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Abstract
Global sea-level rise (SLR) is projected to accelerate over the next century, with research indicating that global
mean sea level may rise 18–48 cm by 2050, and 50–140 cm by 2100. Decision-makers, faced with the problem of
adapting to SLR, utilize elevation data to identify assets that are vulnerable to inundation. This paper reviews
techniques and challenges stemming from the use of Light Detection and Ranging (LiDAR) digital elevation mod-
els (DEMs) in support of SLR decision-making. A significant shortcoming in the methodology is the lack of com-
prehensive standards for estimating LiDAR error, which causes inconsistent and sometimes misleading
calculations of uncertainty. Workers typically aim to reduce uncertainty by analyzing the difference between
LiDAR error and the target SLR chosen for decision-making. The practice of mapping vulnerability to SLR is
based on the assumption that LiDAR errors follow a normal distribution with zero bias, which is intermittently
violated. Approaches to correcting discrepancies between vertical reference systems for land and tidal datums
may incorporate tidal benchmarks and a vertical datum transformation tool provided by the National Ocean
Service (VDatum). Mapping a minimum statistically significant SLR increment of 32 cm is difficult to achieve
based on current LiDAR and VDatum errors. LiDAR DEMs derived from ‘ground’ returns are essential, yet
LiDAR providers may not remove returns over vegetated areas successfully. LiDAR DEMs integrated into a
GIS can be used to identify areas that are vulnerable to direct marine inundation and groundwater inundation
(reduced drainage coupled with higher water tables). Spatial analysis can identify potentially vulnerable ecosys-
tems as well as developed assets. A standardized mapping uncertainty needs to be developed given that SLR
vulnerability mapping requires absolute precision for use as a decision-making tool.
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I Introduction

The rate of global sea-level rise (SLR) has accel-

erated from approximately 1.7+0.3 mm/yr

during the 20th century (Church and White,

2006) to about 3.2+0.4 mm/yr at present (Church

and White, 2011). It is estimated that roughly 10%
of the world’s population live within low-lying

coastal areas below 10 m elevation (McGranahan

et al., 2007). The threat posed by accelerated SLR

to ‘vulnerable’ coastal systems (i.e. human and

natural) compels scientists to achieve consensus

on methodologies for mapping environmental

change and assessing ‘adaptation’ options (e.g.

NOAA, 2010a; Nicholls, 2011; Rahmstorf,

2012). Vulnerability is defined by the Intergo-

vernmental Panel on Climate Change (IPCC,

2007: 883) as ‘the degree to which a system is sus-

ceptible to, or unable to cope with, adverse effects

of climate change’. Vulnerability to SLR may be

viewed as a function of a coastal system’s

potential exposure (e.g. frequency of hazards), its

sensitivity (e.g. level of damages caused by flood-

ing), and its adaptive capacity (e.g. management

policies; Adger, 2006). Adaptation may be

referred to as a reaction based on an assessment

of future conditions (Adger et al., 2005) due to

SLR (e.g. SLR vulnerability maps). However,

we acknowledge that adaptation can also be based

on past or current conditions (Adger et al., 2005)

due to other effects of SLR, such as salt-water

intrusion into coastal aquifers (already a problem

in southeastern Florida; Florida Oceans and Flor-

ida Coastal Council, 2010). Here we define SLR

vulnerability mapping as a method of assessing

the spatial distribution of the potential effects of

future SLR. We recognize that these potential

effects may include direct flooding by ocean

waters (marine inundation), indirect flooding due

to reduced drainage coupled with higher water

tables (groundwater inundation; Rotzoll and

Fletcher, 2013), saltwater intrusion, wetland loss,

erosion, etc. SLR vulnerability mapping provides

a cartographic tool for illustrating assets at risk

that are therefore targets for adaptation decisions.

Generating reliable maps of low-lying, low-

slope coastal systems vulnerable to the potential

effects of future SLR primarily depends on the

resolution and accuracy of the elevation data used

to identify sensitive areas (e.g. Coveney and

Fotheringham, 2011; Coveney et al., 2010;

Gesch, 2009). Globally, the application of digital

elevation models (DEMs) for generating SLR

vulnerability maps and assessments has become

a standard practice (e.g. Dawson et al., 2005; Hin-

kel et al., 2010; Marfai and King, 2008; Titus and

Richman, 2001). However, the use of DEMs with

elevation values quantized in whole meters,

coarse horizontal resolution (e.g. 30 m), and high

vertical uncertainty (e.g. root mean square error

or RMSE at the order of meters) limits this meth-

odology to illustrating broad impacts and is not

ideal for planning (Gesch, 2009; Gesch et al.,

2009; Kettle, 2012; Zhang, 2011). Raber et al.

(2007) note that the more coarse the horizontal

resolution of a DEM, the larger the map errors.

Strauss et al. (2012) mention that the application

of 10 m horizontal resolution DEMs was benefi-

cial for demonstrating the general impacts of

SLR, but not for generating detailed vulnerability

maps. Brown (2006) used the best available ele-

vation data derived from Interferometric Syn-

thetic Aperture Radar (IfSAR) at a horizontal

resolution of 5 m and vertical resolution of

50 cm. Kettle (2012) notes that obtaining high-

resolution data and implementing the appropriate

methodologies for quantifying SLR impacts

remains a challenge. Because there is high

demand for SLR decision-support tools using

high-resolution DEMs (Hinkel and Klein,

2009), coastal elevations are more recently being

measured by high-resolution state-of-the-art

Light Detection and Ranging (LiDAR). DEMs

built of LiDAR data are increasingly being used

by decision-makers in forming management

guidelines and to identify high-resolution SLR

hazard zones (Brock and Purkis, 2009).

LiDAR is allowing researchers to generate

more precise SLR vulnerability maps to aid
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adaptation decisions (e.g. Cooper et al., 2012;

Webster et al., 2004; Zhang et al., 2011). For

example, DEMs generated from LiDAR allow

interpretation of vulnerable fine-scale terrain sur-

face features (e.g. individual properties and build-

ings; Zhang, 2011). LiDAR DEMs provide

improvements to delineating potential SLR

impacts because elevation values are quantized

in centimeters, horizontal resolution is high (e.g.

1 m), and vertical error is appropriately scaled

(i.e. RMSE at the order of centimeters; Gesch,

2009; Webster et al., 2006). However, LiDAR

data providers sometimes conduct ‘in-house’

error assessments (Hodgson et al., 2005) quoting

a typical RMSE of 15 cm (Hodgson and Bresna-

han, 2004). In reality, it is extremely difficult to

achieve a low RMSE of 15 cm for land-cover

types other than flat open terrain (Aguilar et al.,

2010), and modeling inundation on natural coastal

systems often involves coastal marshes and vege-

tated areas (e.g. Cooper et al., 2012; Hladik and

Alber, 2012; Schmid et al., 2011). Limitations to

using LiDAR include distinguishing between

ground and vegetation, in which bald-earth prod-

ucts produced by data providers may sometimes

remove tall trees, but not low, dense vegetation

(Rosso et al., 2006). Furthermore, issues such as

a lack of a common error standard for LiDAR, and

discrepancies between vertical datums are chal-

lenging topics to generating high-resolution SLR

vulnerability maps from LiDAR.

