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ABSTRACT

Anderson, T.R. and Frazer, L.N., 0000. Toward parsimony in shoreline change prediction (III): B-splines and noise
handling. Journal of Coastal Research, 00(0), 000–000. Coconut Creek (Florida), ISSN 0749-0208.

The traditional single-transect method for predicting long-term shoreline change uses far more parameters than
necessary because it assumes that erosion/accretion (change) rates at adjacent alongshore positions (transects) are
independent. Such overfitting can cause poor predictions of future shoreline location, so recent work has modeled change
rates as linear sums of polynomials, or linear sums of principal components. Here we introduce an alternative method
that uses linear sums of B-splines. As in earlier work, an information criterion is used to identify the optimal number of
basis functions. The local nature of B-spline models makes them less susceptible to the Gibbs effect than polynomial
models, and their smoothness makes them more robust to noise than principal components regression. We also compare
three noise-handling techniques by examining their effects on the posterior probability density functions of rates. We
find that noise handling affects both predicted rate and its uncertainty, and that correlated noise is best addressed by
iteratively constructing a full covariance matrix from data residuals. We illustrate our procedure using synthetic data
and shoreline data from Assateague Island and Ocean City, Maryland.

ADDITIONAL INDEX WORDS: Shoreline change rates, inverse theory, coastal erosion, B-spline, Assateague Island,
Ocean City, parsimony, covariance, correlated noise.

INTRODUCTION
Quantification of trends in shoreline position is necessary for

managing natural coastal environments and human commu-

nities. Models for shoreline change range from simple empirical

relations, such as the model of this paper, to physics-based

models. Empirical models gain parsimony (require fewer

parameters) by ignoring waves, currents, and bathymetry.

Physics-based forward modeling systems, such as Delft3D,

developed by Delft Hydraulics (Roelvink and Van Banning,

1994), include those phenomena, but they must contend with

limited availability of required data and large propagated

errors. Semi-empirical models (e.g., Davidson, Splinter, and

Turner, 2013; Miller and Dean, 2004; Yates, Guza, and

O’Reilly, 2009) must also contend with limited data availability

and propagated errors, but to a lesser extent. Recently,

Marghany, Hashim, and Cracknell (2011) incorporated wave

spectra from airborne synthetic aperture radar (SAR) data into

a long-term shoreline change model. Technical innovations

such as global positioning systems (GPS) (e.g., Dail, Merrifield,

and Bevis, 2000), light detection and ranging (LIDAR) (e.g.,

Stockdon et al., 2002), and video imagery (e.g., Becker et al.,

2007; Plant et al., 2007) are greatly improving the quality and

quantity of shoreline data, but available time series are not

long enough to reveal trends over decades to centuries. In order

to extract such trends, we are still largely dependent on

historical shoreline surveys.

One of the simplest and most widely used methods of

estimating long-term shoreline change is the single-transect

(ST) method (Figure 1). It is an empirical method in which

equally spaced cross-shore transects (e.g., 20 to 50 m apart) are

analyzed independently. The mathematical model for each

transect is usually y¼ rtþb, in which y is shoreline position in

the cross-shore (i.e. landward-seaward) direction, r is the rate

of erosion or accretion, and b is an intercept that depends on the

baseline relative to which y is measured. The data consist of a

limited number of historical shorelines at each transect

(Fletcher et al., 2003; Genz et al., 2007; Honeycutt, Crowell,

and Douglas, 2001; Thieler et al., 2009; etc.). The ST method is

attractive because it is simple to understand and easy to

implement, especially over large spatial regions. Also, it

provides shoreline change statistics at a high spatial frequency

along the shoreline. However, it ignores correlation between

the rates at different transects, and thus it creates a model

shoreline that can have large excursions that increase

unrealistically as the model prediction is extended further into

the future. Moreover, for shorelines along which rates change

little from transect to transect, the ST method is highly
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unparsimonious; it has far more parameters than are inde-

pendent, as indicated by the wide autocorrelation of ST rate

parameters along 40 km of shoreline centered on Ocean City

inlet, Maryland, shown in Figure 2. Here, we focus on long-

term (decades) and large-scale (kilometers) shoreline trends,

attempting to improve on the ST method. Frazer, Genz, and

Fletcher (2009), and Genz, Frazer, and Fletcher (2009) also

addressed the overfitting issue of ST, and the procedure of this

paper extends their work by the use of different basis functions

and by an improved treatment of noise.

Frazer, Genz, and Fletcher (2009) examined three types of

basis function: polynomials, eigenbeaches (principal compo-

nents), and piecewise constant ‘‘bins.’’ Examples of Legendre

polynomials and eigenbeaches are shown in Figures 3d and e.

Polynomials are subject to Gibbs effect (Bracewell, 2000) when

modeling shorelines with sudden alongshore variations in rate

(Figures 3b and c). The eigenbeaches method automatically

does away with the Gibbs effect by using principal components

of the shorelines themselves as the basis functions, but those

basis functions are contaminated by process and measurement

noise in the data (Figures 3b and c).

In this paper, we model cross-shore rate with a cubic spline

defined by its value at alongshore locations called ‘‘knots’’ (de

Boor, 1978). Splines avoid the Gibbs effect if extra knots are

added at alongshore locations where rate changes rapidly, and

they are not contaminated by noise (Figures 3b and c). We use

B-splines (de Boor, 1978) as basis functions for the spline

because of their simplicity. Following the methodology in

Frazer, Genz, and Fletcher (2009), the parameters of our model

are the coefficients of the basis functions; least squares

regression is used to estimate those coefficients, and an

information criterion (IC) is used to select the optimal number

of basis functions. We improve on the noise methodology of

Frazer, Genz, and Fletcher (2009) by iteratively estimating the

spatial covariance of the data noise.

