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ABSTRACT

Several issues related to large-scale modeling of internal waves are discussed. First, we consider
the question of the linear internal wave response of the ocean to surface forcing. Past attempts at
analyzing the linear response are briefly reviewed. Then we discuss a numerical experiment, in
which a nonlinear model of internal waves generates a time-evolving field of motions in a vertical
plane. The model flow is initially at rest, and is forced with a simple surface-layer body force with
a long (40 km) wavelength. Despite the fact that the model was not initialized with a particular
spectrum, it develops a frequency-wavenumber spectrum with features that are similar to that of
Garrett and Munk. After a saturated spectrum develops, the dispersion of a cloud of Lagrangian
tracer particles is analyzed. The linear dimensions of the cloud expand roughly as the square root
of time. Based on the expansion rate we estimate values for eddy diffusivity coefficients. We find
that these coefficients are independent of length scale, but vary approximately linearly with the
internal wave horizontal kinetic energy. For a kinetic energy level equivalent to that of the
Garrett-Munk spectrum and a stratification N~3 cph, we calculate K ~0.26 mz/sec,

K,~2x10* m%/sec.

1. INTRODUCTION

Near-inertial waves are the most energetic component of the internal wave spectrum. Therefore it
seems natural to focus (at least initially) on near-inertial waves, to understand their generation,
dynamics, interactions, and dissipation. Near-inertial internal waves have rather long horizontal
length scales (100’s of meters to 10’s of kilometers) in comparison with higher frequency waves.
Therefore a numerical model of near-inertial waves should span this broad range of length scales.

The problem is even more difficult than this. Surface forcing of near-inertial waves due to
atmospheric events covers an even broader range of length scales—up to 100’s of kilometers.
Certainly a wide variety of mesoscale, upper surface-layer and bottom boundary layer processes
interact with near-inertial waves in this regime of spatial scales. Therefore it is important to try to
sort out the relative magnitudes of all of the different interactions.

My overall objectives are to try to answer three important questions: 1) How are large-scale
internal waves generated? 2) Once they are generated, how are their space and time scales
maintained? 3) How do these waves interact with, and contribute to the mixing of, mesoscale
flows?

Because the questions are still largely unanswered, I am following a multi-pronged approach. The
first approach, discussed in Section 2, is to determine the extent to which linear dynamics are
capable of generating the internal wave spectrum. A body of circumstantial evidence indicates that
many of the characteristics of the internal wave field can be explained using linear mechanisms.
The next approach, discussed in Section 3, is to determine whether wave-wave interactions are
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sufficient to generate the internal wave spectrum, and over what time scales does such a spectrum
develop and decay. Then results of some experiments related to the mixing of a passive tracer are
presented in Section 4. The space-plus-time trajectories of Lagrangian tracer particles are
calculated, and give us some insights into the mixing process.

2. LINEAR DYNAMICS OF GENERATION

It is known that wind-forcing is an important generator of near-inertial motions. Simple linear
models of wind-induced inertial motions are sometimes able to explain a very large percentage of
the inertial energy in the surface mixed layer. Sometimes these models fail in their deterministic
predictions, for a variety of reasons. The reasons may include, for example, incomplete knowledge
of the full wind field (its history and its spatial scales), mesoscale motions which interact with the
inertial motions, inertial waves which have propagated from a distant source, and so on.

An important question which arises is, to what extent can linear dynamics explain the generation
of near-inertial waves, and perhaps, the generation of the entire spectrum of internal waves. As far
as near-inertial waves are concerned, there is a body of evidence that linear dynamics are
sufficient. For example, Rubenstein (1983) showed that observed features related to vertical phase
propagation and interchange of energy between the surface layer and the thermocline can be
explained with linear dynamics. Kundu and Thomson (1985) showed that linear theory can explain
the observed intermittency of near-inertial waves, and the horizontal phase structure of surface-
layer oscillations. Gill (1984) presented a linear theory which explained many other features of
near-inertial waves, such as the tendency for horizontal and vertical scales to decrease after a
storm has passed. Eriksen (1988) examined the linear response of near-inertial waves to a wind
stress which deposits a body force as a step function in the vertical; uniformly within a surface
layer, and zero below. He found that the vertical wavenumber spectral response is the same as
that predicted by the GM81 empirical spectrum.

