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ABSTRACT

Anderson, T.R.; Frazer, L.N., and Fletcher, C.H., 2015. Long-term shoreline change at Kailua, Hawaii, using regularized
single transect. Journal of Coastal Research, 31(2), 464–476. Coconut Creek (Florida), ISSN 0749-0208.

Traditional long-term (decadal) and large-scale (hundreds of kilometers) shoreline change modeling techniques, known
as single transect, or ST, often overfit the data because they calculate shoreline statistics at closely spaced intervals
along the shore. To reduce overfitting, recent work has used spatial basis functions such as polynomials, B splines, and
principal components. Here, we explore an alternative to such basis functions by using regularization to reduce the
dimension of the ST model space. In our regularized-ST method, traditional ST is an end member of a continuous
spectrum of models. We use an evidence information criterion (EIC¼�2 times the log of the prior predictive distribution)
to select the optimal value of the regularization parameter, instead of the usual L-curve method, because the EIC can
also be used to evaluate basis function models yet does not require counting model parameters. To test the method, we
apply it to historical shoreline data from Kailua, Hawaii, comparing the results with those from B splines (basis
functions) and traditional ST. As expected, the regularized-ST and B-spline models both give shoreline change rates that
vary more smoothly alongshore than the rates from ST. The regularized-ST model, along with the B-spline model, also
shows significantly better predictive capability over the traditional ST model from a fivefold cross-validation. The
regularized-ST model is more straightforward to implement than splines and may be attractive to users because of its
continuous connection with the familiar ST method.

ADDITIONAL INDEX WORDS: Shoreline change rates, coastal erosion, Tikhonov regularization, B splines, beaches,
sediment processes.

INTRODUCTION
Historical shoreline change studies provide coastal managers

with data useful for building resilient communities. Many

jurisdictions rely on quantitative measures of shoreline

behavior, such as shoreline change rates, to implement

building setback policies and other decision-making tools.

Therefore, shoreline change statistics are often required over

long stretches of coastline (hundreds of kilometers).

The complexity of coastal dynamics presents challenges to

long-term shoreline prediction, and the temporal sparseness

and short time windows of available data further complicate

this problem (Hanson and Kraus, 1989; Miller and Dean, 2004;

Morton, 1979; Stive et al., 2002). Although physics-based

models can simulate shoreline behavior over short time spans,

they are limited in their long-term predictive capabilities (De

Vriend et al., 1993; Van Rijn et al., 2003) and often require

quality data that are not available over large areas. Therefore,

long-term and large-scale (hundreds of kilometers) shoreline

change models are often simple empirical models that require a

time series of shoreline data that is long enough to reveal

trends over decades; data sets of this nature are typically

sparse in time and contain large scatter because of short-term

beach processes (e.g., Galgano and Douglas, 2000; Honeycutt,

Crowell, and Douglas, 2001; etc.).

Least squares regression is commonly used to fit a simple

empirical model (often a straight line) to historical shoreline

data to identify a long-term trend (e.g., Crowell, Douglas, and

Leatherman, 1997; Galgano and Douglas, 2000; Honeycutt,

Crowell, and Douglas, 2001). Genz et al. (2007) investigated

different forms of regression analysis, such as least absolute

deviation, weighted least squares, and least median of squares.

Frazer, Anderson, and Fletcher (2009) added a storm function

to the typical rate-only regression equations, improving long-

term shoreline change estimates. Improvements in quantifying

error and bias in data derived from different sources (e.g., light

detection and ranging, video imagery, and aerial photographs)

have also improved the accuracy of shoreline change statistics

(Douglas and Crowell, 2000; Fletcher et al., 2003; Plant et al.,

2007; Ruggiero and List, 2009). As more data become available

(i.e. wave height and wind speed), modeling efforts progress

toward assimilating the various time resolutions (e.g., David-

son, Splinter, and Turner, 2013; Long and Plant, 2012) and

combining multiple data inputs to provide more robust

predictions (Gutierrez, Plant, and Thieler, 2011; Hapke and

Plant, 2010; Yates and Le Cozannet, 2012).

The techniques mentioned earlier focus on shoreline change

at independent locations along the shore. The widely used

single-transect (ST) method, for example, calculates a shoreline

change rate at each shore-normal transect (Figure 1a). ST

assumes that the data and noise at each transect are
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independent, ignoring correlations between the rates at

different transects. Figure 1b shows the autocorrelation of

long-term rate parameters that were calculated independently

at 20-m increments (transects) along Kailua Beach, Hawaii.

The slow decay of the autocorrelation in the alongshore

direction shows that rates are highly correlated. In this case,

the ST method uses more parameters to fit the data than are

necessary. Similarly, Tebbens, Burroughs, and Nelson (2002),

who used wavelets to perform a spatial analysis of short-term

shoreline change along the outer banks of North Carolina,

found that the low-frequency portions of the signal along the

shore dominated over the high-frequency portions and con-

tained correlation at large spatial scales.

Frazer, Genz, and Fletcher (2009) and Genz, Frazer, and

Fletcher (2009) reduced this overfitting by representing change

rates as the sum of alongshore basis functions (Legendre

polynomials, trigonometric functions, and principal compo-

nents). They followed Fenster, Dolan, and Elder (1993) by

using an information criterion to determine the number of

basis functions to use. However, Frazer, Genz, and Fletcher

(2009) found that smooth basis functions, such as Legendre

polynomials and trigonometric functions, were problematic

when they attempted to model rates that spiked or jumped

along the shore, as in their example of Waihee, Maui, that

contains a spike in local accretion. In general, the authors

concluded that smooth basis functions produce ringing (Gibbs

effect) in the alongshore direction when they are used to model

parameters that vary suddenly along the shore. They added

that the principal component basis function method does not

produce ringing because alongshore discontinuities are repre-

sented in the lower-order basis functions. Anderson and Frazer

(2014) noted that although principal component basis functions

circumvent ringing, they are contaminated by noise from

measurement errors and short-term processes.

As an alternative, Anderson and Frazer (2014) investigated

B-spline basis functions as a way to avoid the Gibbs effect. B

splines are locally occurring basis functions, each resembling a

Gaussian curve; thus, they provide flexibility in the amount of

variation allowed in parameters alongshore, including along-

shore discontinuities. However, model selection can be awk-

ward because adding one more spline in the obvious way

(equally spaced splines) causes the center points of other

splines to shift, which can increase the misfit rather than

reducing it. The regularized-ST method of this paper avoids

that problem by making the spectrum of models continuous

rather than discrete. Anderson and Frazer (2014) further noted

that selecting the basis functions to use in a shoreline analysis

depends on the geology of a study area and the analysis

objective and that no single type of basis function was superior

in all situations. Here, we introduce an alternative to using

basis functions, contributing to the shoreline modeler’s toolbox

of analysis methods. We also investigate an alternative model

selection procedure that may have advantages compared with

more widely known criteria such as the Akaike information

criterion.

The aim of this study is (1) to present an alternative approach

to estimating long-term trends in shoreline change, an

approach that takes into account spatial correlation and shows

practical advantages over basis function methods, and (2) to

compare the new method with the traditional ST method and

with the B-spline basis function method presented by Anderson

and Frazer (2014). As an additional point of interest, we use the

evidence (sometimes called the prior predictive distribution or

marginal likelihood) to select the best model within each model

family. Evidence provides a particularly convenient method of

model selection when the spectrum of models is continuous yet

retains the ability to compare models within countable model

families such as splines.