We illustrate the new procedures using barrier island

shoreline data from Assateague Island and Ocean City,

Maryland. We examine 40 km of shoreline centered on Ocean

City (OC) inlet, as seen in Figure 4a. Inlet jetties disrupt

alongshore sediment transport from the north, resulting in

Figure 1. Weighted least squares linear regression of shoreline data along a single transect.

Figure 2. Autocorrelation of rates calculated by the ST method for the north

(top) and south (bottom) study areas.
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episodes of sand bypassing (Kraus, 2000; Schupp, Bass, and

Grosskopf, 2007). The coast is mostly developed north of OC

inlet, and it is undeveloped south of the inlet where Assateague

Island National Park is located.

METHODOLOGY
Historical Shoreline Data

Our data consist of 12 historical shoreline surveys (1849–

2000) obtained online as geographic information system (GIS)

shape files from the U.S. Geological Survey (USGS) National

Assessment of Shoreline Change for the New England and Mid-

Atlantic Coasts (Himmelstoss et al., 2010). Table 1 lists the

range of years for USGS shorelines derived from different data

sources, and their average uncertainty values calculated from

quantifiable sources of error (Hapke et al., 2010). Shorelines

were extracted from T-sheets and air photos by digitally

identifying the high water line (HWL) from georeferenced

maps and photos (Hapke et al., 2010). Mean high water (MHW)

indicates shoreline position in LIDAR-derived shorelines.

Details of data extraction and error quantification procedures

are available in Hapke et al. (2010). To correct for the

horizontal difference between the MHW and HWL, we shifted

the LIDAR shoreline landward by the proxy-datum bias values

in Himmelstoss et al. (2010). The baseline, a proxy for a mean

shoreline shape, was also obtained from the USGS online. We

cast cross-shore transects perpendicular to the baseline and

recorded the distance between each shoreline and the baseline

at each transect using the Digital Shoreline Analysis System

(DSAS) Version 4.2 (Thieler et al., 2009). There is a gap in the

shoreline where OC inlet cuts through the barrier island, so we

modeled the 20 km sections north and south of the inlet

separately (Figures 4b and c).

Summary of Procedure
Spline models are distinguished by the number and location

of their knots. For the Assateague data analyzed here, it is

sufficient to count basis functions because we used knots that

were regularly spaced, except for coincident knots at end

points. For each model, we created a spline matrix, where each

column of the matrix is a B-spline evaluated at each transect.

We used the matrix in a generalized least squares regression

model that includes iterative estimation of the data covariance

matrix. From the residuals and the number of model

Figure 3. Results from modeling a synthetic data set consisting of 11 shorelines 10 years apart. Additive noise in the data is from N(0, [7.5 m]2). (a) Solid line

shows the true rates, constant on each side of a jump between transects 50 and 51; black crosses are the rates estimated by ST. (b) Rates estimated using 30

Legendre polynomials (green, solid), eight Legendre polynomials (green, dashed), eight B-splines (red), and one eigenbeach (blue). (c) Errors in rate (estimated –

true) for ST (black crosses), 30 Legendre polynomials (green), 8 splines (red), and one eigenbeach (blue). (d) The Legendre polynomials. (e) The three most

dominant eigenbeaches with percent variance. (f) The eight B-splines. Note Gibbs effect and noise in (b) and (c). The location of the rate jump was assumed known

prior to modeling.
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parameters, including the parameters required for covariance,

we calculated an information criterion (IC) statistic. We took

the model with the lowest IC to be the best model, and we used

it to predict shoreline positions at specified times within the

study area. We also generated the posterior probability density

function for rate at each transect.

B-Splines as Basis Functions
A cubic spline is a linear sum of cubic B-splines (de Boor,

1978). Each B-spline is defined everywhere, but it vanishes

outside an interval that spans five knots in a prescribed knot

sequence. Its first and second derivatives vanish at the end

points of that interval, so each B-spline has a continuous second

derivative, and thus the linear sum also has a continuous

second derivative. Figure 5a shows 11 B-splines (solid lines)

generated from a knot sequence consisting of 15 knots: 9 evenly

spaced knots (dashed lines), 50 transects apart, between

transects 0 and 400, with 4 knots at each end point. (The three

extra knots at each end point cause the spline to vanish outside

the interval.) The heavy line in Figure 5a is the B-spline with

support from transect 50 to transect 250. The shape of the B-

spline shows how it acts as a local weighted average. The B-

splines near the ends have smaller apertures than the interior

B-splines because of the duplicate knots at the ends. Although

the B-splines in the figure were generated using evenly spaced

interior knots, the spacing can be allowed to vary if there is

compelling a priori information that warrants it. For example,

if there were a geologic or structural feature, such as a stream

mouth or pier, in the middle of an otherwise uniform sandy

shoreline, one could add additional knots in the vicinity of the

feature, allowing more basis functions to capture the higher

spatial frequencies, as in Figure 3f.

The number of knots at a knot location determines the

smoothness at that point. More knots allow less continuity. For

example, if there are two knots at the same location, the

resulting spline will have a continuous first derivative at that

point, but not necessarily a continuous second derivative. Four

knots at the same location allow a zero-order discontinuity

there.

Suppose for a moment that we are modeling only rate. We use

B-splines to create a spline matrix V that linearly transforms a

short column vector of spline coefficients m̃ to a much longer I3

1 column vector of rates r, with one rate for each transect. (The

tilde notation is called for because, in order to be consistent

with single-transect models, we refer to r as the rate model, and

later we will include rates and intercepts in a model vector m.)

Each column of V is a B-spline generated using the recursion

relation of de Boor (1978, p. 131), and the modeled rate at

transect 1 � i � I is

ri ¼ Vi;m̃; ð1Þ

in which Vi, denotes the ith row of V.

Figure 4. (a) Study area and (b–c) shoreline data relative to offshore baseline for sections north and south of Ocean City inlet. Transects are spaced 50 m apart.

