a graphical as 

opposed to empirical procedure (the latter such as a chemical baseflow separation), it is 

impossible to truly assess its accuracy. Overall, these results generate confidence that the RC 

ranges from Engott et al. (2015) are useful for estimating seasonal QF. They also show that 

downscaling to the monthly timescale produces high uncertainty, and they emphasize the hazard 

of applying long-term averages to time-series data. Additionally, the strong agreement between 

seasonal QF estimates derived from the SARR baseflow separation and the USGS runoff 

coefficients suggests that the SARR method is a valid technique for differentiating baseflow 

from QF in gauged Hawaiian streams.  
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Figure 8. Runoff coefficients (RC) derived from stream hydrograph baseflow separations for 

five drainage basins on Oʻahu compared with seasonal RC ranges given by the USGS (Engott et 

al., 2015, Figure 7). Baseflow separations were carried out following Wahl & Wahl (1995) and 

Koskelo et al. (2012) and averaged. Stream discharge data were obtained from the USGS 

National Water Information Service available at https://waterdata.usgs.gov/hi/nwis/sw. (8A): 

The USGS RC range for Kaukonahua was 0.25 - 0.50 through the wet and dry seasons. The 

mean wet season RC was 0.23. The mean dry season RC was 0.26. (8B): The USGS RC range 

for Opae Ula was 0.25 - 0.50 through the wet season and 0.15 - 0.25 through the dry season. The 

mean wet season RC was 0.30. The mean dry season RC was 0.21. (8C): The USGS RC range 

for Hālawa was 0.15 - 0.25 through the wet season and 0.05 - 0.15 through the dry season. The 

mean wet season RC was 0.12. The mean dry season RC was 0.06. (8D): The USGS RC range 

for Kahana was 0.25 - 0.50 through the wet season and 0.15 - 0.25 through the dry season. The 

mean wet season RC was 0.34. The mean dry season RC was 0.24. (8E): The USGS RC range 

for Mākaha was 0.05 - 0.15 through the wet season and 0.02 - 0.05 through the dry season. The 

mean wet season RC was 0.07. The mean dry season RC was 0.01. 
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Figure 9. Precipitation trends for the Kahana drainage basin. The orange lines depict 30-year 

average monthly precipitation estimates taken from Giambelluca et al. (2013) and reflect average 

precipitation for the Kahana drainage basin from 1978 - 2007. The blue and green lines depict 

monthly, seasonal, and mean precipitation estimates derived from daily rainfall maps of 

Longman et al. (2019). Mean precipitation from Giambelluca et al. (2013) is 47.5 Mm3 y-1. Mean 

precipitation from Longman et al., (2019) is 33.1 Mm3 y-1. 

 

 

3.3 Evapotranspiration Error 

 When compared with the LTA-AET estimates from Giambelluca et al. (2014), the PLT-

AET estimates show stronger agreement with the weather station AET data from Pearl City, HI 

(Figure 10). The PLT-AET model produced an agreement of 0.60 with the weather station data, 

whereas the LTA-AET estimates produce an agreement of 0.40.  RMSE and MAE were 29.4 and 

23.1 mm per month, respectively, for the PLT-AET method, and 31.5 and 25.7 mm per month, 

respectively, for the LTA-AET estimates. The total annual standard AET calculated using the 

Penman-Monteith equation (Expression 3) is 756 mm, the total annual PLT-AET calculated 

using Expression 2 is 746 mm, and the total annual LTA-AET was 948 mm. The large gap 

separating the LTA-AET from the Penman-Monteith AET and PLT-AET is due primarily to 

differences during the dry season, which suggests a systematic offset (Figure 10). In contrast, for 

most months the Penman-Monteith AET and the PLT-AET are within 15 mm. The largest gaps 

between these occur during the months of April and October and are likely a consequence of 

excluding soil moisture storage from the PLT-AET calculations. In April, the Penman-Monteith 

AET exceeds the PLT-AET by approximately 40 mm. In October the opposite occurs: PLT-AET 

exceeds the Penman-Monteith AET by more than 70 mm. These offsets correspond to the 

seasonal changes one would expect in soil moisture content. High soil moisture at the end of the 

wet season would increase the total volume of moisture available for ET, thus increasing the 

PLT-AET. Low soil moisture at the end of the dry season would reduce the total moisture 
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available for ET, thus decreasing PLT-AET. It is possible, therefore, that future iterations of the 

PLT-AET model could be improved by a simple correction related to seasonal changes in soil 

moisture storage. 

 

 

Figure 10. Actual Evapotranspiration (AET) estimates for a weather station in the vicinity of 

Pearl City, HI from Jan. to Dec. 2020 derived using the Penman-Monteith formula compared 

with precipitation-limited (PL) potential evapotranspiration (PET) and long-term average (LTA) 

AET. LTA-AET was taken from the monthly rainfall maps in Giambelluca et al. (2014). The PL-

PET estimates were derived using the daily temperature maps from Longman et al. (2019) as 

inputs to the Thornthwaite equation for monthly PET. Daily AET at the weather station is shown 

in green along the right vertical axis. 

 

 

The differences between the PLT-AET and Penman-Monteith AET likely stem from not 

considering soil moisture storage in the PLT-AET model. Soil moisture storage can constitute a 

large portion of the total moisture available for ET in some areas (Engott et al., 2015). Since the 

LTA-AET estimates consider soil moisture, it is possible that these are more accurate in some 

cases. The Pearl City field site data show that the LTA-AET estimates are marginally closer to 

the Penman-Monteith AET during 4 out of 12 months (Figure 10), which partially justifies this 

conclusion. These errors were propagated through the water budget calculations by setting δAET 

as the mean difference between the LTA-AET and PLT-AET estimates. This procedure was 

necessary to accurately capture the uncertainty in the PLT-AET estimates, but it produced the 

highest error of all the water budget components (Table 3). Overall, the results from the ET 

micro-study justified the application of the PLT-AET technique to the eight drainage basins and 

allowed the generation of monthly AET estimates across the entire study period utilizing the 

daily temperature and precipitation maps of Longman et al. (2019). 
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3.4 Recharge Error 

 Monthly recharge estimates derived from the daily gridded rainfall and temperature maps 

generally showed strong agreement with USGS recharge estimates (Table 3, Figures 6 & 7), and 

seem to point to a gradual increase in recharge year-to-year. For seven out of eight of the 

drainage basins the indices of agreement varied from 0.62 - 0.96, indicating moderate to strong 

agreement. For the six drainage basins with indices of agreement below 0.90 the experimental 

recharge calculated using the water budget model developed in this study exceeded the predicted 

USGS recharge. That is, experimental recharge was higher than standard recharge. Kuliʻouʻou 

was the most dramatic example of this trend, producing an index of agreement of 0.17, indicating 

strong disagreement. This disagreement was largely a result of categorizing the period from 

February 2007 - November 2012 as a drought, which lowered the standard USGS annual 

recharge from 1.57 to 0.51 Mm3 y-1 (Table 3; Frazier et al., in review). Annual recharge for 

Kuliʻouʻou between June 2009 and September 2010 was 1.93 ± 1.81 Mm3 y-1 (Table 3). 

Changing the standard USGS recharge to reflect normal climate conditions during this period 

produces an agreement of 0.92, suggesting recharge was above average. In fact, for the five 

drainage basins that had the longest records (Mākaha, Kahana, Hālawa, Kaukonahua, and Opae 

Ula), there was an overall trend towards increased recharge between 1997 and 2014 (Figure 11). 

While the otherwise-strong agreement between experimental and standard recharge is a partial 

validation of the water budget model developed in this study, it is also a consequence of the large 

uncertainties propagated through the error calculations. The index of agreement describes how 

well predicted values fit within a range of uncertainty. The larger the range of uncertainty the 

stronger the agreement, a fact which emphasizes the importance of clearly communicating 

uncertainty throughout the scientific process, and of not overstating the accuracy of any model 

developed to describe natural processes. 
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Figure 11. Cumulative annual recharge for five drainage basins on Oʻahu (Hālawa, Kaukonahua, 

Opae Ula, Kahana, and Mākaha) between 1997 and 2014 (right vertical axis), with individual 

drainage basin recharge overlaid (left vertical axis). A linear regression was completed on the 

cumulative infiltration estimates, with a positive slope of 0.0035, and an R2 = 0.23. The positive 

slope suggests a gradual increase in recharge. 