METHODS
Here, we use a technique called regularization, which has

long been used in regression analysis to avoid overfitting (e.g.,

Aster, Borchers, and Thurber, 2012; Press et al., 2007). Second-

order Tikhonov regularization in particular involves penalizing

solutions for roughness but not for locally linear behavior. As

an example, consider Figure 2, in which the circles show rate

parameters calculated using the ST method at transects spaced

20 m apart for Kailua Beach. Although rates from the ST model

show detail at high spatial frequencies along the shore, much of

that detail is suspect because it is not repeated in surveys at

other times. A simpler relationship results when the difference

between ST rates at adjacent transects is constrained to be

constant, giving the smoothest representation possible: a

straight line (Figure 2, dashed line). That alongshore-linear

rate model does not fit the data nearly as well as the ST model,

Figure 1. (a) Weighted least squares linear regression of shoreline data

along one transect is used to produce a shoreline change rate, independent of

shoreline behavior at adjacent transects. (b) The gradual decay of the

autocorrelation of independently calculated shoreline change rates at 20-m

increments along Kailua Beach shows that the rates are highly correlated in

the alongshore direction.
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but it does not overfit the data. The preferred model, in this

example, lies somewhere between the two extremes of fitting

the data well at each transect and limiting the alongshore

variability. In Figure 2, the solid line represents the rate in

which alongshore variation is constrained by a fairly large

penalty. Determining the appropriate amount of allowable

alongshore variability can be achieved using a model selection

criterion, which is addressed later. In this paper, we use

second-order Tikhonov regularization to make the traditional

ST method more parsimonious by forcing model parameters to

vary more smoothly alongshore. Kailua Beach, Hawaii, is used

as a case study.

Physical Setting
Kailua Beach is located on the windward side of the

Hawaiian island of Oahu (Figures 3a and b). The 4-km

carbonate sand beach is bounded by limestone at Kapoho

Point to the north and basalt at Alala Point to the south. A

wide fringing reef platform provides moderate protection to

the beach from year-round NE trade wind waves and winter

(October–March) N swells. The reef platform is bisected by a

winding 200-m-wide sand-floored channel that widens to-

ward the shore into a broad sand field at the center of the

beach. The residential area of Kailua sits upon a low-lying

expansion of Holocene-age carbonate dune ridges and

terrestrial lagoon deposits (Harney and Fletcher, 2003).

Low, vegetated dunes front many oceanfront homes (Figure

4a). Kaelepulu Stream empties into the ocean near the south

end of Kailua Beach. Episodic removal and occasional

redistribution of sand near the stream mouth began in the

1980s. A boat ramp, constructed between 1949 and 1963 at

the south end of Kailua Beach, generally inhibits sediment

movement toward the north, as evidenced by sediment

accumulation on the south side and deprivation on the north

of the boat ramp (Figure 4c) in historical aerial photos

(available online from University of Hawaii Coastal Geology

Group, 2014).

Historical Shoreline Data
The data used in the study are cross-shore distances relative

to a user-defined baseline (Figure 1a). Historical shorelines

extracted from aerial photographs and one topographic (T)

sheet dating between 1928 and 2005 were obtained from the

University of Hawaii Coastal Geology Group as geographic

information system shapefiles (see Romine et al., 2009, for

shoreline extraction procedures). Total position errors, as

calculated by Romine et al. (2009), range from 7.35 to 9.22 m

for shorelines that were derived from aerial photos and 10.78 m

for the shoreline derived from the T sheet. Approximately

shore-normal transects, spaced 20 m apart, are cast off of a

smooth baseline that follows the general shape of the shoreline

(Figures 3b and d). Here, the baseline is a spline fitted to all

shoreline positions simultaneously. At each transect location xi

along the baseline, the relative distance from the shoreline to

the baseline yij is calculated for shoreline times tj. Thus, yij ¼
y(xi, tj), where transect index i ranges from zero to I � 1, and

time index j ranges from one to J. The Kailua Beach data set is

the collection of cross-shore positions relative to the baseline

over all transects (Figure 3c).

Regularized-ST Model
The basic procedure of the new regularized-ST model is as

follows (also see Figure 5):

(1) Define the forward shoreline change model at each

transect: e.g., y¼ b þ r t.

(2) Assign an array of candidate values for each regulariza-

tion parameter (e.g., rate and intercept), regularly spaced

over a search interval.

(3) For each combination of regularization parameters:

(a) Fit the forward model to the data using linear

regression.

(b) Calculate the evidence information criterion (EIC).

(4) Determine the optimal model (indexed by regularization

parameters) by identifying the model with the smallest

EIC.

(5) Extrapolate from the optimal model to predict future

shoreline positions.

Details of the procedure in the following sections include

application to the Kailua Beach study area.

Forward Model
We use the following simple forward model for shoreline

change over time:

yij ¼ bi þ riðtj � �t Þ þ nij; ð1Þ

in which bi and ri are the intercept and rate, respectively, at

alongshore location xi, �t is the mean of shoreline survey dates,

and nij is noise. It is straightforward to include additional terms

in the mathematical forward model, such as acceleration (e.g.,

Frazer, Genz, and Fletcher, 2009; Romine et al., 2009) or a

storm function (Anderson, Frazer, and Fletcher, 2010). We

opted not to include acceleration here because it can result in

unstable long-term (decades) predictions. Likewise, we found

no storm signal in the Kailua Beach data set.

Second-Order Tikhonov Regularization (Linear
Regression)

Least squares regression is used to estimate parameter

values (rates and intercepts) within the forward model. To

regularize the problem, constraint equations are added to

the system of shoreline equations in Equation (1). The

influence that the constraint equations have on the

estimated rates and intercepts is governed by two regular-

ization parameters: one for smoothing the rates and the

other for smoothing the intercepts. Because there is no

Figure 2. Rates from ST (dots) fit the data well but capture noise within the

data. Conversely, rates from regularized ST with a very large c (dashed line)

limit alongshore variability but give a poor fit. Rates from regularized ST

with a moderate c (solid line) allow alongshore variability while limiting

shorter wavelength variations. Positive rates indicate accretion, and

negative rates indicate erosion.
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simple formula for selecting regularization parameter

values, we test a range of values.

We first treat the case of a single regularization parameter

for rates; the regularization parameter for intercepts is

handled similarly. Consider the system of equations in

Equation (1) where all bi are zero (shoreline positions at

each transect are centered about their mean). In matrix form,

this system is d¼Gmþg, where d is an N31 column vector of

N observed shoreline positions, m is an M31 column vector of

M model parameters, G is an N 3 M system matrix, and g is

an N 3 1 column vector of errors with zero mean and

covariance matrix Cd. Model roughness is controlled by

augmenting the system with equations that set the second

alongshore derivative of the rate parameters to zero. The

second derivative is approximated by the centered second

difference matrix L:

L ¼ 1

ðDxÞ2

1 �2 1
1 �2 1

� � �
1 �2 1

2
664

3
775; ð2Þ

where Dx is the spacing between transects. Thus, Lm

approximates the second derivative of the parameter vector

m. Although the second derivative is not calculated at

endpoints, the endpoints are used in calculating the second

derivative of adjacent points, thus forcing the endpoints to

Figure 3. (a) The Kailua beach study area is located on the Hawaiian island of Oahu. (b) A sand-filled paleochannel bisects the shallow fringing reef as seen in a

2005 aerial photomosaic (from University of Hawaii Coastal Geology Group, 2014). Shore-normal transects (thin yellow lines) are cast off a baseline (black line)

that follows the general shape of the coast. Only every fifth transect is shown for clarity. (c) Shoreline data from Kailua, Hawaii, are shown relative to the baseline.

Transects are spaced 20 m apart. (d) Historic shoreline vectors display small-scale deviation from the baseline, following the nearshore topography.
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adhere to prescribed smoothing. In coding, the equation Lm¼
0 becomes 0¼cLmþe, where 0 is an (M�2)31 column vector

of zeros, e is an (M�2) 3 1 column vector of independent and

identically distributed errors with zero mean and unit

variance (i.e. the covariance matrix is the identity matrix),

and c is the regularization parameter.

Together, the forward shoreline model equations and the

roughness constraints are

d ¼ Gmþ g
0 ¼ cLmþ e;

ð3Þ

with g ~ N(0, Cd) and e ~ N(0, I). It follows that the least

squares solution to the augmented system of equations in

Equation (3) is found (e.g., Hastie, Tibshirani, and Friedman,

2009) by minimizing

/ðmÞ ¼ ðd�GmÞTC�1
d ðd�GmÞ þ c2mTLTLm: ð4Þ

It can be seen that when c ¼ 0, the regularization terms

disappear, leaving only the sum of squared residuals typically

seen in least squares regression. As c approaches infinity, the

second derivative penalty term is given so much weight

compared to the residuals that the parameters are forced to

vary linearly in the alongshore direction.