In a sense, our understanding of the vertical scales of internal waves is much better than that of
the horizontal scales. High-quality vertical profiles are easier to produce than horizontal
profiles—especially profiles of velocity. Also, there are major gaps in our 2D+time description of
the wind stress field. There have been several attempts to jump over these gaps.

Several years ago I performed a little study, in which I looked at the patterns of near-inertial
motions generated in the surface layer. I digitized a couple of months of 6-hr synoptic weather
maps in a 2600-km square region of the North Atlantic, roughly from 35°N to 60°N, and from
15°W to S0°W. I gridded the isobars and computed the geostrophic wind, adjusted for friction and
for turning effects. Figure 1 shows an example of one such map. I used a very simple slab model
for the mixed layer (uncoupled in the horizontal), and observed the patterns of near-inertial
oscillations. Figure 2 shows a single snapshot of the u-component of velocity, after 40 days of
evolution. There seems to be a notable difference between the northern and southern regions of
the model domain. The northern half is dominated by propagating low-pressure systems. The
wave pattern orientations and length scales are variable, on synoptic time scales. In contrast, the
southern half of the model domain is dominated by a climatological high pressure system. As a
result, the wave pattern is more static. The wave patterns tend to be elongated along latitude
lines, because of the beta effect.

D’Asaro (1989) used an imaginative technique to bridge the wind-field problem. He used a Seasat
scatterometer wind stress field, with 25-km resolution, and advected the field across the modeled
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Figure 1. Left panel: Sample weather map over central North Atlantic. Right panel: Digitized,
contoured isobars, and geostrophic wind adjusted for friction and turning effects.

ocean. In this way he was able to estimate the relative contributions of the wind field, the
advection speed, and the beta effect, in generating smaller horizontal scales of near-inertial waves.

The problem with these approaches is that mesoscale and smaller-scale variance in the wind stress
field is deficient. I've been developing a possible remedy to this problem. The approach is to
start with an atmospheric mesoscale model, and to perform a stochastic interpolation in time and
space, to resolve higher wavenumbers and frequencies. This is a sort of engineering approach, but
if it yields a statistically realistic evolving wind field, it could give meaningful results.

3. NONLINEAR MODEL

If we apply an intermittent, large-horizontal-scale wind-induced surface forcing to a nonlinear
model, what sort of internal wave spectrum develops? Over what time scale does such a spectrum
develop, and after forcing is removed, over what time scale does it dissipate?

In an attempt to answer these questions, we formulate a two-dimensional model in a vertical x-z
plane. Motion is allowed in three directions, but the model is invariant in the y-direction. We
assume an initially motionless ocean, with an exponentially decaying buoyancy frequency, and a
fluid which satisfies the Boussinesq approximation. The lateral, top and bottom boundary
conditions are reflecting.

The coordinates (x,,z) are defined with z positive upward, with the origin at the ocean bottom. A

channel of depth D=1 km (corresponding to a flat ocean bottom) and width X=20 km contains
the flow. The equations of motion are
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Figure 2. U-component of velocity in the surface layer, predicted by a simple slab model. The
spatial domain is a 2,620 km square region, as shown in Fig. 1. The contour interval is 4 cm/sec.
The elongation of structures along latitude lines is due to the beta-effect. The longer length scales
in the northern half of the domain is due to the rapid, successive propagation of atmospheric

fronts.
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The velocity components are (4, v, w), p is a reduced perturbation pressure, N=(3 cph)xe #1300 jg
the buoyancy frequency profile, and f is the Coriolis parameter. The total buoyancy By is split up
into a steady, initial profile B(z) and a perturbation buoyancy b. The x, and «x, terms are

diffusivity coefficients, and are uniform in space. A rigid lid leads to an additional constraint, that

D

‘[udz =0 @)

The model is driven by a body force distributed in the surface layer of depth H. The body force
has a single, large-scale horizontal sinusoidal component, and is given by

. x 1 . z-(D-H)
F(x,z,t) = F(t)sm(.'f) S[1+sin(rZ 0] ®

The behavior of F(¢) simulates a short-duration impulse. During an initial spinup period, these
impulses were applied at regular intervals of 5.5 inertial periods. After the wavenumber spectrum
is saturated, the forcing is turned off, and the flow is allowed to decay.