Table 1. Shorelines used in the study (HWL ¼ high water line; MHW ¼
mean high water; # Shore ¼ number of shorelines; Unc. ¼ average

uncertainty from quantifiable sources).

Date Source # Shore Indicator Unc. (m)

1849–1942 T-sheet 6 HWL 10.8

1962–1976 T-sheet 2 HWL 5.1

1980–1989 Air photo 3 HWL 3.2

2000 LIDAR 1 MHW 5.3
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Shoreline Change Model
Here we combine B-splines with the simple, time-linear

model y¼ rtþb. Let y(xi, tj) represent the cross-shore shoreline

position at alongshore location xi and time tj, for i ¼ 1 : I

transects and j¼1 : J shoreline surveys. Our shoreline equation

is y(xi, tj)¼ biþ (tj� �t )riþ nij, where ri and bi are the rate and

intercept, respectively, at the ith transect; nij is the noise at

shoreline position y(xi, tj); and �t is the mean of shoreline survey

years. Shifting the time origin to �t helps condition the system

matrix for regression, without affecting rate parameters.

Frazer, Genz, and Fletcher (2009) and Genz, Frazer, and

Fletcher (2009) used an additional acceleration term in some of

their models. Frazer, Anderson, and Fletcher (2009) and

Anderson, Frazer, and Fletcher (2010) included a storm

function in the time component of their shoreline model. We

do not include acceleration or storm functions here because

preliminary testing showed no significant acceleration or storm

signals in this data set. However, both storm functions and

acceleration terms may also be expressed as linear combina-

tions of spline basis functions.

Here we use splines to model the alongshore variation in

intercept as well as rate, so we construct the matrix V as a block-

diagonal matrix with two blocks of splines, one for rates and one

for intercepts. The two blockshavedifferent numbers of columns

if the number of splines needed for intercept differs from the

number needed for rate. The vector m̃ contains the spline

coefficients for both rate and intercept. Combining the time-

linear model with spline modeling of rate and intercept gives

yðxi; tjÞ ¼ bi þ ðtj � �t Þri þ nij

¼ Vi;m̃þ ðtj � �t ÞVIþi;m̃þ nij: ð2Þ

Basic Generalized Least Squares
Our generalized least squares (GLS) model is similar to that

given in Frazer, Genz, and Fletcher (2009), but it is presented

here in a slightly different way so that the matrix of spline basis

functions is explicit. In the following section, and in the

appendix, we present our method for handling spatially

correlated noise. The GLS model for the single-transect method

is written as

d ¼ Gmþ g; ð3Þ

in which N � I 3 J is the number of data points, d is an N 3 1

vector of shoreline positions relative to the baseline; G is an N3

2I system matrix; m is a 2I31 vector of parameters (I rates and

I intercepts); g is an N 3 1 vector of noise with zero mean and

covariance matrix Cdd. To reduce the number of parameters in

the model, we write

m ¼ Vm̃ ð4Þ

in which V is the 2I3 M spline matrix described earlier, and m̃

is an M 3 1 vector of spline coefficients with M � 2I.

Substituting Equation (4) into (3), and introducing the notation

G̃¼GV, gives the familiar GLS form d¼G̃m̃þg, still with noise

covariance Cdd.

In basic GLS, there is only one noise parameter. One begins

with an a priori estimate of the covariance C̃dd and then scales

it using a scaling factor that maximizes the fit of the model to

the data. The basic GLS estimator of m̃ is the usual relation

m̂e ¼ ðG̃T
C̃
�1

dd G̃Þ�1G̃
T

C̃
�1

dd d ð5Þ

with parameter covariance matrix (e.g., Menke, 2012)

Ĉm̃m̃ ¼ ðG̃
T

Ĉ
�1

dd G̃Þ�1 ð6Þ

in which the estimated data covariance Ĉdd¼ âC̃dd contains the

best-estimate constant of proportionality

â ¼ ðN �MÞ�1ðd� G̃m̂eÞTC̃
�1

dd ðd� G̃m̂eÞ: ð7Þ

The estimated parameter vector m̂ containing rates and

intercepts at each transect is now

m̂ ¼ Vm̂e ð8Þ

with associated covariance matrix

Ĉmm ¼ VĈm̃m̃VT : ð9Þ

Shoreline positions are predicted using the best-fit shoreline

model. The predicted shoreline position ŷ(xi, t) at desired time t

Figure 5. (a) Cubic B-splines. (b) Five B-splines multiplied by coefficients

(right column) form a linear combination of B-splines to create a spline

function (left column at bottom).
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and transect location xi is

ŷðxi; tÞ ¼ qT
i Vm̂e ¼ qT

i m̂ ð10Þ

in which qi¼qi(t) is a 2I31 column vector, which we refer to as

a prediction kernel. (If t is one of the data times tj, then qi is just

the ith row of the system matrix G.) The variance of the

prediction is

r̂2ðxi; tÞ ¼ qT
i VĈm̃m̃VTqi ¼ qT

i Ĉmmqi ð11Þ

in which Ĉm̃m̃ (Eq. [6]) is the parameter covariance matrix, and

Ĉmm (Eq. [9]) is the covariance matrix for modeled rates and

intercepts (Eq. [8]). Confidence intervals are calculated by

multiplying the square root of the above variance by the

Student’s t-statistic tm,1�e/2, where m is the degrees of freedom,

and 100(1� e) is the percent confidence level.

Data Covariance Estimation
Ideally, the GLS model outlined in the previous section would

contain a data covariance matrix Cdd that is known. In reality,

the covariance matrix is rarely known a priori, even to within a

scaling factor, and must be estimated. In the problem of this

paper, the structure of the covariance matrix may be simplified

by noting that shoreline surveys are typically dense in space

but ~10 years apart in time. Therefore, it is a good

approximation to assume that data errors are correlated in

the alongshore direction but weakly correlated in time.