Taking the differential of (4) and setting it to zero, we find

that the model vector m that minimizes (4) for a given c is

bm ¼ ðGTC�1
d Gþ c2LTLÞ�1GTC�1

d d ð5Þ

with estimated model covariance matrix (e.g., Menke, 2012)

bCm ¼ ðGTC�1
d Gþ c2LTLÞ�1: ð6Þ

The vector of predicted data is then

bd ¼ GðGTC�1
d Gþ c2LTLÞ�1GTC�1

d d
¼ Hd

ð7Þ

where H is the data resolution matrix, also known as the ‘‘hat’’

matrix.

As mentioned earlier, we use two regularization parameters

because we smooth rates and intercepts independently.

Including the second regularization parameter for intercepts

is straightforward, resulting in matrix equations similar to

Equation (3), except that the system of equation d ¼ Gm þ g
now includes intercept parameters bi, and the expression cL in

the second line is replaced by a block diagonal matrix with

blocks crL and cbL, where cr and cb are the rate and intercept

regularization parameters, respectively. It can be shown that

Equations (5) to (7) are altered only by replacing the matrix

c2LTL with the block diagonal matrix containing blocks c2
r LTL

and c2
b LTL.

Figure 4. (a) Low, vegetated dunes front homes along Kailua Beach. Photo is

looking north from transect 78. (b) Grading and sand redistribution at the

Kaelepulu Stream mouth in 1996. (c) Kailua boat ramp (bottom, right)

obstructs sediment movement toward the NW. (c) and (d) Variability in

Kaelepulu Stream flow alters the shoreline. (e) and (f) Recent erosion at

Kailua Beach Park causes undermining of trees and scarping of the beach

face; subsequent mitigation attempts include nourishing the beach with

excess sand that has accumulated near the Kaelepulu Stream mouth.

Figure 5. The flowchart for the regularized-ST model procedure includes

estimating data error correlation (shaded region).
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Correlated Noise
Although data errors are assumed a priori for each data

value, we estimate the correlations between these errors. Our

procedure for this is summarized in the shaded region of our

procedural flowchart (Figure 5). Because of the large time

intervals between surveys (decadal), data are not considered

correlated in time. However, data correlation in the alongshore

direction is present because of the small spacing (20 m)

between transects. Treating correlated data as independent

‘‘can cause dramatic differences in the inferences which may be

legitimately drawn from a set of observations, Box (1954),

Zellner and Tiao (1964)’’ (from Box and Tiao, 1973, p. 81). Tests

in Anderson and Frazer (2014) confirm that incorrect assump-

tions about data independence lead to poor estimates of

parameters and their uncertainties in the shoreline problem.

To apply a correlated noise model to a single sample of data, it

is necessary to make some stationarity assumptions about the

noise. Accordingly, in the correlated noise model for the

shoreline problem, errors are assumed to be stationary in the

alongshore direction. Shoreline behavior fronting Kailua

Beach Park, however, challenges this assumption, where

inconsistent stream flow (Figures 4c and d), beach grading

(Figure 4b), and nourishment fronting Kailua Beach Park

(transects 170–203) cause variability in shoreline data that is

not explicitly modeled. We incorporate some of these influences

into the modeling procedure as additional noise that is

independent of the correlated noise (see Anderson and Frazer,

2014) in the following way. The matrix containing data errors is

defined as

Cd ¼ �W
1=2

Ccorr
�W

1=2 þ eW ð8Þ

in which Ccorr is an N3N matrix containing the estimated data

error correlations, �W1/2 is a diagonal matrix containing the data

errors as estimated by Romine et al. (2009), and ~W1/2

is a diagonal matrix of additional data errors. The term
�W

1=2
Ccorr

�W
1=2

represents correlated data errors, while ~W

represents spatially independent noise. We define
~W ¼ diagðe2

ij½bai � 1�þÞ, in which eij are the data error estimates

from Romine et al. (2009) for locations i and times j, âi

represents the scaling factors for locations i (Equation (16),

shown later), and the subscript þ denotes positive values,

indicating that additional errors are only included if the scaling

factor exceeds one (i.e. if data errors estimated from regression

are larger than a priori estimates).

The spatial correlations Ccorr are derived using a technique

that is fully described in Anderson and Frazer (2014); only a

brief description is given here. The iterative procedure begins

by calculating the first covariance matrix (Equation [8])

using the identity matrix as the initial Ccorr. The new

covariance matrix is then used in the least squares procedure

to find the model parameter vector (Equation [5]), and

subsequently the vector of fitted data (Equation [7]), to

produce residuals, defined as the difference between the

fitted data and the observed data. The autocorrelation

function of the residuals is estimated, damped with a cosine

taper function, and then used as the new data error

correlations (see Appendix A in Anderson and Frazer,

2014). In all cases, the new correlation matrix Ccorr has ones

along the diagonal and entries that decline in size with

distance from the diagonal. The correlation matrix from the

previous iteration is then used to provide new residuals that

produce a new correlation matrix, and so on, until correlation

matrices from successive iterations are sufficiently close. Our

stopping criterion is jjCðuÞcorr � C
ðu�1Þ
corr jj2 , 10�3jjCðu�1Þ

corr jj2, where

u is the number of iterations and jj. . .jj2 denotes the matrix 2-

norm, also called the spectral norm.

Our model selection criterion (see the next section) favors

models with correlated data errors because if data errors are

more correlated, then effectively fewer parameters are used in

representing the error part of the model while more parameters

are used for the rate and intercept part of the model; thus, a

model with more variable rates and intercepts may give a lower

EIC than a simple model. To favor simple models, we estimate

error correlations from the residuals in ST (regularization

parameters are zero) and use those correlations in all

subsequent calculations for regularized-ST and spline models.

Selecting the Regularization Parameters
The appropriate regularization parameters are determined

by means of the EIC given in the appendix. As with other

information criteria, the lower the EIC, the better the model.

We cannot minimize the EIC analytically, so we find its

minimum by searching over a range of regularization param-

eter values that give results similar to ST at the lower limit and

alongshore-linear behavior at the upper limit (e.g., Figure 2).

For the Kailua Beach study area, regularization parameters for

rates range from 1.83 103 to 3.33 106 m�y and from 55 to 2.13

105 m for intercepts.

The EIC is defined as EIC¼�2ln(p(djw)), where p(djw) is the

evidence, the probability of the data vector d given model w.

Using marginalization and the product rule, the evidence can

be written in the form (Sivia and Skilling, 2006, p. 79)

pðdjwÞ ¼
Z

pðdjm;wÞpðmjwÞdm; ð9Þ

in which p(djm, w) is the likelihood of parameter vector m and

p(mjw) is the parameter prior for model w. Because the formula

for the likelihood is different for the regularized-ST and spline

model families, we provide an EIC formula for each.

The EIC is applied to regularized-ST models by substituting

the likelihood for regularized-ST models into Equation (9) and

simplifying (see the appendix), giving the explicit formula for

regularized-ST models:

EICR ¼ ðd�G bmÞTC�1
d ðd�G bmÞ þ c2

rbr TLTL brþ c2
b
bb T

LTL bb
þ lnð jC�1

m j Þ þ ðN � 4Þlnð2pÞ þM lnðarabÞ
þ ð4�MÞlnðcrcbÞ þ lnð jCdj Þ: ð10Þ

Here, j. . .j denotes the matrix determinant, Cm is the model

covariance matrix (Equation [6]), L is the second derivative

operator (Equation [2]) with M/2 � 2 rows, cr is the

regularization parameter for rate, cb is the regularization

parameter for intercept, M is the length of the parameter vector

m, N is the length of the data vector d, and ar and ab represent

lengths related to rate and intercept, respectively, that are

sufficiently large to cover the range of potential rates and

intercepts (see the appendix). For Kailua, 4 m/y is used for ar
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and 300 m is used for ab because these values exceed the range

of rates and intercepts, respectively, calculated using the ST

method for 3701 locations spanning all sandy beaches on the

Hawaiian island of Kauai, excluding the Na Pali coastline.

