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ABSTRACT

GENZ, A.S.; FLETCHER, C.H.; DUNN, R.A.; FRAZER, L.N., and ROONEY, J.J., 2007. The predictive accuracy of
shoreline change rate methods and alongshore beach variation on Maui, Hawaii. Journal of Coastal Research, 23(1),
87–105. West Palm Beach (Florida), ISSN 0749-0208.

Beach erosion has direct consequences for Hawaii’s tourist-based economy, which depends on the attraction of beau-
tiful sandy beaches. Within the last century, however, beaches on Oahu and Maui have been narrowed or completely
lost, threatening tourism and construction development. In order for the counties and state of Hawaii to implement
coastal regulations to prevent infrastructure damage, it is necessary to find a statistically valid methodology that
accurately delineates annual erosion hazard rates specific to Hawaii. We compare the following erosion rate methods:
end point rate (EPR), average of rates (AOR), minimum description length (MDL), jackknifing (JK), ordinary least
squares (OLS), reweighted least squares (RLS), weighted least squares (WLS), reweighted weighted least squares
(RWLS), least absolute deviation (LAD), and weighted least absolute deviation (WLAD). To evaluate these statistical
methods, this study determines the predictive accuracy of various calculated erosion rates, including the effects of a
priori knowledge of storms, using (1) temporally truncated data to forecast and hindcast known shorelines and (2)
synthetic beach time series that contain noise. This study also introduces binning of adjacent transects to identify
segments of a beach that have erosion rates that are indistinguishable. If major uncertainties of the shoreline meth-
odology and storm shorelines are known, WLS, RWLS, and WLAD better reflect the data; if storm shorelines are not
known, RWLS and WLAD are preferred. If both uncertainties and storm shorelines are not known, RLS and LAD are
preferred; if storm shorelines are known, OLS, RLS, JK, and LAD are recommended. MDL and AOR produce the
most variable results. Hindcasting results show that early twentieth century topographic surveys are valuable in
change rate analyses. Binning adjacent transects improves the signal-to-noise ratio by increasing the number of data
points.

ADDITIONAL INDEX WORDS: Coastal erosion, shoreline change rates, coastal management, Hawaii, erosion hazard
area.

INTRODUCTION

The coastal zone is one of the nation’s greatest environ-
mental and economic assets (OCEAN STUDIES BOARD, 1999).
In Hawaii, for example, over 60% of all jobs are related to
tourism, which depends on the appeal of sandy beaches. Yet
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widespread beach erosion in the Hawaiian Islands threatens
sand-dependent ecosystems and abutting coastal owners
(FLETCHER, MULLANE, and RICHMOND, 1997; NORCROSS-
NU’U and ABBOTT, 2005; ROONEY et al., 2003).

Recognition of beach value led Maui County to approve and
adopt in October 2003 the only science-based setback rules
in Hawaii. These rules are based on erosion rates that are
calculated by the reweighted least squares (RLS) method,
which identifies and removes outliers before modeling the
shoreline change trend with a straight line (FLETCHER et al.,
2003; ROONEY, 2002; ROONEY et al., 2003). The slope of the
line represents the erosion (positive slope) and accretion (neg-
ative slope) rate of the beach.

Although comparisons of different shoreline change rate
methods have been conducted along the continental East
Coast of the United States, extensive research does not exist
for beaches in Hawaii. Owing to fundamental differences be-
tween Hawaiian beaches and those of the continental main-
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land (e.g., sediment composition, seasonal signal, storm fre-
quency, and storm impact), there is a need for studies specific
to Hawaii. Additionally, previous studies have not compre-
hensively tested shoreline change rate methods.

Our goal is to compare published statistical shoreline
change rate methods, including three statistical methods pre-
viously not used in calculating shoreline change rates. These
comparisons are made using shoreline change data from the
island of Maui. We first investigate the effects of outliers
based on a priori knowledge (e.g., a devastating tsunami, hur-
ricane, or storm event) on predictions that are based on
shoreline change rates. We then compare different shoreline
change rate methods using synthetically derived data. Final-
ly, we examine the binning of adjacent transects to find beach
segments that have indistinguishable change rates.

PREVIOUS WORK

Most studies of shoreline changes have been done on con-
tinental beaches of the eastern United States. We review
these and other studies that determine the most appropriate
method based on either a comparative approach or the pre-
diction of known positions.

DOLAN, FENSTER, and HOLME (1991) compared long-term
and short-term erosion rates with methods such as end point
rate (EPR), linear regression (hereafter ordinary least
squares, OLS), jackknifing (JK), and average of rates (AOR).
By plotting the rates from one method vs. the rates of another
method, they concluded that AOR is most variable, while
OLS and JK share a high degree of similarity. They stressed
that the best method depends on the objective and the tem-
poral variables of the research.

In discussing beach erosion at Rincón, Puerto Rico, THIE-
LER, RODRIGUEZ, and CARLO (1995) calculated erosion rates
using EPR, OLS, JK, and AOR in the digital shoreline anal-
ysis system (DSAS, http://woodshole.er.usgs.gov/project-pages/
dsas/). They divided their study site into four separate areas
and calculated an average shoreline change rate at each sec-
tion for each of the four methods. All four methods resulted
in similar rates, but AOR was identified as the most appro-
priate shoreline change rate method at Rincón.

DEAN and MALAKAR (1999) considered three shoreline
change rate methods—OLS, EPR, and AOR—in mapping
Florida’s hazard zones. They calculated correlation coeffi-
cients to compare the three methods. All three methods
agreed with each other; however, EPR and OLS correlated
better with each other than either did with AOR. The authors
chose OLS as their preferred method.

FENSTER, DOLAN, and ELDER (1993) introduced a new
method, minimum description length (MDL), as an alterna-
tive to existing methods. Based on the MDL modeling crite-
rion of RISSANEN (1989), this simplified version uses a com-
plexity penalty to select the model that best fits the data (e.g.,
constant, linear, quadratic, etc.) with the fewest number of
parameters. CROWELL, DOUGLAS, and LEATHERMAN (1997)
compared predicted values from the MDL and OLS methods
to actual values using sea-level data as a proxy for historical
shoreline data. They concluded that OLS provides equal, if

not better, results for shorelines without any physical modi-
fications.

Differing from CROWELL, DOUGLAS, and LEATHERMAN

(1997), HONEYCUTT, CROWELL, and DOUGLAS (2001) com-
pared EPR to OLS by predicting known historical shoreline
data, not sea-level data, to determine the accuracy of the
methods. Using a priori knowledge of major storms, they con-
firmed the findings of GALGANO, DOUGLAS, and LEATHER-
MAN (1998) and GALGANO and DOUGLAS (2000), which
showed that the accuracy of shoreline change rates improves
without storm-influenced data points. They concluded that
OLS better predicts shorelines than EPR. A good method to
identify the best predictor involves using an earlier subset of
shoreline positions to test forecasting of later positions (i.e.,
cross-validating). Our forecasting and hindcasting procedures
follow those of HONEYCUTT, CROWELL, and DOUGLAS (2001).

ESTABLISHED EROSION RATE METHODS

DOLAN, FENSTER, and HOLME (1991) provided an excellent
overview of some of the published shoreline change rate
methods. We expand upon their study to include other pub-
lished methods, describing the advantages and disadvantages
of each (Table 1). The two most frequently cited methods are
EPR and OLS, although most researchers now prefer OLS
(Figure 1).

Most shoreline change rate methods assume shoreline
change is linear through time, with any nonlinearity attri-
buted to mapping and measurement errors. Shorelines do not
recede or accrete in a uniform manner, which raises ques-
tions about the appropriateness of linear models (DOUGLAS,
CROWELL, and LEATHERMAN, 1998; FENSTER and DOLAN,
1994; FENSTER, DOLAN, and ELDER, 1993; MORTON, 1991).

End Point Rate (EPR)

The EPR method uses only two data points to delineate a
change rate—the earliest and most recent shoreline posi-
tions. Given that only the end data points are used, the in-
formation contained in the other data points is entirely omit-
ted, preventing the observation of variations in rate through
time. The main disadvantage of this method is that if one or
both end points are erroneous, the calculated erosion rate will
be inaccurate (CROWELL, DOUGLAS, and LEATHERMAN, 1997;
CROWELL, HONEYCUTT, and HATHEWAY, 1999; DOLAN,
FENSTER, and HOLME, 1991).

Average of Rates (AOR)

Shoreline positions are often defined from various sources
(e.g., topographic surveys, coastal monument and beach pro-
files, and aerial photographs), each with its own measure-
ment uncertainty. For this reason, FOSTER and SAVAGE

(1989) developed the AOR method to average the long-term
change, excluding changes due to measurement errors. To do
this, they created a minimum time criterion that filters out
any changes due to short time spans or measurement errors.
EPRs are determined between all data point pairs and are
removed if the time interval is less than a specified mini-
mum. All EPRs that pass the criterion are averaged to de-
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Table 1. Advantages and disadvantages of shoreline change rate methods.