Frazer, Genz, and Fletcher (2009) and Genz, Frazer, and

Fletcher (2009) addressed alongshore correlation by fitting the

data residuals from the ST method to a decaying exponential

and then using that exponential to generate the rows of the

covariance matrix. Another method for handling correlated

noise is to inflate a diagonal covariance matrix by using N*�M

instead of N � M in Equation (7), where N* is the effective

number of independent observations (Bayley and Hammersley,

1946). That is essentially what others (e.g., Hapke et al., 2010;

Kane et al., 2012) have done to estimate the variance in the

average of correlated rates; we refer to that method as WN*.

Here, in what we refer to as the Cfull method, we estimate the

full covariance matrix for each spline model by an iterative

process in which each successive covariance matrix is calcu-

lated from the residuals of the previous iteration (e.g., Dosso,

Neilsen, and Wilmut, 2006). Later, in the context of the spline

model, we compare differences in the posterior probability

density function (pdf) for all three methods of noise estimation:

uncorrelated (Wdiag), inflated variance based on an effective

number of data (WN*), and full covariance (Cfull).

Each of the noise handling methods incorporates in some way

the shoreline position uncertainties provided by the USGS

(Himmelstoss et al., 2010). We condition the USGS LIDAR-

derived shoreline uncertainty estimates so that uncertainty

values are no less than their geometric mean. This conservative

approach follows assumptions about noise within our Cfull

model given in Appendix A. For consistency, we use the

conditioned errors as a priori estimates for all noise models. Let

C̃
ð0Þ
dd ¼ diagðw2

ijÞ be the diagonal matrix containing conditioned

USGS uncertainty estimates wij at locations i and times j. In

the uncorrelated noise method (Wdiag), we use C̃
ð0Þ
dd as the a

priori estimate of C̃dd. In the noise estimation method (WN*), we

also use C̃
ð0Þ
dd as the a priori estimate C̃dd, but we increase the

constant of proportionality â by substituting the effective

number of independent data N* for the actual number of data N

in Equation (7). In the full-covariance (Cfull) method, we

iteratively construct C̃dd from the data according to the

flowchart in Figure 6, and then multiply by the best-estimate

constant of proportionality â. We limit the number of noise

parameters associated with the scaled autocorrelation by

assuming that it is independent of time and alongshore

distance. The flowchart procedure for the Cfull method is given

in Appendix A, and the details of the convergence are given in

Table 2 and explained in Appendix A.

To test the goodness of our covariance matrix estimate, we

compare the autocorrelation function for raw data residuals q¼
d � G̃m̃ with the autocorrelation function for standardized

residuals defined as q̃ ¼ Ĉ
�1=2

dd q. In GLS regression, the

standardized residuals are minimized, and the autocorrelation

function of the standardized residuals indicates the accuracy of

the data covariance matrix estimate. Figure 7 shows the

autocorrelations of raw residuals (left) and standardized

Figure 6. Flowchart for estimating the unscaled covariance matrix C̃dd

(before scaling by â).
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residuals (right) for two survey years. The delta-like autocor-

relation of the standardized residuals indicates considerable

improvement over the diagonal covariance assumption.

Information Criterion
Within a given family of models, the best model is the one

with the minimum information criterion (IC) statistic (score,

value). An IC statistic is the sum of two penalty terms: one

term, the misfit, increases with the data residuals, and the

other term increases with the number of parameters. Increas-

ing the number of parameters reduces the first term and

increases the second term. The IC score thus helps prevent one

from fitting the noise instead of the data. For further reading on

IC use in regression, see McQuarrie and Tsai (1998) or Frazer,

Genz, and Fletcher (2009). This paper uses the corrected

Akaike information criterion (AICc) (Hurvich and Tsai, 1989;

Sugiura, 1978). Our formula for AICc includes additional terms

that were unnecessary in Frazer, Genz, and Fletcher (2009)

because they were constant across all models. Since our method

of estimating the covariance matrix produces matrices with

different off-diagonal behavior, we use the more general

expression

AICc ¼ logjĈddj þ ðN �MÞ þ 2KN=ðN � K � 1Þ; ð12Þ

in which log(. . .)þ (N – M) represents the misfit and 2KN/(N – K

– 1) penalizes the model based on parameter count. Here K is

the number of parameters used in the modeling process; it is

the sum of M and the number of parameters used to model

variance. Table 3 summarizes parameter counts for different

methods. For uncorrelated noise (Wdiag method), only one

parameter (the covariance scaling factor â) is associated with

variance. The inflated diagonal covariance technique (WN*)

uses two parameters for variance, one for the covariance

scaling factor, and one associated with calculating the effective

number of independent data, N*. For model selection in the WN*

method, we substitute N* for N in Equation (12).

Because the Cfull procedure uses an estimated autocorrela-

tion function, one may first think to count the number of

autocorrelation lags as the number of parameters associated

with correlation. However, correlations for large lags contrib-

ute little to the covariance estimation, and they are poorly

estimated, so we damp them in estimating the autocorrelation

(Box, Jenkins, and Reinsel, 1994). The effective number of

parameters associated with spatial correlation is thus the

integral of the damping function given in Appendix A.

When comparing IC scores for models with different noise

handling methods, it is helpful to understand how the misfit

term is related to the likelihood of a model. As we assume

Gaussian noise, the likelihood function for parameter vector m,

given data d, is

LðmjdÞ ¼ ð2pÞ�N=2jCddj�1=2exp � 1

2
ðd�GmÞTC�1

dd ðd�GmÞ
� �

:

ð13Þ

As noted above, the misfit LL, is defined as �2 times the

logarithm of the likelihood function. Therefore, smaller LL

values correspond to models with higher likelihood. The (DLL)/

LL values in Table 2 show LL decreasing (model likelihood

increasing) during iteration toward the full covariance matrix,

with convergence within three iterations.