The diffusion coefficients x, and x, are chosen to have the minimum possible values, and still
maintain numerical stability. During the spinup petiod, we set x,=0.1 m?%/sec and x, =10 m%sec,
and during the decay period we set x,=0.05 m%sec and x,=5%10" m?sec. We find that during
the decay period, energy dissipates with an e-folding time scale of about 30 days. This time scale
falls within the 15-44 days time scale estimated for the replenishment of the internal wave field

(Gregg, 1987).

Spatial derivatives are approximated by centered differences, and time integration is performed
using the two-step Lax Wendroff technique. The finite difference equations are solved on a
128x128 grid, using a time step of 12 seconds. The artificial viscosity associated with this
numerical technique is given by (Roache, 1972)

Koy = UEAL2 . )
In the model runs presented here, this artificial viscosity is less than a quarter of the explicit
diffusion coefficients, in both the horizontal and the vertical.
Figure 3 shows spectra of kinetic energy in two projections; w-k, and w-k,, where w is frequency,

k, is horizontal wavenumber, and k, is vertical wavenumber. We first consider the w-k, spectrum.
The strongest ridge parallel to the k, axis corresponds to near-inertial waves. The next-strongest
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Figure 3. Kinetic energy spectrum, predicted by the nonlinear numerical model. The top panel
shows a projection in -k, space, and the bottom panel shows w-k,.

ridge, at a slightly higher frequency, corresponds to the first vertical mode. The weaker, higher-

frequency ridges correspond to harmonics. In the w-k, spectrum, we see some of the same
features, but in addition we see a set of radial ridges. The radial ridges are the projections of
discrete vertical modes onto the w-k, spectrum.
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It is also interesting to note that the w-k, spectrum appears to be nearly (but not exactly)
separable between o and k,, while the w-k, spectrum is not remotely separable in o and k,. This
feature of separability in «-k, and non-separability in w-k, is similar to that of the Garrett-Munk
spectrum (for example, Munk, 1981). The feature is somewhat at odds with the slant-wavenumber
frequency spectrum observed by Pinkel (1984). Pinkel’s wavenumber spectra in the upper ocean
exhibit slopes which flatten with increasing frequency.

On the other hand, both the modeled @-k, spectrum and Pinkel’s (1984) observed spectrum show
a set of ridges parallel to the k, axis. In the case of the model, these ridges represent harmonics
between the lowest vertical modes of the near-inertial frequency waves. In the case of Pinkel’s
observations, these ridges represent possible harmonics between tidal and inertial frequency
motions. In both model and observations, these ridges stand out at low wavenumber, but not at
high wavenumber.

4. DISPERSION OF LAGRANGIAN TRACER PARTICLES

Eddy viscosity and diffusivity coefficients are employed by ocean circulation models, for the
purpose of parameterizing sub-grid scale mixing processes. Much of this sub-grid scale mixing is
due to the internal wave field. Several techniques have been developed for the estimation of
diffusivities. Direct observations of internal waves (Ruddick and Joyce, 1979; Brown and Owens,
1981; Kunze, 1986; Hebert, 1987) use the eddy correlation technique to derive eddy viscosity and
diffusivity. Sometimes even the sign of the derived viscosity or diffusivity coefficients is in doubt.
These direct observations are limited because in the thermocline, eddy correlation signals are
weak, and they are disturbed by non-stationarity of the mean flow.

Other techniques for estimating viscosity and diffusivity parameters are extensively reviewed by
Gregg (1987). These techniques include inverse methods over regional domains, flux estimations
from microstructure measurements, compilations of statistics of mixing patches, and direct
measurements of dye patches (Ewart and Bendiner, 1981; Ledwell, 1989).

One technique that has not yet received much attention is numerical simulations. Numerical
simulations have the advantage that they are capable of separating the diffusion due to internal
waves from that of mesoscale motions. They also allow sensitivity studies to systematic parameter
variations, and of course, allow complete understanding of the underlying flow field. On the other
hand, full nonlinear models have the significant disadvantage of covering a limited range of length
scales. Another limitation is the lack of direct control over the spectral level and shape.

To help understand mixing due to internal waves, we consider the dynamics of Lagrangian
particles. Figure 4 shows the trajectories of nine individual Lagrangian particles over an 8-day
interval. The particles are tracked between the grid cells using bilinear interpolation. The
horizontal extents Ax of the tracer trajectories are on the order of 1 to 4 km, and the vertical
extents Az range from 30 to 80 m.