Shoreline Change
Rate Method Advantages Disadvantages

EPR Simple computation Only uses two end points; assumes linear trend
AOR Uses measurement errors in identifying shoreline change

rate
Assumes linear trend; minimum time criterion affected by large errors

or small EPR; influenced by EPR rates of short time spans
MDL Does not assume linear trend when identifying best mod-

el fit
Emphasis on recent data; analyst judgment is needed if model is non-

linear
OLS Simple computation; uses statistical tests Assumes linear trend; sensitive to statistical outliers
JK Decreases influence of clustered data and extreme data

points; uses statistical tests
Assumes linear trend

RLS Robust to statistical outliers; uses statistical tests Assumes linear trend; removes data points before identifying trend
WLS Incorporates uncertainties into trend line; uses statistical

tests
Assumes linear trend; sensitive to statistical outliers

RWLS Incorporates uncertainties into trend line; robust to sta-
tistical outliers; uses statistical tests

Assumes linear trend; removes data points before identifying trend

LAD Robust to statistical outliers Assumes linear trend; analyst identifies range of slopes and intercepts
WLAD Incorporates uncertainties into trend line; robust to sta-

tistical outliers
Assumes linear trend; analyst identifies range of slopes and intercepts

termine the shoreline change rate (DOLAN, FENSTER, and
HOLME, 1991; FOSTER and SAVAGE, 1989). One drawback is
that the minimum time criterion can be affected by large er-
rors or small EPRs, resulting in potentially misleading re-
sults (DOLAN, FENSTER, and HOLME, 1991). AOR also gives
more influence to EPR rates of short time spans (FENSTER,
DOLAN, and ELDER, 1993). For these reasons, FOSTER and
SAVAGE (1989) recommend confirming AOR results with oth-
er shoreline change rate methods such as OLS.

Minimum Description Length (MDL)

Since short-term changes may affect long-term trends,
FENSTER, DOLAN, and ELDER (1993) proposed a simplified
form of the MDL method to help identify influential short-
term changes. Assuming Gaussian errors, MDL uses an error
component and a complexity penalty to select the best model
fit, whether it is a constant, line, quadratic, etc. If the re-
sulting model is quadratic or higher, two lines are produced—
the zero-weight line (MDL ZERO), which uses only recent
data, and the low-weight line (MDL LOW), which assigns
weights to older data. MDL rates based on nonlinear models
tend to result in variable or highly inaccurate forecasts,
though the MDL criterion can help identify physical changes
within a beach (CROWELL, DOUGLAS, and LEATHERMAN,
1997).

Ordinary Least Squares (OLS)

Least squares regression assumes independent Gaussian
errors and estimates the trend of shoreline data by minimiz-
ing the sum of the squared residuals between the data and
line. The estimated parameters (b0, or intercept; b1, or slope)
are those that minimize �i(yi � b0 � b1xi)2. The assumption
of Gaussian errors is usually valid, since the sum of many
sources of error, as occur in these studies, tends toward a
Gaussian distribution. However, outliers that violate the
Gaussian assumption will bias the apparent trend (SEBER

and LEE, 2003). A priori knowledge of non-Gaussian data
points (e.g., storm points) can be used to eliminate such
points. Ordinary least squares assumes homoscedasticity

(e.g., KLEINBAUM et al., 1998), which means that the variance
of each Y component (shoreline position) is the same.

This method is easy to code, and many software companies
include OLS as a tool in their spreadsheet programs. A num-
ber of statistical tests have been developed (e.g., analysis of
variance [ANOVA]) to determine the goodness of the fit and
to calculate confidence intervals around the line, future po-
sition, and shoreline change rate. These tests require near
Gaussian statistics, which are derived from data scatter rath-
er than independent sources.

A linear fit provides a long-term trend over the years for
which data are available, but shoreline change is not con-
stant. Also, sediment supply and transport, presence of en-
gineered structures, and storms may not result in Gaussian
variations in the data (e.g., FENSTER, DOLAN, and ELDER

1993; GALGANO and DOUGLAS, 2000; GALGANO, DOUGLAS,
and LEATHERMAN, 1998; HONEYCUTT, CROWELL, and DOUG-
LAS, 2001). Clustering of data in time greatly affects the
trend line by causing some points to have undue influence
(DOLAN, FENSTER, and HOLME, 1991; FENSTER, DOLAN, and
ELDER 1993). Since the line fit does not incorporate the un-
certainty of each data point, the uncertainties of future shore-
line positions may not reflect the data accurately. For ex-
ample, according to ROUSSEEUW and LEROY (1987), this
method is sensitive to outliers; often only one point is needed
to distort the trend. If an outlier exists within a data set (e.g.,
storm point that violates the Gaussian assumption), the re-
sulting line may be highly influenced by that one point. A
priori knowledge is therefore important, yet controversial
(e.g., FENSTER, DOLAN, and MORTON, 2001; GALGANO and
DOUGLAS, 2000; GALGANO, DOUGLAS, and LEATHERMAN,
1998; HONEYCUTT, CROWELL, and DOUGLAS, 2001; ZHANG,
DOUGLAS, and LEATHERMAN, 2002).

Jackknifing (JK)

The jackknifing method uses multiple OLS fits to deter-
mine the shoreline change rate. A different point for each line
is omitted, resulting in a different slope for each line. The
slopes are averaged to provide a shoreline change rate. Jack-
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Figure 1. Published shoreline change rate methods applied to one data set of seven shoreline positions. A positive slope shows erosion, while a negative
slope shows accretion. The shoreline positions are signified as crosses and the diamonds represent outliers.

knifing has the advantage of decreasing the influence of clus-
tered data and extreme data points. However, computing all
possible linear trends is not efficient (DOLAN, FENSTER, and
HOLME, 1991).

Reweighted Least Squares (RLS)

RLS helps identify the true trend of shoreline change data
by removing statistical outliers in the data. This two-step

method first identifies outliers at a cutoff value ( ) using the�̂
least median of squares (LMS) regression (ROUSSEEUW and
LEROY, 1987). Points identified as statistical outliers are giv-
en a weight of 0, and all other points are assigned a weight
of 1. An OLS fit then finds the trend with all data points of
weights equal to 1. Unlike OLS, RLS is more robust and not
as sensitive to outliers. RLS has a breakdown of 50% (that
is, if 50% of the data are outliers, the trend of the data can
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Figure 2. New shoreline change rates. The crosses represent shoreline positions. The vertical lines are 1 � � error bars associated with each shoreline
position, and the diamonds correspond to outliers.

still be identified accurately) (ROUSSEEUW and LEROY, 1987).
Since most shoreline studies have a limited data set, the re-
moval of two or three points without any prior knowledge
runs an undesirable risk of discarding good, but noisy, data.
Also, adjacent transects along a beach (spaced 20 m in our
case) do not always identify the same year as an outlier. This
can lead to significant alongshore variations in modeled
shoreline rates that are inconsistent with natural beach dy-
namics. Thus, this method probably works best with a large
amount of data or if data from adjacent transects are binned
(discussed later) so that true outliers are more evident.

NEW EROSION RATE METHODS

In addition to the established methods discussed above, we
explore three new methods to calculate shoreline change
rates. These methods are based on well-established theoret-
ical frameworks and are more robust than the least square
methods described above (Figure 2).

Weighted Least Squares (WLS)

Unlike OLS, WLS assumes heteroscedastic uncertainties.
This means that the variance associated with each Y com-
ponent (shoreline position) is not necessarily the same at
each X component (time) (e.g., KLEINBAUM et al., 1998). If the

variances are the same, WLS reduces to OLS (GRAYBILL and
IYER, 1994). In many studies it may be difficult to quantify
the uncertainties for WLS; however, if the variance (�2) or
standard deviation (�) for each Y component is known, the
weight (w) is equal to 1/�2. In matrix form, solving for b, a
column vector with unknown parameters of intercept and
slope, results in

b � (XTWX)�1XTWY

in which Y is a column vector containing shoreline positions,
X is a matrix composed of a column of ones and a column of
time data, and XT is the transpose of the matrix X, (e.g., DRAP-
ER and SMITH, 1998). The weight matrix, W is

w 0 0 0⎛ ⎞1

0 w 0 0⎜ ⎟2
W � .⎜ ⎟

0 0 w 03⎜ ⎟
0 0 0 w⎝ ⎠n

where wi � 1/� and n is the total number of data points (e.g.,2
i

GRAYBILL and IYER, 1994).
Data points with large variance will have less of an influ-

ence on the trend line than data points with smaller variance
(GRAYBILL and IYER, 1994). For example, early shoreline
data have larger uncertainties associated with them than re-
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Table 2. An example of a misfit function for LAD. The values of the calculated misfit function are in each box. b0 � intercept and b1 � slope. The minimum
value is highlighted with a slope of 0.50 and intercept of 0.

b0

b1

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

�2.00
�1.50
�1.00
�0.50

0.00

22.36
19.61
16.86
14.11
11.74

16.86
14.11
11.36
9.29
7.24

11.56
9.19
7.24
5.29
3.65

7.72
6.14
4.69
4.01
5.75

6.51
5.40
5.55
7.89

10.64

7.62
8.10

10.64
13.39
16.14

10.77
13.39
16.14
18.89
21.64

16.14
18.89
21.64
24.39
27.14

21.64
24.39
27.14
29.89
32.64

0.50
1.00
1.50
2.00

9.69
7.64
7.29
8.18

5.23
5.25
6.45
8.47

4.60
6.95
9.47

12.22

8.47
11.22
13.97
16.72

13.39
16.14
18.89
21.64

18.89
21.64
24.39
27.14

24.39
27.14
29.89
32.64

29.89
32.64
35.39
38.14

35.39
38.14
40.89
43.64

cent shorelines. WLS will put more weight on the recent data.
The resulting trend line incorporates the uncertainty at each
position as well as the uncertainty of the model. Since all
other assumptions for WLS equate with OLS (e.g., Gaussian
errors), statistical tests and calculation of confidence inter-
vals associated with OLS can also be performed on WLS
(KLEINBAUM et al., 1998).

