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Introduction

Sea-level rise (SLR) presents significant risks to coastal set-
tlements, infrastructure, cultural resources, and sensitive 
species habitats. Increasingly, planners, resource managers 
and policy-makers must identify how, where, and when to 
adapt to changes resulting from SLR, while minimizing the 
impact to human populations, natural systems, or both. 
Incorporating future hazards associated with SLR, such as 
coastal erosion and beach loss, into land use planning is vital 
to land use policy. This article presents a probabilistic model 
of coastal hazards associated with SLR that makes explicit 
use of scientific uncertainty and discusses its application to 
land use planning for the next 50–100 years, using the exam-
ple of a Hawai`i coastal community.

Coastal managers, planners, and engaged communities 
in adaptation planning seek projections of SLR impacts and 
want to examine what specifically is at risk, what the mag-
nitude of the impact might be, and how long they have to 
prepare. Historical data or geometric models are commonly 
used to forecast hazards. Yet, the dynamic nature of open 
coast environments is difficult to model accurately for 
every specific place. Consequentially, there have been 
recent calls for the use of probabilistic forecasts of future 
shoreline change and associated hazards as a basis for 
coastal adaptation with the explicit incorporation of uncer-
tainty (Cowell et  al. 2006; Moser, Williams, and Boesch 
2012). This article addresses how coastal planners can use 

best-estimate models of the future, and the associated 
uncertainties, to prioritize adaptation strategies and develop 
long-term plans. We argue that an adaptive risk manage-
ment approach with probabilistic methods can improve the 
scientific basis for coastal land use policies and support 
community participation in adaptation planning.

The goals of this article are: (1) to present a case of how 
a probability-based model can be used to estimate, man-
age, and adapt to long-term SLR; and (2) to discuss the 
benefits to local governments and communities of linking 
scientifically based SLR predictions and their uncertainty 
to SLR adaptation planning, planning processes, and land 
use policies. This can improve land use planning in the 
face of SLR, including the ability to prioritize areas for 
adaptation while accounting for variability in coastal 
change, managing uncertainty, and incorporating flexibil-
ity into future decision making.

The first part of this article discusses the need for, and 
use of, a probability-based model of shoreline change, 
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which incorporates future SLR, and how this tool can be 
used to plan for SLR adaptation. The second part uses the 
Ka`anapali coast of Maui as an example, where we develop 
probability-based erosion hazard maps and compare the 
outcomes with a deterministic model for estimating future 
hazards. We estimate the likelihood of loss of assets, prop-
erties, and infrastructure 50–100 years in the future, and 
show how a community can visualize risk and develop a 
place-specific decision matrix of priority adaptation 
actions. The third part of this article discusses the benefits 
of the model in a community land-use planning context, 
including the ability to describe the spatial and temporal 
extent of impacts, and examine the risks in light of uncer-
tainty. Through this example, we accentuate opportunities 
for communities to shape land use plans through strategies 
that respond to local conditions by explicitly mapping 
uncertainty and incorporating adaptive management that 
emphasize flexibility and learning.

The Need to Plan for and Adapt to  
Sea-Level Rise

One of the anticipated impacts of climate change is SLR 
threatening low-lying areas around the globe (IPCC 2014). 
The implications to coastal systems are significant, includ-
ing the physical impacts from submergence, flood damage, 
saltwater intrusion, rising water tables, wetland loss, and 
accelerated coastal erosion (Nicholls and Cazenave 2010). 
Future accelerated SLR is particularly worrisome for many 
of the world’s sandy beaches that already experience 
chronic erosion and are expected to experience more land 
loss. A recent study estimates 6,000 to 17,000 km2 of 
coastal lands will be lost globally during the twenty-first 
century due to SLR-induced erosion and between 1.6 and 
5.3 million people may be forced to migrate (Hinkel et al. 
2013). As most of the world’s population lives within 60 
km of the coastline, community infrastructure and support 
services are also at risk. Critical habitat for many sensitive 
species in the shoreline are currently under threat because 
of degradation and loss of coastal lands; additional loss of 
marshes, dunes, and beaches due to the “coastal squeeze” 
could spell disaster for many of the world’s shorebirds, sea 
turtles, and seals (Defeo et  al. 2009; Pontee 2013). For 
example, sea level rise might further reduce shoreline habi-
tat for Hawaiian monk seals to rest, pup, nurse, and mate 
(National Marine Fisheries Service 2016).

Beach loss due to SLR is the consequence of more than 
just the inundation of coastal lands. As sea levels rise, 
beaches and dunes transform as a consequence of climate-
induced oceanographic processes (e.g., storms, waves, and 
currents), sediment supply and transport dynamics, and 
human activities that alter sediment movement (Nicholls 
2010; Williams 2013).

Coastal managers and planners look for credible scientific 
information to facilitate coastal adaptation, the management 
of resources, and the implementation of strategies over time 

(Tribbia and Moser 2008). However, the dynamics of a 
coastline make it difficult to predict future SLR-induced ero-
sion with a high degree of confidence and place-based accu-
racy. SLR, in particular, presents several challenges for land 
use planning and coastal management. SLR is a long-term 
problem that is mostly “invisible” from daily problems 
because it progresses relatively slowly (Moser 2005). Thus, 
it may not be obvious that there is a direct causal link between 
the slow, creeping process of SLR and the acute impacts of 
storms, flooding, and erosion, which, in turn, makes it diffi-
cult to isolate SLR from other coastal processes. Another 
challenge is the considerable uncertainty in understanding 
the geographic patterns, timing, and magnitude of future 
impacts of SLR, especially (1) uncertainties associated with 
future global emissions scenarios that affect the future rate of 
SLR, and (2) uncertainties associated with the relationship 
between SLR and shoreline change. This article is primarily 
concerned with the latter as it influences local efforts to plan 
and adapt to a shifting coastline.