RESULTS AND DISCUSSION
Model Selection: AICc

Figure 8 shows the DAICc scores, the difference in AICc from

the lowest-scoring model, for each combination of rate and

intercept parameters (up to 40 rate and 90 intercept param-

eters). The lowest AICc score in the north section corresponds

Table 2. The decline in LL during iteration shows how an improved estimate of the covariance matrix gives a model with higher likelihood. DLL is the change

in LL between successive iterations. â is the covariance scaling factor needed to calculate LL, but is not used in the iteration process. jj � � � jj1 is the matrix L1

norm of the difference in estimated covariance matrices between iterations. The iteration process on the left is for the best model in the north region, composed

of seven rate and 72 intercept basis functions. The best model in the south region (right) has six rate and 61 intercept basis functions. Convergence requires

about three iterations.

Iteration

North Section South Section

(DLL)/LLit�1 â jjC̃ðitÞdd � C̃
ðit�1Þ
dd jj1jjC̃

ðit�1Þ
dd jj�1

1 (DLL)/LLit�1 â jjC̃ðitÞdd � C̃
ðit�1Þ
dd jj1jjC̃

ðit�1Þ
dd jj�1

1

0 — 23.0 — — 45.4 —

1 �8.25 3 10�1 15.8 1.13 3 103 �9.14 3 10�1 25.6 2.04 3 103

2 �1.30 3 10�3 16.0 2.15 3 10�2 �3.75 3 10�3 27.4 7.30 3 10�2

3 �6.78 3 10�6 16.0 5.71 3 10�4 �3.17 3 10�6 27.4 1.07 3 10�3

4 �1.07 3 10�7 16.0 2.12 3 10�6 �1.57 3 10�7 27.4 3.05 3 10�5

5 �2.32 3 10�9 16.0 7.37 3 10�8 9.24 3 10�9 27.4 1.81 3 10�6

6 �5.02 3 10�11 16.0 1.09 3 10�9 1.14 3 10�10 27.4 8.66 3 10�8

7 — — — �5.75 3 10�12 27.4 4.61 3 10�9

8 — — — �1.36 3 10�12 27.4 2.46 3 10�10

Figure 7. Selected autocorrelation functions for raw residuals (left column)

and standardized residuals (right column) show the improvement due to a

full covariance matrix.
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to the model with seven basis functions for rate and 72 basis

functions for intercepts (see Table 3). Many more basis

functions are required for modeling alongshore variations in

intercept because the mean shoreline location depends on the

shape of the baseline, and the baselines used in the USGS

study are straight lines over large geographic regions, lines

that do not mimic the mean shoreline shape on smaller scales.

Alongshore variations in rate, however, are insensitive to cross-

shore shifts in mean shoreline position. In fact, if only rates are

desired, one could simply remove the mean of each transect, as

was done in Frazer, Genz, and Fletcher (2009) and Genz,

Frazer, and Fletcher (2009). Calculated shoreline positions,

however, depend on intercepts, so reducing the number of

intercept parameters is desirable for parsimony in shoreline

prediction models. The same phenomenon is reflected in the

AICc scores for the southern study region, where six rate basis

functions and 61 intercept basis functions were found optimal.

Modeled Rates and Intercepts
Modeled rates and intercepts produced from the optimal

number of spline basis functions are shown in Figure 9, along

with rates and intercepts calculated from the ST method. The

two methods generally agree, indicating long-term erosion

from the northernmost location (transect 0), turning to

accretion, which is greatest just north of the OC inlet. In the

south section, erosion is most severe near the inlet, in

agreement with previous studies, which found that the OC

inlet jetties have disrupted the natural long-term sediment

transport to the south, causing sand to accumulate just north of

the inlet while retreating landward south of the inlet (Buttolph

et al., 2006; Dean and Perlin, 1977; Kraus, 2000; Leatherman,

1984).

For the north and south regions, we also computed an

average change rate with 95% confidence interval by assuming

a constant rate over each region, and inverting for that rate

directly. For that calculation, we shifted the y-baseline to zero,

so the intercept is zero, and the spline matrix was reduced to an

I 3 1 column vector of ones. A large difference is apparent

between the constant rates calculated for the beaches north

(�0.12 6 0.25 m/y) and south (�1.55 6 0.45 m/y) of OC inlet,

due to disruption of longshore transport by OC inlet jetties.

The spline and ST rates have similar long-wavelength

shapes, but they deviate at shorter length scales, as expected.

The spline intercepts closely resemble the ST intercepts

because many spline basis functions were needed to model

the intercepts. If one continues to increase the number of basis

functions used to model intercept and rate, the spline results

would approach ST estimates because the single transect

method is the end member of basis function saturation—

equivalent to having delta-like spline basis functions at each

transect. If we also then applied the correlated noise handling

technique to ST, the estimates would be identical.

Predicting Future Shorelines
Figure 10 shows predicted spline and ST shorelines for the

northern section of the study site, from 1849 to 2100, a 100 year

extension to the time span of the original data. With time, the

high spatial frequencies in the ST method are amplified,

producing unrealistic variations between neighboring tran-

sects, inconsistent with the smoothing processes observed over

time in natural coastal environments. The spline methods,

however, give smooth shoreline predictions (Fig. 10c). Figure

11 shows the corresponding results for the southern section.

Figure 12 shows confidence intervals for the northern section

predictions for the year 2100, using ST and all three spline

methods, and it is interesting that the Cfull spline method

allows more alongshore detail than the Wdiag and WN* spline

methods because it fits the data better (next section). Moreover,

Table 3. Model parameter counts and relative AICc scores of methods with differing covariance estimators. (STind¼ single transect with variance calculated

independently at each transect; Wdiag ¼ spline method with weighted diagonal covariance matrix; WN* ¼ spline method with inflated weighted diagonal

covariance calculated using the effective number of data; Cfull¼ spline method with full covariance matrix; nr¼number of parameters used to model rates; nb¼
number of parameters used to model intercepts; nvar¼number of parameters used to estimate variance; K¼ IC parameter count (nrþnbþnvar); N¼number of

data; N* ¼ effective number of data; DAICc ¼ the AICc score minus the lowest AICc score.)