The purpose of this paper is to review techni-

cal developments and challenges to conducting

research using LiDAR DEMs for SLR

vulnerability mapping. The following section

introduces future SLR estimates with a focus

on identifying physical climate models, semi-

empirical models, and observations. Section III

reviews the various standards for assessing

LiDAR error in relation to mapping vertical

uncertainty, and the occasional false assumption

that errors follow a normal distribution with

zero bias. Section IV demonstrates approaches

to discrepancies between the vertical land

datum to which LiDAR is referenced and local

tidal datums, in addition to the development of

the vertical datum transformation tool VDatum.

Mapping minimum statistically significant SLR

scenarios is also discussed in section V. Issues

regarding LiDAR point processing into

‘ground’ returns critical for generating LiDAR

DEMs used in SLR vulnerability mapping are

discussed in section VI. Section VII presents

techniques of inundation modeling, highlight-

ing recent developments in mapping direct

marine inundation and groundwater inundation.

Section VIII reviews techniques for evaluating

vulnerability by sector, and section IX provides

an example of best practices. The final section

concludes the discussion while providing a

summary about areas of future focus.

II SLR estimates

Choosing the appropriate SLR scenarios for

implementing adaptation decisions depends on

research progress published by the scientific

community such as the National Research Coun-

cil (NRC, 2012), although political and economic

systems are also contributing factors. The relia-

bility of SLR estimates becomes increasingly

important when used to produce maps that assist

in developing public policy. There exists an

urgent need to improve SLR projections based

on advances in our understanding of the true

causes of rising sea levels (Church et al., 2011).

Two major physical processes drive global

SLR due to environmental change: thermal

expansion of ocean waters, and release of land-

based ice into the ocean (Meehl et al., 2007).

Understanding and quantifying the effects of

these processes, and their geographic variability

and uncertainties, are a primary focus of SLR

research. In their Fourth Assessment Report, the

IPCC used physical climate models to estimate

that global mean sea level (MSL) may rise an

average 18–59 cm by the period 2090–2099

(Meehl et al., 2007) or 19–63 cm by 2100

(Church et al., 2011). It is understood that IPCC

(2007) may underestimate global SLR because
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important contributions from ice sheet dynamics

are excluded (e.g. Rahmstorf et al., 2007).

Modeling the response of ice sheets to a changing

environment remains a major challenge in esti-

mating future SLR (e.g. Church et al., 2011;

Rahmstorf, 2010; Slangen et al., 2012). Using a

combination of model results and observations,

researchers identified three global mean SLR

planning targets: 8–23 cm by 2030, 18–48 cm

by 2050, and 50–140 cm by 2100 (relative to

2000 levels; NRC, 2012).

Rahmstorf (2007) found that sea level might be

responding to a warming climate faster than IPCC

models project. He developed a semi-empirical

model that was later improved (Vermeer and

Rahmstorf, 2009) and assessed (Rahmstorf

et al., 2011) to estimate that global MSL could

rise 0.75–1.9 m by the end of the 21st century.

Church et al. (2011) raised a concern about the

Vermeer and Rahmstorf (2009) semi-empirical

model lacking groundwater depletion. Rahmstorf

et al. (2011) tested the robustness of various semi-

empirical models and found that the best-estimate

model, which also accounted for groundwater

depletion, was almost identical to Vermeer and

Rahmstorf (2009). Jevrejeva et al. (2010) also

developed a semi-empirical model and were able

to estimate a smaller range of uncertainty in SLR

(0.6–1.6 m by 2100). Church et al. (2011) rea-

soned that poor understanding of the processes

that cause SLR has led to the semi-empirical

approach, but this is only a temporary and inade-

quate response to the problem. Using ice

dynamics coupled with other processes, Pfeffer

et al. (2008) projected a most probable rise of

80 cm by the end of the century. Rignot et al.

(2011) extrapolated observations of temporal var-

iations in the Greenland and Antarctic ice sheet

mass balance, summed with thermal expansion

of shallow seawater as calculated in AR4, and

concluded that global mean sea level may rise

32 cm by the year 2050, an estimate that is consis-

tent with Vermeer and Rahmstorf (2009) as well

as NRC (2012). It is understood that regional SLR

will likely differ from global mean SLR. Slangen

et al. (2012) modeled regional variability of rela-

tive SLR using a combination of spatial patterns

of steric effects, land ice melt, and glacial isostatic

adjustment obtained from various models.

Future SLR, although exhaustively modeled

by many researchers using a range of approaches

and assumptions, remains very uncertain. How-

ever, decision-makers cannot adequately plan for

adaptation to the most harmful effects without a

reasonably well-justified target. It can be argued

that under a scenario of warming and melting that

has been observed in the past decade, research is

converging on an estimate of approximately 1 m

of SLR by 2100, making this an appropriate

long-term target for planning and adaptation

decision-making (e.g. Fletcher, 2009; NRC,

2012; Nicholls, 2011; Rahmstorf, 2010). This

value is roughly consistent with the estimate of

Pfeffer et al. (2008), and planning for a 1 m rise

by 2100 is also consistent with the projection of

1.8–5.5 m by AD2500 (Jevrejeva et al., 2012).

For an earlier target by the year 2050, Rignot

et al. (2011) calculate that global mean sea level

will rise approximately 32 cm. This is in the range

of NRC (2012) projections, and constitutes a use-

ful short-term target for adaptation planning.

These planning targets focus attention on the cap-

abilities of LiDAR elevation data to accurately

depict lands vulnerable to 32 cm and 1 m of SLR.

A thorough investigation of this issue requires a

comprehensive understanding of elevation accu-

racy or errors associated with LiDAR and its

processing.

III LiDAR error

1 Common sources of LiDAR error

There are many known causes that contribute to

LiDAR error such as data collection, terrain

slope, land-cover type, LiDAR sensor, and

filtering methods. The three-dimensionality of

a LiDAR elevation data set is denoted by the

coordinates x and y for horizontal positions, and

the letter z for vertical positions. Sources of

LiDAR positional error (xyz) in data collection
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include the global positioning system (GPS)

that records the aircraft’s xyz position, the iner-

tial measurement unit (IMU) for monitoring the

aircraft’s attitude (yaw, pitch, roll), and the

ranging and direction of the laser beam (Hodg-

son and Bresnahan, 2004; Shen and Toth, 2009).

A steep terrain slope will also cause LiDAR xy

errors that influence LiDAR z errors (NDEP,

2004). However, Hodgson et al. (2005) obse-

rved little evidence that LiDAR error increased

in low slopes typical of flood zones (0–8�).
Instead, they found that LiDAR z error is highly

influenced by land-cover type (e.g. low and high

vegetation). Hladik and Alber (2012) demon-

strate that despite recent technological advances

in GPS and IMU, and the LiDAR sensor having

better laser penetration through vegetation due

to higher pulse rate frequencies (PRF; i.e. laser

point density), state-of-the-art high PRF LiDAR

is limited to detecting bare earth in coastal

marsh areas. Land-cover and terrain morphol-

ogy also affect the performance of filtering

methods used to classify LiDAR ‘ground’

returns used to generate bare-earth DEMs

(Aguilar et al., 2010). Identifying these possible

sources of LiDAR error is important so that

their influence on the overall data quality can

be accounted for.