We are not interested only in the absolute dispersion of a tracer particle; we are interested in the
relative dispersion of a cluster of particles. The four panels in Figure 5 show the positions of 1000
tracer particles at four instances in time; 1.6, 3.3, 6.6, and 11.6 days. The thick circle in each panel
(actually an ellipse in physical space; major axis=312 m in the horizontal, minor axis=15.6 m in
the vertical) indicates the initial distribution of the particles. In each panel, the portrayed
positions of the particle clouds have been translated to keep the centers of mass coincident with
the centers of the panels. At the early times, the particles remain organized in stringy clumps. At
the later times, the particles separate from one another, and their positions become more random.
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Figure 4. Trajectories of nine individual Lagrangian particles in a vertical plane, due to modeled
internal waves over an 8-day interval when the model was quite energetic.

In each panel, a thin-line ellipse is drawn to indicate the standard deviation of the particle
distribution in two orthogonal directions. The size of the ellipse tends to increase with time. By
11.6 days, the ellipse has increased by a factor of 5.5 relative to its initial size. The eccentricity
does not have a noticeable trend with time.

To obtain a statistical average, we constructed a hierarchical grid of clouds of Lagrangian particles.
A 5x5 grid of cloud centers was placed in the central area of the model domain. These clouds
were initially circular in the finite grid space, and therefore elliptical in physical space. A
hierarchy of 5 initial cloud sizes allowed a larger range of spatial scales to be examined. We
traced the trajectory of each particle, and computed the ensemble average variance of the cloud
distributions (segregated by initial cloud size) in the horizontal and vertical directions.

Figure 6 shows the average cloud distribution variances in the horizontal and vertical directions.
Both panels in the figure show a set of five curves, each corresponding to a different initial cloud
radius. The thin, oscillating curves represent the ensemble-averaged distribution variances, and
the thick, smooth curves represent low-pass filtered time series, with a 1-day time constant. For
the first 8 days, the variance increases approximately linearly with time. From this rate of
increase, we can estimate the effective eddy diffusion coefficients in the horizontal and in the
vertical,

do,?
K, =% d: « 0.7 m%sec ,
10)
do.2
- % th = 5x10"* m%sec .
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Figure 5. Relative dispersion of 1000 tracer particles in a vertical plane at four instants in time;
1.6, 3.3, 6.6, and 11.6 days. The thick curve in each panel (appears as a circle in this compressed
coordinate space) is the locus of the initial distribution of particles. The thin-line ellipse in each
panel indicates the standard deviation of particle distribution, in two orthogonal directions.

After 8 days, the variance increases more slowly (K,~0.3 m?sec, Kz~3x10‘4 mz/sec). This occurs
because kinetic energy is slowly dissipating (the rms u-component of velocity has decreased from
7.5 to 6 cm/sec), and the rate of expansion of the cloud size is very sensitive to the kinetic energy
spectrum.
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Figure 6. Thin curves: Ensemble average tracer cloud distribution variances in the horizontal and
vertical directions. Thick curves: Time-average (1 day time constant) which smooths out the
oscillations due to isopycnal deformations.

Despite the gradual decrease in expansion rate of the tracer clouds, the distribution variances for
the various initial cloud sizes are all parallel to one another. The implication is that although the
rates of increase don/dt and dozzldt are sensitive to the kinetic energy spectrum, they are
independent of oxz and olz. In other words, the effective eddy diffusivities are independent of the
length scales involved. This result is in contrast with Okubo’s (1971) finding that horizontal
diffusivity increases with length scale to the 1.1 power. We must keep in mind that the
observations compiled by Okubo include the effects of the entire, complicated spectrum of ocean
velocities. The numerical prediction that eddy diffusivity is independent of length scale is largely
due to the facts that only internal wave motions are included, and that tracer cloud length scales
fall within the internal wave spectral continuum, which has a rather constant slope over a wide
range of wavenumbers.
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The short term oscillations in Fig. 6 represent deformations of the tracer clouds, associated with
isopycnal straining and tilting. The ensemble average over sets of independent tracer clouds has
removed a portion of the isopycnal deformations. The time-averaged, smooth curves have
removed the residual deformations, and represent true diapycnal (across density contours) and
isopycnal (along density contours) mixing.