Method

North Section South Section

nr nb nvar K N* (N ¼ 2819) DAICc nr nb nvar K N* (N ¼ 3321) DAICc

STind 401 401 401 1203 — 13,053 401 401 401 1203 — 17,174

Wdiag 8 34 1 43 — 8889 16 11 1 28 — 14,692

WN* 8 20 2 30 276 13,244 7 6 2 15 196 21,368

Cfull 7 72 101 180 — 0 6 61 101 168 — 0

Figure 8. DAICc scores for each combination of rate and intercept basis

functions north (a) and south (b) of OC inlet. Red stars indicate the minimum

AICc values.
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the Wdiag result shows that if correlations in the noise are not

properly handled, the erroneously low estimates of parameter

variance result in erroneously narrow confidence intervals. For

example, the average standard error of Wdiag-predicted

positions in 2100 (~6 m) is significantly lower than the

measurement-based estimate of~11 m by Douglas and Crowell

(2000). They quantified several sources of shoreline position

uncertainty at nearby Cotton Patch Hill, Delaware, including

variability in the shoreline indicator (high water line) due to

seasonal and tidal influence.

Comparing Noise Handling Techniques
As mentioned previously, we processed the data using our

spline method in conjunction with several different noise

handling techniques. It is worth noting that the issue of

spatially correlated noise spans all modeling techniques, no

matter how unparsimonious they may be. One could apply all of

the noise handling techniques we present (Wdiag, WN*, Cfull) to

the ST method because ST is just a spline method with delta-

like splines at each transect. Since ST is so widely employed, we

present only the standard ST noise methodology of estimating

uncertainty independently at each transect, comparing that

with our spline models. When comparing the ST method to our

spline models, we denote the method as STind as a reminder of

the noise handling in the ST method.

Figure 9. Modeled rates and intercepts along the coast of Ocean City and Assateague Island, Maryland, using the spline model and ST model. For clarity, the

lower middle panels are plotted with a different vertical scale.

Figure 10. North section predicted shoreline positions (grayscale) for (a) ST

and (b) Cfull spline methods. Data are shown in black. Predictions are for the

time span 1849–2100, a 100 year extension from the latest data. (c) Predicted

shoreline positions in year 2100 for the ST and Cfull spline methods reveal the

unrealistic amplification of high spatial frequencies by ST.
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Table 3 contains, for each noise method, the optimal number

of basis functions used to model rate (nr), intercept (nb), and

variance (nvar). The total number of parameters used in the IC

calculations, K, is also shown. The STind method naturally has

the largest number of model parameters—a rate, intercept, and

variance at each transect. The Wdiag method requires far fewer

parameters, with the WN* method requiring even fewer

parameters due to a much reduced effective number of data

N*. In the north section, N* is 276, compared to the actual

number of data N¼2819. In the south section, N* is 196, out of

N¼3321 actual data. The Wdiag method also has reduced AICc

values compared to ST in both the northern and southern

portions, mainly due to the large reduction in parameters. The

WN* method, on the other hand, actually has the highest AICc

score of all due to its high LL. The high AICc score is mainly due

to the unlikely large variance in combination with assumed

uncorrelated errors, and it may not reflect actual accuracy (see

Synthetic Data section). The Cfull method requires about as

many rate and intercept basis functions as the other two spline

methods, but it needs extra parameters to estimate the

covariance matrix; even with the extra parameters, its lower

LL gives it the lowest AICc score.

Notably, the different noise handling methods change not

only the variances of the parameter estimates, but also their

means. The posterior pdfs of rate at four locations are shown in

Figure 13. The pdfs of the STind method are typically the

broadest because of the relatively small amount of data at each

transect. The pdfs for the Wdiag method are more localized due

to the increased number of data used to estimate each rate in

the spline method. In the Wdiag method each B-spline

coefficient is essentially a weighted average, and since the

data are assumed independent and identically distributed, the

variance of the average is smaller than that of any individual

datum. This illustrates how ignoring correlation causes

estimates of parameter uncertainty to be erroneously low. On

the other hand, the WN* noise model gives rates with broader

pdfs than the Wdiag noise model because of the inflated

variances; using N* in lieu of N reduces the number of

parameters allowed by the IC because the fit is degraded, and

that changes the mean of the rate pdf while increasing the

variance. The pdfs for the Cfull spline method are also broader

than those in the Wdiag method because covariance terms are

included. Nevertheless, as Figure 12 shows, the Cfull method

reveals more alongshore detail because it is allowed more

model parameters by the IC—because it fits the data better.

Comparing Basis Functions
The choice of basis function used in an analysis depends on

both the analysis objective and the geology of the study area.

No single type of basis function is superior in all situations, as

summarized in Table 4. The ST method, although not truly a

basis function method, is included in the table because it is

equivalent to using delta-like basis functions at each transect.

All of the basis function methods produce more parsimonious

models than ST, but they require careful handling of spatially

correlated data errors. If the geology of the region warrants an

alongshore discontinuity in rate (or intercept), B-splines and

eigenbeaches (principal components) address the Gibbs effect

(Figure 3) inherent in polynomial (Legendre, trigonometric)

Figure 11. South section predicted shoreline positions for the (a) ST and (b)

Cfull spline methods during the time span 1849–2100.

Figure 12. Northern section predictions for the year 2100, with 95%

confidence intervals.
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basis functions, but not without added complication. The spline

requires careful knot placement alongshore to circumvent the

Gibbs effect. Eigenbeaches are contaminated by noise because

they are derived from the data, requiring additional care in

model selection and error estimation. Only the polynomial and

spline basis functions are defined at every alongshore location,

not just at each transect, a property that could be important if

transects are widely spaced. If estimates are needed between

transect locations, interpolation is required in the ST and

eigenbeaches methods.

