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production by foraminifera is more likely to occur in
such areas shoreward of the living reef platform, their
test ages in nearshore sediments (C2) would probably
be younger than in offshore sediments (C9), as we
observe.

Further support of this hypothesis is derived from
our studies of coralline algae and Halimeda. These cal­
careous algae are abundant in Kailua Bay, have been
characterized in terms of production potential, and
possess different mineralogies (high Mg-calcite vs.
aragonite), thus providing a range of perspectives in
sediment dynamics.

Coralline algae sediments are highly varied in age. Of
the shoreface samples analyzed, the oldest grains are
found on the beach (4522 years 13.P. at BI); grains of
intermediate ages are fOllnd nearshore (1556 years B.P.

and 2354 years B.P. at C2); the youngest grains are found
offshore (540 years B.I'. at C9, 558 years B.P. at CIO;
except for the nne size fraction at CIO, see below).
Coralline algae is the only sediment producer that ex­
ploits every habitat and depth within the bay. Atop the
extensive reef platform and on isolated outcrop surfaces,
it is the most ubiquitous marine taxa and the most
prolific producer of sediment. The age distribution of
coralline algal fragments reflects the probability that
most of the sediment production by these red algae is
accomplished atop the reef platform. In sediments col­
lected offshore from the seaward mouth of the channel
(CIO), fine grains of coralline algae are distinctly older
(3236 years B.P.) than coarse grains (558 years B.P.),

suggesting that coralline-algal grains have long sediment
storage times between initial production and loss by
abrasion or by transport to deep water.

Halimeda sediments are distinctly younger in near­
shore samples « 250 and 353 years BY.) than in all
others, presumably due to their proximity to Halimeda
production sites in shallow meadows. Fragments on the
beach, all very small in size (0.1-0.4 mm), are of inter­
mediate age (943 years 13.P. at 81) but are younger than
those offshore (3217 years B.I'. at C9, 2114 years B.p. and
1870 years B.P. at CIO), perhaps reflecting a time lag
associated with transport of these shallow-water sedi­
ments to deeper waters. We do not f"ind a significant age
difference between coarse and fine Halimeda fragments
collected from the channel's seaward mouth at 30 m
water depth, suggesting that the transport of Halimeda
segments from their shallow-water source occurs with­
out size preference. Halimeda's greatest contribution is
made to seafloor sediments adjacent to its shallow
meadows, but its sedimentary products are found on the
beach, in the channel body, and far offshore, reflecting
storage limes as greal as 3200 years.

The most surprising result of this work is that the
skeletal sediments of this productive, well-circulated
system are very old. Even coralline algae, the most
ubiquitous modern producer, are not represented in the
sediments by a dominant modern-aged signal. Of 20
radiocarbon dates on sediment constituents in this
study, only one is of modern (post-1950) age (Halimeda

grains from nearshore site C2; other modern ages are
from living materials or in situ coral). Similar millen­
nial-aged Halitneda fragments and other skeletal mate­
rials have been found in shelf sediments of the Great
Barrier Reef, apparently deposited during post-glacial
sea-level rise and subsequently buried 2-3 m below the
seafloor (Harris et al. 1990). Could an aragonitic grain
even up to I cm in size survive abrasion and transport
in the windward turbulence of Kailua Bay for several
thousand years? Sediment confinement by shallow
burial in the channel and other sand bodies would re­
tard the processes that surficial particles are subjected
to, thereby reducing the loss of grains by erosion and
abrasion or transport to deep water. The deeply-incised
Kailua channel represents an in situ storage capacity
for carbonate sediments produced atop the reef plat­
form and in shallower back-reef areas. The fact that the
channel is not filling up with sediment along its length
suggests that sand is continually transported in or out
of the channel. Recent work on sediment dynamics in
the Kailua channel has revealed that migrating bed
forms proceed shoreward at a rate of 0.5 m/day during
trade wind conditions and seaward at approximately
the same rate during winter ground swell conditions
(Cacchione 1998). Loss of carbonate particles by
abrasion and/or transfer across the -littoral fence' to
deep water may not' necessarily be a rapid process, as
there remains a strong fossil component in sediments of
lhe shoreface. The relationship between circulation,
wave forcing, and sediment movement in Kailua Bay is
still poorly understood but is an important subject for
future research.

Modern and paleoproductivity

The minor importance of volcanic minerals and the
great areal extent and age of carbonate sand contained
in the beach and channel reservoirs indicate that the
storage time of biogenic carbonate sediment in Kailua
Bay is of millennial scale. While the composition of
surficial sands in Kailua broadly reflects the existing
zonation of benthic habitats and production areas, the
distribution of ages (Fig. 6) may also reflecl changes in
carbonate productivity during the Holocene. Under a
+ 1-2 m mid- to late Holocene sea-level high stand
(Grossman and Fletcher 1998), the flooding of Kailua's
broad, low coastal plain would have resulted in signifi­
cant expansion of shallow, nearshore areas (Kraft 1982;
Athens and Ward 1991). The production of calcareous
algae and their sediments may have proliferated in this
back-reef lagoon zone, and (in part due to long storage
times) their fossil signature may be significant in the
present surficial sediment pool. The long-term storage
and release of fossil sediments and the effects of fluctu­
ating sea level on shallow-marine productivity may have
moderated the contemporary signature of the present
benthic community, but do not completely mask back­
ground patterns of partitioned sediment production. A



numerical carbonate sediment budget is necessary to
further investigate differences in modern and paleopro­
ductivity.
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