In order to apply this method, it is necessary for research-
ers to estimate all uncertainties associated with their study.
As with OLS, this method is sensitive to outliers even if their
weights are small. Hence, a priori knowledge is also impor-
tant. The drawbacks of assuming a Gaussian distribution as
discussed in the OLS section also apply to WLS. If the cal-
culated uncertainties at each shoreline position do not accu-
rately express the real deviations, then the resulting rate
may underestimate or overestimate the true rate.

Reweighted Weighted Least Squares (RWLS)

RWLS is similar to RLS except that it takes into account
the uncertainties of each shoreline position. After identifying
and removing outliers using LMS, a WLS line is fit to the
data. Like WLS, RWLS incorporates positional uncertainties
into the rate.

Least Absolute Deviation (LAD)

Least absolute deviation is more robust with respect to out-
liers than least squares. Unlike the squared residuals of least
squares, the sum of the absolute value residuals in LAD is
minimized (i.e., misfit function is �i �yi � b0 � b1xi�). Since the
residuals are not squared, an extreme value has less effect in
LAD than in least squares. The assumed distribution of mea-
surement errors is a Laplace, or two-sided exponential, dis-
tribution rather than a Gaussian distribution, and the La-
place distribution’s longer tails make it less sensitive to out-
liers (TARANTOLA, 1987). In comparing robust estimators,
ROUSSEEUW and LEROY (1987) stated that LAD is preferable
to least squares methods when outliers are in the y direction,
which is the case in nearly all historical shoreline analyses.

Calculating the LAD estimate is not as straightforward as
it is with least squares. A grid search is performed to calcu-
late a misfit over a range of slopes and intercepts. The best
fitting line is the one whose slope and intercept minimize the
misfit. For example, an intercept, b0, that ranges from �2 to

2 with increments of 0.5, and slope, b1, that ranges from 0 to
2 with increments of 0.25, identifies a minimum misfit of
3.65. The slope and intercept estimates are 0.50 and 0.00,
respectively (Table 2).

The uncertainty calculation for the slope estimate is more
difficult than that of least squares. To obtain a range of slopes
at a certain percentile, we first calculate an estimator of stan-
dard deviation (analogous to the root mean square error in
least squares) and use it to compute the likelihood function,
which in this case is the joint probability density function
(PDF) of both the slope and intercept. The marginal PDF of
the slope is obtained by integrating the joint PDF over inter-
cept. The marginal PDF then gives the slope range at the
percentile of interest. Unlike least squares, the slope range
is not necessarily symmetrical around the peak of the slope
PDF.

The major advantage of LAD is its robustness with respect
to outliers. Similar to WLS, weights can also be incorporated
in LAD (weighted least absolute deviation, or WLAD). Since
there are only two parameters, LAD is not difficult to code.
Care must be taken in selecting a range of slopes and inter-
cepts to search from when using the grid search. If the range
is not broad enough, or point spacing not dense enough, the
resulting estimates of slope and intercept might not reflect
the data accurately; however, the algorithm can be made self-
checking and self-adjusting to overcome this minor difficulty.

HAWAIIAN DATA AND UNCERTAINTIES

To calculate shoreline change rates in Hawaii, we digitize
the toe of the beach as our shoreline position on images taken
in different years (FLETCHER et al., 2003). The beach toe,
which approximates the low water line, is a more accurate
indicator for shoreline change analysis along Hawaiian coast-
lines when compared with the mean high water line (MHWL)
(COYNE, FLETCHER, and RICHMOND, 1999; FLETCHER et al.,
2003; ROONEY and FLETCHER, 2000).

Several sources of error influence the delineation of shore-
lines. For example, aerial photographs taken at various tide
levels influence the location of the digitized shoreline, which
in turn influences the resulting shoreline change rate. For
our data, FLETCHER et al. (2003) made a special effort to
identify and quantify all errors in order to assess the 1 � �
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Figure 3. Three classified regions within Maui that experience different
weather conditions and wave dynamics.

uncertainty of a shoreline position. The errors are squared
and summed to get a total positional uncertainty. We assume
the total uncertainty follows a Gaussian distribution, since
the central limit theorem states that the sum of multiple
sources of uncertainty of arbitrary distributions tends toward
a normal distribution (DRAPER and SMITH, 1998).

We use two different types of images to generate our shore-
line positions—topographic surveys (National Oceanic and
Atmospheric Association T-sheets) and vertical aerial photo-
graphs. Only T-sheets that pass the National Map Accuracy
Standards are used in this analysis (FLETCHER et al., 2003).
The original surveyors of these T-sheets designated MHWL
as the shoreline position. We migrate the MHWL in T-sheets
to the low water line based on seasonally collected profiles.

Following FLETCHER et al. (2003) and ROONEY et al. (2003),
we calculate the total positional uncertainty (Ut) using the
equation

2 2 2 2 2 2 2U � ��Er � Ed � Ep � Ets � Etd � Es � Ec ,t

where Er � rectification error, Ed � digitizing error, Ep �
pixel error, Ets � error plotting on a T-sheet, Etd � tidal
fluctuation error, Es � seasonal error, and Ec � error in field
identification of MHWL and low water line, as evidenced by
the beach toe. Errors for T-sheets include Ets and Ec, and
exclude Er and Etd. Aerial photographs do not include Ets
and Ec.

METHODS

Shoreline Change Rate Comparisons

Forecasting and Hindcasting (Cross-Validation)

Following HONEYCUTT, CROWELL, and DOUGLAS (2001),
we compare the shoreline change rate methods discussed ear-
lier by predicting known shoreline positions. For each predic-
tion we calculate the difference between the actual and pre-
dicted position for all nine methods. HONEYCUTT, CROWELL,
and DOUGLAS (2001) refer to this difference as the error in
prediction (EIP) and describe the mean absolute EIP (or
mean �EIP�) as a way of representing the magnitude of the
error. In comparing the mean �EIP� for all the methods, we
perform an ANOVA test at a 95% confidence interval to iden-
tify the differences. To compare the results of differing beach
dynamics on Maui, we make forecasting predictions on two
types of beaches—those with and without engineered (or
hardened) structures. We make hindcasting predictions to
check the validity of our earliest T-sheet points.

We compare EIPs of predictions that include storm-influ-
enced points to EIPs of predictions exclusive of these points.
Determining storm-influenced points is difficult in an island
setting where different parts of the island are exposed to
varying weather conditions (FLETCHER et al., 2003; ROONEY,
2002; ROONEY et al., 2003). We therefore classify three re-
gions on Maui—Kihei, West Maui, and the North Shore—as
each having its own distinct wave regime (FLETCHER et al.,
2003; ROONEY et al., 2003) (Figure 3).

We use previous research and historical accounts to deter-
mine a priori knowledge of storms. Tide gauge data are used
to confirm storm events for the North Shore only. From tide

data and historical accounts of a devastating tsunami, we
consider the 1960 shoreline to be an outlier for the North
Shore. We similarly conclude that the 1963 shoreline is an
outlier for West Maui because of kona storms based on the
work of EVERSOLE (2002) and is also an outlier in the Kihei
region because of kona storms based on the study of ROONEY

(2002). Kona storms are low pressure systems that generate
high winds and waves from the south and occur mostly in
winter.

There are various difficulties associated with forecasting
known positions. As HONEYCUTT, CROWELL, and DOUGLAS

(2001) point out, predictions of the near future have lower
uncertainty than predictions of the distant future. Also, if
fewer data are available for a prediction, it will have large
uncertainty. Another difficulty of forecasting analysis is that
shoreline positions are not precisely known. Since all shore-
line positions are subjected to errors inherent in aerial pho-
togrammetry and T-sheets, the true positions are unknown.
Instead, an estimate of the position is known and an estimate
of the range of possible values is made. In comparing a mea-
sured position with a prediction, the uncertainties of each
should be kept in mind. The predicted point might not equal
the measured position but remains a good prediction because
it falls within the uncertainty of the measured point. Hence,
whether one method provides a better prediction over anoth-
er is affected by random errors in the point being predicted.

Comparing Methods Using Synthetic Beach Time
Series

Synthetic beach time series provide an alternative to hind-
casting and forecasting. With synthetic time series, the cal-
culated change rates of each method are compared with an
assigned rate. To do this, we first assign a true slope and use
this to calculate a database of synthetic shoreline positions
at eight discrete years. We then introduce noise to the shore-
line database and use this noisy data to calculate change
rates using the various methods. We repeat this process 1000
times while keeping the true rate constant but varying the
noise. Noise, in this case, is the scattering of the shoreline
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position based on the known uncertainties and an additional
unknown factor. The unknown factor makes our knowledge
of the shoreline position less certain. Hence, the generated
noise in the synthetic analysis is greater than the uncertainty
of the model in real data. Noise is created by sampling from
a probability density function associated with each major un-
certainty component. For example, we quantify a rectification
uncertainty based on the aerial photo orthorectification pro-
cess. This has several independent errors associated with it,
such as lens distortion, camera tilt, Earth curvature, and ter-
rain relief. We assume that a Gaussian distribution is the
underlying distribution for the rectification error due to the
central limit theorem (DRAPER and SMITH, 1998) and sample
from this distribution to represent noise caused by the rec-
tification process.

To account for any additional uncertainties that are not
part of the shoreline analysis, we also generate noise from a
Laplace distribution and add it to each shoreline position. We
sample from each uncertainty distribution and add the sam-
ples together to get a total noise value for each synthetic data
point. We calculate a change rate for every synthetic time
series and make a histogram of all the calculated rates to see
which method consistently is closest to the true value.