 

3.5 Seasonality and Interannual Climate Variability  

 Recharge estimates show a strong response to seasonality and interannual climate 

variability lending additional weight to the good agreement with USGS recharge estimates. All 

drainage basins show a clear seasonal effect on precipitation, QF and recharge, with higher 

estimates during wet seasons and lower estimates during dry seasons. This pattern is especially 

pronounced for the Mākaha drainage basin, which shows strong seasonal oscillation through 

most of the period considered (Figure 12). However, across most drainage basins there are 

irregular departures from, and exaggerations to, this pattern, which loosely correspond to periods 

of drought and/or El Niño-Southern Oscillation (ENSO) events. 
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Figure 12. Seasonal recharge for five drainage basins on the island of Oʻahu, Hawaiʻi, 1990 - 2014, calculated using daily rainfall and 

temperature maps from Longman et al. (2019). Historical periods of drought from Frazier et al. (in review) and El Niño-Southern 

Oscillation (ENSO) events (NOAA, 2001) are overlaid. ENSO events were determined using the Oceanic Niño Indix (ONI). The 

ENSO color gradients reflect the severity of the event. Darker colors represent higher sea surface temperature (SST) anomalies by 

increments of 土 0.5˚C from mean SST.    
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Droughts are a regular part of Hawaiʻi’s climate cycle (Frazier et al., in review), but 

recent research indicates drying trends across much of the state could increase the frequency and 

severity of droughts (Timm et al., 2015; McKenzie et al. 2019; Frazier & Giambelluca, 2017). 

Droughts in Hawaiʻi have been associated with ENSO events. The warm phases (El Niño events) 

tend to bring heavy summer rainfall followed by abnormally dry winters (Chu, 1989; Chu & 

Chen, 2005; Frazier et al., 2018). The cool phases of the ENSO cycle (La Niña) have the 

opposite effect, bringing drier summers and wetter winters (Chu & Chen, 2005; Diaz & 

Giambelluca, 2012). There are four extreme droughts in the study period: Mar. 2007 - Dec. 2012, 

Feb. 1998 - Feb. 2002, Jan. 2003 - Feb. 2004, and Dec. 1991 - Feb. 1994 (Frazier et al., in 

review). These correspond well with several periods of low seasonal recharge and precipitation 

across Oʻahu (Figure 12). Seasonal water budgets also reflect ENSO events, notably the wet 

seasons of 1991-1992, 1994-1995, 1997-1998, 2002-2003, & 2006-2007 and the dry seasons of 

1998, and 1999 (Figure 12). Despite some irregularities, interannual climate trends show that the 

recharge estimates derived from the water budget model developed in this study behave as 

expected through most years, while maintaining long-term averages close to standard recharge.  
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Figure 13. Monthly recharge for the island of Oʻahu in 1991. Maps were generated using a simplified water budget model: recharge ≈ 

precipitation - quickflow - evapotranspiration. Monthly precipitation estimates were derived from the daily rainfall maps of Longman 

et al. (2020). Monthly quickflow was estimated using runoff coefficients given in Engott et al. (2015). Monthly evapotranspiration 

was estimated by using the daily temperature maps from Longman et al. (2020) as inputs to a modified version of the Thornthwaite 

equation for potential evapotranspiration (PET). PET was converted to actual evapotranspiration (AET) by limiting PET to the 

moisture available from precipitation.
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4. Conclusion  

Daily precipitation and temperature maps were used to calculate monthly groundwater 

recharge for the island of O’ahu between 1990 and 2014 with a simplified water budget model. 

To assess the accuracy of this model, standard and experimental water budget components were 

calculated in eight drainage basins across the island. Uncertainties derived from experimental 

and standard values were propagated through the recharge calculations to produce a range of 

annual recharge uncertainty, which was then used to compare annual experimental recharge 

estimates with annual long-term average recharge calculated by the USGS (Engott et al. 2015). 

Experimental recharge estimates derived from this model agree strongly with the USGS 

recharge. Interannual climate trends further corroborated this agreement. These findings indicate 

that monthly estimates of groundwater recharge may be produced on Oʻahu via a low data 

intensity method with sufficient accuracy to better constrain current and historical recharge 

patterns for the island (Figure 13; Appendix C). They also suggest that the model presented here 

may be more broadly applicable to areas where atmospheric and runoff data are available. Since 

experimental recharge was calculated using monthly temperature and precipitation raster data 

and seasonal QF estimates, this technique can be replicated at any point where those data are 

available, or over any area where there is a sufficient density of point data to allow interpolation. 

Anticipating the future publication of near real-time daily temperature and precipitation maps for 

the State of Hawaiʻi, it may be possible to estimate monthly recharge in near real-time across the 

state. Temporally refined recharge estimates have potential to improve the accuracy of 

geochemical methods used to understand the movement and distribution of groundwater, such as 

tracer and mass balance studies, and could greatly aid water resource managers in their efforts to 

sustain and protect freshwater resources, both in Hawaiʻi and elsewhere.  
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Appendix A: Baseflow Separation Supplementary Material 

Quickflow and baseflow can be differentiated on a stream hydrograph through a process 

called baseflow separation. In a simplified sense, this can be thought of as connecting the troughs 

on a stream hydrograph (Figure 5). Baseflow is determined by isolating the low flow points and 

interpolating baseflow values between these local minima. Many variations to this general 

technique exist, varying in both how local minima are determined and how the baseflow is 

interpolated (Institute of Hydrology, 1980; Piggott et al., 2005; Aksoy et al., 2008, 2009; Wahl & 

Wahl, 1995). One of the most widely used techniques was developed by Wahl & Wahl (1995) 

and uses sequential fixed windows to determine local minima and then conditionally assigns 

those minima as baseflow. The total hydrograph is divided into fixed blocks, the minimum 

streamflow from each block is identified and then assigned as baseflow if a fraction of the 

minimum exceeds adjacent minima. This technique requires two parameters which vary 

regionally: the size of the fixed block, and a turning point test factor. The turning point test factor 

is a number between zero and one and is used to determine the minima fraction for comparison. 

In Hawaiʻi five-day blocks and a turning point test factor of 0.9 are used (Engott et al. 2015). 

Once all baseflow days have been assigned, intervening baseflow is linearly interpolated. This 

technique has been used by the USGS in several Hawaiʻi applications (Izuka et al. 2005; Engott 

& Vana, 2007; Engott, 2011; Engott et al. 2015), and has been shown to provide reasonable 

estimates of baseflow and, therefore, quickflow.  

For comparison with the general “fixed-window” technique used by the USGS an 

additional baseflow separation was completed using an alternative technique developed by 

Koskelo et al. (2012) called the sliding-average with rainfall record (SARR). The SARR 

baseflow separation is another smoothed minima technique modified from the United Kingdom 

Institute of Hydrology (UKIH) method (IH, 1980; Gustard et al., 1992). The SARR, UKIH and 

Wahl & Wahl (1995) techniques are all similar in that they compare adjacent daily streamflow 

measurements to determine local minima and then linearly interpolate baseflow based on those 

minima. The SARR technique stands out in two respects. First, whereas most baseflow 

separation techniques use sequential fixed windows to compare minima and identify baseflow 

days, the SARR technique employs a sliding window with three 2-day blocks to compare mean 

discharge between each block. The mean discharge in each 2-day block is compared, and 

baseflow is assigned to the first day of the middle block if 90% of the mean discharge in the 
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middle block is less than the mean discharge from the adjacent blocks. If the mean discharge in 

adjacent blocks exceeds 90% of the mean discharge in the middle block, then baseflow is 

assigned by linear interpolation from adjacent baseflow days. This is an improvement on 

techniques using sequential fixed windows in that it does not automatically discard streamflow 

measurements within a block that exceed the minimum, which amounts to 80% of points when 

using a 5-day fixed window - i.e., 4 out of 5 points in a 5-day window are not the minima and 

are, therefore, discarded. Use of the sliding 2-day window allows the SARR baseflow separation 

to better capture quick stream responses to precipitation events in small flashy catchments, like 

those of the Hawaiian Islands (Engott et al. 2015; Shade & Hunt 1996; Hawaii Water Authority 

1959). The second major modification of the SARR baseflow technique is the incorporation of 

daily precipitation data. This is a “quality control procedure” added by the SARR developers to 

ensure a quickflow response is preceded by a precipitation event within the previous 1 or 2 days 

(Koskelo et al., 2012, pp 269). When the precipitation rule is violated, all stream discharge is 

considered baseflow. This protects the output of the baseflow separation from the effects of 

irrigation or other man-made groundwater input and is potentially unique to the SARR technique 

(Koskelo et al., 2012). 
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Appendix B: Opae Ula Drainage Basin Water Budget Sample Code 

The code below was prepared in RStudio (RStudio Team 2021). Code chunks are displayed 

within the light gray boxes.  