Substituting the likelihood for basis function (e.g., B splines)

models into Equation (9) and simplifying (see the appendix)

gives the explicit equation for basis functions models:

EICB ¼ ðd�G bmÞTC�1
d ðd�G bmÞ � lnðjCmjÞ þ ðN �MÞlnð2pÞ

þ 2 MrlnðarÞ þMblnðabÞ½ � þ lnðjCdjÞ; ð11Þ

in which the system matrix G has Mr basis functions for rate

and Mb basis functions for intercept, one in each column. For

purposes of model selection, the covariance matrix Cd is

assumed constant for all regularized-ST and spline models, so

the last term can be omitted. The ST model has a covariance

matrix that is diagonal (assumes temporal and spatial

independence) for consistency with traditional methodology.

Because the numerical values of the regularization param-

eters have no intuitive value, it is helpful for understanding,

although unnecessary for model selection, to estimate the

effective number of model parameters associated with each

regularization parameter. In regression methodology, this

number is called the regression degrees of freedom. For basis

function methods, this number is simply the number of basis

functions, i.e. the number of components in the parameter

vector m. For regularization, the length of the parameter vector

is fixed at the number of transects, but as the regularization

parameters increase in value, the effective number of param-

eters declines. The regression degrees of freedom dfc is defined

as the trace of the data resolution matrix (hat matrix) given in

Equation (7) (e.g., Hastie, Tibshirani, and Friedman, 2009), or

dfc ¼ traceðHÞ: ð12Þ

Shoreline Prediction
Future shoreline location is predicted by extrapolating from

the model whose parameters we have just estimated. For

future time tf and location xi, let qxi
¼ qxi

ðtf Þ be an M31 column

vector, which we refer to as the prediction kernel. The vector qT
xi

resembles a row of the system matrix G, except that the time

used is tf� �t, following Equation (1). The predicted position of

the shoreline at location xi and future time tf is then

byðxi; tf Þ ¼ qT
xi
bm ð13Þ

with estimated variance

br2
xi
¼ qT

xi

bCmqxi
: ð14Þ

A 100(1� e)% confidence interval for ŷ is given by

byðxi; tf Þ ¼ qT
xi
bm 6 z1�e=2brxi

ð15Þ

in which z1�e/2 ¼ U�1(1 � e/2), where U is the cumulative

distribution function of the standard normal. When the data

variance is estimated, Student’s t distribution is used to

estimate confidence intervals for parameters. Here, we assume

a known variance, using data error estimates calculated by

Romine et al. (2009), so the posterior distribution is normal. If

the data uncertainties are regarded as process errors rather

than measurement errors, then the data uncertainty should be

added to the right-hand side of Equation (14) for Equation (15)

to represent the mean and standard deviation (SD) of the

posterior predictive distribution (e.g., Gelman et al., 2014, p.

357).

Assessment of Models’ Predictive Capabilities
Having selected the appropriate regularization parameters

and number of spline basis functions to use in regularized-ST

and spline models, we us fivefold cross-validation (CV) to

assess the predictive capabilities (Geisser, 1975; Kohavi,

1995; Hastie, Tibshirani, and Friedman, 2009, Section 7.10)

of these models and the traditional-ST model. The data are

split into five approximately equal parts. For each one-fifth

part, we fit the model to the remaining four-fifths of the data

(training data) and then calculate the mean of the squared

difference (the mean-square error, or MSE) between the

actual and the predicted one-fifth parts (test data). The CV

measure of the prediction error is the mean of the five MSEs

(Hastie, Tibshirani, and Friedman, 2009, Section 7.10;

Markatou et al., 2005; Nadeau and Bengio, 2003). We use

the formula (1/5þ nt /(N� nt)) � s2 for the variance of the CV

measure, which somewhat accounts for the correlation in

MSEs because of overlapping data in training data sets

(Nadeau and Bengio, 2003). Here, N is the total number of

data, nt is the number of data in each test data set, and s2 is

the sample variance of the five MSEs.

RESULTS
The DEIC scores, the EIC scores relative to the lowest (best)

score, for all pairs of regularization parameters tested are

shown in Figure 6a. The regularized-ST model with the lowest

EIC score has a rate regularization parameter of 4.8 3 105 m�y
and an intercept regularization parameter of 1.1 3 103 m.

Figure 6b shows the DEIC values from regularized-ST models

as in Figure 6a, but they are plotted against corresponding

regression degrees of freedom for rate and intercept parame-

ters. The regularized-ST model with the lowest EIC score for

Kailua Beach has roughly 4 (4.3) regression degrees of freedom

for rate parameters and 64 regression degrees of freedom for

intercept parameters. The most parsimonious spline model

(Figure 6c) has 3 rate basis functions and 18 intercept basis

functions. In contrast, the traditional ST model has 204 rate

parameters and 204 intercept parameters: 1 rate and 1

intercept at each transect.

The CV measures of the prediction error (prediction error is

defined as the squared difference between model predictions

and independent test data) are shown in Table 1 for the

traditional-ST model (103.0 6 11.1 m2), the best regularized-

ST model (64.4 6 5.2 m2), and the best spline model (65.4 6 5.9

m2). For comparison, squared shoreline data a priori errors had

a median value of 59 m2 and ranged from 54 to 85 m2 for the 10

shorelines derived from aerial photos and 116 m2 for the

National Oceanic and Atmospheric Administration T sheet–

derived shoreline. Both the regularized-ST and the spline

model show significant improvement in prediction over the

traditional-ST method at the 95% confidence level using a

Student’s t test. There is no significant difference between the

regularized-ST and the spline model CV scores.
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Predicted shoreline positions for the time span 1928–2075

are shown with historic data for the ST model (Figure 7a) and

regularized-ST model (Figure 7b). The plots reveal the

relatively high spatial frequency of the ST model compared to

the more parsimonious regularized-ST model. Shoreline

positions for the spline model, not shown, look similar to those

for regularized ST because of the similar alongshore frequen-

cies of their modeled parameters.

There is general agreement, as shown in Figure 8a, among

the shoreline change rates in the alongshore direction,

calculated by the three methods that we tested. Maximum

accretion rates for each of the three methods are between 0.59

and 0.72 m/y (Table 1) and are located near the center of the

beach. Romine et al. (2009) analyzed Kailua Beach data using

polynomial basis functions with similar results. Areas of

accretion, indicated by all three models, are also consistent

with the occurrence of seaward-growing vegetated dunes that

have formed on the ocean side of many coastal properties and

with the documented seaward migration of the vegetation line

from 1949 to 1978 (Hwang, 1981).

Of the three modeling techniques that we tested, rates

calculated using the ST method have the most high-frequency

variation alongshore, as expected, while the regularized rates

and spline rates both have a significantly smoother, long

wavelength signal (Figure 8a). The similar ‘‘smoothness’’ of the

modeled regularized rates and spline rates is a reflection of the

roughly equivalent regression degrees of freedom (four) and

number of basis functions (three), respectively, for the model

rates.

The intercept parameters (Figure 8b), which represent mean

shoreline positions relative to the baseline, are more resolved in

the alongshore direction than are rates in all three methods.

Although the spline model uses fewer parameters for the

intercept (18) compared to the regularized-ST model (64), the

spatial signals of intercepts for these models are similar

alongshore (Figure 8b).

DISCUSSION
Alongshore variations in parameter values can sometimes be

linked to geologic features. For example, between transects 120

Table 1. For each method, the number of parameters Np or regression

degrees of freedom df are given for rate and intercept. For the regularized-

ST method, the regularization parameter c is given in brackets. Minimum

and maximum rates calculated by the different methods are given, along

with corresponding transect locations, in brackets. As expected, the

difference between maximum and minimum rates is largest with ST

because of the alongshore smoothing inherent in the other methods. The CV

measures of prediction error and their estimated SDs rcv for each method

show the considerable prediction improvement of the regularized-ST and

spline models over the traditional-ST model.