2 Existing standards used for LiDAR error

The quality of LiDAR is referred to as accuracy;

‘a measurement is said to be more accurate

when it offers a smaller measurement error’

(JCGM, 2008: 21). We refer to LiDAR accuracy

as ‘error’. The National Digital Elevation Pro-

gram (NDEP, 2004) and American Society of

Photogrammetry and Remote Sensing (ASPRS,

2004) do not require horizontal (xy) error testing

of elevation data. They note that this is because

the topography may lack fine-scale terrain sur-

face features required for horizontal testing, or

the resolution of the elevation data is too

coarse. However, NDEP (2004) documents

that for high-resolution elevation data such as

LiDAR, or in some cases IfSAR, where fine-

scale terrain features (e.g. narrow stream junc-

tions, small mounds) are identifiable, it is

appropriate for data providers to test the horizon-

tal error. Although the estimated horizontal error

is important, the quality of LiDAR is primarily

specified by the vertical error (ASPRS, 2004;

NDEP, 2004). Therefore, studies address verti-

cal error in SLR vulnerability mapping (Cooper

et al., 2012; Gesch, 2009; Zhang, 2011). The ver-

tical error of a DEM has the largest influence on

delineating inundation zones (Zhang, 2011). For

this reason, we focus on existing standards used

to quantify LiDAR DEM vertical error.

Currently, there is no single standard estab-

lished within the LiDAR community for asses-

sing error. Generally, a combination of several

existing standards is employed including:

National Standards for Spatial Data Accuracy

(NSSDA; FGDC, 1998), Federal Emergency

Management Agency (FEMA, 2003), NDEP

(2004), and ASPRS (2004). The NSSDA is the

most commonly used (Congalton and Green,

2009) and preferred standard for assessing

LiDAR error (Gesch et al., 2009). NSSDA uses

statistical procedures for assessing and reporting

error as an error statement, which originates from

Greenwalt and Schultz (1962). An error state-

ment indicates whether a product such as a

LiDAR data set is reliable for a specific applica-

tion such as SLR vulnerability mapping or

whether the product should be used with caution.

Error is the difference between a measurement

and a true value of the quantity being measured,

which has two components: systematic errors and

random errors (JCGM, 2008; Figure 1). In geode-

tic measurement, systematic errors are usually

caused by flawed instrument calibration (Green-

walt and Schultz, 1962). Additionally, LiDAR

systematic errors may originate from several

sources, including the GPS constellation, IMU,

and automated algorithms for classifying ‘ground’

returns (Hodgson et al., 2005). Bias is the estimate

of a systematic error, and a systematic error (bias)

can be controlled and characterized when the
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cause is known (JCGM, 2008). Correcting for bias

is important because the probability that a random

error will not exceed a certain magnitude is under-

stood from a normal distribution with zero bias

(Greenwalt and Schultz, 1962). A precision index

is used to demonstrate the dispersal of errors about

a mean of zero and to indicate the error at different

probabilities (Greenwalt and Schultz, 1962). Pre-

cision is expressed numerically by measures of

imprecision, which is usually the standard devia-

tion (hereinafter denoted by s; see Figure 1)

(JCGM, 2008). Greenwalt and Schultz (1962)

note that s (Table 1) is used to compute a linear

error at different probabilities:

Greenwalt and Schultz linear error ¼ ZðsÞ ð1Þ
where Z is the standard normal variable (Z-value)

of the Z distribution at the desired probability

level. In replacing the Z-value with the standard

normal variable at the desired 95th probability

level, an error statement may read ‘95% of

all vertical errors occur within the limits of

+1.96(s)’. The NSSDA measures error using

RMSE (Table 1). The RMSE is the square root

of the mean squared differences between the

sample z values (vertical positions) of a geospa-

tial data set and the z values of the same locations

derived from an independent source of higher

accuracy (FGDC, 1998). NSSDA cites Green-

walt and Schultz (1962) where ‘if vertical error

is normally distributed, the factor 1.96 is applied

to compute the linear error at the 95% confidence

level’ (FGDC, 1998: 11). The NSSDA statistic

for reporting error:

NSSDA linear error ¼ 1:96ðRMSEÞ ð2Þ
Congalton and Green (2009) point out that

the NSSDA equation misinterprets the Green-

walt and Schultz (1962) equation by applying

the RMSE in place of the s. In fact, the validity

of NSSDA linear error is based on two assump-

tions: (1) errors follow a normal distribution so

that it is appropriate to use the standard normal

variable of 1.96; (2) the data have a zero bias so

that it is appropriate to use the RMSE instead of

the s (i.e. RMSE is equivalent tos; see Figure 1

for the linkage and difference between RMSE

and s). When errors are not normally distribu-

ted, NDEP (2004) and ASPRS (2004) recom-

mend using the 95th percentile method. The

reliability of these statistics become increas-

ingly important when used to address uncer-

tainty in SLR vulnerability mapping.

3 Mapping vertical uncertainty

A number of studies acknowledge LiDAR

uncertainty when mapping the inundation

extent of SLR (Cooper et al., 2012; Gesch,

2009; Mitsova et al., 2012; NOAA, 2010b). In

reality, many factors contribute quantifiable

sources of vertical uncertainty in vulnerability

mapping, e.g. future SLR estimates, tidal datum

models, vertical datum transformations, and

LiDAR. NRC (2007) and Gesch (2009) docu-

ment the principal criterion for a reliable SLR

inundation boundary delineation is the quality

Figure 1. Interrelationship between error mea-
surement terms and statistics. Double arrows
denote measurement terms are interchangeable,
single arrows denote links with statistics, and ovals
denote statistics.
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of the input elevation data. LiDAR uncertainty

passes on to the reliability of the SLR maps and

analysis of potential impacts (Gesch et al., 2009).

Uncertainty is a parameter (e.g. s or multiple

of it) characterizing the dispersion of values

within which the quantity being measured is

situated within a stated level of confidence

(JCGM, 2008). In other words, a common mea-

sure of uncertainty is s, which should not be

confused with RMSE. RMSE is a measure of

uncertainty only when it is equal to s. A ten-

dency to cause confusion in SLR mapping is

that the quality of the LiDAR data may refer

to a measure of uncertainty denoted by s,

RMSE (most commonly reported; see Table 2),

or NSSDA linear error.

A probabilistic inundation mapping approach

by Merwade et al. (2008) demonstrates that the

known vertical uncertainties (e.g. s of SLR esti-

mates and LiDAR) can be combined to delineate

a zone of uncertainty around the inundation

boundary. Gesch (2009) and Cooper et al.

(2012) took a similar approach, in which the zone

of uncertainty was defined by the NSSDA linear

error and mapped above the inundation bound-

ary. The purpose of this technique is to illustrate

that the statistically related inundation bounds

may fall anywhere within the zone determined

by the LiDAR uncertainty (Gesch, 2009). The

approach used by the National Oceanic and

Atmospheric Administration’s (NOAA) Coastal

Services Center’s (CSC) SLR mapping visuali-

zation tool and Mitsova et al. (2012) combine the

vertical uncertainties associated with LiDAR and

VDatum transformations. The purpose of this

method is to map areas of high (e.g. 80%) and

low (e.g. 20%) confidence using a modified

standard-score equation for each grid cell:

SLR scenario� Elevationðgrid cellÞ
sðRMSE and VDatum transformationÞ

ð3Þ

where the s(RMSE and VDatum transformation) is

represented by a single value calculated by sum-

ming in quadrature (Marcy et al., 2011; NOAA,

2010b). They note that major differences from

Gesch (2009) include the use of a cumulative

percentage in describing uncertainty (one tail

versus two tail), and mapping the confidence

interval both above and below the inundation

extent. Unfortunately, many workers’ attempt

to reduce uncertainty is complicated by the

absence of a LiDAR error standard.