1. Load and Prepare Data 
Stream data can be found at https://waterdata.usgs.gov/hi/nwis/uv?site_no=16211600. 

30-year average monthly precipitation and evapotranspiration maps are available on the Rainfall 

Atlas of Hawaiʻi at http://rainfall.geography.hawaii.edu/ 

USGS recharge maps for Hawaiʻi are available at 

https://pubs.er.usgs.gov/publication/sir20155010 as shapefiles. These were converted to rasters 

using the Polygon to Raster function in ESRI’s Conversion toolset in ArcMap and are available 

upon request. 

# Load the Oahu recharge map from Engott et al. 2015 
# Units are inches per year 
oahu_rech   <- raster("oahu_rech")    # Average climate conditions  
oahu_rech_d <- raster("oarech_drght") # Drought climate conditions  

Daily rainfall maps for Oʻahu from 1/1/1990 - 12/31/2014 are available at 

https://waihona.its.hawaii.edu/index.php/s/8BMnWSC6LwXKfQ3. These were sorted manually 

into raster stacks for use in the baseflow separations. 

Aquifer boundaries for Hawaiʻi are available on the State of Hawaiʻi GIS portal at 

https://planning.hawaii.gov/gis/download-gis-data/. Drainage basin boundaries were derived 

using ESRI’s Hydrology toolset in ArcMap and are available upon request. 

# Load shapefile containing dimensions of the drainage basin  
db_opa <- readOGR(dsn = ".", layer = "db_opaeula") 

The raster maps were sampled using the drainage basin and aquifer shapefiles with the cellStats() 

and mask() functions in the R package “raster”. The daily rainfall raster stacks were sampled 

with the same functions using a loop. Only the first 6 months of the daily rainfall maps have 

been included here to reduce processing time. The coordinate reference system of the rainfall 

maps has also been reprojected from lat/long to Universal Transverse Mercator (UTM) to match 

the drainage basin shapefiles. 

# Load the rainfall maps 
rastlist <- list.files(path = ".",  
                       pattern = '.tif$', 
                       all.files = FALSE, 
                       full.names = FALSE)  
# Create raster stack 
allrasters <- stack(rastlist) 
# Clip all the maps to the drainage basin dimensions  
allrasters <- mask(allrasters, db_opa) # This may take several minutes to run 

https://waterdata.usgs.gov/hi/nwis/uv?site_no=16211600
http://rainfall.geography.hawaii.edu/
https://pubs.er.usgs.gov/publication/sir20155010
https://waihona.its.hawaii.edu/index.php/s/8BMnWSC6LwXKfQ3
https://planning.hawaii.gov/gis/download-gis-data/
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Now the daily rainfall rasters are sorted by month. 

sep97 <- allrasters[[1:30]] 
oct97 <- allrasters[[31:61]] 
nov97 <- allrasters[[62:91]] 
dec97 <- allrasters[[92:122]] 
jan98 <- allrasters[[123:153]] 
feb98 <- allrasters[[154:181]] 

The loop below takes the stack of clipped daily rasters for each month and figuratively lays them 

on top of one another summing all the pixels stacked on top of one another. This produces a 

monthly total map where each pixel is the sum of all pixels for that month. This monthly total 

map is then averaged with the cellStats() function to provide a total monthly point precipitation 

estimate. Total monthly point precipitation is then converted to volume by multiplication with 

the drainage basin area. 

# Determine mean monthly precipitation in drainage basins for water budgets 
# List to loop over  
raster_months <- list(sep97, oct97, nov97, dec97, jan98, feb98) 
# Bin for loop 
rain_opa  <- matrix(NA, nrow = length(raster_months), ncol = 1) 
dates_opa <- seq(from = as.Date("9/1/1997",  format = "%m/%d/%Y"), 
                   to = as.Date("2/28/1998", format = "%m/%d/%Y"), 
                   "months") 
for(i in 1:length(raster_months)){ 
  rain_opa[i,1] <- sum(cellStats(raster_months[[i]], stat = 'mean'))} 
opa_monthly_precip <- data.frame(rain_opa, dates_opa)  
# Convert mm to cubic meters 
area_opa <- 7814933 # Opae Ula area (square meters) 
opa_monthly_precip$rain_m3 <- opa_monthly_precip$rain_opa * area_opa / 1000  

The loop below follows a similar procedure as the previous but creates a list of mean daily point 

precipitation estimates for the drainage basin. 

# Determine mean daily precipitation in drainage basins for baseflow separations 
days_opa <- seq(from = as.Date("9/1/1997",  format = "%m/%d/%Y"),  
                to   = as.Date("2/28/1998", format = "%m/%d/%Y"),  
                "day") 
# Bin for loop 
opa_daily <- vector(mode = "numeric", length = length(days_opa)) 
for(i in 1:length(opa_daily)){ 
  opa_daily[i] <- cellStats(allrasters[[i]], stat = 'mean')} 
opa_daily_precip <- data.frame(days_opa, opa_daily)  

Monthly temperature and rainfall maps are aggregated from the daily maps of Longman et 

al. (2020) and are available upon request. 

# Mean monthly temperature maps for 1997 & 1998 are in the folder "Temp_Maps" 
# Load the maps 
path <- paste(getwd(), "Temp_Maps", sep = "/") 
rastlist <- list.files(path = path,  
                       pattern = '.tif$', 
                       all.files = FALSE, 
                       full.names = FALSE) 
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setwd(path) 
temp_rasters <- stack(rastlist) 

# Mean monthly rainfall maps for 1997 & 1998 are in the folder "RF_Maps" 
# Load the  maps 
path <- paste(getwd(), "RF_Maps", sep = "/") 
rastlist <- list.files(path = path,  
                       pattern = '.tif$', 
                       all.files = FALSE, 
                       full.names = FALSE) 
setwd(path) 
rf_rasters <- stack(rastlist) 

Long-term average evapotranspiration maps are taken from the Rainfall Atlas of Hawai’i 

(Giambelluca et al. 2013). 

# LTA-AET maps for Sep - Feb are located in the folder "LTA_AET" 
path <- paste(getwd(), "LTA_AET", sep = "/") 
setwd(path) 
aet_jan <- raster("aet_mm_jan") 
aet_feb <- raster("aet_mm_feb")   
aet_sep <- raster("aet_mm_sep") 
aet_oct <- raster("aet_mm_oct") 
aet_nov <- raster("aet_mm_nov") 
aet_dec <- raster("aet_mm_dec") 

2. Determine Experimental Quickflow 
Stream hydrograph baseflow separations were completed using continuous daily stream flow and 

precipitation data. The first baseflow separation below uses fixed five-day windows following 

Wahl & Wahl (1995). The inputs to the baseflow separation function are daily stream discharge 

measurements, the size of the sequential block (n), and the turning point test factor (f). The 

USGS used a block size of 𝑛 = 5 𝑑𝑎𝑦𝑠, and a turning point test factor of 𝑓 = 0.9. 