Traditional decision-making frameworks that rely on sin-
gle “best estimates,” fixed spatial hazard lines, and cost–ben-
efit analyses (Dittrich, Wreford, and Moran 2016; Bell et al. 
2014) face considerable challenges when applied to climate 
adaptation. O’Brien et  al. (2012) review the psychological 
and economic barriers shaping how people make decisions 
under uncertainty. Individuals and groups often underesti-
mate low-probability and high-risk events. Where there are 
high upfront costs associated with adaptation, the focus will 
often be on short-term goals rather than long-term benefits of 
alternative options. For example, a focus on short-term inter-
ests that respond to extreme events will preclude long-term 
adaptation strategies, and long-term erosion problems will be 
omitted from local solutions (Donner and Webber 2014). The 
result can lead to lock-in legacy infrastructure, such as pro-
tective sea-walls. Under conditions of uncertainty, different 
views emerge on the nature of risks associated with future 
hazards. Conflicts arise over preferred response options (e.g., 
sea-wall vs. managed retreat) due to contested understand-
ings of causal relationships between SLR, erosional expo-
sures, and impacts (Moser, Williams, and Boesch 2012). 
Further, and perhaps more consequential to planners, differ-
ent groups respond to risks according to their own values, 
leading to divergent interpretation over whether risks are 
acceptable, tolerable, and potentially leading to mistrust in 
outcomes (Van Asselt and Renn 2011). Experience shows 
that meaningful interaction and dialogue around scientific 
uncertainty is paramount for building trust in the adaptation 
process and confidence in policy outcomes (Dietz 2013; Bell 
et al. 2014; Kettle and Dow 2014).

Uncertainty can also lead to inherent skepticism in model 
predictions particularly among groups that voice opposition 
to planning for SLR (Great American Adaptation Road Trip 
2013). This can delay adaptation efforts, leading some groups 
to support a reactive, “wait to plan” approach until there is 
more certainty in model outputs. Yet, the disaster and haz-
ards community has recognized the need to shift from an ad 
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hoc reactive system to a proactive, mitigative focus (Burby 
et al. 2000; Godschalk 2003; Beatley 2009). Integrating haz-
ards into land use planning involves technical analysis of 
hazards and community participation within a long-term, 
anticipatory, and comprehensive planning and risk manage-
ment framework (Godschalk, Brody, and Burby 2003). 
Community engagement is essential to ensure citizen interest 
in natural hazards and to obtain broad support for the imple-
mentation of plans and policies. Recommendations for cli-
mate change adaptation agree that risk-based management 
approaches are more effective (Lim et al. 2004; NRC 2010). 
Better decisions can be made if they are place-based and 
contain a sequential adaptive management approach. Moser, 
Williams, and Boesch (2012) assert that this proactive 
approach involves six components: (1) careful risk identifi-
cation; (2) vulnerability assessment and evaluation; (3) sys-
tematic development and assessment of adaptation strategies; 
(4) iterative decision making combined with deliberate 
learning; (5) decisions with long time horizons that maxi-
mize flexibility, enhance robustness, and ensure durability; 
and (6) a portfolio of approaches rather than single techno-
logical fixes or market mechanisms.

The risk characterization process for hazards is more than 
a scientific effort or summarizing activity, it is decision-
driven from the outset, recognizes all significant concerns, 
reflects both analysis and deliberation, and is designed to be 
appropriate to the decision (NRC 1996). Thus, there is grow-
ing acceptance that adaptation efforts should take place at the 
community level, with an assessment process closely involv-
ing local stakeholders (van Aalst, Cannon, and Burton 2008; 
Berke and Lyles 2013). Characterizing the risks requires 
information and data on the local impacts of SLR on shore-
lines with sufficient detail to quantify the risks1 associated 
with future SLR. Risk is defined as the product of the prob-
ability or likelihood of an event and its consequence (NRC 
1996). The consequence (or set of consequences) is associ-
ated with the exposure to future hazard(s). Uncertainty is 
inherently a part of identifying risks as uncertainty can affect 
the probability and consequences of risk. Taken together, a 
risk-based approach to coastal adaptation implies the use of 
a place-based model that can approximate the impacts of 
SLR and its uncertainties over the next fifty to hundred years.

Models Predicting Coastal Impacts of 
SLR

Models can estimate the impacts and risks of SLR both 
quantitatively and qualitatively. Simple quantitative 
approaches include the “bathtub” model, where, under a 
given SLR scenario, land lower than a particular sea level is 
presumed inundated. The bathtub approach has been used 
widely for modeling impacts, particularly with the advent of 
high-resolution digital elevation data. However, this 
assumes static SLR and ignores the dynamics of the coastal 
environment and geomorphic feedbacks, in particular the 
physical reorganization of sediment material leading to 

shoreline migration. Another quantitative approach is to 
extrapolate trends of historical shorelines to project future 
shoreline change. Yet, this is problematic because extrapola-
tion does not account for future SLR and, oftentimes, past 
records to determine rates are incomplete (Pilkey and 
Cooper 2004). An alternative approach commonly used is 
the “Bruun Rule,” a simple mathematical model that relates 
SLR to shoreline retreat based on the conservation of beach 
volume. Using two variables, SLR and beach slope, the 
model essentially predicts that, as sea-level rises, sediment 
erodes from the upper part of the beach and is deposited on 
the nearshore bottom while maintaining the original slope of 
the beach (see model details in Appendix A).

The Bruun rule has been criticized for its limiting assump-
tions of the physical setting. For example, it assumes no sedi-
ment sources or sinks and ignores the effects of surrounding 
geology, man-made constraints, and sediment availability. It 
also runs the risk of being applied incorrectly as a “one model 
fits all,” with SLR as the only important factor always causing 
shoreline retreat (Pilkey and Cooper 2004; Bell et al. 2014). 
There are variations of the Bruun Rule, such as the R-DA 
method, which alter the underlying assumptions of the model 
and incorporate more accurate sediment transport processes 
(Davidson-Arnott 2005). Yet, because these models are derived 
from the Bruun Rule, they suffer from similar inaccuracies. 
These deterministic approaches have advantages for being eas-
ily understood and updated as new data are collected. However, 
they do not account for spatial or temporal variability in coastal 
processes or for the fact that erosion can be episodic.