To compare the methods, we use the Kolmogorov-Smirnov
test (hereafter K-S test) to determine whether two distribu-
tions of calculated change rates are significantly different
(the Gaussian assumption is not needed to use the K-S test).
The K-S test is sensitive to the mean, standard deviation, and
shape of each distribution (SIEGEL, 1956). Thus, this test
shows whether different rate methods give statistically in-
distinguishable predictions. If more than one method has in-
distinguishable predictions, the choice of method is left to the
discretion of the analyst. To test the methods at different
noise levels, we calculate rates with synthetic data twice—
one set of data with less noise and the other with more noise.
In the less noise calculation, we sample from each uncertain-
ty distribution that has a standard deviation that is equal to
the average of the source of error plus a Laplace distribution
with a standard deviation of 10 m. For the calculation of rates
with more noise, we use the maximum value of each source
of error component and the Laplace distribution with a stan-
dard deviation of 20 m.

We also compare methods when an extreme outlier exists,
such as a storm-influenced shoreline. Since it is difficult to
identify storm-influenced data points at specific beaches, we
want to identify methods that best determine the actual rate
with the inclusion of an extreme non-Gaussian point. We first
add noise from a Laplace distribution with a standard devi-
ation of 100 m to a middle data point (specifically, the fourth
position) and then repeat the above process of calculating a
change rate 1000 times. We then add extreme noise to the
last point and repeat the above process. A K-S test is also
performed on the resulting distribution of rates. As with the
synthetic data without a storm-influenced point, we compute
two different data sets—one with less noise and one with
more noise.

Results of Rate Method Comparisons
The prediction analysis (forecasting and hindcasting) use

real data to compare shoreline change rate methods. Al-

though many caveats are associated with this analysis, fore-
casts and hindcasts suggest how well each rate method pre-
dicts future real data. On the other hand, the advantage of
using the synthetic analysis is that the true synthetic rate is
known, so the error of the predicted rate is also known. How-
ever, this analysis uses manufactured rather than real noise
and assumes that errors are additive. Both prediction and
synthetic results agree that MDL and AOR provide the least
desirable results and OLS, WLS, RLS, RWLS, JK, and LAD
are valid methods under certain conditions.

Forecasts

Excluding the North Shore, forecasts of positions with
hardened structures have lower �EIP� than forecasts of posi-
tions free of hardened structures. The North Shore predic-
tions (Table 3) with the 1960 storm position included in the
analysis have considerably higher �EIP�, which can be attri-
buted to one beach where predictions made from T-sheets and
1960 positions did not reflect actual positions (Figure 4). Gen-
erally, predictions from OLS, WLS, RLS, RWLS, JK, EPR,
and LAD are statistically not different and have the smallest
�EIP�. AOR and MDL are continuously singled out as methods
that are significantly different from other methods because
they show appreciably higher �EIP� (Table 3).

Predictions improve for all methods when storm-influenced
shorelines are removed from the dataset. This improvement
ranges from �0.1 m to 15 m. Geographically, the most im-
provement occurs on the North Shore with hardened struc-
tures. MDL and AOR improve more than other methods
when outliers are removed (average not including North
Shore � 3.6 m). All least squares methods, JK and LAD, on
the other hand, have minimal improvements when storm-in-
fluenced shorelines are removed for all regions (average im-
provement excluding the North Shore � 0.7 m).

Hindcasts

The mean �EIP� for hindcasts is slightly larger than that of
forecasts (Table 3). This increase is due to a lack of detailed
information that surrounds T-sheets. A shoreline position
from a T-sheet is not as well constrained and has a larger
uncertainty associated with it than a shoreline position from
an aerial photo. Hindcasts of beaches with hardened struc-
tures have lower mean �EIP� than beaches without hardened
structures (excluding the North Shore). The hardened struc-
tures consist of seawalls, groins, and revetments, which may
stabilize the beach on a short-term basis. Similar to forecasts,
MDL and AOR hindcasts have high mean �EIP� and generally
do not reflect the results of all other methods.

Removing storm-influenced outliers improves hindcasts
minimally. Hindcasts of West Maui improve by only 1 m
when storms are removed. Hindcasts of the North Shore with
hardened structures are less accurate by an average of 2.4 m
without storm shorelines (individual beaches have even a
greater negative difference). This decrease in accuracy could
be attributed to the storm shoreline having no negative in-
fluence on the trend; hence, it is not a true storm outlier for
that area. All other areas, however, show marked improve-
ment when storm-influenced outliers are excluded. AOR has
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Table 3. Forecast and hindcast results. EIP � error in prediction. Mean �EIP� is the average magnitude difference between predicted and known shoreline
positions.

Forecasts Hindcasts

Region Method

Natural Beaches
Mean �EIP� (m)

All
Points

W/o
Storms

Hardened Beaches
Mean �EIP� (m)

All
Points

W/o
Storms

Natural Beaches
Mean �EIP� (m)

All
Points

W/o
Storms

Hardened Beaches
Mean �EIP� (m)

All
Points

W/o
Storms

Kihei OLS
WLS
RLS
RWLS
EPR

11.7
12.6
11.8
12.6
12.5

9.3
9.9
9.3
9.9
9.7

7.4
7.7
7.7
8.0
7.7

7.0
7.2
7.0
7.2
7.1

20.3
20.1
20.3
21.1
18.1

16.4
16.4
16.4
16.4
16.8

11.9
11.9
11.9
12.0
15.1

11.5
11.6
11.5
11.6
12.9

AOR
JK
MDL LOW
MDL ZERO
LAD

19.0
13.6
20.3
29.8
11.7

12.7
10.8
12.4
16.8
9.5

14.1
8.5

14.1
18.6
7.2

8.2
7.4
8.2

10.1
6.8

27.6
21.0
17.0
22.1
22.9

17.0
15.6
15.2
17.6
21.9

30.0
11.8
13.3
16.8
12.5

14.1
10.6
11.9
15.5
15.0

West Maui OLS
WLS
RLS
RWLS
EPR

8.8
9.2
8.9
9.3
9.6

8.5
8.7
8.6
8.7
8.8

6.0
6.2
6.1
6.3
6.2

6.1
6.2
6.1
6.2
6.2

13.4
13.4
13.2
13.2
14.5

13.1
13.1
13.0
13.0
12.9

9.0
8.7
8.7
8.6

10.2

8.7
8.5
8.2
8.0

10.0
AOR
JK
MDL LOW
MDL ZERO
LAD

14.7
9.6
9.8

11.6
8.8

10.4
9.3
9.0

10.5
8.7

8.1
6.7
6.3
8.3
6.0

8.1
6.8
6.6
8.5
6.1

17.1
13.2
13.1
13.6
13.8

14.0
13.0
13.1
13.2
13.0

17.2
8.9
9.6

10.8
9.6

11.3
8.3
8.7

10.0
9.5

North Shore OLS
WLS
RLS
RWLS
EPR

5.2
5.1
5.2
5.2
5.0

4.9
5.0
4.9
5.0
4.9

20.4
20.7
20.4
20.6
20.7

10.0
9.8

10.0
9.8

10.0

13.3
13.2
13.4
13.3
12.2

9.1
9.0
9.1
9.0
8.9

26.0
27.5
26.1
27.6
24.5

31.2
31.0
30.8
30.7
31.8

AOR
JK
MDL LOW
MDL ZERO
LAD

5.5
4.9
5.1
5.6
5.0

5.3
4.8
4.9
5.4
4.8

21.9
20.8
24.0
26.7
20.1

11.6
10.4
10.2
11.4
9.6

13.5
13.5
12.4
13.9
13.1

9.3
9.1
8.0
8.9
9.3

27.5
26.4
41.5
53.7
26.4

35.5
33.0
35.2
41.7
29.7

the biggest improvement in hindcasts when shorelines af-
fected by storms are removed.

Synthetic Data

Three sets of synthetic data were generated—one with no
storm shoreline, one with a storm shoreline in a middle po-
sition, and one with a storm shoreline at the last position.
For each set, two runs were made—one with less noise and
one with more noise. The significance of two standard devi-
ations was also calculated for all rate methods using a Siegel-
Tukey test. A method with a low standard deviation better
identifies the true slope than a method with a higher stan-
dard deviation. The results of the Siegel-Tukey test concur
with the K-S test results.

Time Series without Storm Shoreline. K-S test results of
time series with less noise show that WLS, RWLS, and
WLAD predictions are not statistically different at the 95%
confidence interval but are statistically different from all oth-
er methods (Table 4, column A). WLS, RWLS, and WLAD
also have the smallest standard deviations, or data spread,
and thus provide better predictions. K-S test results of time
series with more noise show that all methods except for AOR
and MDL perform equally well and are not significantly dif-

ferent from each other (Table 4, column B). AOR and MDL
distributions have high spreads compared with all other
methods.

Time Series with Storm Shoreline in Middle Position. K-S
test results of data with less noise demonstrate that methods
other than AOR and MDL are not statistically different (Ta-
ble 4, column C). The spreads of MDL and AOR are higher
than all other methods. For data with more noise, the K-S
test results show that OLS, WLS, RLS, RWLS, JK, and
WLAD are not statistically different (Table 4, column D).
EPR and LAD are statistically different from other methods,
but not statistically different from each other. EPR and LAD
also have higher spreads than other methods, excluding AOR
and MDL. AOR and MDL are statistically different from all
other methods and have the highest spreads.