# Fixed five-day window (FFW) baseflow separation 
bfs <- function(fulldata, n, f){ 
# Determine the minima in sequential "n"-day blocks for comparison 
  for(i in seq(from = 1, to = nrow(fulldata)-n, by = n)){ 
    fulldata[i,4] <- min(fulldata[i+1,2], 
                         fulldata[i+2,2], 
                         fulldata[i+3,2], 
                         fulldata[i+4,2]) 
# Use turning-point test factor artificially reduce minimum discharge over each 
# "n"-day block 
    fulldata[i,5] <- f * fulldata[i,4]} 
# Create new data frame without the intervening days between block start dates 
  partdata <- na.omit(fulldata) 
  for(i in 1:nrow(partdata)){ 
# Add column for minimum flow in previous block  
    partdata[i+1,6] <- partdata[i,4] 
# Add column for minimum flow in subsequent block 
    partdata[i+1,7] <- partdata[i+2,4]} 
# Remove first two lines without m-1 and m+1 
  partdata <- na.omit(partdata) 
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# Compare adjacent blocks with modified minimum  
# Assign value of -1 to blocks with no baseflow  
  for(i in 1:nrow(partdata)){ 
    if(partdata[i,5] < partdata[i,6] &  
       partdata[i,5] < partdata[i,7]){partdata[i,8] <- partdata[i,4]} 
    else{partdata[i,8] <- -1}} 
# Proper names for data frame columns 
  colnames(partdata) <- c("day", 
                          "discharge_cms",  
                          "precip_m",  
                          "min_flow_cms",  
                          "tp_flow_cms",  
                          "m-1_flow",  
                          "m+1_flow",  
                          "baseflow_cms") 
# Identify the dates where storms/quickflow does NOT occur 
  no_storms <- subset(partdata, baseflow_cms != -1) 
# Interpolate baseflow values during storm events  
  interp_bf <- data.frame(approx(no_storms$day, no_storms$baseflow_cms, 
                                 xout = fulldata$day,  
                                 rule = 2,  
                                 method = "linear",  
                                 ties = mean)) 
# Add interpolated baseflow values to data frame 
  fulldata$interp_bf <- interp_bf$y 
# Remove extra columns from data frame  
  fulldata <- fulldata[,c(1,2,3,6)] 
# Constrain interpolated baseflow to total measured discharge  
  for(i in 1:nrow(fulldata)){ 
    if(fulldata[i,4] > fulldata[i,2]){fulldata[i,4] = fulldata[i,2]} 
  } 
# Add column for year 
  fulldata[, "year"] <- format(fulldata[,"day"], "%Y") 
  return(fulldata) 
} 

The baseflow separation below is the Sliding Average with Rainfall Record (SARR) and uses 

sliding two-day windows following Koskelo et al. (2012). The inputs to the baseflow separation 

are daily stream discharge data daily precipitation estimates and the turning point test factor (f = 

0.9). 

# Sliding average with rainfall record (SARR) baesflow separation 
sarr <- function(fulldata, f){ 
# The loop below calculates the values to compare to flow on day i 
# in order to determine if a quickflow event has occurred. 
# Three new columns are added (4,5,& 6) 
# Select the column with the mean stream flow data (column 2 in Makaha dataset)  
  for(i in 3:nrow(fulldata)-3){ 
    fulldata[i,4] <- f * min(fulldata[i,2], fulldata[i+1,2]) 
    fulldata[i,5] <- min(fulldata[i-1,2], fulldata[i-2,2]) 
    fulldata[i,6] <- min(fulldata[i+2,2], fulldata[i+3,2])} 
  fulldata <- na.omit(fulldata) # Remove rows with NAs generated by loop 
# The loops below identifies storm/quickflow events with the value of '1'  
# by comparing sliding average baseflow values. 
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  for(i in 1:nrow(fulldata)-1){ 
    fulldata[i,7] <- mean(fulldata[i,2], fulldata[i+1,2])} 
  fulldata <- na.omit(fulldata) 
  for(i in 1:nrow(fulldata)){ 
    if(fulldata[i,4] > fulldata[i,5]){fulldata[i,7] <- -1} 
    if(fulldata[i,4] > fulldata[i,6]){fulldata[i,7] <- -1} 
    if(fulldata[i,7] > fulldata[i,2]){fulldata[i,7] <- fulldata[i,2]}} 
# Reduce master matrix to date, flow, and sliding average baseflow 
  fulldata <- fulldata[,c(1:3,7)] 
# Proper names for columns 
  colnames(fulldata) <- c("day",  
                          "mean_discharge", 
                          "precip_m", 
                          "baseflow") 
# Identify the dates where storms/quickflow does NOT occur 
  no_storms <- subset(fulldata, baseflow != -1) 
# Interpolate baseflow values during storm events  
  interp_bf <- data.frame(approx(no_storms$day, no_storms$baseflow, 
                                 xout = fulldata$day, 
                                 rule = 2, 
                                 method = "linear", 
                                 ties = mean)) 
# Add interpolated baseflow values to data frame 
  fulldata$interp_bf <- interp_bf$y 
# Add estimates of quickflow to the master matrix 
# If the interpolated baseflow is less than the measured mean discharge  
# the quickflow is equal to the difference, otherwise the quickflow = 0 
  for(i in 1:nrow(fulldata)){ 
    if(fulldata[i,5] < fulldata[i,2]){ 
      fulldata[i,6] <- fulldata[i,2] - fulldata[i,5]} 
    else{fulldata[i,6] <- 0}} 
  fulldata[,7] <- fulldata[,6] 
# Reset quickflow values to 0 when no precipitation has occurred  
# on that day and on previous day, and when no quickflow occurred  
# on the previous day 
  for(i in 2:nrow(fulldata)){ 
    if(fulldata[i,3] == 0 & fulldata[i-1,3] == 0 & fulldata[i,6] == 0){ 
      fulldata[i,7] = 0}} 
# Repeat previous loop to eliminate erroneous quickflow events exceeding 1 day.  
  for(i in 2:nrow(fulldata)){ 
    if(fulldata[i,3] == 0 & fulldata[i-1,3] == 0 & fulldata[i-1,7] == 0){ 
      fulldata[i,7] = 0}} 
# Repeat again to eliminate residual erroneous quickflow events  
  for(i in 2:nrow(fulldata)){ 
    if(fulldata[i,3] == 0 & fulldata[i-1,3] == 0 & fulldata[i-1,7] == 0){ 
      fulldata[i,7] = 0}} 
# Create column for precipitation-adjusted sliding average baseflow 
  for(i in 1:nrow(fulldata)){ 
    if(fulldata[i,7] == 0 & fulldata[i,5] > fulldata[i,2]){fulldata[i,8] =  

fulldata[i,2]} 
    else{fulldata[i,8] = fulldata[i,5]} 
    if(fulldata[i,6] > fulldata[i,7]){fulldata[i,8] = fulldata[i,2]}} 
  mark <- 1 
  for(i in 3:nrow(fulldata)){ 
    if(fulldata[i,7] == 0 & fulldata[i-1,7] > 0){mark = mark+1} 



40 
 

    else{mark = mark} 
    fulldata[i,9] <- mark 
    if(fulldata[i,7] == 0 & fulldata[i,3] == 0){fulldata[i,9] = 0}} 
# Proper column names 
  colnames(fulldata) <- c("day", 
                          "mean_discharge", 
                          "precip_m", 
                          "baseflow", 
                          "interp_bf", 
                          "quickflow", 
                          "quickflow_correct",  
                          "bf_precip_correct", 
                          "event_number") 
  return(fulldata) 
  } 

Stream and precipitation data must be formatted correctly to be used as inputs in the baseflow 

separations as follows: 

# Load stream and precipitation data 
stream_opa             <- read.csv("Stream_Discharge_Opaeula.csv")  
precip_opa             <- opa_daily_precip 
# Convert to proper date format 
stream_opa$datetime    <- as.Date(stream_opa$datetime, format = "%m/%d/%Y") 
precip_opa$days_opa    <- as.Date(precip_opa$days_opa, format = "%Y-%m-%d") 
# Clean up the data frames to only include dates, discharge and point precip columns 
stream_opa             <- stream_opa[,c(3,4)] # Select discharge and date columns  
precip_opa             <- precip_opa[,c(1,2)] # Select precip and date columns 
# Convert all units to meters if needed  
precip_opa$opa_daily   <- precip_opa$opa_daily / 1000 # Convert mm to m 
stream_opa$discharge   <- stream_opa$discharge * 0.0283168 # Convert cfs to cms 
# Make date columns match for merge() function 
colnames(precip_opa)   <- c("day", "precip_m") 
colnames(stream_opa)   <- c("day", "discharge_cms") 
# Merge stream and precip data by date 
fulldata_opa           <- merge(stream_opa, precip_opa, by = 'day', all = TRUE)  
# Remove days without data  
fulldata_opa           <- na.omit(fulldata_opa) 