Pilkey and Cooper (2004) argue that Bruun-type models 
are inherently inaccurate due to the dynamic nature of coasts. 
They propose the use of a more qualitative approach that com-
bines historical trends with an “expert eye” that considers 
local geological constraints, local sand sources, and man-made 
structures (present and future). As an alternative, process mod-
els can describe beach evolution with more detail than the 
above-referenced models. However, one problem with process 
models is that they require intense computation and field data 
collection of waves and water levels at high temporal and spa-
tial resolutions, which makes them functionally impractical 
over large geographic areas (Hanson et al. 2003).

By comparison, probabilistic forecasts can provide a more 
transparent basis than deterministic predictions for manage-
ment decisions by communicating the inherent uncertainty in 
future coastal hazards (Cowell et al. 2006). For this reason, 
there have been calls for the incorporation of probabilistic 
methods to account for both uncertainty in model outputs and 
the complexity in coastal change (Cowell et al. 2006; Moser, 
Williams, and Boesch 2012). Probabilistic approaches to 
inform SLR impacts have been developed in several planning 
domains, most commonly in order to assess the probability of 
coastal flooding. Kirshen, Knee, and Ruth (2008) used boot-
strapping of historic SLR and Monte Carlo simulation of pro-
jected sea levels and coastal inundation of the Metro Boston 
harbor. Lin et  al. (2013) estimated probabilities of annual 
exceedance of specific inundation levels at future time points 
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to examine change in exposure across the Southeast Australian 
coast. Recently, probabilistic methods have gained momen-
tum in the beach management sphere to incorporate the tem-
poral-spatial variability of shoreline change (Callaghan, 
Roshanka, and Andrew 2009; Ranasinghe, Callaghan, and 
Stive 2011). Baron et al. (2014) incorporates the uncertainty 
associated with both SLR and changing beach dynamics 
using a probabilistic approach to map shoreline change haz-
ards with varying confidence levels. Lentz et al. (2015) used 
a Bayesian network to assign probabilities to sea-level rise, 
elevation, and land cover that take into account a static 
response (inundation) and a dynamic response to SLR (e.g., 
sediment transport dynamics and ecosystem migration). To 
our knowledge, probabilistic approaches have not been 
adopted and applied in a community land-use decision-mak-
ing context for adaptation planning.

Methods

Probability-Based Model of Shoreline Change in 
Hawai`i

We use a hybrid geometric-historical model to estimate 
shoreline change under SLR in Hawai`i. This model is simi-
lar to the Bruun rule in its beach response to SLR; however, 
it adjusts the morphology of the beach with data on changes 
in the local sediment budget. This model was constructed to 
take advantage of a probabilistic approach to define bounds 
of uncertainty and represent future shoreline with likelihood 
estimates. It is intended to provide an assessment of erosion 
exposure over a large coastal area while taking into account 
SLR and local long-term sediment behavior. The details of 
this model are explained elsewhere (Anderson et al. 2015). 
For the purposes of this article, we present a brief overview 
of the model variables and how they estimate present and 
future rates of shoreline change.

In this model, the rate of change in shoreline position is 
approximated using three critical variables: future SLR, a 
coastal beach profile, and historical shoreline positions. 
Figure 1 graphically depicts the model with arrows to show 
the relationship between model variables. “Future SLR in 
excess of historical SLR” is estimated based on the IPCC 
AR5 high-end “business as usual” climate scenario (RCP 
8.5) for SLR. This scenario was selected based on State plan-
ning agency preference for the most cautious predictions of 
SLR for long range planning purposes. Future SLR is calcu-
lated by subtracting local absolute SLR (from Honolulu tide 
gauge data) from the IPCC AR5 global mean sea-level esti-
mate. “Coastal beach profile” is constructed from beach sur-
vey transects of cross-shore elevations—previously 
conducted for years 1994–1999 on the islands of O`ahu and 
Maui, and 2006–2008 for shorelines on O`ahu and Kaua`i 
(Fletcher et al. 2012). Each beach profile is geomorphically 
adjusted for future SLR. Shoreline change is approximated 
using historical shoreline position data from high-resolution 
aerial photographs and NOAA Topographic charts as part of 

the USGS National Assessment of Shoreline Change 
(Fletcher et al. 2012). Using a model of a coast with a fring-
ing reef that responds to future SLR, shoreline change rate is 
predicted combining historical shoreline position data with 
coastal beach profiles that are adjusted for projected SLR 
(Anderson et al. 2015). We provide the model equation and 
methodological details in Appendix A.

By 2100, Hawai`i shorelines are forecasted to retreat 2.5 
times farther inland than historical shoreline trends (Anderson 
et  al. 2015). On average, Hawai`i beaches are expected to 
retreat 11.3 meters by 2050 and 31.2 meters by 2100 
(Anderson et al. 2015). However, there is considerable vari-
ability in erosion estimates both across and within coastal 
areas. The Ka`anapali coast of Maui (Figure 3, inset) exem-
plifies the variability in shoreline change and the challenges 
in predicting future erosion. Although shoreline retreat is 
expected to dominate, the area will alternate in shoreline 
recession and accretion. Additionally, the coastline experi-
ences substantial seasonal fluctuations. Because of its west-
facing aspect, episodic seasonal swells can have a sudden 
and dramatic impact on the beaches. These episodic yet sig-
nificant events can get lost in the historical data and therefore 
are difficult to incorporate into model parameters. Additional 
sources of uncertainty are also generated because of errors in 
the construction of beach profiles and in areas with shorter 
time series of historical data.