4 Assuming normal distribution with zero
bias is sometimes violated

A significant barrier for SLR analysis using

LiDAR is the lack of a comprehensive error stan-

dard that addresses all potential sources of

LiDAR error. Most commonly, the RMSE or

NSSDA linear error is applied as a single measure

across the entire DEM. The major limitation is

that it requires errors to follow a normal distribu-

tion with zero bias. Unfortunately, LiDAR errors

are sometimes biased (e.g. Adams and Chandler,

2002; Aguilar and Mills, 2008; Hodgson et al.,

Table 1. Equations for calculating standard deviation and root mean square error (RMSE).

Greenwalt and Schultz (1962) NSSDA (FGDC, 1998)

Standard
deviation
(s)

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðZdata;i � �ZdataÞ2=n� 1

q

where:
Zdata,i ¼ a value of the ith sample
chosen from the population
�Zdata¼ estimated mean from

sample
n ¼ number of samples

Root mean
square error
(RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðZdata;i � Zcheck;iÞ2=n

q

where:
Zdata,i ¼ elevation value of the ith

checkpoint in the geospatial data set
Zcheck,i ¼ elevation value of the ith

checkpoint in the independent source
n ¼ number of points
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2005). The lack of a standard method of describ-

ing LiDAR error provokes inconsistent and

misleading reporting of uncertainty and error.

For example, in a LiDAR quality assessment

report for the San Francisco Bay area (NOAA,

2011; Table 3), the NSSDA linear error is calcu-

lated for the land-cover category of open terrain

(i.e. grass, sand, rocks, and dirt) where errors are

assumed to follow a normal distribution with zero

bias. Although the small skewness (which does

not exceed +0.5) indicates that the errors for

open terrain follow a normal distribution, they

have a negative systematic bias. Therefore,

replacing the s with the RMSE to calculate the

NSSDA linear error is invalid. The current prac-

tice of addressing LiDAR uncertainty in SLR

mapping assumes that vertical errors follow a

normal distribution with zero bias, which is some-

times violated, as demonstrated above. Using this

example of the San Francisco Bay LiDAR data

set, the inundated area would be less reliable due

to an incorrectly defined representation of map

error (see Figure 2). The approach used by NOAA

CSC would also be less reliable because it

‘assumes that the RMSE is analogous to the s
(i.e. the data are not biased), which allows for the

Table 2. Overview of LiDAR vertical error and relevant attributes in peer-reviewed SLR vulnerability map-
ping case studies. DEM¼ digital elevation model; SLR¼ sea-level rise; RMSE¼ root mean square error; N/A
¼ not available.

Study
Geographic
location Sector

Point
spacing

(m)

DEM
resolution

(m)
SLR scenarios
mapped (m)

RMSE
(cm)

Webster et al.,
2004

Prince Edward
Island, Canada

Human �3 2 0.10 increments
up to 4

30

Webster et al.,
2006

New Brunswick,
Canada

Human and
natural

0.6 1 0.5 and 0.7 16

0.45 12
Poulter and

Halpin, 2008
North Carolina,

USA
N/A N/A 6 0.025 increments

up to 1.1
16

15 20
Henman and

Poulter, 2008
North Carolina,

USA
Natural N/A 15 0.35, 0.59, 0.82,

and 1.38
25

Purvis et al., 2008 Somerset, England Human N/A 2 resampled
to 50

0.48 10

Gesch, 2009 North Carolina,
USA

Human N/A 3 1 14

Chust et al., 2010 Gipuzkoa, Spain Natural N/A 1 0.49 15
Zhang, 2011 South Florida, USA Human and

natural
1.5 5 0.5, 1, 1.5 15

Zhang et al., 2011 Florida Keys, USA Human 1.3 5 0.15 increments
up to 5.1

9 and
15

Mitsova et al.,
2012

Southeast Florida,
USA

Human N/A N/A 0.23 N/A

Cooper et al.,
2012

Maui Island, Hawai‘i,
USA

Human and
natural

1.3 2 0.75 and 1.9 20

2 16
Rotzoll and

Fletcher, 2013
Honolulu, Hawai‘i,

USA
Human N/A 1 0.33 increments

up to 1 m
N/A
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generation for a type of Z-score or ‘‘standard

score’’ from the data’ (Marcy et al., 2011: 481;

NOAA, 2010b: 3). Using the approaches outlined

by Gesch (2009) and NOAA (2010b), one may

overestimate the uncertainty of potential inunda-

tion areas because the RMSE is generally larger

than thes. The LiDAR elevation bias will further

complicate the SLR mapping because LiDAR

with a systematic positive bias will overestimate

the land surface (e.g. Kraus and Pfeifer, 1998;

Schmid et al., 2011), thus underestimating poten-

tial inundation. Likewise, LiDAR with a systema-

tic negative bias will underestimate the land

surface (e.g. Adams and Chandler, 2002; Hodg-

son et al., 2005), thus overestimating potential

inundation. SLR vulnerability mapping calls for

a comprehensive LiDAR error standard that con-

siders these critical issues while addressing all

potential sources of error.

IV Discrepancies between vertical
datums

1 Vertical datums

Mapping SLR requires a basic understanding of

the three major classes of vertical datums used

to reference LiDAR: ellipsoidal, orthometric,

and tidal datums (e.g. Gesch et al., 2009; Webster

et al., 2004; see Figure 3). Normally, LiDAR data

are first collected and referenced to an ellipsoidal

datum (e.g. World Geodetic System of 1984), a

smooth geometric surface with origin at Earth’s

mass center. LiDAR ellipsoidal elevations are

transformed to orthometric elevations using a

geoid model (e.g. Geoid 12), an equipotential

surface defined by Earth’s gravity field with one

or more tide stations used as control points. The

zero contour of a geoid model approximates the

global MSL shoreline used for measuring ortho-

metric elevations (NOAA, 2001). LiDAR ortho-

metric elevations are commonly referenced to an

orthometric datum such as the North American

Vertical Datum of 1988 (NAVD 88) used in the

continental USA. The zero contour of any ortho-

metric datum does not equal the value of MSL

defined by a tidal datum (e.g. Gesch et al.,

2009; NOAA, 2010b). Tidal datums are defined

by a certain phase of the tide at a fixed tide station

location (NOAA, 2001). MSL tidal datum is the

average of the mean sea-level elevations of each

tidal day, and Mean Higher High Water

(MHHW) tidal datum is the average of the mean

higher high water elevations of each tidal day,

both observed over a National Tidal Datum

Epoch (NTDE) of 19 years (currently 1983–

2001 for the USA; NOAA, 2003). MHHW is

selected as the datum to map SLR inundation

because it represents the modern highest high

water mark where land is inundated daily.

Discrepancies between orthometric and tidal

datums can be significant, e.g. the difference

between NAVD 88 and MSL often exceeds

1 m along the US West Coast (Gesch et al.,

2009). SLR vulnerability mapping requires an

understanding of the orthometric datum to which

LiDAR elevations are referenced and tidal

datums to evaluate whether a vertical transfor-

mation is needed.