# Complete the baseflow separations 
n <- 5 # Size of fixed blocks for Wahl & Wahl (1995) baseflow separation (days)  
f <- 0.9 # Turning point test factor used by USGS for Oʻahu streams 
# SARR baseflow separation  
opa_sarr <- sarr(fulldata_opa, f)  
# Fixed five-day window baseflow separation 
opa_wahl <- bfs(fulldata_opa, n, f)  

Plot the stream hydrograph with interpolated baseflow estimates. 
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# Determine experimental monthly QF volume  
# Add month column to daily baseflow separations 
opa_sarr <- opa_sarr %>% mutate(month = month(day)) 
opa_wahl <- opa_wahl %>% mutate(month = month(day)) 
# Summarize data by month 
opa_sarr_monthly <- opa_sarr %>%  
  group_by(month) %>%  
  summarise(qf_cms = sum(quickflow_correct))   
opa_wahl_monthly <- opa_wahl %>%  
  group_by(month) %>%  
  summarise(interp_bf_cms = sum(interp_bf), 
            discharge_cms = sum(discharge_cms)) 
# Column for quickflow for the FFW BFS 
opa_wahl_monthly$qf_cms <- opa_wahl_monthly$discharge_cms - opa_wahl_monthly$interp_b
f_cms 
# Columns for quickflow volume  
opa_wahl_monthly$qf_m3  <- opa_wahl_monthly$qf_cms * 86400  
opa_sarr_monthly$qf_m3  <- opa_sarr_monthly$qf_cms * 86400 
# Mean monthly quickflow volume (m3) 
print(mean_bfs_qf_m3    <- (opa_sarr_monthly$qf_m3 +  
                              opa_wahl_monthly$qf_m3) / 2) 

## [1] 492368.50  38308.01 215481.79 560203.71 671123.48 631803.42 

 

3. Determine Standard Quickflow 
Standard QF is taken directly from runoff coefficient maps in Engott et al. (2015, Figure 7). 

These maps were rasterized in ArcMap and are available upon request. 
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# Determine standard QF for Opae Ula  
# Pull runoff coefficients directly from Engott et al. (2015) Figure 7 
RC_opa <- c(0.2, 0.2, 0.375, 0.375, 0.375, 0.375) # Two dry season, four wet season  
print(stdr_qf_m3 <- opa_monthly_precip$rain_m3 * RC_opa) 

## [1] 436097.7 210572.3 222440.9 707718.3 523737.5 581848.1 

4. Determine Experimental Evapotranspiration 
# Calculate monthly precipitation-limited Thornthwaite AET 
# First, calculate the Thornthwaite PET 
# Create bin for loop  
PET <- stack() 
# Sequence through each year of temperature data 
for(j in 1997:1998){  
# Isolate temperature rasters by year  
  temp_j <- raster::subset(temp_rasters,  
                           grep(j, names(temp_rasters), value = T)) 
# Create bin inside the loop  
  I_j <- stack() 
# Sequence through each month within each year 
  for(i in 1:12){ 
# Calculate heat index (I) for each year 
    T_i <- (temp_j[[i]]/5)^1.514 
    I_j <- stack(I_j, T_i)} # Close inner loop 
  I_j <- calc(I_j, fun = sum, na.rm = T) 
# Calculate alpha for each year  
  alpha_j <- 0.49 + 0.0179 * I_j - 0.0000771 * I_j^2 + 0.000000675 * I_j^3 
# Open another inner loop sequencing through each month  
  for(i in 1:12){ 
# Calculate Thornthwaite PET using monthly temperature and annual heat index 
    PET_i <- 1.6 * (10 * temp_j[[i]] / I_j)^alpha_j 
# Collect each monthly PET map into the "PET" bin 
    PET <- stack(PET, PET_i)}} # Close inner and outer loops 
# Calculate the precipitation-limited Thornthwaite AET 
# Convert monthly precip maps from mean to total monthly precip  
months <- seq.Date(from = as.Date("1997-01-01", format = "%Y-%m-%d"),  
                   to   = as.Date("1998-12-31", format = "%Y-%m-%d"),  
                   by   = "month") 
days <- days_in_month(months) 
rf_rasters <- rf_rasters * days # Multiply mean monthly RF by number of days 
# Convert PET from cm to mm  
PET <- PET * 10  
# Determine difference between Thornthwaite PET and RF 
PLT_AET_neg <- PET - rf_rasters  
# Eliminate all negative pixels  
PLT_AET_neg[PLT_AET_neg < 0] <- 0 
# Subtract difference between RF and PET from PET 
PLT_AET <- PET - PLT_AET_neg # Precipitation-Limited Thornthwaite AET (mm/month) 

# Add CRS to the PLT-AET maps 
crs(PLT_AET)  <- "+proj=longlat +datum=WGS84 +no_defs" 
# Reproject the drainage basin into the correct CRS 
db_opa_latlon <- spTransform(db_opa, crs(PLT_AET)) 
# Extract monthly PLT-AET  
PLT_AET_opa   <- cellStats(mask(PLT_AET, db_opa_latlon), stat = 'mean') 
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# Select the Sep. 1997 - Feb. 1998 
PLT_AET_opa   <- PLT_AET_opa[9:14]   
# Convert from mm to cubic meters  
print(PLT_AET_opa   <- PLT_AET_opa * area_opa / 1000) 

5. Determine Standard Evapotranspiration 
Standard ET was set as the long-term average AET from the Rainfall Atlas of Hawai’i 

# Extract Standard ET from the LTA AET maps 
# Bin for loop 
lta_aet       <- vector() 
# Stack LTA AET maps 
lta_aet_maps  <- stack(aet_sep, aet_oct, aet_nov, aet_dec, aet_jan, aet_feb) 
# Loop to dete 
for(i in 1:nlayers(lta_aet_maps)){ 
  lta_aet[i]  <- mean(cellStats(mask(lta_aet_maps[[i]], db_opa_latlon), stat = 'mean'
))} 
# Convert to mm to m3 
print(lta_aet <- lta_aet * area_opa / 1000) 

## [1] 669930.4 612039.9 490691.6 476977.9 483151.3 472831.0 

6. Determine Experimental Recharge 
# Determine monthly experimental recharge  
# Recharge = precip - QF - ET 
rech_ex <- as.numeric(opa_monthly_precip$rain_m3 - mean_bfs_qf_m3 - PLT_AET_opa) 
# Get rid of negative recharge 
rech_ex[rech_ex < 0] <- 0 
rech_ex 

## [1] 960450.2 323797.6      0.0 838342.5 229007.3 463144.6 

7. Determine Standard Recharge 
Standard recharge was determined by applying a monthly weighting factor to long-term average 

USGS recharge. The period between Sep. 1997 and Jan. 1998 is classified as a normal climate 

period. The month of Feb. 1998 marks the beginning of a statewide drought. 

# Extract Standard recharge from the LTA USGS recharge maps 
stdr_rech   <- cellStats(mask(oahu_rech,   db_opa), stat = 'mean') # Normal climate 
stdr_rech_d <- cellStats(mask(oahu_rech_d, db_opa), stat = 'mean') # Drought 
# Convert from inches per year to m3 per 6 months 
stdr_rech   <- stdr_rech   * 0.0254 * area_opa / 2 
stdr_rech_d <- stdr_rech_d * 0.0254 * area_opa / 2 
# Weight monthly recharge by precipitation volume  
total_rf    <- sum(opa_monthly_precip$rain_m3) # Total precip Sep. 97 - Feb. 98 
weight      <- opa_monthly_precip$rain_m3 / total_rf 
stdr_rech   <- stdr_rech * weight 
stdr_rech_d <- stdr_rech_d * weight  
print(stdr_rech   <- c(stdr_rech[1:5], stdr_rech_d[6])) 

## [1] 2099374.0 1013694.7  571109.6 1817042.8 1344678.4 1205960.5 
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8. Determine Recharge Uncertainty 
Recharge uncertainty (𝛿𝑅) was determined by propagating error through the water budget 

calculations as follows: 

𝛿𝑅 = √𝛿𝑃2 + 𝛿𝑄𝐹2 + 𝛿𝐸𝑇2 

 

, where 𝛿𝑃 is precipitation uncertainty, 𝛿𝑄𝐹 is quickflow uncertainty, and 𝛿𝐸𝑇 is 

evapotranspiration uncertainty. 𝛿𝑃 was taken directly from Longman et al. (2020) as 0.5 mm per 

pixel per day. 𝛿𝑄𝐹 was set as the mean difference between standard and experimental QF. 𝛿𝐴𝐸𝑇 

was set as the mean difference between standard and experimental ET. 