A unique feature of the model is its treatment of uncer-
tainty. Individual probability density functions (pdf) at each 
beach transect is produced combining probability distribu-
tions of (1) future SLR, (2) coastal beach profile and dune 
data, and (3) historical shoreline change rate. A final pdf is 
produced to determine the mean, median, and various 

Figure 1.  Graphical depiction of probability-based model with 
input variables to predict shoreline change.
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percentiles using the cumulative distribution function of the 
pdf for the projected shoreline (Figure A1 in Appendix A.). 
Using these pdfs, we define a series of probability-based 
shoreline change hazard zones for planning periods of 
interest.

Shoreline Change Hazard Zones

Similar to Baron et al. (2014), we define shoreline change 
hazard zones by exploiting the confidence bands sur-
rounding the future shoreline position. At periods of inter-
est, shoreline hazard zones are defined by the probability 
that the shoreline will be further landward than an existing 
position. For example, the 20th percentile of the pdf (see 
Figure 2) is the location where there is a 20% probability 
that the shoreline will retreat, at least, to this location. 
Figure 2 graphically illustrates hazard zones that depict 
probabilities of shoreline change exceedances. These 
zones provide coastal planners and decision makers with 
the ability to select probabilities that best match the local 
community risk tolerance. For example, members of the 
Hawaiian community may have a low-risk tolerance for 
the loss of iwi kupuna (burials) and therefore will use the 
most conservative zone, 20–49 percent probability of 
exceedance. By contrast, planners may use a moderate 
zone of 80–90 percent probability because they have a 
higher risk tolerance for the erosion of the beach. The 
development of these hazard zones facilitates (1) a risk 
and vulnerability assessment and (2) the explicit incorpo-
ration of uncertainty into community planning and deci-
sion making for SLR adaptation.

Application of Model for Adaptation 
Planning in Ka`anapali, Maui

Maui is a useful illustrative case to explore the application of 
this probability approach because the island experiences 
some of the highest rates of erosion among Hawai`i beaches 
and has an established policy framework for integrating haz-
ards into shoreline planning. Historical data show 85 percent 
of Maui beaches are currently eroding and 11 percent are 
completely lost (Fletcher et  al. 2012). As a result, Maui’s 
local resources, physical structures, infrastructure, and tour-
ism developments face substantial risk and, in turn, can 
influence the use of protective measures such as seawalls and 
shoreline hardening. It is well documented that—unfortu-
nately, and perhaps ironically—while these structures are 
intended to prevent erosion, they actually often have spill-
over effects, intensifying beach erosion in adjacent areas by 
interrupting the natural flow of sand, leading to further nar-
rowing of beaches (NRC 2007; Norcross-Nu’u et al. 2008).

Maui integrates hazards planning into land use decisions 
under the regulatory authority of the Hawai`i Coastal Zone 
Management (CZM) Program. The county is also actively 
engaged in adaptation efforts (Owens et  al. 2012). Hawai`i 
established a shoreline setback policy under Chapter 205A, 

Hawai`i Revised Statutes of the Hawai`i CZM law, that restricts 
the use of land within a defined distance from the upper reaches 
of the wash of the wave. Permanent structures are prohibited in 
shoreline areas defined by the setback and land uses are 
restricted to minor activities (Codiga, Hwang, and Delaunay 
2011). In 2003, Maui County adopted a science-based approach 
to determine the setback by incorporating erosion-based data 
(Norcross-Nu’u et al. 2008). The law requires a 50-year ero-
sion multiplier, plus a 25-foot buffer. The 25-foot buffer is 
established as a safety margin to reflect current and future ero-
sional trends; however, given the expected acceleration of 
SLR, this safety margin may underestimate future rates.

During the early 1960s, Maui shifted from an agricultural-
based economy to tourism and Ka`anapali became the first 
master-planned resort in Hawai`i. Ka`anapali, on the West 
Coast of Maui, hosts many large hotels and resorts, and the 
visitor industry provides a significant source of jobs and eco-
nomic activities. Historically, Ka`anapali has lost 0.10 meters 
of beach every year (Anderson et  al. 2015). By 2050, this 
rate is expected to more than double (0.3 meters/year) and 
nearly quadruple by 2100. Yet, there is considerable uncer-
tainty in the rates due to high seasonal fluctuations and large 
variability in the beach slope (Anderson et al. 2015).

We apply the probability-based model to examine the 
spatial and temporal variability of risk in Ka`anapali for 
2030, 2050, and 2100. We compare the outcomes of the 
probability approach with the commonly used Bruun Rule 
for estimating future hazard exposure due to SLR. We focus 
on the hazard aspect of risk by providing an assessment of 
exposure to future erosion; but not the extent of the impact, 
which would involve a fuller vulnerability assessment of 
resources of value.

Figure 2.  Conceptual representation of hazard zones using 
probabilities that the shoreline will be landward of the current 
position. Hazard zones range from >90 percent (very likely) to 
>20 percent (less likely) the shoreline will be further landward 
than the current shoreline.
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Framework for Prioritizing Adaptation Needs

We develop a framework for prioritizing adaptation needs 
based on the risk and onset of impacts to coastal resources, 
structures, and infrastructure in erosion hazards zones for 
three time frames: 2030 (near-term), 2050 (mid-term), and 
2100 (long-term). We evaluate risk based on the probability 
of erosion and time frames—assigning “less likely” to 20–49 
percent; “more likely than not” to 50–79 percent; and “likely/
very likely” to 80–100 percent—which draws on best prac-
tices for qualitatively characterizing and reporting uncer-
tainty (CCSP 2009). We modify decision matrices, originally 
developed by the California Emergency Management 
Agency and the California Natural Resource Agency for the 
Cal-Adapt program (cal-adapt.org), to help local jurisdic-
tions prioritize and identify adaptation strategies (Boswell, 
Greve, and Seale 2012).