Limitations of the Time-Linear Model
All models tested here have the same shoreline change

assumption in time—that shorelines erode or accrete at rates

that are constant over decade to century time scales. This

limitation affects predictions on either side of the OC inlet

jetties because shoreline behavior has changed, perhaps even

reversed, over the time span of our data. The predicted

shoreline locations in the year 2100 for all models just north

of the inlet actually exceed the seaward extent of the northern

jetty. Since the jetty is the cause of sand accumulation to the

north of the inlet, it is obviously incorrect to predict that the

shoreline will continue to accrete past the seaward extent of the

jetty. Given persistent coastal conditions, shorelines tend to

move only when perturbed by a disruption, and then they

gradually re-equilibrate to a stable state. Accordingly, the time

component of our shoreline change model might be improved by

incorporating relaxation in the time domain, following work

done by Miller and Dean (2004) or Yates, Guza, and O’Reilly

(2009). Incorporating our alongshore spline methods and noise

Figure 13. Posterior probability density functions for rate at four locations using: the single transect method with noise calculated independently at each transect

(STind); the spline method with uncorrelated noise (Wdiag); the spline method with inflated diagonal (WN*); and the spline method with full covariance (Cfull). The

change in mean rate between STind and WN* occurs because the IC allows the WN* method fewer basis splines.

Table 4. The effects of using different basis functions on model estimates.

Method Parsimonious Defined Everywhere? Gibbs Effect Error Estimation Assumptions

ST N N N Independent

Spline (B-splines) Y Y Nb Correlated errorsc

Polynomial (Legendre, trigonometric) Y Y Y Correlated errors

Eigenbeaches (principal components) Ya N N Correlated errors; nonparametricd

aEigenbeaches basis functions are not independent of the data; additional care is required for selecting a parsimonious number of basis functions (e.g., cross-

validation).
bRequires careful knot placement to circumvent Gibbs effect,
cCorrelated errors ¼ covariance matrix must account for spatially correlated errors.
dNonparametric ¼ requires nonparametric estimation method (e.g., bootstrap).
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handling into the Kalman Filter shoreline evolution framework

described in Long and Plant (2012) might also provide

additional improvement.

Confirmation with Synthetic Data

To be sure our method is self-consistent, we generated a

synthetic data set with splines and then analyzed it. Ten cubic

B-splines were used to generate alongshore rates; intercepts

were defined as zero everywhere. From the defined rates and

intercepts, 11 synthetic shorelines at 10 year intervals were

sampled at 50 m increments alongshore. Correlated, zero-mean

noise (Figure 14b) was weighted by a priori uncertainty

estimates of 10 m for the four oldest shorelines and 7.5 m for

the remaining seven shorelines, and then added to the

synthetic data. We modeled the data using the STind, Wdiag,

WN*, and Cfull methods.

The Cfull model is unique in identifying the true number of

rate (10) and intercept (one) B-splines used to create the

synthetic data (Table 5). Its low relative AICc score indicates

that the Cfull model is also the most probable. The WN* method

also selects 10 rate B-splines, but it uses four B-splines to model

intercepts alongshore, indicating that WN* overfits the data

compared to Cfull. As in the real data example, the WN* method

has the highest AICc due to its inflated variance. The Wdiag and

STind methods use the most B-splines (Table 5) to model

alongshore parameters, indicating that they overfit the data

compared to both the Cfull and WN* methods.

Histograms of shoreline position errors (estimated – true)

(Figure 15) show the Cfull model to be the most accurate,

followed closely by the WN* model, and then the Wdiag and STind

models. The modeled noise correlation in the Cfull method

resembles the true correlation (Figure 14, inset). The autocor-

relation of ST residuals is also similar to the true correlation.

Model predictions of the most recent shoreline are shown in

Figure 14; the synthetic data test also confirms that the

uncertainty in the Wdiag model is significantly underestimated,

as seen in Figure 14, where the estimate does not overlap the

true signal.

CONCLUSION
Modeling of real and synthetic data shows that B-splines do a

good job of representing spatial variations of model parame-

ters. B-splines can avoid the Gibbs effect at abrupt discontinu-

ities in rates (if knots are properly chosen), a problem that

arises with Legendre polynomial and trigonometric basis

functions, and they avoid problems with noise contamination

in eigenbeaches. It is well known that model parsimony is

important to avoid overfitting, but we also show that

differences in noise handling affect mean parameter estimates,

Figure 14. (a) True (black line) and modeled (colored) most-recent synthetic

shoreline. (b) True alongshore correlation and modeled correlation. Damped

ST autocorrelation is not used in modeling, but it has a similar shape to the

Cfull model autocorrelation.

Figure 15. Histograms of shoreline positions errors (estimated � true) for

STind, Wdiag, Cfull, and WN* methods. Minimum and maximum error values

are indicated by vertical dashed lines.

Table 5. Model parameter counts and relative AICc scores of methods with

differing covariance estimators. (True¼ true model; STind¼ single transect

with variance calculated independently at each transect; Wdiag ¼ spline

method with weighted diagonal covariance matrix; WN* ¼ spline method

with inflated weighted diagonal covariance calculated using the effective

number of data; Cfull ¼ spline method with full covariance matrix; nr ¼
number of parameters used to model rates; nb¼number of parameters used

to model intercepts; DAICc ¼ the AICc score minus the lowest AICc score).