# Determine precipitation error 
d_rf <- 0.5 * area_opa / 1000 # cubic meters  
# Determine QF uncertainty  
d_qf <- mean(abs(mean_bfs_qf_m3 - stdr_qf_m3)) # cubic meters 
# Determine ET uncertainty  
d_et <- mean(abs(lta_aet - PLT_AET_opa)) # cubic meters 
# Determine recharge uncertainty 
d_r  <- sqrt(d_rf^2 + d_qf^2 + d_et^2) / 10^6 # cubic meters 

9. Results 
Total recharge in the Opae Ula drainage basin between September 1997 and February 1998 was 

2.81 ± 0.63 𝑀𝑚3. 

 

  



45 
 

Appendix C: O’ahu Monthly Water Budgets Sample Code  

The code below was prepared in RStudio (RStudio Team 2021).  

# Load the rainfall maps 
# Set path to location of the RF maps 
rastlist <- list.files(path = "D:/RF_Oahu/Monthly_RF_Oahu", 
                       pattern = '.tif$', 
                       all.files = TRUE, 
                       full.names = FALSE) 
# Create raster stack 
# Set working directory to location of the RF maps 
setwd("D:/RF_Oahu/Monthly_RF_Oahu") 
rf_rasters <- stack(rastlist) 
# Assign CRS to each RF raster in the stack  
for(i in 1:nlayers(rf_rasters)){ 
  proj4string(rf_rasters[[i]]) <- CRS("+proj=longlat +datum=WGS84")} 

# Load the temperature maps 
# Set path to the location of the temp maps 
rastlist <- list.files(path = "D:/Temp_Oahu/Mean_Monthly_Temp", 
                       pattern = '.tif$', 
                       all.files = TRUE, 
                       full.names = FALSE) 
# Create raster stack 
# Set working directory to the location of the temp maps 
setwd("D:/Temp_Oahu/Mean_Monthly_Temp") 
temp_rasters <- stack(rastlist) 
# Assign CRS to each temperature raster in the stack  
for(i in 1:nlayers(temp_rasters)){ 
  proj4string(temp_rasters[[i]]) <- CRS("+proj=longlat +datum=WGS84")} 

# Calculate monthly precipitation-limited Thornthwaite AET 
# First, calculate the Thornthwaite PET 
# Create bin for loop  
PET <- stack() 
# Sequence through each year of temperature data 
for(j in 1990:2014){  
# Isolate temperature rasters by year  
  temp_j <- raster::subset(temp_rasters,  
                           grep(j, names(temp_rasters), value = T)) 
# Create bin inside the loop  
  I_j <- stack() 
# Sequence through each month within each year 
  for(i in 1:12){ 
# Calculate heat index (I) for each year 
    T_i <- (temp_j[[i]]/5)^1.514 
    I_j <- stack(I_j, T_i)} # Close inner loop 
  I_j <- calc(I_j, fun = sum, na.rm = T) 
# Calculate alpha for each year  
  alpha_j <- 0.49 + 0.0179 * I_j - 0.0000771 * I_j^2 + 0.000000675 * I_j^3 
# Open another inner loop sequencing through each month  
  for(i in 1:12){ 
# Calculate Thornthwaite PET using monthly temperature and annual heat index 
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    PET_i <- 1.6 * (10 * temp_j[[i]] / I_j)^alpha_j 
# Collect each monthly PET map into the "PET" bin 
    PET <- stack(PET, PET_i)}} # Close inner and outer loops 
# Calculate the precipitation-limited Thornthwaite AET 
# Convert monthly precip maps from mean to total monthly precip  
months <- seq.Date(from = as.Date("1990-01-01", format = "%Y-%m-%d"),  
                   to   = as.Date("2014-12-31", format = "%Y-%m-%d"),  
                   by   = "month") 
days <- days_in_month(months) 
rf_rasters <- rf_rasters * days # Multiply mean monthly RF by number of days 
# Convert PET from cm to mm  
PET <- PET * 10  
# Determine difference between Thornthwaite PET and RF 
PLT_AET_neg <- PET - rf_rasters  
# Eliminate all negative pixels  
PLT_AET_neg[PLT_AET_neg < 0] <- 0 
# Subtract difference between RF and PET from PET 
PLT_AET <- PET - PLT_AET_neg # Precipitation-Limited Thornthwaite AET (mm/month) 

# Determine quickflow for each month 
# Load seasonal runoff coefficient maps modified from Engott et al. (2015) 
RC_dry  <- raster("rc_dry")  
RC_wet  <- raster("rc_wet")  
# Create stack with monthly runoff coefficients  
RC_wet1 <- stack(replicate(4, RC_wet)) # January - April  
RC_dry  <- stack(replicate(6, RC_dry)) # May - October  
RC_wet2 <- stack(replicate(2, RC_wet)) # November - December 
RC      <- stack(RC_wet1, RC_dry, RC_wet2)  
RC      <- stack(replicate(25, RC)) # Repeat for 25 years 

# Determine Recharge for each month  
QF <- rf_rasters * RC  
R  <- rf_rasters - QF - PLT_AET 
# Get rid of negative recharge pixels 
R[R < 0] <- 0 
# Proper names for the recharge maps 
for(i in 1:length(months)){ 
  names(R)[i] <- paste("recharge", as.character(months[i]), sep = "_")} 

# Plot (produces Figure 13) 
R_1991 <- raster::subset(R, grep(1991, names(R), value = T)) 
cols <- colorRampPalette(colors = c("red", gold", "dodgerblue", "blue", "darkblue")) 
levelplot(R_1991, 
          main = "Monthly Recharge, O'ahu, 1991", 
          col.regions = cols,  
          names.attr = c("January", "February", "March", "April",  
                         "May", "June", "July", "August",  
                         "September", "October", "November", "December"),  
          xlab = "Longitude",  
          ylab = "Latitude") 

  



47 
 

References  

 

Allen, R.G., Walter, I.A., Elliott, R.L., Howell, T.A., Itenfisu, D., Jensen, M.E., and Snyker, R.L. 

2005. The ASCE Standardized Reference Evapotranspiration Equation. ASCE Library. 

https://doi.org/10.1061/9780784408056  

 

Aksoy, H., Unal, N.E., Pektas, A.O., 2008. Smoother minima baseflow separation tool for 

perennial and intermittent streams. Hydrological Processes. 22 (22), 4467–4476. 

 

Aksoy, H., Kurt, I., Eris, E., 2009. Filtered smoothed minima baseflow separation method. 

Journal of Hydrology. 372 (1–4), 94–101. 

  

Bassiouni, M., & Oki, D. (2013). Trends and shifts in streamflow in Hawai‘i, 1913–2008. 

Hydrological Processes, 27(10), 1484–1500. https://doi.org/10.1002/hyp.9298   

 

Bird, R.E. and Hulstrom, R.L. 1981. A Simplified Clear Sky Model for Direct and Diffuse 

Insolation on Horizontal Surfaces. Solar Energy Research Institute. 

https://instesre.org/Solar/BirdModelNew.htm   

 

Booth, H., Lautze, N., Tachera, D., & Dores, D. (2021). Event-Based Stable Isotope Analysis of 

Precipitation Along a High Resolution Transect on the South Face of O'ahu, Hawai'i. Pacific 

Science 75(3), 421-441. https://www.muse.jhu.edu/article/805234.  

 

Chu, P., & Chen, H. (2005). Interannual and Interdecadal Rainfall Variations in the Hawaiian 

Islands. Journal of Climate, 18(22), 4796–4813. https://doi.org/10.1175/JCLI3578.1  

 

Chu, P. (1989). Hawaiian drought and the Southern Oscillation. Journal of Climatology, 9(6), 

619–631. 