Table 1 shows the decision matrix where the risk/ 
uncertainty according to probabilities is presented in the 
columns, and the time frames of expected onset are in the 
rows. The assessment and prioritization of adaptation needs 
and strategies can be determined based on the intersection of 
the estimated time frame and likelihood of onset. We assign 
a ranking of “high,” “medium,” or “low” based on equal 
weights for level of risk and time frame.

Another approach, which would be a joint decision by the 
community and adaptation team, might be to base a heavier 
weight on uncertainty, so even if the uncertainty is high (less 
likely) in the near-term, the priority for adaptation might 
remain “high.” This might take into account important  
cultural resources, natural systems, and other assets ranked 
as a high priority, and would trigger a need for adaptation 
immediately, whereas assets ranked as medium priority 
would require further assessment and evaluation, and assets 
ranked as low priority would be monitored.

Future Shoreline Hazard Zones

We perform an impact assessment of the Ka`anapali coastline to 
SLR-induced erosion, using GIS (ArcGIS version 10.2.2), 
within erosion hazard zones at given probabilities for near- 
term (2030) medium-term (2050) and long-term (2100). For 
comparison, we also estimate exposure to future erosion due to 
SLR determined by the Bruun Rule. We create hazard polygons 
using the most recent low water mark as the seaward boundary, 
whereas 90th, 80th, 50th, and 20th percentiles of the cumulative 
pdfs were used as the landward boundaries of each zone. We 
assign qualitative characterizations to their respective probability 
field, as discussed above. Because the percentiles of the cumula-
tive pdf represent the given probability that the future shoreline 
will be landward of the particular line, the erosion zones equate 
the minimum amount of eroded land at a given probability.

We project the probable erosion hazard zones for 2030, 
2050, and 2100 (Figure 3). We estimate structural and land 
use impacts by extracting data on land cover types, parcel 
areas, building footprints, building and land values, and 

major roadways within each hazard zone. Ancillary parcel 
and infrastructure data were obtained from the Maui County 
GIS databases, and 2010 land cover was extracted from 
NOAA’s Coastal Change Analysis Program (C-CAP). We 
calculated the percentage of land cover within each erosion 
zone by dividing the total area of land cover type by the total 
area in each erosion zone.

To estimate the impacts to structures and lands, we assume 
that once erosion reaches a structure, it either becomes unus-
able or must be protected. Any structure within the hazard 
zone, either partially or completely, is considered an 
“affected” structure. Similarly, because the value of a build-
ing cannot necessarily be divided, we count the cumulative 
value of entire structures. To gauge the absolute structural 
impact, we calculate the square footage of building foot-
prints within each erosion zone. We determine land impacts 
by identifying parcels within each erosion zone and summa-
rizing total acreage. Since erosion may affect only portions 
of land parcels, we estimate land value based on the propor-
tion of the parcel value within each erosion zone.

Results

The outputs from the two models are graphically represented 
in Figure 3. This map depicts four probability hazard zones 
that qualify shoreline change from “less likely” to “most 
likely” for 2030, 2050, and 2100. We overlay the projected 
future shoreline from the Bruun Rule (dashed line). There are 
three zones that are noteworthy to visually compare. The first 
is the beach in the northern portion of the North Ka`anapali 
Coast, an area just south of Kekaa Point and located in front 
of the Sheraton Maui (Figure 3). This area has shown a steady 
trend of net accretion over the last 80 years (Fletcher et al. 
2012). However, because of seasonal differences in wave 
exposure, the beach width varies noticeably between winter- 
and summertime (Anderson et al. 2015; Eversole and Fletcher 
2003). Here, the Bruun Rule is likely to overpredict the future 
erosion hazard because it does not account for the steady net 
gain in sediment. The second noteworthy zone is the shore-
line in front of the Ka`anapali Alii hotel (central portion of 
Figure 3). Similar to the first zone, this portion of the beach 
experiences large changes in sediment transport because of 
oscillating directions of incoming seasonal swells (Eversole 
and Fletcher 2003). For example, during the summer of 2003, 
an extreme erosional event from a south swell in conjunction 
with a high water level caused the loss of more than 200 feet 
of beach, as well as inland flooding, which prompted the 
installation of steel road plates to protect the sidewalk from 
eroding (Owens et al. 2012). As the summer swell subsided, 
and the winter swell season began, more than 100 feet of 
beach was reestablished in front of the hotel. These episodic 
events in both of these locations produce hazard zones marked 
by bands of high uncertainty (20–49 percent “less likely”) 
and moderate uncertainty (50–79 percent “more likely than 
not”). Conversely, the Bruun Rule results only indicate one 
predicted location (relatively near the current vegetation line) 
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that does not give any indication of the short-term (seasonal) 
events that are known to cause severe episodic erosion in this 
area. The third noteworthy area is in front of the Marriott and 
Hyatt Regency properties (Figure 3). This area is less dynamic 
than the first two. It experiences less gross sediment trans-
port, yet suffers from both episodic erosion and long-term 
chronic erosion (Fletcher et al. 2012). As a result, the Bruun 
Rule likely underpredicts future shoreline change because it 
does not account for the chronic loss of sediment.

We calculate the total predicted land area exposed to 
future erosion using the Bruun Rule and the probability 
model for 2030, 2050, and 2100 (Table 2). The Bruun Rule 
estimates 18.4, 19.6, and 24.5 acres at risk for the three 
time periods, respectively. By comparison, the probability 
model generates the ranges: 10.8–26.8 (2030), 12.5–30.8 
(2050), and 19.2–45.8 (2100) acres. Overall, the output 
from the Bruun Rule has a smaller footprint (in total land 
area) than all probability model zones combined, but 
according to independent studies and as illustrated here, the 
Bruun Rule likely overpredicts in some areas and underpre-
dicts in other areas.