ST Regularized ST Spline

Npr (rate)/dfr [cr (m�y)] 204 4 [4.8 3 105] 3

Npb (intercept)/dfb [cb (m)] 204 64 [1.1 3 103] 18

Max. rate (m/y) [transect] 0.72 [69] 0.59 [85] 0.59 [83]

Min. rate (m/y) [transect] �0.10 [178] �0.04 [203] �0.12 [203]

CV 6 rcv (m2) 103.0 6 11.1 64.4 6 5.2 65.4 6 5.9

Figure 7. Estimated shoreline positions for (a) the ST method and (b) the

regularized-ST method are shown, along with the data (black circles). As

expected, none of the models fit the data well near the Kaelepulu Stream

mouth (higher-numbered transects) because of variable stream flow.

Predictions from the spline method, not shown, are similar to those from

the regularized-ST method. (b) Seventy-year shoreline predictions for ST

(thin gray), spline (dashed black), and regularized ST (heavy black) all show

accretion focused near the center of the bay. Ninety-five percent confidence

bands are shown. The most recent (2005) shoreline (low water mark) is

shown in dashed gray for reference.

Figure 6. The DEIC values for regularized-ST models are shown plotted against (a) the regularization parameters and (b) the regression degrees of freedom for

comparison with B-spline models. Asterisks indicate minimum EIC scores (best model) in that model family. (c) The DEIC values for the B-spline models are

plotted against the number of B splines used for intercept and rate.
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and 135, intercept values (representing mean shoreline

positions) follow a sinuous pattern that mimics the shape of

the landward extent of the offshore reef (Figure 3d). Other

deviations from the baseline may be because of persistent

physical conditions in combination with reef topography that

are not apparent in aerial photos, or they may simply represent

noise inherent in the data.

In general, continuous uncomplicated sandy shorelines can

be parsimoniously represented using any of the basis functions

or regularization. However, shorelines reflecting uneven

variation in rates (or intercepts) alongshore, typically because

of complex offshore topography, complicate the application of

parsimonious methods. Pacific island shorelines in particular

tend to be naturally complex because of the intricate fringing

reefs that surround most of them. Shorelines everywhere are

susceptible to construction of jetties, piers, and other features

that alter long-term shoreline trends on small spatial scales.

We find that some methods are more successful in dealing with

particular morphologic circumstances than others. Table 2

summarizes some differences among regularized-ST, tradi-

tional ST, and recently used basis function methods, such as

Legendre polynomials, trigonometric functions, principal com-

ponents (Frazer, Genz, and Fletcher, 2009) and cubic B splines

(Anderson and Frazer, 2014). The table is an extension of Table

4 found in Anderson and Frazer (2014) except that it includes

an entry for the regularized-ST method.

Frazer, Genz, and Fletcher (2009), as mentioned in the

introduction, illustrate how both Legendre polynomials and

trigonometric functions cause alongshore ringing in calculated

shoreline change rates because of a spike in actual trends

across an accretionary point. In regularized ST, a discontinuity

in the alongshore derivative of rate (or intercept) is allowed by

removing a single row of the second derivative matrix L; to

allow a jump in rate, the rows corresponding to the transects

that bracket the discontinuity are removed. In general, the

regularization parameter for, say, rates can be allowed to vary

to either increase or decrease the relative amount of prescribed

variation in rates alongshore. Removing a row in the second

derivative matrix or allowing a regularization parameter to

vary creates a separate class of models. The EIC can be used to

compare models between these classes, but the model space will

be greatly enlarged.

As pointed out by Anderson and Frazer (2014), principal

components regression (eigenbeaches) and B splines can also

allow alongshore discontinuities of parameters, but each

presents further complication. Principal components regres-

sion requires a nonparametric method, such as the bootstrap,

to estimate model parameter uncertainty, which can be

computationally intensive. For B splines, additional knots

must be placed at the discontinuity (de Boor, 1978): one extra

knot for a discontinuity in the second derivative, two extra

knots for a discontinuity in the first derivative, and three extra

knots for a discontinuity in the rate. In general, searching for

the most parsimonious B-spline model is complex, because both

the number and the locations of the knots should be allowed to

vary. By comparison, searching for the most parsimonious

regularization model may be simpler, because the number of

regularization parameters cannot exceed the number of

transects. In this paper, we constrained our spline models to

equally spaced splines and our regularized-ST models to equal

smoothing parameters at each row, so the search over model

space was greatly simplified. Additional spatial analyses, such

as wavelet analysis (Li, Lark, and Reeve, 2005; Tebbens,

Burroughs, and Nelson, 2002), might provide a way to identify

the spatial resolution of shoreline change rates alongshore,

linking them with local geology, engineered structures, etc.

Figure 8. Shoreline change (a) rates and (b) intercepts calculated via three

methods: (1) regularized ST, (2) B-spline basis function, and (3) ST are shown

surrounded by their 95% confidence bands. The three models show general

agreement, although the ST model has the most alongshore variability.

Table 2. This table summarizes the advantages and disadvantages of selected long-term shoreline change methods. The eigenbeaches method is the only

parsimonious method that is totally robust to rapid alongshore changes in rate, but because such jumps typically correspond to easily identifiable geologic

features, regularized ST may be best for long-term prediction.

Method Parsimonious Defined Everywhere Gibbs Effect Error Estimation Assumptions

Traditional ST1 N N N Independent

Regularized ST Y N N2 Correlated errors3

Basis functions

Spline (B splines) Y Y N4 Correlated errors

Polynomial (Legendre, trigonometric) Y Y Y Correlated errors

Eigenbeaches (principal components) Y5 N N Correlated errors; nonparametric6

1 Traditional ST assumes independence at each transect.
2 Must modify L to avoid Gibbs effect.
3 For correlated errors, the covariance matrix must account for spatially correlated errors.
4 Careful knot placement is needed to avoid Gibbs effect.
5 Eigenbeach basis functions are not independent of the data.
6 Nonparametric requires the nonparametric estimation method (e.g., bootstrap).

Y ¼ yes, N¼ no.
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This may be a way to generalize the relative regularization

parameter values alongshore or the spline knot density based

on local setting.

Given the relatively large number of parameters allowed by

the EIC in determining intercepts alongshore, reducing

intercept parameters in the alongshore direction may provide

only a small benefit as opposed to calculating an intercept

independently at each transect. Anderson and Frazer (2014)

found the same disproportionally high number of intercept

parameters compared to rate parameters using B splines when

they analyzed shoreline data from Assateague Island and

Ocean City, Maryland. This suggests that calculating the mean

shoreline position at each transect and using this as a new

baseline, as done by Frazer, Genz, and Fletcher (2009),

simplifies the modeling process without greatly compromising

model parsimony.

As mentioned in the introduction, our focus is on methods

that provide information about long-term trends in shoreline

change for long-term planning purposes. An obvious, but often

overlooked, aspect of shoreline change modeling is the

practicality of applying the results of scientific studies to

planning initiatives. The efficacy of scientific results adopted by

nonscientific arenas is not the focus of this paper. Still, the

simplicity of a model influences whether it will be adopted.

When shoreline change statistics are used to determine the

setback for building structures, coastal decision makers and

coastal property owners naturally take great interest in how

that setback is determined, especially given the relatively high

market value of coastal properties. The continuing wide

application of the ST method is therefore not surprising,

because it is relatively easy to understand and explain,

whereas the concept of basis function expansions can be

difficult to explain. Its connection with ST may thus make

regularized ST the most palatable parsimonious method for

planning applications.

Thoughts on Model Selection
Our first inclination was to use to EIC to compare models

between the model families (splines and regularized models).