Here, we attempt to illustrate the importance

of vertical datum transformations and consider

Table 3. LiDAR vertical error descriptive statistics for San Francisco Bay. RMSE¼ root mean square error;
s ¼ standard deviation; no. of points ¼ number of survey checkpoints. Modified from NOAA (2011).

Land-cover category RMSE (cm)
Mean
(cm)

Median
(cm) Skew

s
(cm)

No. of
points

NSSDA
Linear error

NDEP/ASPRS
95th percentile

Consolidated 4.7 0.0 –0.3 3.447 4.7 60 6.2 cm
Open terrain 2.6 –1.3 –0.9 –0.207 2.3 20 5.1 cm 5.3 cm
Marsh 7.2 2.5 0.4 2.485 7.0 20 15.4 cm
Urban 2.5 –1.0 –0.8 –0.556 2.3 20 4.7 cm
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existing approaches used to address this issue. A

SLR scenario of 32 cm by 2050 (Rignot et al.,

2011) and location of a National Geodetic Sur-

vey (NGS) and National Ocean Service (NOS;

http://tidesandcurrents.noaa.gov) primary tidal

benchmark near the Honolulu Tide Station are

examined (Figure 3). Increasing sea level to

32 cm above Geoid 12 at this location results in

mapping areas already inundated at MSL

(1983–2001 epoch) because Geoid 12 is 65 cm

below MSL. To correct this discrepancy, the

relationship of the geoid and MSL must be estab-

lished, which only can be determined at a tidal

benchmark (NOAA, 2008). Many workers use

tidal benchmarks to establish relations between

orthometric elevations and tidal datums (e.g.

Chust et al., 2010; Cooper et al., 2012; Webster

et al., 2004). NOAA (2010c) offers a technique

where the difference between Geoid 12 and MSL

(þ65 cm) is assumed as a constant offset (i.e.

geoid separation from MSL) that is extended

inland by extrapolation for a transformation to

MSL. However, increasing sea level 32 cm

above MSL results in mapping areas already

inundated at MHHW (1983–2001 epoch)

because MSL is 32.9 cm below MHHW. To map

SLR relative to MHHW, a second transformation

between tidal datums is needed. Following

NOAA (2010c), the difference between MSL

Figure 3. Example illustration demonstrating dif-
ferences between datums using the Honolulu Tide
Station. Ellipsoidal datum of NAD 83 ¼ North
American Datum of 1983. Tidal datums of MHHW¼
Mean Higher High Water; MSL ¼ Mean Sea Level;
MLLW ¼ Mean Lower Low Water (1983–2001
epoch). Station datum is the zero reference for
measuring tidal datums.

Figure 2. Applying the values from Table 3, the
effect of using the root mean square error (RMSE)
when LiDAR are negatively biased compared with
using the standard deviation (s) when LiDAR are not
biased. For example, location A will be mistakenly
labeled as ‘inundated’ if (1) we assume the LiDAR
surface has no bias although actually there is –1.3 cm
bias, and (2) RMSE is used in replacement of s to
calculate NSSDA linear error. Note: when LiDAR
are not biased, the RMSE is equal to the s.
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and MHHW (þ32.9 cm) is assumed as a constant

offset that is extrapolated inland for a conversion

to MHHW. Ultimately, increasing sea level

32 cm above the MHHW shoreline distinguishes

between the modern higher high watermark and

the added SLR increment. It is noted by Gesch

et al. (2009) that descriptive statistics on the

variability of datum transformations needs to

be documented. Their technique can be applied

to any coastal region around the world where the

relationship between a geoid model and tidal

datums can be determined at tidal benchmarks.

This is applicable when the geoid is of high

enough resolution to characterize the coastline.

For the conterminous USA, discrepancies

between vertical datums may be addressed using

VDatum.

2 VDatum

A vertical datum transformation tool, VDatum

(http://vdatum.noaa.gov), was developed for the

conterminous USA by NOAA NOS and NGS

to transform elevation data among approxi-

mately 30 vertical reference systems within the

three major classes (Parker, 2002). VDatum uses

Topography of the Sea Surface (TSS) to convert

between NAVD 88 and MSL (e.g. Myers et al.,

2005). The TSS is generated for a region by inter-

polating the difference between MSL (observed

at NOS tidal benchmarks) and NAVD 88 eleva-

tions (e.g. Hess et al., 2005). VDatum uses a

hydrodynamic model called ADvanced CIRCu-

lation model (ADCIRC) to simulate tidal datums

of a region (e.g. Hess et al., 2005). A spatial inter-

polation technique called Tidal Constituent and

Residual Interpolation (TCARI; Hess, 2002) is

used to calibrate the hydrodynamic modeled tidal

datums with observed tidal datums over a 19-

year epoch at nearby tide stations (Parker et al.,

2003). The corrected modeled tidal datums are

interpolated onto a spatial variable resolution

grid of sea surface elevations used for converting

between tidal datums (Myers et al., 2005).

VDatum is the industry standard in the USA for

transforming LiDAR elevations between vertical

datums. Here we provide a preliminary assess-

ment of vertical uncertainties in VDatum, as

found in NOAA (2012). The Delaware Bay region

is used as an example when transforming values

from the International Terrestrial Reference

Frame of year XX (ITRFxx)-to-MHHW that is

typical for a SLR vulnerability mapping project

(Figure 4). The s is used to quantify uncertainties

between two groups in VDatum: source data (e.g.

North American Datum of 1983 (NAD 83),

NAVD 88, MSL, and MHHW) and transforma-

tions (e.g. ITRFxx-to-NAD 83, NAD 83-to-

NAVD 88, NAVD 88-to-MSL, and MSL-to-

MHHW). For individual uncertainties of source

data, VDatum considers a constant s of 2 cm for

NAD 83, and a constant s of 5 cm for NAVD 88

nationwide (Zilkoski et al., 1992); additionally,

MSL and MHHW uncertainties throughout

the Delaware Bay region are calculated as hav-

ing a single s of 1.3 cm (NOAA, 2012). It is

assumed that the individual uncertainties are

independent (the value of one measurement

does not affect the value of the other measure-

ment) and randomly distributed (follow a nor-

mal distribution), so that all uncertainties may

be represented by a single value calculated

by summing in quadrature. The total uncer-

tainty of all source data in the Delaware Bay

region (Figure 4) is:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22 þ 52 þ 1:32 þ 1:32
p

¼ 5:7cm. For individual uncertainties of trans-

formations, ITRFxx-to-NAD 83 s is 2 cm,

NAD 83-to-NAVD 88 s is 5 cm, NAVD 88-

to-MSL (TSS transformation uncertainty) s is

8.6 cm; additionally, MSL-to-MHHW (tidal

transformation accuracy) s is 7.8 cm (NOAA,

2012). The total uncertainty of all transforma-

tions in the Delaware Bay region (Figure 4)

is:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
22 þ 52 þ 8:62 þ 7:82
p

¼ 12:8cm. The

total uncertainty of source data and transforma-

tions can be calculated by summing in quadra-

ture as the Maximum Cumulative Uncertainty

(MCU) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:72 þ 12:82
p

¼ 14cm. The MCU

Cooper et al. 11

 at University of Hawaii at Manoa Library on August 14, 2013ppg.sagepub.comDownloaded from 

http://ppg.sagepub.com/


can be derived for any region in the contermi-

nous USA following NOAA (2012), and the

calculation and transformation details can be

documented in SLR studies employing VDatum.