We calculate the proportion of each land cover type 
exposed to future erosion according to the probability-based 
model for years 2050 and 2100 (Figure 4). The pie charts 
(Figure 4A) represent the estimated percentage of each land 
cover type in the hazard zones at risk by 2050 and 2100. The 
bar graphs (Figure 4B) show the distribution of the likeli-
hoods associated with each exposure estimate. For example, 
by 2050, the probability model estimates that up to 30.8 
acres of land are at risk of erosion (Table 2). Of this total 
land area, 21 percent is categorized as “unconsolidated 
shore.” The bar graph indicates that by 2050, more than 70 
percent of this unconsolidated shore is “very likely” to be 
lost to erosion.

Most of the certainty in the probability model results is 
associated with the projected “unconsolidated shore” land at 
risk in 2050 and 2100—nearly 90 percent of the beach area at 
risk is “likely” or “very likely” to be exposed. By contrast, 
there is significantly more uncertainty associated with the 
exposure of developed lands. Nearly 50 percent of the built 
environment (classified as impervious surfaces) projected as 
exposed to erosion in 2050 is “less likely,” which signifies 

Table 1.  Framework for Prioritizing Adaptation Needs.

Impact/onset
(time frame)

Risk/Uncertainty

Likely/Very Likely More Likely Than Not Less Likely

Near-term (2030) High High Medium
Medium-term (2050) High Medium Low
Long-term (2100) Medium Low Low

Figure 3.  Ka`anapali Coast depicting four probabilistic hazards zones from “less likely” to “very likely” for three time periods, 2030, 
2050, and 2100. The dashed line is the future erosion hazard line determined by the Bruun Rule.
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that our confidence in these estimates varies widely. Similarly, 
the amount of open space (which accounts for the largest at-
risk land cover type) that is “less likely” to be exposed is high, 
nearly 40 percent in 2050. However, this likelihood estimate 
decreases to almost 25 percent in 2100, signaling that our 
confidence increases the further we project into the future.

Table 3 reports total private property acreage, length of 
roads, number of structures, and property values (calculated 
and estimated as discussed above) within each probability 
erosion zone for 2030, 2050, and 2100. In the near term, 4.1 
acres of coastal land are likely or very likely to be affected by 
erosion, which represents $7.3 million in property value. By 
comparison, in the near term, more than double that amount 
of land (8.8 acres) is more likely than not eroding, signaling 
a potential loss of nearly $19 million. Although there is less 
likelihood, an additional 6 acres of coastal land are at risk of 
exposure in the near term, which is valued at approximately 
$16 million. Projecting into the future, we estimate that 
nearly 7 acres (almost double the 2030 acreage) are likely to 
be affected by 2050, and more than twice that amount (over 
15 acres) by 2100.

Building structures do not appear urgently at risk in 
the near-term, yet between two and four buildings might 
be at risk. Given that these buildings represent upward of 
$1 billion in investment, further assessment and evalua-
tion is warranted. By 2100, it is likely that three build-
ings will be affected by erosion, and there is a chance 
that somewhere between five and fifteen buildings could 
also be at risk, with values potentially running as high as 
$1.4 billion.

In the near-term, roads do not appear directly at risk. 
Although less certain, portions of an arterial road and a 
major highway may be at risk (between 322 and 615 feet). 
Projecting further into the future, the likelihood of road 
exposure increases. By 2050, 368 feet of road will likely be 
at risk and by 2100, more than 1,000 feet of road will likely 
be at risk.

Discussion

We estimate exposure and map risks for the Ka`anapali 
coast of Maui, a shoreline with tremendous value to the 
local culture, population, and tourism industry. It is also a 
location that will likely experience accelerated rates of 

erosion due to SLR, threatening the future of the beach. 
Further, the development pattern of the coastline, which is 
primarily composed of static resort amenities, buildings, 
and infrastructures, prevents shoreline migration, producing 
the proverbial “coastal squeeze.” We compared the out-
comes of two models that estimate future erosion hazards 
zones, one that adopts the Bruun Rule, a widely used deter-
ministic approach to predict future erosion, and another that 
is a hybrid model that takes advantage of likelihood esti-
mates to produce probable hazards zones. We discuss the 
four principal benefits of a probability-based model for 
adaptive coastal risk management: (1) as a tool for prioritiz-
ing adaptation actions, (2) the phasing of adaptation strate-
gies and investments with long lead times, (3) to visualize 
risk and associated uncertainty, and (4) for adaptive 
management.

Prioritizing Adaptation Actions

Outputs from probability-based models are useful for prioritiz-
ing climate adaptation efforts. In our illustration, areas that fall 
within the 50–80 percent probability hazards zones are at risk 
in the next fifteen to thirty-five years and require immediate 
attention by the local planning agency and community. Local 
efforts may want to engage stakeholders in identifying sensi-
tive social, ecological, and cultural systems that are vulnerable 
to near-term erosion, as well as appraising adaptation strate-
gies. Care must be taken not to interpret these risks as short-
term. The erosional pattern may be part of a long-term trend, 
which, if viewed through too narrow a lens, can influence 
shortsighted measures that prove maladaptive or detrimental. 
For instance, protective responses such as shoreline hardening, 
which has already made its imprint on more than 70 percent of 
Maui’s shoreline (Norcross-Nu’u et al. 2008), aimed at reduc-
ing acute losses and thus increasing land or resource value, 
may eventually fail because of the long-term trend of SLR. 
Moreover, such strategies may produce negative externalities 
and spatial spillover effects by increasing the local rate of  
erosion downshore (Fletcher et  al. 2012). There is general 
agreement that when current climate risks are large, such as 
chronic and accelerated rates of erosion under SLR, addressing 
these risks in combination with more distant risks may be the 
most effective and efficient adaptation strategy, leading to 
desirable outcomes, as discussed below (Füssel 2007).

Table 2.  Total Land Area (in Acreage) Calculated from Satellite-Derived Land Cover Estimated at Risk Using the Bruun Rule and the 
Hybrid Probability Model.