Time Series with Storm Shoreline in Last Position. K-S test
results of data with less noise show that RLS, RWLS, LAD,
and WLAD are not statistically different and have the lowest
spreads (Table 4, column E). OLS, WLS, and JK do not have
statistically different distributions from each other but have
higher spreads than RLS, RWLS, LAD, and WLAD. EPR,
AOR, and MDL have much higher spreads. When more noise
is added to the time series, K-S test results show that all
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Figure 4. Predictions from a transect in Kahului. Predictions were made
using the T-sheets and 1960 aerial photograph positions. Although a tsu-
nami affected the area 5 mo before the 1960 photograph, accretion is
predicted. Erosion at the rate of 3 m/y occurred between 1960 and the
next position (1975).

Table 4. Kolmogorov-Smirnov results of synthetic time series. Each grouping contains methods that are not statistically significant from each other.

Standard
Deviation

(data spread)

Without Storm Position

Less Noise
(A)

More Noise
(B)

Storm—Middle Position

Less Noise
(C)

More Noise
(D)

Storm—End Position

Less Noise
(E)

More Noise
(F)

Low

⎪⎪

WLS
RWLS
WLAD

WLS
JK
RWLS

RWLS
WLAD
JK

JK
OLS
RLS

WLAD
RLS
RWLS

RLS
JK
OLS

⎪
⎪
⎪
⎪
⎪

OLS
RLS
WLAD
EPR
LAD

RLS
OLS
LAD
EPR
WLS

WLS
RWLS
WLAD

LAD RWLS
WLAD
WLS
LAD

⎪
⎪
⎪
⎪
⎪

RLS
JK
OLS
LAD
EPR

AOR MDL LOW EPR
LAD

OLS
JK
WLS

EPR

⎪
⎪
↓
High

AOR
MDL LOW
MDL ZERO

MDL LOW
MDL ZERO

AOR
MDL ZERO

AOR
MDL LOW
MDL ZERO

EPR
AOR
MDL LOW
MDL ZERO

AOR
MDL LOW
MDL ZERO

methods except for EPR, AOR, and MDL are not statistically
different (Table 4, column F). EPR, AOR, and MDL have
higher spreads than all other methods.

Hawaiian Beaches and Binning of Shoreline Data

We calculate change rates from shore-normal transects
spaced 20 m alongshore. Individual transects contain be-
tween five and nine unevenly spaced points spanning ca. 100
years. These datasets are typically limited and characterized
by large data scatter. To reduce the effect of natural data
variation from transect to transect and measurement errors,

we bin data onto one plot from adjacent transects belonging
to a contiguous stretch of beach and calculate change rates
using the RWLS method. Since the whole beach does not nec-
essarily behave in the same manner, we need to identify sec-
tions of the beach that are indistinguishable. Importantly,
transects that have engineered structures and no beach front-
ing them are removed from this analysis because most coast-
al managers define these areas as having no erosion or ac-
cretion, and their inclusion will unduly influence rates cal-
culated along the rest of the beach.

To identify which transects should be binned together and
thus represent a section of beach where erosion rates are in-
distinguishable, we group adjacent transects and compare
their combined rate to the combined rate of all other tran-
sects on that beach. The reader is referred to Figures 5–9 for
a graphic illustration of the binning process. We start with a
window spacing of four transects (Figure 5) and group the
first four adjacent transects together and then calculate the
shoreline change rate. We compare this rate with the rate of
a bin of the remaining transects using a Student’s t-test
(KLEINBAUM et al., 1998) at a 95% confidence interval to de-
termine any disagreements (Figure 5, bottom). The window
is then shifted over by one transect and a new t-test is per-
formed. The window continues shifting by one transect until
the last four transects are grouped together. Each time the
window shifts, a t-test is calculated to compare the grouped
transects within the window with the binned rate of the rest
of the transects. The window size is then increased from four
transects to six and the process of calculating a t-test is re-
peated. The window size is increased and the binning proce-
dure is repeated until we reach a window size equal to (n
transects)/2. When the binning procedure is complete, clus-
ters of transects are identified by executing a Student’s t-test
on groups of transects that are found to be statistically dif-
ferent from the rest of the beach. Within each window size,
a t-test is performed on any overlapping transects (Figure 6).
If the overlapping transects are statistically not different,
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Figure 5. Top—Shore-normal transects are spaced 20 m alongshore. In
this example, transect window length is four. The erosion rate of the first
four adjacent transects (1) is compared with the rate of all the other
transects in this beach. Next, the erosion rate of the next four transects
(2) is compared with the rate of all other transects. This continues
throughout the beach (3 and 4) until the rate of the last four transects is
compared with the rest of the beach. The window spacing then increases
to 6, 8, 10, etc. transects. Bottom—Another visualization of transect bin-
ning at a window size of 4. The numbers 1, 2, and 3 correspond to the
numbers in the figure above. R1 is the binned erosion rate of four tran-
sects. R2 is the binned erosion rate of the rest of the beach. A t-test ex-
amines whether R1 is significantly different from R2.

Figure 6. Vertical lines represent transects. Y axis is the window size
of the transect grouping. The first window size is four, meaning four ad-
jacent transects are grouped for each rate calculation. Horizontal lines
represent groups of transects whose rates did not agree with the binned
rates of all other transects (t-test). A t-test is calculated for any overlap-
ping transects within a window size (represented by boxes).

Figure 7. T-test results within each window size. At window size four,
the overlapping transects are not significantly different from each other
(A). At window size six, two groups were identified that were significantly
different from each other (B).

then they are grouped together as one bin (Figure 7A). If they
are different, then they are grouped separately (Figure 7B).
Another t-test is performed to determine whether the bins at
each window size are statistically different from bins of other
window sizes that have overlapping transects. Bins that are
found to be statistically not different are clustered together,
and a rate is calculated for that region (Figure 8). For visual
purposes, each cluster is assigned a color and each transect
within a cluster is allotted a shade (Figure 9). The shade
depends on the frequency of windows that intersect a given
transect—transects that contain a higher frequency of win-
dows that belong to the same cluster will be a darker shade
than transects that have a lower frequency of windows. For
example, in Figure 8, transect 57 has 27 windows that inter-
sect it, while transect 51 has only three intersecting windows.

As a result, transect 57 will be darker than transect 51 (Fig-
ure 9). Transects that encompass more than one cluster will
have a mixed color value.

Results of Binning

Based on both the forecasting and synthetic time series re-
sults, we chose to bin data using the RWLS method. RWLS
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Figure 8. Clusters of transects (or cells) are identified based on t-tests
of all windows with common transects. For this beach, there are two dis-
tinct clusters (labeled 1 and 2). One side of the beach has significantly
different long-term rates compared with the other side of the beach. Tran-
sects that are shared by both clusters are considered transitional zones.

Figure 9. Each cluster is assigned a color, and each transect within a
cluster is given a shade of that color. Transect shade corresponds to the
frequency of windows that intersect the transect. Transects with a higher
frequency of windows will be darker than transects with a lower frequen-
cy of windows. Groups A and C represent two distinct clusters. Group B
represents the overlap between groups A and C.

Table 5. Binning trends.

Region Beach Wave Climate of Region Offshore Bottom Structures Overall Bin Trends

Kihei Southern beaches
(Big Beach, Little
Beach, Maluaka,
Onuli)

South swell, refracted north
swell, and tradewind
waves

No fringing reef None Northern portions of a
beach are distinct from
southern portions.

Kihei Central beaches
(Kam 1, Kam 2,
Kam 3, Ulua)

Minimal south swell and re-
fracted north swell, occa-
sional kona storm waves

No fringing reef,
sandy bottom

Seawall (on Ulua) Uniformity within beaches

West Maui Kaanapali, North
Kaanapali, Keo-
nenui, Kapalua

North Pacific swell, south
swell, and kona storm
waves

Portions have fring-
ing reefs, rocky
and sandy bot-
toms

Seawall (on Keonenui) Erosion on one end of the
beach and accretion on
the other end of the
beach

North Shore Kaehu, Kanaha,
Spreckelsville

North Pacific swell and tra-
dewind waves

Fringing reefs Five groins throughout
beach (on Kanaha), off-
shore rock platform,
and revetment (on
Spreckelsville)

Eastern and western sec-
tions of the beach are
distinct

is chosen because we are confident in our knowledge of the
major uncertainties in our shoreline methodology and are not
confident of the identification of storm-influenced shorelines.
Binned rates and their uncertainties are better resolved than
unbinned rates and their uncertainties. Eighty-four percent
of the trends of binned rates are significant, whereas only
38% of the trends of unbinned rates are significant. There is
a 0.1-m decrease in uncertainties with binned rates compared
with unbinned rates. We perform the binning analysis on 15
beaches—eight from Kihei, four from West Maui, and three
from the North Shore. The eight beaches of Kihei display two
different patterns and are further categorized into two geo-
graphical groups within this study site—four central beaches
and four southern beaches (Table 5).

Kihei is sheltered from waves by Kahoolawe and Lanai is-
lands but is subjected to south swells, refracted north swells,
and kona storm waves. No fringing reef is present in our
study area (FLETCHER et al., 2002; MAKAI OCEAN ENGI-
NEERING AND SEA ENGINEERING, 1991; ROONEY and
FLETCHER, 2005). The central beaches in Kihei behave uni-
formly. Only one of these central beaches contains a seawall,
but all four have significant erosion. The southern beaches
depict distinct behaviors between their northern and south-
ern sections (Table 5).