 

Dores, D., Glenn, C., Torri, G., Whittier, R., & Popp, B. (2020). Implications for groundwater 

recharge from stable isotopic composition of precipitation in Hawai’i during the 2017–2018 La 

Niña. Hydrological Processes, 34(24), 4675–4696. https://doi.org/10.1002/hyp.13907   

 

Dunne, T., & Leopold, L. (1978). Water in Environmental Planning. W.H. Freeman and Co.,San 

Francisco, CA. 

 

Ekern, P. (1983). Measured Evaporation in High Rainfall Areas, Leeward Ko’olau Ranges, 

O’ahu, Hawai’i. Water Resources Research Center, University of Hawaii at Manoa. 

 

Engott, J.A., 2011, A water-budget model and assessment of groundwater recharge for the Island 

of Hawaiʻi: U.S. Geological Survey Scientific Investigations Report 2011–5078, 53 p.  

 

Engott, J., Johnson, A., Bassiouni, M., Izuka, S., & Engott, J. (2015). Spatially distributed 

groundwater recharge for 2010 land cover estimated using a water-budget model for the island of 

O’ahu, Hawaii. Scientific Investigations Report. United States Geological Survey, 2015-5010. 

https://doi.org/10.3133/sir20155010  

https://doi.org/10.1061/9780784408056
https://doi.org/10.1002/hyp.9298
https://instesre.org/Solar/BirdModelNew.htm
https://www.muse.jhu.edu/article/805234
https://doi.org/10.1175/JCLI3578.1
https://doi.org/10.1002/hyp.13907
https://doi.org/10.3133/sir20155010


48 
 

 

Engott, J.A., and Vana, T.T., 2007, Effects of agricultural land use changes and rainfall on 

round-water recharge in central and west Maui, Hawaiʻi, 1926–2004: U.S. Geological Survey 

Scientific Investigations Report 2007–5103, 56 p. 

Fackrell, J. (2016). Geochemical Evolution of Hawaiian Groundwater. [Honolulu] : [University 

of Hawaii at Manoa], [August 2016]. 

 

Frazier, A. G., and Giambelluca, T. W. (2017), Spatial trend analysis of Hawaiian rainfall from 

1920 to 2012. International Journal of Climatology, 37(5), 2522–2531. 

https://doi.org/10.1002/joc.4862  

 

Frazier, A.G., et al. (in review), A Century of Spatial and Temporal Patterns of Drought in 

Hawai’i across Hydrological, Ecological, and Socioeconomic Scales. Manuscript submitted for 

publication. 

 

Frazier, A. G., Giambelluca, T. W., Diaz, H. F. and Needham, H. L. (2016), Comparison of 

geostatistical approaches to spatially interpolate month-year rainfall for the Hawaiian Islands. 

International Journal of Climatology, 36(3), 1459-1470. https://doi.org/10.1002/joc.4437   

 

Frazier, A.G., Timm, O., Giambelluca, T.W., Diaz, H. (2018). The influence of ENSO, PDO and 

PNA on secular rainfall variations in Hawai‘i. Climate Dynamics, 51(5), 2127–2140. 

https://doi.org/10.1007/s00382-017-4003-4  

 

Giambelluca, T. (1983). Water balance of the Pearl Harbor-Honolulu Basin, Hawaiʻi, 1946-

1975. Water Resources Research Center, University of Hawaii at Manoa. 

 

Giambelluca, T.W., Chen, Q., Frazier, A.G., Price, J.P., Chen, Y.-L., Chu, P.-S., Eischeid, J.K., 

and Delparte, D.M., 2013, Online Rainfall Atlas of Hawaiʻi: Bulletin of the American 

Meteorological Society, v. 94, p. 313–316, https://doi.org/10.1175/BAMSD-11-00228.1 , at 

http://rainfall.geography.Hawaii.edu/. 

 

Giambelluca, T.W., Shuai, Xiufu, Barnes, M.L., Alliss, R.J., Longman, R.J., Miura, Tomoaki, 

Chen, Qi, Frazier, A.G., Mudd, R.G., Cuo, Lan, and Businger, A.D., 2014, Evapotranspiration of 

Hawaiʻi, final report: submitted to U.S. Army Corps of Engineers–Honolulu District and 

Commission on Water Resource Management, State of Hawaiʻi, 178 p. 

 

Gingerich, S.B., and Oki, D.S., 2000, Ground Water in Hawaii: U.S. Geological Survey, 6 p. 

 

Glenn, C., Whittier, R., Dailer, M., Dulai, H., El-Kadi, A., Fackrell, J., Kelly, J., Waters, C., 

Sevadjian, J. (2013). "Lahaina Groundwater Tracer Study – Lahaina, Maui, Hawaii." Final 

Report prepared from the State of Hawaii Department of Health, the U.S. Environmental 

Protection Agency, and the U.S. Army Engineer Research and Development Center. 

 

Gustard, A., Bullock, A., & Dixon, J. (1992). Low flow estimation in the United Kingdom. 

Report - Institute of Hydrology (United Kingdom), 108. 

 

https://doi.org/10.1002/joc.4862
https://doi.org/10.1002/joc.4437
https://doi.org/10.1007/s00382-017-4003-4
https://doi.org/10.1175/BAMSD-11-00228.1


49 
 

Hawaii Water Authority. (1959). Water resources in Hawaii. Hawaii Water Authority. 

 

Institute of Hydrology, 1980. Low Flow Studies, Research Reports 1 and 3. Institute of 

Hydrology, Wallingford, Oxfordshire, UK. 

Izuka, S., Oki, D., & Chen, C. (2005). Effects of irrigation and rainfall reduction on ground-

water recharge in the Lihue Basin, Kauai, Hawaii. U.S. Geological Survey. 

 

Izuka, S.K., Engott, J.A., Rotzoll, Kolja, Bassiouni, Maoya, Johnson, A.G., Miller, L.D., and 

Mair, Alan, 2018, Volcanic aquifers of Hawai‘i—Hydrogeology, water budgets, and conceptual 

models (ver. 2.0, March 2018): U.S. Geological Survey Scientific Investigations Report 2015-

5164, 158 p., https://doi.org/10.3133/sir20155164.   

 

Jasechko, S., Birks, S., Gleeson, T., Wada, Y., Fawcett, P., Sharp, Z., McDonnell, J., & Welker, 

J. (2014). The pronounced seasonality of global groundwater recharge. Water  

 

Kendall, C., & McDonnell, J. (1999). Isotope Tracers in Catchment Hydrology. Elsevier Science 

& Technology.  

 

Koskelo, A., Fisher, T., Utz, R., & Jordan, T. (2012). A new precipitation-based method of 

baseflow separation and event identification for small watersheds (<50km2). Journal of 

Hydrology, 450-451, 267–278. https://doi.org/10.1016/j.jhydrol.2012.04.055  

 

Krushelnycky, P., Starr, F., Starr, K., Longman, R., Frazier, A., Loope, L., & Giambelluca, T. 

(2016). Change in trade wind inversion frequency implicated in the decline of an alpine plant. 

Climate Change Responses, 3(1). https://doi.org/10.1186/s40665-016-0015-2   

 

Longman, R., Diaz, H., & Giambelluca, T. (2015). Sustained Increases in Lower-Tropospheric 

Subsidence over the Central Tropical North Pacific Drive a Decline in High-Elevation Rainfall 

in Hawaii. Journal of Climate, 28(22), 8743–8759. https://doi.org/10.1175/JCLI-D-15-0006.1  

  

Longman, R., Frazier, A., Newman, A., Giambelluca, T., Schanzenbach, D., Kagawa-Viviani, 

A., Needham, H., Arnold, J., & Clark, M. (2019). High-Resolution Gridded Daily Rainfall and 

Temperature for the Hawaiian Islands (1990–2014). Journal of Hydrometeorology, 20(3), 489–

508. https://doi.org/10.1175/JHM-D-18-0112.1  

 

Longman, R., Elison Timm, O., Giambelluca, T., & Kaiser, L. (2021). A 20-year analysis of 

disturbance-driven rainfall on O’ahu, Hawai’i. Monthly Weather Review. 

https://doi.org/10.1175/MWR-D-20-0287.1  

 

Mair, A. (2009). Effects of rainfall variability and groundwater pumping on streamflow in Upper 

Makaha Valley. University of Hawaii at Manoa. 