These transformation errors are used in the

NOAA CSC’s SLR mapping visualization tool

for mapping inundation uncertainty (http://

www.csc.noaa.gov/slr/viewer). We note that for

short-term SLR planning targets (e.g. 32 cm by

year 2050), current VDatum errors may compli-

cate generating accurate inundation maps refer-

enced to MHHW.

V Mapping minimum statistically
significant SLR scenarios

Producing vulnerability maps useful for planning

involves determining the minimum SLR scenario

to map. The minimum statistically significant

SLR increment is a function of the vertical error

of the elevation data (Gesch et al., 2009). For

example, Zhang et al. (2011) mapped SLR incre-

ments relative to the RMSE. The NRC (2007)

recommends that LiDAR quality meet a mini-

mum RMSE of 9.25 cm for coastal areas vulner-

able to coastal hazards. Gesch et al. (2009) note

that the minimum SLR increment supported by

such a data set is the NSSDA linear error

(1:96� 9:25 ¼ 18:1cm); however, the reliability

of the mapped vulnerable areas are low because

the SLR increment is equal to the LiDAR error.

The quality of a vulnerability map is increased

when the LiDAR error is at least twice as certain

as the SLR increment (Gesch et al., 2009), which

is referred to as a ‘rule of thumb’ (NOAA, 2010c:

103). Increasing the NSSDA linear error of

18.1 cm by the factor 2 results in more reliable

SLR vulnerability mapping of 36.3 cm incre-

ments (2� 18:1 ¼ 36:3cm). Following these

guidelines by Gesch et al. (2009) and Gesch

(2012), we note that SLR vulnerability mapping

of short-term planning targets of 32 cm and below

requires a RMSE of 8.2 cm and better if bias is

zero. However, in addition to LiDAR, choosing

the minimum statistically significant SLR sce-

nario to map is a function of vertical datum

transformation.

Here we assume that the individual LiDAR

and VDatum uncertainties are independent and

normally distributed so that the total uncer-

tainty can be calculated. For example, we con-

sider the ITRFxx-to-MHHW transformation

Figure 4. VDatum errors calculated as standard deviation values (s) for Delaware Bay region from NOAA
(2012). Arrows denote transformation processes, ovals denote core datums, and rectangles denote indi-
vidual vertical datums.
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using VDatum MCU of 14 cm for the Delaware

Bay (section IV), and the NRC (2007) mini-

mally required RMSE of 9.25 cm, and calcu-

late the LiDAR and VDatum total error:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:252 þ 142
p

¼ 16:77cm. Increasing the total

uncertainty of 16.77 cm by the factor 1.96

results in a minimum SLR scenario of

32.87 cm (1:96� 16:77 ¼ 32:87cm); however,

the reliability of the mapped vulnerable areas is

low because the SLR increment is equal to the

LiDAR and VDatum total error. The quality of

a vulnerability map is increased when the

LiDAR and vertical datum transformation total

uncertainty is at least twice as certain as the

SLR increment. Increasing the total uncer-

tainty by the factor 2 results in mapping mini-

mum statistically significant SLR increments

of 65.7 cm (32:87� 2 ¼ 65:7cm). This exam-

ple demonstrates that it is difficult to generate

an accurate inundation map using short-term

SLR planning targets (e.g. 32 cm by year

2050) based on current LiDAR and VDatum

errors.

VI LiDAR processing for DEM
generation and bias correction

Some important issues in LiDAR DEM genera-

tion include interpolation algorithms, DEM res-

olution, and filtering or classification algorithms

(Liu, 2008). The most complicated, yet funda-

mental first step for LiDAR DEM generation is

the processing of the LiDAR point cloud (points

defined by xyz in a coordinate system) into clas-

sified ‘ground’ and ‘non-ground’ returns (e.g.

vegetation or buildings; Chen et al., 2007; Liu,

2008; Webster et al., 2006). SLR vulnerability

mapping requires quality DEMs derived from

LiDAR returns classified as bare earth or

‘ground’. LiDAR providers use proprietary

algorithms to classify and remove ‘non-ground’

returns (Hodgson and Bresnahan, 2004; Schmid

et al., 2011). Most algorithms are centered on the

difference between geometric characteristics of

the LiDAR point cloud for terrain and non-

terrain features (Sithole and Vosselman, 2004;

Zhang and Whitman, 2005), yet these processes

are not completely effective; there is still room

for improvement (Liu, 2008). LiDAR providers

usually perform manual inspection by a human

operator, which tends to be labor intensive but

dramatically improves the quality of the

classification results (Hodgson et al., 2005).

Unfortunately, not all LiDAR providers perform

classification or remove returns over vegetated

areas successfully (Cooper et al., 2012; Hodgson

et al., 2005; Schmid et al., 2011).

It is cautioned that end-users should not

assume any given LiDAR data set represents the

surface (e.g. bare earth) intended for their

application (Schmid et al., 2011). Few studies

critically accept LiDAR point data from the pro-

vider to assess the quality. One method used to

improve the bare-earth file is to fine-tune classifi-

cation results of ‘ground’ returns. For example,

Webster et al. (2004, 2006) note that the filtering

algorithms used a threshold filter where ‘non-

ground’ returns were classified based on abrupt

elevation changes relative to their neighbors,

which caused LiDAR returns on irregularly high

elevations such as wharf edges, seawalls, cliffs

and coastal dunes to be incorrectly classified

as ‘non-ground’. They manually inspected the

‘non-ground’ return file and reclassified the

LiDAR returns on top of these coastal terrain fea-

tures as ‘ground’ to include in a newly generated

DEM. Thus, it is important LiDAR providers

make available to end-users both ‘ground’ and

‘non-ground’ return files. Cooper et al. (2012)

manually inspected the ‘ground’ return file over-

lain with orthophotos and identified LiDAR

returns on top of vegetation surrounding a fresh-

water marsh that should have been classified as

‘non-ground’. They reclassified the LiDAR

returns over vegetation as ‘non-ground’ to fine-

tune classification in the ‘ground’ return file; oth-

erwise, they found that a DEM generated from the

original LiDAR ‘ground’ return file underesti-

mated the extent of potential SLR. An advantage

to filtering is the possibility to detect bare-earth
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points while maintaining point density (Schmid

et al., 2011). However, a disadvantage is that not

all end-users have available the required software

to reclassify LiDAR data.

In the absence of filtering software, Schmid

et al. (2011) demonstrate another technique for

end-users to improve estimates of ground eleva-

tions in coastal marshes: minimum bin methods

(selects lowest elevation point in a user-defined

grid resolution to represent each grid cell in the

output raster). Problems encountered in the

bare-earth file included coastal marsh vege-

tation (>1 m in height) incorrectly classified as

‘ground’. They document that although the min-

imum bin method removes more points resulting

in a coarser resolution DEM, this is manageable

in coastal marshes where topographic variations

are limited. After the bare-earth file is inspected

for quality and used to generate a DEM, a quan-

titative assessment should be employed to correct

any bias.

End-users typically identify bias by comparing

LiDAR DEM elevations with independently

collected Ground Control Points (GCPs) to calcu-

late mean vertical error (i.e. bias), s, and RMSE.

Vegetation is known to cause a positive bias (e.g.