West Maui beaches are affected by North Pacific swells,
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south swells, and kona storm waves. North Pacific swells do
not severely affect this area because it is located in the shad-
ow of Molokai Island (EVERSOLE and FLETCHER, 2003;
FLETCHER et al., 2002). Segments of the shoreline in this area
contain fringing reefs, and only one beach has a seawall (EV-
ERSOLE and FLETCHER, 2003; MAKAI OCEAN ENGINEERING

AND SEA ENGINEERING, 1991). West Maui study sites depict
a pattern of erosion at one end of each beach and either min-
imal erosion or accretion at the other end (Table 5).

North Shore beaches are influenced by North Pacific swells
and tradewind waves. Fringing reefs are widespread in this
area (FLETCHER et al., 2002; MAKAI OCEAN ENGINEERING

AND SEA ENGINEERING, 1991). The North Shore study area
illustrates distinct behaviors between eastern and western
sections of each beach. Two of the three beaches have engi-
neered structures—one has five groins and one has an off-
shore rock platform with an onshore revetment. These two
beaches exhibit more erosion than the beach without any
structures (Table 5).

DISCUSSION

Comparisons of Rate Methods

Based on our synthetic work and forecasting analysis, we
advise analysts to determine how well they understand the
uncertainty in their methodology before picking the best ero-
sion rate method. When uncertainties are mostly understood,
weighted methods are recommended; conversely, if uncer-
tainties are poorly understood, OLS, RLS, JK, and LAD are
recommended. If doubt exists on the Gaussian nature of the
uncertainty, LAD and WLAD are recommended. We are con-
fident in our understanding of the major uncertainty com-
ponents in our shoreline assessment study; however, we are
not confident in our assessment of storm-influenced shore-
lines. As stated earlier, Hawaii is an island state and differ-
ent beaches are affected differently by storms. The difficulty
in identifying storm-influenced shorelines, together with the
results from the synthetic storm analysis and the prediction
analysis, is the basis for choosing RWLS as the most robust
method for Hawaii.

Based on the K-S test results of synthetic time series with
less noise, weighted methods are far superior to all other
methods (Table 4, columns A, C, and E). This superiority dis-
appears as noise increases. As more noise is introduced to the
data, the weights no longer reflect the uncertainty, and other
methods that put more emphasis on the uncertainty in the
model achieve better results (Table 4, columns B, D, and F).
OLS, RLS, JK, and LAD outperform weighted methods when
noise is sampled solely from a Laplace distribution. If, how-
ever, the majority of uncertainty components are known,
weighted methods reflect the true process better (Table 4,
column A).

Synthetic time series results vary when storm shorelines
are added to middle and end positions. The bias created by
the storm shoreline at the middle position is not as detri-
mental in finding the long-term trend as the bias with a
storm shoreline at the end position. This is because an end
point is a leverage point that can influence the trend of the
model more than interior points. With the storm at the end

position, WLS, OLS, and JK do not perform as well as RLS,
RWLS, WLAD, and LAD (Table 4, column E). Since WLS,
OLS, and JK do not identify statistical outliers and the storm
shoreline is at a leverage position, the storm shoreline unduly
influences the results. RWLS and RLS remove statistical out-
liers, and LAD and WLAD are less susceptible to outliers in
the y direction (ROUSSEEUW and LEROY, 1987); hence, they
perform better than all other methods when a storm shore-
line exists at the end position. When noise increases, how-
ever, all methods perform similarly, except for EPR, AOR,
and MDL (Table 4, column F).

Forecasting results show that in most cases, methods with
the highest mean �EIP� are statistically different from meth-
ods with lower mean �EIP�. OLS, WLS, RLS, RWLS, EPR,
and LAD consistently have the lowest mean �EIP� and are
insignificantly different from each other.

MDL and AOR have the highest mean �EIP�. Their predic-
tions also have the most improvement when storm shorelines
are removed. Both methods remove data from the rate cal-
culation. The end point rate combinations that incorporate
storm-influenced shorelines strongly affect the AOR rate.
Once the storm is removed from the data, AOR predictions
improve. These are still less effective than the least squares
methods, since AOR depends on the minimum time criterion,
which decreases the number of EPRs available for averaging.
The MDL ZERO line often discards early shoreline positions
that do not fit the pattern of the most recent trend of the
data. Predictions made with the most recent trend are more
variable than predictions made with a longer term trend. Re-
moving the storm-influenced shorelines influences the more
recent trends and results in improved, yet still variable, pre-
dictions. The MDL LOW line has better predictions than the
MDL ZERO line because it does incorporate the early shore-
line positions, which agrees with the results of CROWELL,
DOUGLAS, and LEATHERMAN (1997). The predictions with
the low-weight line do not always perform as well as the least
squares because they still give more weight to the more re-
cent data points.

In all forecasts, except for the North Shore with hardened
structures, predictions exclusive of storm-influenced shore-
lines improve only slightly and are insignificant in most cases
(Table 3). For the North Shore with hardened structures, the
mean �EIP� is extremely large (	20 m) when the 1960 storm
(in this case, tsunami) shoreline is present. In examining in-
dividual beaches on the North Shore, the mean �EIP� for Kan-
aha does not show improvement when the 1960 tsunami po-
sition is removed; rather the predictions are worse (Table 6).
Kahului, on the other hand, is responsible for the large mean
�EIP�. The Kahului analysis is composed of three early T-
sheets (1899, 1912, and 1929), and five later aerial photo po-
sitions. Forecasts made with three T-sheets and the 1960 ae-
rial photo account for the large mean �EIP�. The shoreline
change rates calculated with these four points indicate accre-
tion or minor erosion. However, erosion averaged 2.80 m/y
between 1960 and 1975. This significant increase in erosion
resulted in forecasts that do not reflect the actual positions
(Figure 4). Comparing the Kahului results without this set of
forecasts reveals that all methods, excluding MDL, do not
improve significantly when the 1960 position is taken out
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Table 6. Forecasts at Kanaha (North Shore). Removing the 1960 tsunami
position worsens the prediction.

Method

Mean �EIP� (m)

All Points W/o Storms

OLS
WLS
RLS
RWLS
EPR

11.3
11.4
11.2
11.4
11.4

12.9
12.8
12.9
12.8
13.0

AOR
JK
MDL LOW
MDL ZERO
LAD

11.5
11.3
11.3
11.3
11.3

13.1
12.9
12.5
12.5
13.1

Table 7. Forecasts at Kahului (North Shore) after removing predictions
from data using T-sheet and the 1960 shorelines.

Method

Mean �EIP� (m)

All Points W/o Storms

OLS
WLS
RLS
RWLS
EPR

8.9
10.1
9.0

10.1
9.2

9.2
9.1
9.2
9.1
9.2

AOR
JK
MDL LOW
MDL ZERO
LAD

11.0
8.9

21.6
28.8
10.2

11.4
9.8
9.5

10.8
8.7

Table 8. Uncertainties of known positions and hindcasted positions with
and without storm data.

Area Year

Known
Position

Uncertainty
(m)

95% C.I. All
Points Average

Predicted
Position

Uncertainty
(m)

95% C.I. W/o
Storms Average

Predicted
Position

Uncertainty
(m)

Natural Beaches
Maluaka
Onuoli
Kam 1
Kam 2
Kam 3

1931
1931
1912
1912
1912

8.81
8.81

10.57
10.57
10.57

15.71
23.31

114.63
64.79
88.43

23.67
38.67

132.41
117.75
105.44

N. Kaanapali

Waiehu

Waihee

1912
1932
1899
1912
1912
1929

9.17
7.78
6.55
6.76
6.44
6.25

28.03
22.71
28.04
23.00
22.73
18.52

27.16
21.90
62.11
49.90
87.38
69.88

Engineered Beaches
Honokowai
Kahului

Kanaha

1912
1899
1912
1912
1929

8.39
8.45
8.61
9.17
7.62

87.62
68.69
61.24
56.76
46.54

173.37
52.57
46.37

131.00
105.26

N. Kihei
Ulua
Sprecklesville

1900
1912
1912

7.45
10.42
10.18

42.67
15.16

141.39

63.03
35.11

919.97

(Table 7). When segmenting the study area into individual
beaches, some beaches have no significant improvement at
the 95% confidence interval when storm-influenced shore-
lines are removed, while other beaches do. This could be due
to differing storm or tsunami effects. Some beaches are pro-
tected from the full force of the waves by surrounding islands
or fringing reefs, while others are more exposed.

The EIPs for hindcasts are somewhat greater than those
of forecasts. This is because T-sheet positions usually have
greater uncertainties than aerial photos (�7–10 m). Hindcast
predictions that are less than 10 m away from the true po-
sition are still within the uncertainty bounds of the true po-
sitions. We calculate a 95% confidence interval uncertainty
around the predicted positions (Table 8). The minimum av-
erage uncertainty of the predicted positions is 15 m. By in-
corporating the uncertainties of both the true and predicted
positions, even the North Shore predictions fall within the
uncertainty bands. Also, removing storm-influenced shore-
lines does not improve the hindcasts. Thus, early twentieth
century T-sheet positions are valuable in the shoreline
change rate analyses.

Outliers

We investigated two types of outliers and their influence
on the accuracy of predicting shoreline behavior: (1) a priori
knowledge based on historical data, such as a tsunami, hur-
ricane, or storm event and (2) outliers based on residual sta-
tistics.