Horizontal and vertical diffusion coefficients are plotted in Figure 7, as a function of rms
horizontal velocity. These coefficients were estimated at different times during the model
integration, as the energy level dissipated. Best fitting quadratic coefficients were estimated;

K =

54 ouz

, K,

= 0.042 0,2

(11)

where o, is the rms horizontal velocity. At the buoyancy frequency N=3 cph, the Garrett-Munk
spectral energy level yields o,~7 cm/sec, and from Eq. (11) we get K,~0.26 m?%/sec and K,~2x 104
m%sec. A quadratic fit of K, and K, to o, seems to be reasonable; therefore the eddy diffusion
coefficients vary approximately lmearly w1th horizontal kinetic energy.

The results of this study can be compared with recent measurements of ocean tracers. Ledwell
(1989) measured the diapycnal spreading rate of a tracer, and deduced an approximate value
KZ~3x10 m?%sec, in the Santa Monica Basin. During the experiment, the buoyancy frequency
was about 1 cph, and the rms internal wave velocity (excluding the low-mode, semidiurnal internal
tide componen was approximately o,=3 cm/sec. Substituting this value into Eq. (11), we get
K,=3.8x 10" m%sec, in good agreement with the measured value.
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Figure 7. Horizontal and vertical diffusion coefficients, as a function of rms horizontal velocity

associated with internal waves.
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In another dye spreading experiment performed by Ewart and Bendiner (1981), several types of
diffusion were computed. Assuming Fickian diffusion, estimates for K, ranged from 0.03 to

0.12 m?%sec. A local estimate of K~ 10" m?/sec was observed associated with edge gradients, and a
global value of about 5x10” m%/sec was associated with total patch thickness. Assuming a
Garrett-Munk energy level at N=1 cph, these estimates should be compared with model
predictions of K,=0.08 m?/sec and K,=7x10"> m?sec.

The randomization of particle positions shown in Fig. 5 implies that the perimeters of the particle

clouds become increasingly convoluted with time. Figure 8 shows the perimeters of four clouds of-

particles, initially concentric ellipses. The length scales eventually become shorter than the grid
cell resolution. Even though the perimeter of a tracer cloud becomes increasingly convoluted with
time, the buoyancy field does not. As soon as a buoyancy field kink develops to a sufficiently
short scale, the explicit diffusivity parameterization in Eqs. (1)-(3) smooths the kink out. In this
way the tracer particles, which are not directly affected by the explicit diffusivity, become
disassociated from any specific isopycnal surface. Strong internal wave motions generate these
"kinks" more rapidly than do weak motions, and therefore diapycnal mixing is more rapid. The
exact values of the explicit coefficients x, and x, are not critical to the effective eddy diffusivities.
In an experiment where x, and x, were doubled in value, the energy level decayed more rapidly,

so the effective eddy diffusivities K, and K, likewise decreased in magnitude.
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Figure 8. Four clouds of tracer particles were released into the numerical model, in initial
concentric elliptical distributions. The outlines of these clouds are indicated by the inner and
outer perimeters of the shaded areas.
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In order to attain physical intuition into the diffusion mechanism, Young et al. (1982) developed
analytic models of advection-diffusion. Young et al. modeled cases where a vertically sheared
horizontal velocity field advects a tracer. Given tracer diffusivities x, and x,, an additional
effective horizontal diffusivity K§ develops due to the interaction of the vertical shear and «x,.
They assumed a value of x,~10° m?%/sec, and for a particular model shear spectrum derived

K, -x, = 1300x, ~ 0.013 m?sec (12)

The physical mechanisms incorporated into the numerical model are different from those analyzed
by Young et al. (1982). The numerical model explicitly includes vertical velocities, and implicitly
develops an effective vertical diffusivity K,. If we were simply to substitute the value of the
diffusion coefficient x,=5x10"> m%sec—which was used in Egs. (1-3)—into Eq. (12), then we
would obtain an effective diffusivity K, much smaller than numerically computed values. On the
other hand, if we combine the expressions in Eq. (11), we get the relationship

K, = 54/0042K, = 1286K, . (13)

If we acknowledge that nonuniform, nonstationary vertical velocities in the numerical model
generate an effective eddy diffusivity K, in addition to x,, then we see that the results expressed in
Eqgs. (12) and (13) are quite comparable.
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