Hladik and Alber, 2012; Schmid et al., 2011). For

coastal marsh vegetation areas, Schmid et al.

(2011) report that vertical errors for the non-

minimum bin DEM (2 m resolution) are more

biased with a higher RMSE than when compared

to the minimum bin DEM (5 m resolution) using

GCPs. However, the minimum bin method may

underestimate (i.e. negative bias) upland areas

with steeper slopes and tidal streams. To correct

this negative bias and reduce the RMSE, an

adjustment was made by increasing DEM values

(>1 m) in upland areas by the mean error (bias).

Hladik and Alber (2012) developed a species-

specific correction factor quantified from GCPs

as the mean error for each coastal marsh vegeta-

tion type. They found that the LiDAR DEM over-

estimated (i.e. positive bias) each marsh cover

type, so the species-specific correction factor was

subtracted from each marsh cover type in the

DEM to correct for bias and reduce the RMSE.

Cooper et al. (2012) took a different approach

by calibrating one LiDAR DEM with tidal bench-

marks, which was used to compare elevations of a

second LiDAR DEM where tidal benchmarks

were absent. They found that the second LiDAR

DEM overestimated the land surface creating a

positive bias, so an adjustment was made by

decreasing the second DEM by the mean error.

After the quality of the LiDAR filtering results

is examined for DEM generation, and any bias

corrected, often the next step is to model SLR

inundation.

VII SLR inundation modeling

LiDAR DEMs are integrated into a Geographic

Information System (GIS) to identify grid cells

with elevations at or below a SLR planning

target. Known as a ‘bathtub’ approach, this is

an essential first step that results in identifying

vulnerable grid cells that are both disconnected

from and connected to ocean waters. It is argued

that this simple practice is inadequate to model-

ing inundation because it is assumed that only

areas connected to the ocean will be flooded

(Poulter and Halpin, 2008). On the other hand,

it is assumed that areas disconnected from the

ocean will also experience groundwater inunda-

tion (Cooper et al., 2012; Reynolds et al., 2012;

Rotzoll and Fletcher, 2013). Three techniques

are used to identify areas submerged.

The first approach converts vulnerable grid

cells to polygons and uses visual determination

and manual selection of polygons open to the

ocean. A benefit of this technique is that it helps

to visually identify features in the LiDAR DEM

that obstruct hydraulic flow. For example,

Webster et al. (2006) found that bridges and

raised roadbeds in the DEM blocked stream

channels causing some polygons to be cut off

from direct marine inundation. They modified

the DEM by ‘notching’ bridges and roadbeds to

correct flow through low-lying stream channels.

In Webster et al. (2004), engineers were also
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consulted to better assist in the identification of

which areas upstream from culverts should be

included in the manual selection. Chust et al.

(2010) reasoned that some polygons, not open

to direct marine inundation, should also be

selected in order to locate potentially vulnerable

crops preserved by walls. A limitation to this

approach, similar to the process of a human oper-

ator manually classifying ‘ground’ returns, is that

it tends to be labor intensive.

A second technique uses hydrodynamic mod-

eling to identify grid cells as vulnerable to inun-

dation. Purvis et al. (2008) modeled the flow

between each direction of a cell using a two-

dimensional hydrodynamic model to simulate

extreme flooding events coupled with SLR.

A restriction to this approach is that it requires

intense computation time, in which the horizon-

tal resolution of the LiDAR DEM was resampled

from 2 to 50 m. Zhang (2011) notes that low

LiDAR DEM resolutions (e.g. 30 m) have little

effect when modeling inundation on regions at

the magnitude of hundreds of square kilometers,

yet high resolutions (e.g. 5 m) are essential for

SLR decision-making involving individual prop-

erties at risk. Therefore, the use of hydrodynamic

modeling, as in the case of Purvis et al. (2008),

may be more practical for regions of consider-

able extent.

The third approach (which is actually an auto-

mated version of the first approach) models direct

marine inundation based on the assumptions

of hydrologic connectivity. Poulter and Halpin

(2008) reason that hydrologic connectivity effec-

tively constrains the spread of SLR by specifying

whether a grid cell is directly submerged. Hydro-

logic connectivity is modeled using the 4 sides of

a grid cell in the cardinal directions (Poulter and

Halpin, 2008; Zhang et al., 2011), and the 8 sides

of a grid cell in the diagonal and cardinal

directions (e.g. Cooper et al., 2012; Gesch,

2009; Poulter and Halpin, 2008). A drawback to

this technique is that the 4-side connectivity rule

may underestimate potential impacts, and con-

versely, the 8-side connectivity rule may

overestimate potential impacts (Poulter and Hal-

pin, 2008; see Figure 5). The 8-side connectivity

assumption may be the more conservative

approach to use for planning.

Planners need maps that illustrate both direct

marine inundation and groundwater inundation

(reduced drainage coupled with higher water

tables). Modeling direct marine inundation alone

will underestimate potential impacts because

low-lying areas disconnected from ocean waters

will also experience some form of flooding under

SLR. Until recently, the impact of SLR through

groundwater inundation was largely unknown

(Rotzoll and Fletcher, 2013). Higher ground-

water levels have the potential to submerge

underground infrastructure, flood basements,

reduce overland peak discharge (Bjerklie et al.,

2012) and create inland areas characterized by

standing pools of brackish water (Rotzoll and

Fletcher, 2013). One useful approach is to sym-

bolize areas connected to the ocean differently

from areas not connected to the ocean (Cooper

et al., 2012; Marcy et al., 2011; Zhang et al.,

2011). Rotzoll and Fletcher (2013) found that the

latter reveals widespread flooding of inland areas

before direct marine inundation, which is also

identified in maps by Cooper et al. (2012). Rey-

nolds et al. (2012) identify grid cells vulnerable

to groundwater inundation by areas connected

to an inland lake. Following Bjerklie et al.

(2012), they predicted that a 1 m rise in sea level

would be equivalent to a 1 m rise in the ground-

water table causing the lake to expand. Grid cells

vulnerable to both direct marine inundation and

groundwater inundation are often converted to

polygons to create vectorized SLR hazard data

layers to be used in spatial analysis.

VIII Vulnerability by sector

Spatial analysis in a GIS is the preferred tech-

nique for evaluating the potential impacts of SLR

on existing coastal systems. For example, land

loss due to the impacts of SLR on higher water

tables was evaluated by compiling existing
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coastal groundwater data to estimate the water

table at MHHW coupled with SLR (Rotzoll and

Fletcher, 2013). Land loss due to the effect of

SLR on coastal erosion was calculated using the

Bruun rule (Bruun, 1988; Chust et al., 2010).

Zhang et al. (2013) determined the storm surge

flooding with SLR using a numerical model by

considering the non-linear interaction between

SLR and storm surge. Reynolds et al. (2012)

modeled inundation due to wave-driven water

levels (wave set-up þ wave run-up) combined

with SLR. As we begin to understand other phys-

ical effects of SLR, we need to incorporate these

effects into SLR vulnerability mapping.