The time necessary for a shoreline to recover from a major
erosional event can vary (ZHANG, DOUGLAS, and LEATHER-
MAN, 2002), resulting in non-Gaussian behavior. ZHANG,
DOUGLAS, and LEATHERMAN (2002) argue that storms are
independent of any long-term trend and should be considered
separately because beaches eventually recover to their pre-
storm positions. With limited data sets, such as individual
transects that have only five to eight points, a storm-influ-
enced shoreline may unduly bias any calculation of a long-
term trend. ZHANG, DOUGLAS, and LEATHERMAN (2002) sup-
port the assertion of DOUGLAS and CROWELL (2000) that the
most practical option is to remove these points. In our study,
however, we identify two storm-influenced shorelines—the
1960 tsunami that affected the north shore of Maui and the
1963 kona storms. When we use the dataset to predict the

position of a known shoreline at each beach, removing storm
shorelines improves our prediction by an average of 1.1 m
(least squares), with the exception of one beach that experi-
enced accretion during a storm event. This improvement is
minimal when compared with the results of HONEYCUTT,
CROWELL, and DOUGLAS (2001) from U.S. East Coast beach-
es, which demonstrate an improvement of 15–30 m when
storm shorelines are removed. We note, however, that car-
bonate beaches in general and Hawaiian beaches specifically
tend to be much narrower than East Coast beaches. An im-
provement of 1 m may represent 5% of the dry beach width
in many cases. The cost of removing outliers from small da-
tasets, typically used in erosion analysis, is usually an in-
crease in the uncertainty of the calculated long-term trend.
In the end, an analyst must weigh the cost of increased un-
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certainty against the benefit of improved predictive accuracy.
We conclude that storm-influenced shorelines need to be in-
vestigated at each study site before deciding on their treat-
ment.

Most researchers currently do not remove outliers unless
they can assign the points to some meteorological or geolog-
ical factor. Statistical outliers, however, are critical compo-
nents to consider when using least squares because of this
method’s susceptibility to outliers, especially for small data-
sets. A large deviation at a point causes a bias in the trend
if there are few data points, and this can be amplified if the
point is at a leverage position. Some studies have attempted
to relate statistics, such as residuals, to outliers. Focusing on
reducing the root mean squared error (RMSE), GALGANO,
DOUGLAS, and LEATHERMAN (1998) state that storm-influ-
enced residuals increase the error in the model fit and thus
invalidate the model. They choose to use a priori information
to remove these points, but the erosion rates with and with-
out these points are not significantly different. FENSTER, DO-
LAN, and MORTON (2001) identify outliers by calculating stu-
dentized residuals and compare them with known storm
dates. They find that none of the statistical outliers corre-
spond to any known storms and advise not to remove them
as outliers.

FLETCHER et al. (2003) and ROONEY et al. (2003) identify
and remove statistical outliers differently. As mentioned ear-
lier, the least median of squares (LMS) method is part of a
two-step process involving RLS or RWLS that calculates re-
siduals (ROUSSEEUW and LEROY, 1987). They disregard a
data point if a residual is greater than an assigned cutoff
value. The cutoff value ( ) is an estimate of the true standard�̂
deviation of a population (�), which is dependent on the sam-
ple size. For small sample sizes, there is less certainty in any
estimate of the true �, making the cutoff boundary less exact
and causing the removal or retention of too many outliers. If
the outlier analysis at adjacent transects identifies different
points as outliers, the resulting erosion rates are also likely
to differ, leading to the case where physically adjacent beach
segments are assigned inconsistent long-term trends. In our
dataset with an alongshore spacing of 20 m, we find that
adjacent transects do not behave independently of each other.

One way to use LMS is to increase the number of points
used in the calculation of a trend, which can be done by bin-
ning data from adjacent groupings of transects and calculat-
ing a trend. Binning will reduce the spread, or uncertainty,
around the cutoff value, which will improve the identification
of outliers. Therefore, we recommend using a relatively large
sample size to increase the signal-to-noise ratio and improve
the estimate of the spread of the data ( ) when removing�̂
statistical outliers.

Binning Analysis

Setbacks on Maui currently are based on erosion rates from
transects spaced 20 m alongshore. Some adjacent transects
have differing rates, which affect the setback location. Be-
cause only five to nine historical shoreline positions are avail-
able, the noise in the data can mask the signal. One advan-
tage of binning is that by spatially increasing our points, we

decrease the noise by averaging out the random errors. This
decrease in noise allows us to better identify a region of a
beach that has indistinguishable rates of change (i.e., sublit-
toral cells) and assign it one rate of shoreline change. Tem-
porally, our data are unchanged—we can only increase the
number of temporal positions by adding more photographs or
T-sheets. Coastal planners will then be able to use one rate
to determine the setback for that subcell of beach.

When comparing trends of all beaches, the four central
beaches in Kihei behave similarly. All four beaches are rel-
atively small pocket beaches with highly developed back-
shores. Their location, in the shadow of the islands of Molo-
kai, Lanai, and Kahoolawe, protects them from large swells;
however, kona storms have a history of inflicting great dam-
age to this area (FLETCHER et al., 2003; ROONEY and
FLETCHER, 2000, 2005). In a study of net sediment transport
on a stretch of armored beach just north of these beaches,
ROONEY and FLETCHER (2000) conclude that tradewind
waves cause southward movement of sediment, though a
northward movement of sediment predominates due to kona
storm activity. In actuality, we do not see such movement of
sediment. Rather, a uniform manner of erosion is character-
istic throughout each beach. This uniformity could be due to
the relatively small size of the beach that is evenly affected
by both kona storm waves and tradewind waves.

The southern beaches in Kihei are more susceptible to
south swells and have more variability in binning results.
These beaches are less developed and less eroded than their
central counterparts. A cinder cone divides these four beaches
into two northwest facing and two southwest facing beaches.
A very small pocket beach situated within the south end of
the cinder cone accretes uniformly. The cinder cone protects
it from both north and south waves. The cinder cone inter-
feres with sediment transport on the beaches directly north
and south of it. The pocket beach directly south of the cinder
cone exhibits extensive erosion near the headland. The pock-
et beach directly north of the cinder cone exhibits the most
erosion in the central portion of the beach, while the northern
section shows either minimal erosion or accretion. This fol-
lows the conclusion of ROONEY and FLETCHER (2000) of net
sediment transfer to the north.

Two of the three beaches on the North Shore have engi-
neered structures that influence the results. The North Shore
is affected by strong North Pacific swells in the winter and
strong, consistent tradewind waves throughout the year. One
beach contains five groins—four successive groins at the
western end and one groin at the easternmost point of the
beach. The western end is less erosive than the eastern end.
The groin at the easternmost point of the beach reduces the
amount of sediment delivery to the beach directly west of it.
The groins were installed to slow the alongshore sediment
transport to the west (MAKAI OCEAN ENGINEERING AND SEA

ENGINEERING, 1991) but have caused extensive erosion. An-
other beach has an offshore rock platform, and a revetment
in the center of the beach that has caused considerable ero-
sion.

We compare our binning results (Figure 10) to the sedi-
ment transport study of EVERSOLE and FLETCHER (2003) at
Kaanapali Beach in Maui in order to relate annual transport
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Figure 10. Kaanapali, Maui. Results from binning. Eversole and Fletch-
er (2003) identify transect 105 as an inflection point.

to multidecadal observations. EVERSOLE and FLETCHER

(2003) examine sediment transfer by longshore sand trans-
port at the Kaanapali Beach littoral cell and conclude that
transport of sand is northward in summer and southward in
winter, although the net annual transport is northward. They
identify an inflection point within the littoral system and
demonstrate a seasonal volume shift at this position, which
also approximates the net annual transport in this location.
In our binned analysis, the same region is clustered together
and identified as a group that is accreting. We find that this
group differs from the southern portion of the beach, which
is eroding long term at a much faster rate. Although we are
not able to identify seasonal fluxes, we do observe erosive

south and accretive north sections that agree with the obser-
vation of EVERSOLE and FLETCHER (2003) of net annual
transport to the north.

Erosion Hazard Maps

Erosion hazard maps are important in identifying setbacks
that are used by coastal planners. Based on the results of our
study, we have produced erosion hazard maps that reflect the
trend of shoreline movements more accurately than previ-
ously used maps (Figure 11). These new maps incorporate
uncertainties of the shoreline change rate method and iden-
tify binned regions of a beach. The drawbacks of these maps
include assumptions of a linear shoreline behavior, with no
change in long-term effects of storms.

There are three major steps coastal managers need to take
in order to produce erosion hazard maps (Figure 12). The first
step is to identify a change rate method based on their data.
The next step is to bin the data. For example, two bins are
identified in Figure 11—one on the eastern end of the beach
and one on the western end. Finally, transects of each bin
are grouped together and a 50-year predicted position with a
1 � � uncertainty is identified by projecting the regression
line into the future. The setback is calculated with 1 � �
confidence bands placed on either side of the setback, which
creates a hazard zone. Maui County measures the setback
from the certified shoreline. The vegetation line is most often
used as a proxy for the shoreline and includes a 6.1-m (20-ft)
buffer that is designed to partially compensate for method
errors, storm and tsunami hazards, and nonlinear shoreline
change. In our analysis, the 50-year predicted position is cal-
culated from low water line data; consequently, a vegetation
line offset and buffer are added to the future position before
the setback is projected onto the map.

