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A. Model Probabilities

The posterior probability of a model is proportional to the product of its likelihood and

prior probability. As we give all models with non-zero prior the same prior probability,

the model with the largest likelihood has the largest posterior probability; this is the

model with the lowest IC score.

Figure A1. Posterior probabilities of models for the temporal coefficient of mode 1.
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Figure A2. Posterior probabilities of models for the temporal coefficient of modes 2 and

mode 3. Models assigned zero prior probability (see main text) are not displayed.

B. Temporal Coefficients of Modes 2 and 3.

Figure B1. Left panel: mode 2. Right panel: mode 3. The red lines are the models with

the lowest IC score (largest likelihood, largest posterior probability). The blue lines are

the probability-weighted average models.
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C. Modal Contributions

Table C1. Percent data variance contribution of each mode and cumulative percent.

Key: R-rate, T-transient storm, P-persistent storm, N-nourishment, S-seasons.

Mode Data variance

Contribution (%)

Cumulative

Contribution (%)

Best-fit model

1 90.67 90.67 R,T,P

2 5.01 95.68 R,T,N

3 1.92 97.61 T,N

4 0.69 98.30 Noise

5 0.45 98.75 R,T,N

6 0.26 99.01 R,T,N

7 0.21 99.23 Noise

8 0.15 99.38 Noise

9 0.11 99.49 Noise

10 0.09 99.58 Noise

11 0.09 99.67 Noise

12 0.07 99.74 Noise

13 0.05 99.79 Noise

14 0.04 99.83 Noise

15 0.04 99.87 Noise

16 0.03 99.90 Noise

17 0.07 99.93 Noise

18 0.02 99.95 Noise

19 0.02 99.97 Noise

20 0.01 99.98 Noise

21 0.01 99.99 Noise

22 0.01 100 Noise

23 0 100 Noise

24 0 100 Noise
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D. Prediction Error

Figure D1 shows the time averaged prediction error covariance matrix

1

24
y p (x i,tk ) y(x i,tk )[ ] y p (x j ,tk ) y(x j ,tk )[ ]

k=1

24

,

in which y is the data and y p is the prediction from modeling. If our model for noise and

signal corresponded exactly to reality, this matrix would be diagonal (a bright line along

the diagonal of the figure with darkness off the diagonal), meaning that the prediction

error at any alongshore location is uncorrelated with the error at any other alongshore

location.
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E. Error Estimation

In the Auxiliary Material for Frazer et al. [2009b] (paper 1) there is a Section D, entitled

“Variance of a model-averaged estimator,” in which we derived an expression (equation

D9) for the variance of a model-averaged estimate. Briefly, for any quantity of interest ,

we calculated the variance, )
2 , of the model-averaged estimate

)
= p j j

j
in which j

is the estimate from the j
th
model, and p j is the posterior probability of the j

th
model. (The

posterior probability of a model is obtained by combining the prior probability of that

model with the model likelihood computed from the data.). We calculated the variance

)
2 by first calculating the variation

)
with respect to a variation of the data y , not

neglecting the variation p j . The standard error indicated by the inner ticks on Figure

2(h) of this paper is the square root of that variance. That method of estimating errors was

used in this paper and in paper 1 because it is analogous to the standard method of

estimating error for any particular model and is thus comparable to most error estimates

in the literature.

In this paper we also calculate model selection error [Buckland et al. 1997], which

tends to be larger and is thus more conservative. We derive model selection error as

follows by using probability density functions (pdf). Let p( | y) be the pdf of given

data y. Then we may write

p( | y) = p( |M i,y)pi
i

(E1)

in which p( |M i,y) is the pdf of conditioned on M
i
being the correct model. The

expected value of for model M
i
is thus

i = p( |M i,y)d (E2)

and its variance, needed below, is
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The model-averaged estimate of is
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= p( | y)d

= p( |M i,y)pi
i
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i
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i

i

(E4)

and the variance that includes model selection error is

)
2 = (

)
)
2
p( | y)d

= (
)
)
2

p( |M i,y)pi
i

d

= pi
i

(
)
)
2
p( |M i,y)d

= pi
i

(
2
2

)
+
)
2
)p( |M i,y)d

= pi
i

2

i
2 i

)
+
)
2{ }

= pi
i

2

i
2
)

pi
i

i +
)
2

pi
i

= pi
i

2

i
2
)
2 +

)
2

= pi
i

2

i

)
2

= pi
i

i

2 + pi
i

i

2
)
2
.

(E5)

The square root of this variance is indicated by the outer ticks on the error bars of Figure

2(h) of the main text.
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