Bruun Rule Very Likely (≥90%)
Likely+

(≥80%)
More Likely Than Not +

(≥50%)
Less Likely+

(≥20%)

Near-term (2030) 18.4 10.8 14.1 20.5 26.8
Midterm (2050) 19.6 12.5 16.4 23.6 30.8
Long-term (2100) 24.5 19.2 24.8 35.2 45.8

Note: The superscript plus sign indicates cumulative probability zones (e.g., “Likely+” = “Very likely” + “Likely”).

 at University of Hawaii at Manoa Library on July 21, 2016jpe.sagepub.comDownloaded from 

http://jpe.sagepub.com/


9

F
ig

ur
e 

4.
 (

A
) 

Pi
e 

ch
ar

ts
 s

ho
w

 t
he

 p
er

ce
nt

ag
e 

of
 t

ot
al

 la
nd

 c
ov

er
 a

t 
ri

sk
 fo

r 
th

e 
tim

e 
pe

ri
od

s 
of

 2
05

0 
an

d 
21

00
. T

he
 e

xp
os

ur
e 

es
tim

at
es

 a
re

 d
er

iv
ed

 fr
om

 t
he

 p
ro

ba
bi

lit
y-

ba
se

d 
m

od
el

. (
B)

 T
he

 b
ar

 g
ra

ph
s 

sh
ow

 t
he

 li
ke

lih
oo

d 
es

tim
at

es
 a

ss
oc

ia
te

d 
w

ith
 e

ac
h 

la
nd

 c
ov

er
 t

yp
e 

ex
pe

ct
ed

 t
o 

be
 a

t 
ri

sk
 b

y 
20

50
 a

nd
 2

10
0.

 at University of Hawaii at Manoa Library on July 21, 2016jpe.sagepub.comDownloaded from 

http://jpe.sagepub.com/


10	 Journal of Planning Education and Research ﻿

Phasing of Adaptation Strategies

A more reasonable solution than short-term mitigation strate-
gies would be to pair probability-based hazards zones with 
near-, mid-, and long-term time frames to examine the timing 
of projected hazards and associated losses, as we did. This 
can help local planning efforts strategize investments and 
land use policy decisions more efficiently. For instance, 
building “anticipatory planned adaptation,” such as managed 
retreat schemes, involves staged planning and a schedule of 
implementation. Amending comprehensive plans by desig-
nating special “retreat zones,” enforced by regulations and 
incentives that encourage land owners to relocate upland, 
may require a lead time of at least several decades (Grannis 
2011; Burkett and Davidson 2013).

Visualizing Risk and Uncertainty

We map levels of risk associated with erosion hazards as a form 
of risk communication. There are three main benefits of risk 
maps that explicitly incorporate uncertainty. First, because one 
of the central goals of risk communication is to raise awareness 
of risks so that individuals do not underestimate low-probabil-
ity risks (CCSP 2009), the type and method of communication 
is important; specifically, incorporating estimates of uncer-
tainty gives more legitimacy to the risk assessment process and 
the outcomes are deemed fairer (CCSP 2009; Moser, Williams, 
and Boesch 2012). Second, uncertainty in climate impact pre-
dictions allows coastal planners and managers to make more 
informed decisions (Tribbia and Moser 2008). Although 

uncertainty in SLR and erosion is one of the most cited reasons 
why adaptation efforts are impeded at the local level (Bierbaum 
et al. 2012; Moser 2005), planners are very familiar with the 
challenge of making decisions with high levels of uncertainty 
and over long time frames (Abbott 2005). What seems critical 
is how the science and information is produced and presented. 
Tribbia and Moser (2008) found that California coastal manag-
ers sought uncertainty ranges around climate change impact 
projections, well-founded distinctions between more and less 
likely impacts, a better scientific basis for uncertainty buffers, 
and a basic understanding of the reasons for the uncertainty. 
These and other authors suggest explicitly incorporating uncer-
tainty into the framing of risk and the risk scoping process can 
facilitate better land use decisions at the local level (Mills et al. 
2015). Third, the ability to visualize risks, even though their 
reliability may be questioned, enables decision makers to ana-
lyze and discuss acceptable exposure and calculate the risk of 
doing nothing. If potential exposure is deemed serious—and 
this raises sociopolitical considerations as to individual judg-
ments—then a more comprehensive probabilistic assessment 
may be justified, providing an opportunity for disparate groups 
to contribute their expertise on areas and features of impor-
tance. This is critical in Hawai`i because future shoreline ero-
sion could threaten cultural artifacts and other features along 
the coast that will require unique adaptation strategies because 
they are nonrenewable (Kane et al. 2012). Community involve-
ment in risk assessments not only engages communities, it also 
establishes normative goals and fosters trust among parties, 
essential ingredients in “wicked” post-normal situations char-
acterized by long time horizons, uncertainty over outcomes, 

Table 3.  Exposure Estimates of Properties, Structures and Roads in the Study Area of the Kana`apali Coast.

Likely/Very Likely (≥80%)
More Likely Than Not

(≥50%) Less Likely (≥20)

Parcel area in acres
  Near-term (2030) 4.1 8.8 15
  Midterm (2050) 6.7 12 19
  Long-term (2100) 15.2 23 34
Number of structures affected
  Near-term (2030) 2 4
  Midterm (2050) 2 6
  Long-term (2100) 3 5 15
Land value in millions of dollars
  Near-term (2030) 7.3 18.8 34.8
Midterm (2050) 11.5 24.7 42.9
  Long-term (2100) 27 48.4 74.7
Building exposure in millions of dollars
  Near-term (2030) 666 1,106
  Midterm (2050) 666 1,845
  Long-term (2100) 666 1,106 1,462
Length (ft) of road affected
  Near-term (2030) 322 615
  Midterm (2050) 368 651 893
  Long-term (2100) 1,083 1,425 1,565
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multiple interests, and high stakes (Moser, Williams, and 
Boesch 2012; Preston, Yuen, and Westaway 2011; van Aalst, 
Cannon, and Burton 2008).