 

Mair, A. (2010). Influence of groundwater pumping and rainfall spatio-temporal variation on 

streamflow. Journal of Hydrology (Amsterdam), 393(3), 287–308. 

https://doi.org/10.1016/j.jhydrol.2010.08.026  

 

https://doi.org/10.3133/sir20155164
https://doi.org/10.1016/j.jhydrol.2012.04.055
https://doi.org/10.1186/s40665-016-0015-2
https://doi.org/10.1175/JCLI-D-15-0006.1
https://doi.org/10.1175/JHM-D-18-0112.1
https://doi.org/10.1175/MWR-D-20-0287.1
https://doi.org/10.1016/j.jhydrol.2010.08.026


50 
 

McKenzie, M., Giambelluca, T., Diaz, H. (2019). Temperature trends in Hawaiʻi: A century of 

change, 1917–2016. International Journal of Climatology, 39(10), 3987–4001. 

https://doi.org/10.1002/joc.6053  

Monteith, J., 1965. Evaporation and environment. In G.E. Fogg (ed.) Symposium of 

the Society for Experimental Biology, The State and Movement of Water in Living 

Organisms, Vol. 19, pp. 205-234, Academic Press, Inc., NY, USA. 

 

Nichols, W., Shade, P., & Hunt, C. (1996). Summary of the Oahu, Hawaii, regional aquifer-

system analysis . U.S. G.P.O. 

 

NOAA Climate Prediction Center. (2001, Jan. 1). Cold & Warm Episodes by Season. US 

National Weather Service. 

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php  

 

Noguchi, Y. (1979). Deformation of Trees in Hawaii and its Relation to Wind. The Journal of 

Ecology, 67(2), 611–628. https://doi.org/10.2307/2259116  

 

Penman, H. L. (1948). Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings 

of the Royal Society of London. Series A, Mathematical and Physical Sciences, 193(1032), 120–

145. https://doi.org/10.1098/rspa.1948.0037  

 

Piggott, A. (2005). A revised approach to the UKIH method for the calculation of baseflow / Une 

approche améliorée de la méthode de l’UKIH pour le calcul de l’écoulement de base. 

Hydrological Sciences Journal, 50(5), 911. https://doi.org/10.1623/hysj.2005.50.5.911  

 

RStudio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL 

http://www.rstudio.com/.  

 

Safeeq, M. (2012). Hydrologic effect of groundwater development in a small mountainous 

tropical watershed. Journal of Hydrology (Amsterdam), 428-429, 51–67. 

https://doi.org/10.1016/j.jhydrol.2012.01.023  

 

Scholl, M. (1995). An isotope hydrology study of the Kilauea volcano area, Hawai’i. U.S. 

Geological Survey. 

 

Scholl, M., Gingerich, S., & Tribble, G. (2002). The influence of microclimates and fog on stable 

isotope signatures used in interpretation of regional hydrology: East Maui, Hawaii. Journal of 

Hydrology (Amsterdam), 264(1), 170–184. https://doi.org/10.1016/S0022-1694(02)00073-2  

 

Scholl, M., Giambelluca, T., Gingerich, S., Nullet, M., & Loope, L. (2007). Cloud water in 

windward and leeward mountain forests: The stable isotope signature of orographic cloud water. 

Water Resources Research, 43(12), W12411–n/a. https://doi.org/10.1029/2007WR006011   

 

Scholl, M., Eugster, W., & Burkard, R. (2011). Understanding the role of fog in forest 

hydrology: stable isotopes as tools for determining input and partitioning of cloud water in 

montane forests. Hydrological Processes, 25(3), 353–366. https://doi.org/10.1002/hyp.7762   

https://doi.org/10.1002/joc.6053
https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php
https://doi.org/10.2307/2259116
https://doi.org/10.1098/rspa.1948.0037
https://doi.org/10.1623/hysj.2005.50.5.911
http://www.rstudio.com/
https://doi.org/10.1016/j.jhydrol.2012.01.023
https://doi.org/10.1016/S0022-1694(02)00073-2
https://doi.org/10.1029/2007WR006011
https://doi.org/10.1002/hyp.7762


51 
 

 

Shade, P. (1984). Hydrology and sediment transport, Moanalua Valley, Oahu, Hawaii. U.S. 

Geological Survey. 

State of Hawaiʻi. (2019). Water Resource Protection Plan 2019 Update: Report prepared by 

Townscape Inc. for the State of Hawaiʻi, Commission on Water Resource Management at 

https://dlnr.hawaii.gov/cwrm/planning/hiwaterplan/wrpp/   

 

Stearns, H.T. & Macdonald, A.G. 1946. Geology and ground-water resources of the Island of 

Maui, Hawaii. Hawaii Div. Hydrogr. Bull. 7, 344. 

 

Tachera, D., Lautze, N., Torri, G., & Thomas, D. (2021). Characterization of the isotopic 

composition and bulk ion deposition of precipitation from Central to West Hawaiʻi Island 

between 2017 and 2019. Journal of Hydrology. Regional Studies, 34, 100786–. 

https://doi.org/10.1016/j.ejrh.2021.100786  

 

Timm, O., Giambelluca, T., & Diaz, H. (2015). Statistical downscaling of rainfall changes in 

Hawai‘i based on the CMIP5 global model projections. Journal of Geophysical Research. 

Atmospheres, 120(1), 92–112. https://doi.org/10.1002/2014JD022059  

 

Visher, F., & Mink, J. (1964). Ground-water Resources in Southern Oahu, Hawaii . U.S. 

Geological Survey.  

 

Wada, C., Bremer, L., Burnett, K., Trauernicht, C., Giambelluca, T., Mandle, L., Parsons, E., 

Weil, C., Kurashima, N., & Ticktin, T. (2017). Estimating Cost-Effectiveness of Hawaiian Dry 

Forest Restoration Using Spatial Changes in Water Yield and Landscape Flammability under 

Climate Change. Pacific Science, 71(4), 401–424. https://doi.org/10.2984/71.4.2  

 

Wahl, K.L., Wahl, T.L., 1995. Determining the flow of Comal Springs at New Braunfels, Texas. 

In: Proceedings of Texas Water ‘95, a Component Conference of the First International 

Conference on Water Resource Engineering. American Society of Civil Engineers, San Antonio, 

Texas, pp. 77–86. 

 

Ward, A., Trimble, S., Burckhard, S., & Lyon, J. (2017). Environmental Hydrology (Third 

edition.). CRC Press, Taylor & Francis Group. 

 

Willmott, C., & Wicks, D. (1980). An Empirical Method for the Spatial Interpolation of Monthly 

Precipitation within California. Physical Geography, 1(1), 59–73. 

https://doi.org/10.1080/02723646.1980.10642189  

 

Willmott, C. (1981). On the Validation of Models. Physical Geography, 2(2), 184–194. 

https://doi.org/10.1080/02723646.1981.10642213  

 

Willmott, C. (1982a). On the Climatic Optimization of the Tilt and Azimuth of Flat-plate Solar 

Collectors. Solar Energy, 28(3), 205–216. https://doi.org/10.1016/0038-092X(82)90159-1  

 

 

https://dlnr.hawaii.gov/cwrm/planning/hiwaterplan/wrpp/
https://doi.org/10.1016/j.ejrh.2021.100786
https://doi.org/10.1002/2014JD022059
https://doi.org/10.2984/71.4.2
https://doi.org/10.1080/02723646.1980.10642189
https://doi.org/10.1080/02723646.1981.10642213
https://doi.org/10.1016/0038-092X(82)90159-1


52 
 

 

Willmott, C. (1982b). Some Comments on the Evaluation of Model Performance. Bulletin of the 

American Meteorological Society, 63(11), 1309–1313. https://doi.org/10.1175/1520-

0477(1982)063  

 

Yeung, C., & Fontaine, R. (2007). Natural and diverted low-flow duration discharges for streams 

affected by the Waiahole Ditch System, Windward Oahu, Hawaii (Version 1.0.). U.S. Geological 

Survey. 

https://doi.org/10.1175/1520-0477(1982)063
https://doi.org/10.1175/1520-0477(1982)063