We were surprised to find that the best regularized-ST model

and the best spline model give comparable CV estimates of

general prediction capability, yet the regularized-ST model has

a significantly lower (more parsimonious) EIC score. This

occurs despite the spline model having fewer basis functions

than effective number of parameters in the regularized-ST

model. So we ask: How can a model with effectively fewer

parameters that is roughly equally as good at predicting

independent data be more parsimonious? To investigate this,

we looked at the CV scores for all models tested as an

alternative means of model selection (Breiman and Spector,

1992; Hastie, Tibshirani, and Friedman, 2009, Section 7.10;

Kohavi, 1995; Shao, 1996). Hastie, Tibshirani, and Friedman

(2009) suggest selecting the most parsimonious model whose

CV score does not exceed a 1-SD distance from the lowest CV

score. Because we have two types of model parameters that we

are searching over (rate and intercept), the 1-SD height above

the lowest CV score creates a contour on our two-dimensional

grid of CV scores. For example, adding the smallest spline

model CV score (60.2 m2) to its SD (4.1 m2) gives 64.3 m2. This

corresponds to roughly the CV scores of a spline model with 4

rate and 34 intercept basis functions and a spline model with 20

rate and 18 intercept basis functions; each of these models has

38 basis functions. The spline model with the fewest overall

number of basis functions within 1 SD of the lowest CV score

has 6 rate and 18 intercept basis functions. The EIC-selected

spline model (3 rate and 18 intercept basis functions) has a CV

score (64.4 m2) that is arguably negligibly above the 1-SD value

(64.3 m2).

The minimum CV score plus 1-SD value for regularization

models (64.2 m2) is remarkably similar to that for spline models

(64.3 m2). The CV score for the EIC-selected regularization

model is 64.4 m2, which is, as with splines, arguably within the

1-SD range. Regularization models are indexed by their

regularization parameters, which do not provide a means of

selecting the most parsimonious model for CV, so we look at the

regression degrees of freedom as a measure of the effective

number of model parameters. The regularized model with

effectively the fewest number of parameters had 10 rate and 35

intercept parameters. This is quite different from the EIC-

selected model with 4 rate and 64 intercept regression degrees

of freedom. This leads to another question: Can model

complexity be adequately represented by the regression

degrees of freedom? Furthermore, does a model with three B-

spline basis functions of degree 1 (piecewise linear function)

have the same model complexity as a model with three

trigonometric (sine and cosine) basis functions? Perhaps the

EIC is taking into account some measure of model complexity

that finds regularization models less complex than cubic spline

models. This would explain the similarity in the alongshore

signal of intercepts (Figure 8b) modeled by the regularized-ST

model and the spline model, even though the number of spline

basis functions was much smaller than the effective number of

regularized-ST intercept parameters.

The Vapnik–Chervonenkis (VC) dimension (Vapnik, 1995) is

an alternative measure of the complexity of a class of functions

that measures how wavy the functions can be. Model selection

methods that incorporate the VC dimension have been applied

to regression models with varying degrees of success (Cherkas-

sky et al., 1999; Hastie, Tibshirani, and Friedman, 2009;

Vapnik, Levin, and Le Cun, 1994).

In the end, we could not justify using the EIC to compare

spline and regularized-ST models because the EIC appears to

be biased toward regularized-ST models. Yet these questions

on comparing models from different model families and

measures of model complexities give credence as to why model

selection is such an active area of research in which consensus

is rare. Recent reviews are given by Claeskens and Hjort (2008)

and Ando (2010).

Unknown Variance
For some shoreline data sets, the data errors are unknown or

uncertain. In these situations, a best-estimate scaling factor is

typically used to estimate the amplitude of the predicted error,

based on the data residuals. For example, Anderson and Frazer

(2014) modeled the data covariance matrix as Cd¼a ~Cd, where

a is the best-estimate constant of proportionality that scales ~Cd,

the estimated covariance structure matrix, weighted by a

priori uncertainty estimates (the covariance matrix used in
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this paper). For unregularized models, such as the spline model

or ST model, the best estimate of a is

ba ¼ ðd�G bmÞT eC�1

d ðd�G bmÞ=ðN � df Þ; ð16Þ

where df is the regression degrees of freedom (Equation [12]),

which is equal to the number of basis functions. It is possible to

estimate a when using regularization, but the calculation is not

straightforward because the best-fit model parameters depend

on a, and one must iterate to find both the value of a and the

value of the parameters.

We tested this procedure on our Kailua Beach data and found

that a was always less than (but close to) one, regardless of how

much smoothing was imposed on the model. This indicates that

the estimated a priori errors slightly exceed the data errors

estimated from the data residuals, so it is conservative to use

the a priori errors. Seven difference sources of uncertainty

were used to estimate a priori data errors for Kailua (see

Romine et al., 2009), including measurement errors (digitiza-

tion of shoreline vectors, orthorectification of coastal imagery,

etc.) and errors because of short-term physical processes (e.g.,

tidal fluctuations and seasonal uncertainties). A scaling factor

may be more appropriate for use in locations in which

quantification of only a limited fraction of all potential error

sources is available.

CONCLUSIONS
A regularization technique for modeling long-term shoreline

change in a parsimonious manner is presented and compared

with traditional ST and with the B-spline method. The

technique is demonstrated on historic shoreline data from

Kailua, Hawaii. There is general agreement among the three

methods tested, which all indicate long-term accretion of

Kailua Bay focused toward the center of the beach, consistent

with previous studies of the area (Hwang, 1981; Edward K.

Noda and Associates, Inc., Staff, 1989; Norcross, Fletcher, and

Merrifield, 2002; Romine et al., 2009). Both the spline and the

regularized-ST methods (parsimony methods) produce shore-

line change rates that are smooth alongshore compared to ST.

The parsimony methods used between three and four param-

eters to characterize the variation in rates alongshore.

However, intercept parameters estimated by the parsimony

methods showed much higher alongshore variation, compared

to rates, and closely resembled those calculated by ST. This

phenomenon, also seen at Assateague Island and Ocean City,

Maryland (Anderson and Frazer, 2014), suggests that there is

little benefit in attempting to reduce the number of intercept

parameters, even though uncertainty values will be slightly

reduced. Improved a priori data error estimates might produce

more accurate models.

An information criterion based on maximizing the evidence is

used as an objective model selection criterion for data with

correlated noise. The CV estimates of prediction error indicate

that both the regularized-ST and the spline models have

significantly better predictive capabilities than the ST model,

while the parsimonious models are comparable to each other.

In applying basis function and regularization methods,

spline basis functions (B splines), principal component regres-

sion, and regularization methodologies provide the most

flexibility in handling alongshore discontinuities often seen in

shoreline behavior. Principal component regression was not

favored because its basis functions include noise from the data

and it requires nonparametric methods of estimating uncer-

tainty. For shorelines with discontinuities or varying spatial

scales, the model selection process for regularized ST is easier

to code than the one for splines. Finally, the way that

regularization imparts varying degrees of smoothness to

alongshore rates may be easier to explain to clients than the

action of basis functions, making it a practical choice for use in

long-term planning.

ACKNOWLEDGMENTS
This work was supported in part by the Pacific Islands

Climate Science Center via U.S. Geological Survey Cooper-

ative Agreement G12AC00003. We thank four anonymous

reviewers for critiquing our paper and providing creative

suggestions toward a clearer and more engaging manuscript.

LITERATURE CITED
Anderson, T.R. and Frazer, L.N., 2014. Toward parsimony in

shoreline change prediction (III): B-splines and noise handling.
Journal of Coastal Research, 30(4), 729–742.

Anderson, T.R.; Frazer, L.N., and Fletcher, C.H., 2010. Transient and
persistent shoreline change from a storm. Geophysical Research
Letters, 37(8), L08401. doi:10.1029/2009GL042252.

Ando, T., 2010. Bayesian Model Selection and Statistical Modeling.
Boca Raton, Florida: Chapman and Hall/CRC, 286p.

Aster, R.C.; Borchers, B., and Thurber, C.H., 2012. Parameter
Estimation and Inverse Problems, 2nd ed. Oxford, United King-
dom: Academic Press/Elsevier, 360p.

Box, G.E.P., 1954. The exploration and exploitation of response
surfaces: Some general considerations and examples. Biometrics,
10(1), 16–60.

Box, G.E.P. and Tiao, G.C., 1973. Bayesian Inference in Statistical
Analysis. Redding, Massachusetts: Addison-Wesley, 588p.

Breiman, L. and Spector, P., 1992. Submodel selection and evaluation
in regression. The X-random case. International Statistical Review,
60(3), 291–319.

Cherkassky, V.; Xuhui, S.; Mulier, F.M., and Vapnik, V.N., 1999.
Model complexity control for regression using VC generalization
bounds. IEEE Transactions on Neural Networks, 10(5), 1075–1089.