Method nr nb DAICc

True 10 1 —

STind 401 401 5674

Wdiag 12 20 5036

WN* 10 5 7133

Cfull 10 1 0
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as well as estimated uncertainties. Treating correlated noise as

if it were uncorrelated results in erroneously low variance

estimates, but trying to get around this phenomenon by

inflating variance estimates via an effective number of data

limits the number of model parameters allowed, causing an

increase in the misfit. Correlated noise is best handled by

including a full covariance matrix, constructed iteratively from

data residuals. Although our methods address both parsimony

and noise handling, the shoreline near Ocean City Inlet reveals

the usual limitations of the underlying time-linear assumption.
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APPENDIX A: ESTIMATING THE CORRELATED
DATA COVARIANCE MATRIX

We reduce the number of parameters needed to model noise

and increase model parsimony by assuming stationary errors

in the alongshore direction of our correlated noise model. This

assumption requires special handling of LIDAR-derived

shoreline uncertainty estimates because they are not con-

stant alongshore; notably, adjacent uncertainty estimates can

vary significantly (Fig. A1d, solid line; dashed line shows

geometric mean of uncertainty values). One option is to use a

constant, such as the mean or median, to represent all LIDAR

uncertainty values. We opted instead to retain some variabil-

ity in LIDAR uncertainties by assuming that noise is a

mixture of spatially correlated and uncorrelated errors that

are independent of each other; this simplifies the model while

still allowing incorporation of larger LIDAR uncertainties.

Our covariance matrix C̃dd (prior to scaling by the best-

estimate constant of proportionality, Eq. [7]) has the form

C̃dd ¼ Ē
1=2

Ccorr Ē
1=2 þ ~E ðA1Þ

in which Ē1/2CcorrĒ
1/2 is a block diagonal matrix representing

correlated noise and ~E is a diagonal matrix representing

additional spatially independent noise. Matrix Ē consists of

values Ēii0jj0 ¼ ē 2
j djj0dii0 where ēj are the geometric means of

uncertainty values at times j, and dii0 and djj0 are Kronecker

deltas. Simply put, matrix Ē is used to weight each block (J

blocks—one for each shoreline) within the block diagonal

correlation matrix Ccorr (defined below) by the geometric mean

of uncertainty estimates for the corresponding shoreline.

Matrix ~E is defined as ~E ¼ diagð½e2
ij � ē2

j �þÞ, where eij are the

raw USGS uncertainty estimates at locations i and times j, and

ēj are the geometric means of uncertainty values at times j.

The ‘þ’ subscript denotes positive values, indicating that only

eij values exceeding means ēj are used to determine additive,

independent errors. Shorelines not derived from LIDAR have

constant uncertainty estimates alongshore, so values along the

diagonal of matrix Ē corresponding to shorelines not derived

from LIDAR will be zero; only the LIDAR-derived shorelines

have additional spatially independent uncertainty.

For consistency across noise models, we use conditioned

USGS error estimates in which LIDAR-derived shoreline

uncertainties are given a lower bound equal to their

geometric mean; uncertainty values less than their geometric

mean are replaced with the mean. We define, in the main

text, C̃
ð0Þ
dd ¼ diagðw2

ijÞ as the diagonal matrix containing

conditioned USGS uncertainty estimates wij at locations i

and times j. Matrix C̃
ð0Þ
dd can also be written as C̃

ð0Þ
dd ¼ Ēþ ~E.

Following the flowchart in Figure 6, we begin our iterative

process of finding C̃dd by initializing C̃dd as the diagonal

matrix C̃
ð0Þ
dd defined in the preceding paragraph. A diagonal

covariance matrix represents uncorrelated data errors. Using

C̃
ð0Þ
dd , we invert for model parameter vector m̂e (Eq. [5]), and

subsequently calculate residuals q ¼ d� G̃m̂e. The correlation

matrix Ccorr is then constructed using the following equation:

cii0jj0 ¼
X

j

X
i

q2
i; j

 !�1XJ

j¼1

XI�ji0�ij

k¼1

qk; jqkþji0�ij; j � djj0 ðA2Þ

in which i and i0 are location indices ranging from 1 to I, j and

j0 are time indices ranging from 1 to J, and djj0 is the

Kronecker delta, which enforces our assumption that data are

not correlated in time. If the data vector in the GLS problem

is arranged such that data are grouped by time, and ordered

spatially, the correlation matrix is block diagonal with each

block equal and in Toeplitz form. Figure A1, left column,

shows the spatial autocorrelation of shoreline residuals (first

row of one block) for the north and south study sections.

To condition the matrix and ensure that it is positive

definite, each autocorrelation in the correlation matrix is

damped with the taper function (Fig. A1c)

Tðji0 � ijÞ ¼ cosl pji0 � ij
2ðI � 1Þ ; ðA3Þ

in which the exponent l controls the rate of decay as data are

spatially farther apart. We tested the values l¼ 3, 6, 10, and

20 for selected combinations of basis functions, and we found

that they all produced nearly identical parameter vectors. We

used l ¼ 6 in our study, which causes the correlation to go

nearly to zero by about lag 3/4I. Figures A1a and b show the

damped autocorrelation of residuals versus lag. Figure A1e

shows one of the I 3 I blocks within the block-diagonal Ccorr

matrix after damping with the taper function.

A new C̃
ð1Þ

dd is calculated from correlation matrix Ccorr

following Eq. (A1). Selected rows of the I 3 I block within the

final iteration of C̃dd relating to the LIDAR shoreline are

shown in Figure A1f. We then use the new full covariance

matrix to invert for an updated parameter vector m̂e, and we

use that parameter vector to estimate yet another covariance

matrix and model pair, and so on, until the covariance matrix

is sufficiently similar to the one from the previous iteration.

Our convergence criterion is jjC̃ðuÞdd � C̃
ðu�1Þ
dd jj1 , 10�10jjC̃ðu�1Þ

dd jj1,

where u is the number of iterations, and jj � � � jj1 denotes the

matrix L1-norm. Notice that it is not necessary to calculate

the constant of proportionality â until the iterations have

converged, because it drops out of Eq. (5), the GLS estimator

of parameter vector m̃.
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