The biophysical impacts of SLR on existing

natural systems are often examined (Table 2)

by overlaying the SLR hazard layers with other

data layers that characterize natural coastal sys-

tems. Chust et al. (2010) used coastal habitat

data layers such as sandy beaches, wetlands,

and vegetated dunes to estimate potential habi-

tat loss and found that environmental change

threatens coastal biodiversity, especially among

sandy beach habitat. Change in wetlands (e.g.

salt marshes) is a response of the relation of

rising sea levels to tidal ranges, and SLR hazard

layers were used to identify the extent of land-

ward migration (Webster et al., 2006). In efforts

to help managers protect endangered native

water bird species habitat where additional

wildlife conservation is anticipated, SLR hazard

layers delineated potential wetland expansion as

a result of reduced drainage coupled with rising

water tables and potential wetland loss (where

wetlands open up to the ocean; Cooper et al.,

2012). Adaptation strategies to groundwater

inundation will be difficult when high tides

coincide with rainfall, thus requiring more com-

plex planning tools than direct marine inunda-

tion (Rotzoll and Fletcher, 2013). Henman and

Poulter (2008) combined peat soils data layers

and the National Land Cover Dataset (NLCD;

developed by the US Geological Survey c.

2001; Homer et al., 2004) to define the area of

peat and vegetation type loss. They concluded

that higher seas on freshwater coastal peatlands

might contribute to a larger amount of carbon to

aquatic habitats and the atmosphere than previ-

ously recognized.

Studies also assess the economic impacts of

SLR defined by damage costs (Table 2). How-

ever, adaptation costs such as beach and wetland

nourishment, and saltwater intrusion barriers, are

not assessed. Overlay of SLR and associated

storm surge hazard layers with land-use data

layers derived from the Land Cover Map of Great

Britain 2000 (Fuller et al., 1994) provided esti-

mates of the costs of potential land loss (Purvis

Figure 5. Demonstration of fewer cells connected using the 4-side approach compared to many cells
connected using the 8-side approach.
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et al., 2008). Up-to-date land parcel data layers

provided by the respective counties were inter-

sected with SLR hazard layers to measure costs

of potential property loss (Cooper et al., 2012;

Zhang et al., 2011) and building loss (Cooper

et al., 2012) based on the percentage of each par-

cel inundated. Zhang (2011) used a different

approach to evaluate the costs of property loss

where a land parcel is assumed inundated if its

centroid is within the SLR inundation layer. He

found problems in the land parcel data such

as duplicate parcel identifications that needed

correction. This is a good indicator that the

quality of the data used to characterize vulner-

abilities should be examined, and perhaps

improved, before use in SLR vulnerability

assessment. Webster et al. (2004) conclude that

estimating the potential costs of inundation on

critical infrastructure, properties, businesses,

and heritage sites results in effective planning

and prompt adaptation of new procedures for

building permits.

Evaluating the potential social impacts is

defined by the amount of actual and anticipated

populations subject to SLR, which tends to be

challenging due to population numbers not

being uniform throughout census block layers.

Zhang (2011) and Zhang et al. (2011) assumed

that a 2000 census block was inundated based

on the centroid approach discussed above.

Zhang et al. (2011) note that the population

impacted could also be approximated based on

the percentage of the census block submerged

(if the census blocks are not too large in size).

However, census blocks tend to be much larger

in size (at the order of kilometers) compared to

land parcel data layers, thus reducing the practi-

cal use of census block data for fine-scale SLR

mapping. On the other hand, Gesch et al. (2009)

suggested the use of dasymetric mapping to

improve analysis of vulnerable population and

socio-economic data. Mitsova et al. (2012) used

dasymetric mapping techniques to interpolate

2010 census block population numbers and

county population projections to the smaller

land parcel units. They confirm that this

approach more effectively characterizes exist-

ing and future population distributions vulnera-

ble to SLR.

IX Best practices in SLR
vulnerability mapping

In their analysis of SLR vulnerability mapping

for Maui, the authors implement many of the

best practices discussed above (Cooper et al.,

2012). They test a series of global SLR estimates

for a long-term planning target, but where

regional SLR estimates are available for short

and long-term planning targets, we note that

these should be included into analysis of future

impacts. Additionally, the authors incorporate

the LiDAR uncertainty into both the vulnerabil-

ity maps and derived assessments of potential

impacts. However, they make the same assump-

tion that the data are normally distributed with

zero bias. This problem stems from some LiDAR

providers not following current available guide-

lines and not reporting descriptive statistics

(e.g. RMSE, mean error or bias, s, skewness),

and, overall, the lack of a LiDAR error standard.

Tidal benchmarks are used to calibrate LiDAR

elevations with MSL tidal datum and descriptive

statistics are reported. They present an approach

to adjust for a statistically significant bias when

working with more than one LiDAR data set for

areas lacking tidal benchmarks (and VDatum).

The quality of the LiDAR point data files is

inspected before DEM generation, and SLR is

mapped above MHHW. Areas vulnerable to

marine and groundwater inundation are symbo-

lized differently in the vulnerability maps and

quantified separately in the derived estimates of

potential impacts.

X Conclusions

The objective of this paper is to review current

published practices in SLR vulnerability map-

ping to determine whether there are minimum
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criteria that LiDAR elevation data should meet

when applied in SLR decision-making. The

authors identify the following:

� Research is converging on a short-term

planning target of 32 cm global SLR by

2050 and a long-term planning target of

1 m global SLR by 2100.

� The most commonly used guideline for

reporting LiDAR error, NSSDA linear error,

is based on two assumptions: (1) errors fol-

low a normal distribution allowing use of

the standard normal variable of 1.96; (2)

data have a zero bias allowing use of the

RMSE instead of the s (i.e. the RMSE is

equivalent to the s).

� The deficiency of a standard method of

describing all potential sources of LiDAR

error provokes inconsistent and misleading

reporting of uncertainty and error.

� The current practice of SLR mapping

assumes that LiDAR vertical errors follow

a normal distribution with zero bias, which

is sometimes violated. End-users will bene-

fit if LiDAR providers document descrip-

tive statistics (e.g. RMSE, mean error or

bias, s, skewness).

� Mapping a minimum statistically significant

SLR planning target of 32 cm is difficult to

achieve based on current LiDAR and VDa-

tum data sets.

� SLR vulnerability mapping often requires

two datum conversions: (1) land datum to

which LiDAR elevations are referenced to

local tidal datum of MSL; (2) MSL to local

tidal datum of MHHW.

� DEMs derived from LiDAR returns classi-

fied as bare earth or ’ground’ is essential, yet

not all LiDAR providers perform classifica-

tion or remove returns over vegetated areas

successfully.

� Planners need maps that illustrate both

marine and groundwater inundation. Model-

ing direct marine inundation alone will

underestimate potential impacts because

low-lying areas disconnected from ocean

waters will also experience flooding.

It is expected that this review will result in

better practice of the use of LiDAR DEMs in

SLR vulnerability mapping. The authors iden-

tify continuing research needs in areas of recti-

fying coastal DEMs with local tidal datums.

New methodologies such as Monte Carlo tech-

niques may incorporate the many uncertainties

in vulnerability mapping such as LiDAR data,

vertical datum transformations, future SLR

estimates, groundwater table elevations, cha-

nging storm surges, wave overtopping, etc.,

regardless whether the data follow a normal dis-

tribution or not. New ways of communicating

vulnerability may include using flow diagrams

of which direction inundation would flow. Fur-

ther research is needed in identifying the true rela-

tionship between bare-earth products and ground

level. Additionally, new assessments of adapta-

tion costs such as beach and wetland nourish-

ment, and saltwater intrusion barriers may

complement the SLR vulnerability mapping.
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