Claeskens, G. and Hjort, N.L., 2008. Model Selection and Model
Averaging. New York: Cambridge University Press, 312p.

Crowell, M.; Douglas, B.C., and Leatherman, S.P., 1997. On
forecasting future U.S. shoreline positions: A test of algorithms.
Journal of Coastal Research, 13(4), 1245–1255.

Davidson, M.A.; Splinter, K.D., and Turner, I.L., 2013. A simple
equilibrium model for predicting shoreline change. Coastal Engi-
neering, 73, 191–202.

De Boor, C., 1978. A Practical Guide to Splines. New York: Springer-
Verlag, 392p.

De Vriend, H.J.; Zyserman, J.; Nicholson, J.; Roelvink, J.A.; Pechon,
P., and Southgate, H.N., 1993. Medium-term 2DH coastal area
modeling. Coastal Engineering, 21(1), 193–224.

Douglas, B.C. and Crowell, M., 2000. Long-term shoreline position
prediction and error propagation. Journal of Coastal Research,
16(1), 145–152.

Edward K. Noda and Associates, Inc., Staff, 1989. Hawaii Shoreline
Erosion Management Study, Overview and Case Study Sites—
Makaha, Oahu; Kailua–Lanikai, Oahu; Kukuiula–Poipu, Kauai.
Report for the Hawaii Coastal Zone Management Program, Volume
1. Honolulu, Hawaii: Edward K. Noda and Associates, Inc., pp. 4-
34–4-74.

Fenster, M.S.; Dolan, R., and Elder, J.F., 1993. A new method for
predicting shoreline positions from historical data. Journal of
Coastal Research, 9(1), 147–171.

Journal of Coastal Research, Vol. 31, No. 2, 2015

474 Anderson, Frazer, and Fletcher



Fletcher, C.H.; Rooney, J.J.B.; Barbee, M.; Lim, S.-C., and Richmond,
B.M., 2003. Mapping shoreline change using digital ortho-photo-
grammetry on Maui, Hawaii. In: Byrnes, M.; Crowell, M., and
Fowler, C. (eds.), Shoreline Mapping and Change Analysis:
Technical Considerations & Management Implications, Journal of
Coastal Research, Special Issue No. 38, pp. 106–124.

Frazer, L.N.; Anderson, T.R., and Fletcher, C.H., 2009. Modeling
storms improves estimates of long-term shoreline change. Geo-
physical Research Letters, 36(20), L20404. doi:10.1029/
2009GL040061.

Frazer, L.N.; Genz, A.S., and Fletcher, C.H., 2009. Toward parsimony
in shoreline change prediction (I): Methods. Journal of Coastal
Research, 25(2), 366–379.

Galgano, F.A. and Douglas, B.C., 2000. Shoreline position prediction:
Methods and errors. Environmental Geosciences, 7(1), 23–31.

Geisser, S., 1975. The predictive sample reuse method with
applications. Journal of the American Statistical Association,
70(350), 320–328.

Gelman, A.; Carlin, J.B.; Stern, H.S.; Dunson, D.B.; Vehtari, A., and
Rubin, D.B., 2014. Bayesian Data Analysis, 3rd ed. Boca Raton,
Florida: CRC Press, 675p.

Genz, A.S.; Fletcher, C.H.; Dunn, R.A.; Frazer, L.N., and Rooney, J.J.,
2007. The predictive accuracy of shoreline change rate methods
and alongshore beach variation on Maui, Hawaii. Journal of
Coastal Research, 23(1), 87–105.

Genz, A.S.; Frazer, L.N., and Fletcher, C.H., 2009. Toward parsimony
in shoreline change prediction (II): Applying basis function
methods to real and synthetic data. Journal of Coastal Research,
25(2), 380–392.

Gutierrez, B.T.; Plant, N.G., and Thieler, E.R., 2011. A Bayesian
network to predict coastal vulnerability to sea level rise. Journal of
Geophysical Research: Earth Surface, 116(F2), F02009. doi:10.
1029/2010JF001891.

Hanson, H. and Kraus, N.C., 1989. GENESIS: Generalized Model for
Simulating Shoreline Change. Vol. 1: Reference Manual and Users
Guide. Technical Report CERC-89-19. Vicksburg, Mississippi:
Coastal Engineering Research Center, U.S. Army Corps of
Engineers, 247p.

Hapke, C. and Plant, N., 2010. Predicting coastal cliff erosion using a
Bayesian probabilistic model. Marine Geology, 278(1–4), 140–149.

Harney, J.N. and Fletcher, C.H., 2003. A budget of carbonate
framework and sediment production, Kailua Bay, Oahu, Hawaii.
Journal of Sedimentary Research, 73(6), 856–868.

Hastie, T.; Tibshirani, R., and Friedman, J., 2009. The Elements of
Statistical Learning, 2nd ed. New York: Springer-Verlag, 745p.

Honeycutt, M.G.; Crowell, M., and Douglas, B.C., 2001. Shoreline-
position forecasting: Impact of storms, rate-calculation methodol-
ogies, and temporal scales. Journal of Coastal Research, 17(3),
721–730.

Hwang, D., 1981. Beach Changes on Oahu as Revealed by Aerial
Photographs. Technical Report HIG-81-3. Honolulu, Hawaii:
University of Hawaii, Hawaii Institute of Geophysics, pp. 66–75.

Kohavi, R., 1995. A study of cross-validation and bootstrap for
accuracy estimation and model selection. Proceedings of the 14th
International Joint Conference on Artificial Intelligence (Montreal,
Canada), pp. 1137–1143.

Li, Y.; Lark, M., and Reeve, D., 2005. Multi-scale variability of beach
profiles at Duck: A wavelet analysis. Coastal Engineering, 52(12),
1133–1153.

Long, J.W. and Plant, N.G., 2012. Extended Kalman filter framework
for forecasting shoreline evolution. Geophysical Research Letters,
39(13), L13603. doi:10.1029/2012GL052180.

Markatou, M.; Tian, H.; Biswas, S., and Hripcsak, G., 2005. Analysis
of variance of cross-validation estimators of the generalization
error. Journal of Machine Learning Research, 6(Jul), 1127–1168.

Menke, W., 2012. Geophysical Data Analysis: Discrete Inverse Theory,
3rd ed. San Diego, California: Academic Press, 293p.

Miller, J.K. and Dean, R.G., 2004. A simple new shoreline change
model. Coastal Engineering, 17(3), 531–556.

Morton, R.A., 1979. Temporal and spatial variations in shoreline
changes and their implications, examples from the Texas Gulf
Coast. Journal of Sedimentary Research, 49(4), 1101–1112.

Norcross, Z.M.; Fletcher, C.H., and Merrifield, M., 2002. Annual and
interannual changes on a reef-fringed pocket beach: Kailua Bay,
Hawaii. Marine Geology, 190(3–4), 553–580.

Plant, N.G.; Aarninkhof, S.G.J.; Turner, I.L., and Kingston, K.S.,
2007. The performance of shoreline detection models applied to
video imagery. Journal of Coastal Research, 23(3), 658–670.

Press, W.H.; Teukolsky, S.A.; Vetterling, W.T., and Flannery, B.P.,
2007. Numerical Recipes: The Art of Scientific Computing, 3rd ed.
New York: Cambridge University Press, 1235p.

Romine, B.M.; Fletcher, C.H.; Frazer, L.N.; Genz, A.S.; Barbee, M.M.,
and Lim, S.-C., 2009. Historical shoreline change, southeast Oahu,
Hawaii: Applying polynomial models to calculate shoreline change
rates. Journal of Coastal Research, 25(6), 1236–1253.

Ruggiero, P. and List, J.H., 2009. Improving accuracy and statistical
reliability of shoreline position and change rate estimates. Journal
of Coastal Research, 25(5), 1069–1081.

Shao, J., 1993. Linear model selection by cross-validation. Journal of
the American Statistical Association, 88(422), 486–494.

Sivia, D.S., and Skilling, J., 2006. Data Analysis: A Bayesian Tutorial,
2nd ed. New York: Oxford University Press, 246p.