Adaptive Management

Adaptive management provides a blueprint for incorporating 
new data and to re-assess adaptation strategies. Probability-
based predictions, such as those discussed in this article, are 
likelihood estimates, where the outcome depends on the 
input data and assumptions. As the data and information 
improves or is updated, the results correspondingly improve. 
Thus, models and outputs need to be reevaluated and data 
monitored for continuous improvement. Such an adaptive 
management approach presumes necessary technical, finan-
cial, and other important resources to support local planners 
and the community’s capacity to adapt. We do not expect 
local jurisdictions to build their own shoreline model and 
project future erosion hazards zones. The construction of the 
probability-based shoreline model presented here involved 
significant technical and scientific resources built off years 
of data collection and research at the University of Hawai`i 
with input from coastal managers. In Maui, there has been a 
long-time collaboration among local planners, the State, 
University of Hawai`i researchers, and the Sea Grant College 
Program, and successful adaptation may hinge on such a net-
work (Berke and Lyles 2013; Keys et al. 2013).

The Role of Governance

A significant obstacle to the use of the model is less about 
the model itself and more about governance. Prioritizing cli-
mate adaptation and placing the importance of high-quality 
adaptation plans on local government agendas remains a 
deficiency. Learning from past disasters, local governments 
lack motivations to prepare and implement strong hazards 
mitigation plans because of few external incentives and an 
indifferent public, a phenomenon that Raymond Burby calls 
the “local government paradox” (Burby 2006). This is of 
great concern because, as we have seen, $1.4 billion in real 
estate alone is at risk from future erosion in Ka`anapali, 
Maui. Berke and Lyles (2013) argue that there is a need for 
more acceptance of shared responsibility for addressing 
public risks. While new governance structures are no doubt 
necessary for truly transformative climate change adapta-
tion (Berke and Lyles 2013; Moser, Williams, and Boesch 
2012), we believe an important first step involves empower-
ing planners and communities with a better capacity to 
understand and communicate public risks.

Conclusion

In this article, we present an illustrative case using a proba-
bility-based model of shoreline change to SLR for adaptation 

planning. We propose five recommendations for planning 
researchers and coastal managers working on climate adap-
tation for SLR in using shoreline change models for land use 
planning: (1) acknowledge and communicate uncertainty in 
existing spatial data and modeling, and, if possible, develop 
quantitative estimates of uncertainty, otherwise use qualita-
tive estimates, but be explicit about how those estimates 
were derived; (2) use a probabilistic-based approach to map 
hazards zones at local scales to visualize risks and educate 
stakeholders; (3) identify time frames and link them to prob-
abilistic projections for longer term planning; (4) adopt com-
munity-level risk mapping and other participatory methods 
to engage a wide spectrum of stakeholders in the risk assess-
ment and risk management process; and (5) establish a robust 
adaptive risk management framework using a probabilistic 
method to monitor risks, revisit strategies, and revise goals 
and assessments in light of changing information.

This study only assessed the exposure of buildings, lands, 
structures, and land use using readily available county GIS 
data. A more thorough assessment would need to identify 
and assess the exposure of other assets, resources, and sensi-
tive ecosystems. The probability model only considered one 
climate change scenario (RCP 8.5 Business as Usual). 
Depending on the planning objective, it would be instructive 
to develop another series of probability hazards zones based 
on a less conservative SLR scenario or worse-case scenario 
(e.g. Greenland ice caps collapse). In addition, a full vulner-
ability assessment would consider multiple hazards associ-
ated with SLR, such as coastal erosion with inundation or 
storm surge. A natural next step would be to combine these 
hazards zones with other assets (particularly cultural fea-
tures and sensitive species habitats) that may be critical for 
adaptation planning.

Appendix A

Bruun Rule Equation

The Bruun Rule is expressed as:

∆y S Sf= −( ) / tan0 β 	 (1)

where

•• Δy is the net change (-Δy is retreat) in mean shoreline 
position;

•• Sf – S0 is the rise in sea level between future sea level 
Sf and initial sea level S0; and 

•• tanβ  is the slope of the beach profile, up to the berm.

Probability-Based Model of Shoreline Change

The equation for the hybrid geometric-historical model is:

∆y r t t S Sf o f hist= − − −( ) ( ) / tanβ 	 (2)
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where
•• ∆y is the net change (-Δy is retreat) in mean shoreline 

position between initial time to  and future time t f ;
•• r is the historical shoreline change rate;
•• ( )S Sf hist-  is the difference between the IPCC pro-

jected sea level and Hawaii extrapolated sea level at 
time t f ; and

•• tanβ  is the average slope of the submerged portion of 
the beach profile.

A probability density function (pdf) is produced for ∆y, the 
net change in shoreline by combining pdfs of the three vari-
ables depicted in equation 2. Figure A1 shows the historical 
extrapolation and projected shoreline change for years 2005–
2100 at one location in West Maui. The beach at this location 
is historically eroding (negative values indicate a landward 
retreat). Figure A1a shows the model mean, and the 80 and 
90 percent confidence intervals of the projected shoreline 
change in 2050. Figure A1b shows for the same location 
20th, 80th, and 90th percentiles, the positions at which there 
is a 20, 80, and 90 percent probability, respectively, the future 
shoreline will be landward of the contour line.

Figure A1.  Historical shoreline data from one transect in the 
historically eroding South Ka`anapali beach of West Maui. The 
top panel (A1a) displays the median with the 80 and 90 percent 
confidence bands around the median projected shoreline position 
in 2050. The bottom panel (A1b) shows the predicted median, 
20th, 80th, 90th percentiles the shoreline will be further landward 
than the contour line in 2050.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect 
to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, author-
ship, and/or publication of this article.

Note

1.	 Herein, we draw primarily upon the “frequentist” definition of 
risk while acknowledging that there are alternative interpreta-
tions, namely, the “subjectivist” or “Bayesian” view, in which 
a statement of risk includes a person’s belief in the likelihood 
of an event given all available information (CCSP 2009).
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