CONCLUSIONS

By comparing the shoreline change rate methods and in-
vestigating outliers, we make the following conclusions. (1)
OLS, RLS, WLS, RWLS, JK, LAD, and WLAD are preferred
methods based on results from synthetic time series and fore-
casts. If major uncertainties in a methodology are known and
quantifiable, WLS, RWLS, and WLAD are preferred. If un-
certainties are unknown or not quantifiable, LAD is pre-
ferred, although OLS, RLS, and JK can be considered. If ef-
fects of storms are unknown or storm-influenced shorelines
are hard to identify, RLS, RWLS, LAD, and WLAD are pre-
ferred. (2) We choose to use RWLS on Maui as our method
based on our knowledge of uncertainties and our lack of con-
fidence in identifying storm-influenced shorelines. (3) MDL
and AOR produce the most variable results. (4) Early twen-
tieth century T-sheets are valuable in shoreline change rate
analysis. (5) Hardened shorelines reduce variability of beach
behavior. (6) Increasing the number of data points via bin-
ning neighboring transects in a RWLS or RLS analysis im-
proves the estimate of spread in data when identifying sta-
tistical outliers.

We conclude from the binning analysis that (7) binning ad-
jacent transects improves the signal-to-noise ratio. The re-



103Predictive Accuracy of Rate Methods and Alongshore Beach Variation

Journal of Coastal Research, Vol. 23, No. 1, 2007

Figure 11. An example of an Erosion Hazard Map. The setback (red line) is surrounded by 1 � � confidence bands (blue lines). The hazard zone is
highlighted in yellow.
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Figure 12. Flow chart showing steps in creating a hazard map. Methods
appropriate for Hawaii are highlighted in gray. We choose RWLS over
WLAD because of the simplicity of RWLS.

sulting binned rates reflect long-term sand transport within
a littoral cell.

ACKNOWLEDGMENTS

The authors would like to thank Christopher Conger, Si-
ang-Chyn Lim, Mathew Barbee, and William Morrison of the
University of Hawaii Coastal Geology Group for their advice
and support. The authors would like to acknowledge Dr. Mi-
chael Fenster for graciously providing us the MDL executable
program.

LITERATURE CITED

COYNE, M.A.; FLETCHER, C.H., and RICHMOND, B.M., 1999. Map-
ping coastal erosion hazard areas in Hawaii: observation and er-
rors. Journal of Coastal Research, Special Issue No. 28, pp. 171–
184.

CROWELL, M.; DOUGLAS, B.C., and LEATHERMAN, S.P., 1997. On
forecasting future U.S. shoreline positions: a test of algorithms.
Journal of Coastal Research, 13(4), 1245–1255.

CROWELL, M.; HONEYCUTT, M., and HATHEWAY, D., 1999. Coastal

erosion hazards study: phase one mapping. Journal of Coastal Re-
search, Special Issue No. 28, pp. 10–20.

DEAN, R.G. and MALAKAR, S.B., 1999. Projected flood hazard zones
in Florida. Journal of Coastal Research, Special Issue No. 28, pp.
85–94.

DOLAN, R.; FENSTER, M.S., and HOLME, S.J., 1991. Temporal anal-
ysis of shoreline recession and accretion. Journal of Coastal Re-
search, 7(3), 723–744.

DOUGLAS, B.C. and CROWELL, M., 2000. Long-term shoreline posi-
tion prediction and error propagation. Journal of Coastal Research,
16(1), 145–152.

DOUGLAS, B.C.; CROWELL, M., and LEATHERMAN, S. P., 1998. Con-
siderations for shoreline position prediction. Journal of Coastal Re-
search, 14(3), 1025–1033.

DRAPER, N.R. and SMITH, H., 1998. Applied Regression Analysis, 3rd
edition. New York: John Wiley and Sons, Inc.

EVERSOLE, D., 2002. Large-Scale Beach Change: Kaanapali, Hawaii.
Manoa: University of Hawaii, Master’s thesis, 63p.

EVERSOLE, D. and FLETCHER, C.H., 2003. Longshore sediment
transport rates on a reef-fronted beach: field data and empirical
models Kaanapali Beach, Hawaii. Journal of Coastal Research,
19(3), 649–663.

FENSTER, M. and DOLAN, R., 1994. Large-scale reversals in shore-
line trends along the U.S. mid-Atlantic coast. Geology, 22, 543–
546.

FENSTER, M.S.; DOLAN, R., and ELDER, J.F., 1993. A new method
for predicting shoreline positions from historical data. Journal of
Coastal Research, 9(1), 147–171.

FENSTER, M.S.; DOLAN, R., and MORTON, R.A., 2001. Coastal storms
and shoreline change: signal or noise? Journal of Coastal Research,
17(3), 714–720.

FLETCHER, C.H.; GROSSMAN, E.E.; RICHMOND, B.M., and GIBBS, A.,
2002. Atlas of Natural Hazards in the Hawaiian Costal Zone. U.S.
Geologic Survey, 182p.

FLETCHER, C.H.; MULLANE, R.A., and RICHMOND, B.M., 1997.
Beach loss along armored shorelines on Oahu, Hawaiian Islands.
Journal of Coastal Research, 13(1), 209–215.

FLETCHER, C.H.; ROONEY, J.J.B.; BARBEE, M.; LIM, S.-C., and RICH-
MOND, B.M., 2003. Mapping shoreline change using digital ortho-
photogrammetry on Maui, Hawaii. Journal of Coastal Research,
Special Issue No. 38, pp. 106–124.

FOSTER, E.R. and SAVAGE, R.J., 1989. Methods of historical shore-
line analysis. In: Coastal Zone ’89. New York: American Society of
Civil Engineers, pp. 4434–4448.

GALGANO, F.A. and DOUGLAS, B.C., 2000. Shoreline position predic-
tion: methods and errors. Environmental Geosciences, 7(1), 23–31.

GALGANO, F.A.; DOUGLAS, B.C., and LEATHERMAN, S.P., 1998.
Trends and variability of shoreline position. Journal of Coastal
Research, Special Issue No. 26, pp. 282–291.

GRAYBILL, F.A. and IYER, H.K., 1994. Regression Analysis: Concepts
and Applications. Belmont, California: Duxbury Press, 701p.

HONEYCUTT, M.G.; CROWELL, M., and DOUGLAS, B.C., 2001. Shore-
line-position forecasting: impact of storms, rate-calculation meth-
odologies, and temporal scales. Journal of Coastal Research, 17(3),
721–730.

KLEINBAUM, D.G.; KUPPER, L.L.; MULLER, K.E., and NIZAM, A.,
1998. Applied Regression Analysis and Other Multivariable Meth-
ods, 3rd edition. Pacific Grove, California: Duxbury Press, 798p.

MAKAI OCEAN ENGINEERING AND SEA ENGINEERING, 1991. Aerial
Photograph Analysis of Coastal Erosion on the Islands of Kauai,
Molokai, Lanai, Maui and Hawaii. Honolulu: Office of State Plan-
ning, Coastal Zone Management Program, 200 p.

MORTON, R.A., 1991. Accurate Shoreline Mapping: Past, Present,
and Future. In: Coastal Sediments ’91. (ASCE) pp. 997–1010.

NORCROSS-NU’U, Z.M. and ABBOTT, T., 2005. Adoption of erosion
rate-based setbacks in Maui, Hawaii: observations and lessons
learned. Solutions to Coastal Disasters Conference (Charleston,
S.C.).

OCEAN STUDIES BOARD, 1999. Science for Decision-Making. Wash-
ington D.C.: Commission on Geosciences, Environment and Re-
sources, 113p.



105Predictive Accuracy of Rate Methods and Alongshore Beach Variation

Journal of Coastal Research, Vol. 23, No. 1, 2007

RISSANEN, J., 1989. Stochastic Complexity in Statistical Inquiry. Sin-
gapore: World Scientific, 178p.

ROONEY, J.J.B., 2002. A Century of Shoreline Change along the Kih-
ei Coast of Maui, Hawaii. Manoa: University of Hawaii, Ph.D. dis-
sertation, 174p.

ROONEY, J.J.B. and FLETCHER, C.H., 2000. A high resolution, digi-
tal, aerial photogrammetric analysis of historical shoreline change
and net sediment transport along the Kihei coast of Maui, Hawaii.
Thirteenth Annual National Conference on Beach Preservation
Technology (Melbourne, Florida).

ROONEY, J.J.B. and FLETCHER, C.H., 2005. Shoreline change and
pacific climatic oscillations in Kihei, Maui, Hawaii. Journal of
Coastal Research, 21(3), 535–547.

ROONEY, J.J.B.; FLETCHER, C.H.; BARBEE, M.; EVERSOLE, D.; LIM,
S.-C.; RICHMOND, B.M., and GIBBS, A., 2003. Dynamics of sandy

shorelines in Maui, Hawaii: consequences and causes. Coastal
Sediments 2003 Proceedings, (Clearwater Beach, Florida).

ROUSSEEUW, P.J. and LEROY, A.M., 1987. Robust Regression and
Outlier Detection. New York: John Wiley and Sons, Inc., 329p.

SEBER, G.A.F. and LEE, A.J., 2003. Linear Regression Analysis, 2nd
edition. Hoboken, New Jersey: John Wiley and Sons, Inc., 557p.

SIEGEL, S., 1956. Nonparametric Statistics for the Behavioral Scienc-
es. New York: McGraw-Hill Book Company, Inc., 312p.

TARANTOLA, A., 1987. Inverse Problem Theory Methods for Data Fit-
ting and Model Parameter Estimation. New York: Elsevier, 613p.

THIELER, E.R.; RODRIGUEZ, R.W., and CARLO, M., 1995. Beach ero-
sion and coastal development at Rincón, Puerto Rico. Shore and
Beach, 63(4), 18–28.

ZHANG, K.; DOUGLAS, B., and LEATHERMAN, S., 2002. Do storms
cause long-term beach erosion along the U.S. East Barrier Coast?
Journal of Geology, 110(4), 493–502.