Stive, M.J.; Aarninkhof, S.G.; Hamm, L.; Hanson, H.; Larson, M.;
Wijnberg, K.M.; Nicholls, R.J., and Capobianco, M., 2002. Vari-
ability of shore and shoreline evolution. Coastal Engineering, 47(2),
211–235.

Tebbens, S.F.; Burrows, S.M., and Nelson, E.E., 2002. Wavelet
analysis of shoreline change on the Outer Banks of North Carolina:
An example of complexity in the marine sciences. Proceedings of
the National Academy of Sciences Colloquium on ‘‘Self-Organized
Complexity in the Physical, Biological, and Social Sciences’’
99(Suppl. 1), 2554–2560.

University of Hawaii Coastal Geology Group, 2014. Hawaii Coastal
Erosion Website: Mosaics. http://www.soest.hawaii.edu/coasts/
erosion/mosaics.php?sArea¼kailua.

Van Rijn, L.C.; Walstra, D.J.R.; Grasmeijer, B.; Sutherland, J.; Pan,
S., and Sierra, J.P., 2003. The predictability of cross-shore bed
evolution of sandy beaches at the time scale of storms and seasons
using process-based profile models. Coastal Engineering, 47(3),
295–327.

Vapnik, V., 1995. The Nature of Statistical Learning Theory, New
York: Springer-Verlag, 188p.

Vapnik, V.; Levin, E., and Le Cun, Y., 1994. Measuring the VC-
dimension of a learning machine. Neural Computation, 6(5), 851–876.

Yates, M.L. and Le Cozannet, G., 2012. Brief communication:
Evaluating European coastal evolution using Bayesian networks.
Natural Hazards Earth System Science, 12(4), 1173–1177.

Zellner, A. and Tiao, G.C., 1964. Bayesian analysis of the regression
model with autocorrelated errors. Journal of the American
Statistical Association, 59(307), 763–778.

APPENDIX. EVIDENCE INFORMATION CRITERIA

We determine the appropriate model by maximizing the

evidence, which is the prior probability of the data given a

model. Our EIC is defined as

EIC ¼ �2lnðpðdjwÞÞ; ðA1Þ

where p(djw) is the evidence and w represents the model.

Thus, the model with the maximum evidence is the one whose

EIC score is the minimum of all candidate model scores.

Roughly speaking, in regularized ST w represents the system

matrix and its regularization parameter or parameters, and

in the spline method it represents the system matrix and the

number of splines.

Using marginalization and the product rule, the evidence

can be written in the form (Sivia and Skilling, 2006, p. 79)

pðdjwÞ ¼
Z

pðm;djwÞdm

¼
Z

pðdjm;wÞpðmjwÞdm
ðA2Þ
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in which p(djm, w) is the likelihood of parameter vector m and

p(mjw) is the parameter prior for model w.

We first consider regularized ST. Following Sivia and

Skilling (2006, pp. 79–83), our parameter prior is the uniform

probability density function on a hypercube. Thus, the prior

for the parameters is given by

pðmjwÞ ¼ a�Mr
r a�Mb

b �ar=2 , mk , ar=2 : 1 � k �Mr and½
� ab=2 , ml , ab=2 : 1 � l �Mb�:

ðA3Þ

Here, [. . .] is an indicator function, equal to unity if

condition . . . is satisfied and zero if it is not; ar and ab are

the hypercube side lengths for rate and intercept parameters,

respectively; and Mr and Mb are the respective numbers of

rate and intercept parameters. Following Sivia and Skilling

(2006), we assume that the hypercube side lengths a are

sufficiently large that the indicator function can be neglected

in the integral over m needed to calculate the evidence. For

all regularized-ST models, the prior is the same because Mr

and Mb do not vary; for basis function models, such as

splines, Mr and Mb vary and cause the prior to affect the

evidence of models within the same model family.

We maximize the evidence by varying the model in the

likelihood. The likelihood is

pðdjm;wÞ ¼ expð�2�1ð eGm� edÞT eC�1

d ð eGm� edÞÞ
ð2pÞD=2j eCdj1=2

; ðA4Þ

in which the terms ~G, ~d, and ~Cd are the generalized system

matrix, data vector of length D, and data covariance matrix,

respectively, for each model. Explicit values of the preceding

terms, which differ for regularized models and basis function

models, are provided later.

Evaluating the integral in Equation (A2) in the Sivia and

Skilling (2006) approximation is a simple matter of complet-

ing the square in the exponent of the likelihood and using the

formula for the integral of a multivariate Gaussian. Alterna-

tively, one can simply divide the product of the likelihood and

the prior, p(djm, w)p(mjw), by the posterior p(mjd, w) and

(recognizing that this quotient is independent of m) set m

equal to a convenient value u such as bm, the mean of the

posterior. The result is

pðdjwÞ ’
ð2pÞM=2jCmj1=2expð�2�1buÞ
ð2pÞD=2j eCdj1=2jarjMrjabjMb

; ðA5Þ

in which

bu ¼ ð eG bm� edÞT eC�1

d ð eG bm� edÞ: ðA6Þ

Multiplying �2 times the log of p(djw) gives the EIC

EIC ¼ ðD�MÞlnð2pÞ þ lnðj eCdjÞ þ buþ lnðjC�1
m jÞ

þ 2 MrlnðarÞ þMblnðabÞ½ �:
ðA7Þ

Here, M is the length of parameter vector m, in which M¼
Mr þMb, or Mr and Mb as defined earlier; Cm is the model

covariance matrix; and D, ~Cd, û, ar, and ab were defined

earlier.

For regularized-ST models, ~G, ~d, and ~Cd in Equations (A4)

to (A7) are defined as

eG ¼ G
L

� �
; ~d ¼ d

0

� �
;and ~Cd ¼

Cd 0
0 Creg

� �
; ðA8Þ

in which G is the system matrix that appears in Equation (3);

L is a block diagonal matrix whose blocks are the roughening

operators, usually the second derivative linear operators Lr

and Lb (Equation [2]); d is the vector of data; 0 is a column

vector of zeros of length (M � 4), in which M is the length of

parameter vector m; Cd is the covariance matrix; Creg is a

block diagonal matrix with blocks c�2
r � IM=2�2 and

c�2
b � IM=2�2, in which cr and cb are the rate and the intercept

regularization parameters, respectively; and IM/2�2 is the

identity matrix of the size (M/2� 2) 3 (M/2 � 2).

Substituting Equation (A8) into (A4) and then taking �2

times the natural log of the resulting expression leads to the

explicit EIC formula for regularized-ST models:

EICR ¼ ðd�G bmÞTC�1
d ðd�G bmÞ þ c2

rbr TLT
r Lrbrþ c2

b
bb T

LT
b Lb

bb
þ lnð jC�1

m j Þ þ ðN � 4Þlnð2pÞ þMlnðarabÞ
þ ð4�MÞlnðcrcbÞ þ lnð jCdj Þ; ðA9Þ

in which C�1
m ¼ GTC�1

d Gþ c2LTL and N is the length of data

vector d. In this paper, we are comparing regularized-ST

models that have the same data covariance Cd, so the term on

the last line does not change and may be discarded.

When using basis functions, such as splines, the model

system matrix G has M basis functions, one in each column.

We identify a model w by its system matrix G. In Equations

(A4) to (A7), ~G is simply the system matrix G, ~d is the vector

of data d, and ~Cd is the data covariance matrix Cd. The

parameter prior is a hypercube, as for the regularization

model (Equation [A3]), but the dimension of the hypercube

changes with the number of splines, i.e. with the number of

columns of G. It follows that the explicit EIC formula for basis

function models is

EICB ¼ ðd�G bmÞTC�1
d ðd�G bmÞ þ lnðjC�1

m jÞ þ ðN �MÞlnð2pÞ
þ 2 MrlnðarÞ þMblnðabÞ½ � þ lnð jCdj Þ; ðA10Þ

in which C�1
m ¼ GTC�1

d G and bm ¼ CmGTC�1
d d. Our procedure

assumes that the data covariance matrix is constant, so the

term in the last line may be discarded, as with EICR.
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