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INTRODUCTION

The interrelation between the large vertical-scale motion field, the fine scale (1-100 m) field, and the
micro-scale is poorly understood. It is thought that motions become significantly non-Gaussian at verti-
cal scales shorter than about 50 m (Holloway 1983). However, "non-Gaussian" is an extremely general
description of a flow field. In this work we examine the fine-scale statistics of the vertical strain field in
the sea. Strain is here defined as the vertical gradient of isopycnal vertical displacement. The objective is
to identify a specific class of probability density functions (pdfs) which characterize the fine scale field
during its transition from highly skewed (micro-scale) to Gaussian (large scale) behavior.

Theoretical studies of non-linear processes often assume quasi-Gaussian statistics. The non-linear condi-
tion is approximated through a perturbation expansion about a zeroth-order Gaussian state. If a joint-
normal form is assumed for the pdf of vertical displacement of isopycnal pairs, n(p;),n (py), it is easily
shown that the pdf of isopycnal separation Az;; is also Gaussian (Desaubies and Gregg 1981, henceforth
DG81). There is always a finite probability that Az;i(t) will vanish, resulting in singular values for verti-
0(p;) - 8(p)

cal gradients of passive scalars g—g = —p—'AZ—(-t)LpJ— From a mathematical viewpoint, a Gaussian zeroth

. ij
order state is an awkward starting point for the description of the fine scale field.

Knowledge of the pdfs of isopycnal separations enables the statistical modeling of a number of
phenomena of physical interest in addition to vertical gradient fluctuations. Measurements of variance
can be used to infer skewness, kurtosis, etc., once a form for the separation pdf is established.

This work complements an introductory paper, Pinkel et al 1991, (Henceforth P91). A more complete
discussion of statistical matters is presented in Pinkel and Anderson 1991 (PA91).

Isopycnal displacement data obtained in the 1986 experiment PATCHEX are used in this study. The

data are derived from a series of nine thousand CTD profiles from the sea surface to 560 m, obtained over
an 18.75 day interval. Three types of isopycnal separation statistics are accumulated. Probability density
functions of isopycnals separation are formed at varying mean separations Az. These statistics are gath-
ered in both fixed depth (Eulerian) and fixed density ( semi-Lagrangian ) reference frames. In addition,
discrete probability functions are formed, describing the probability of occurrence of varying numbers of
isopycnals in fixed vertical intervals.

The discrete probability distributions formed in the fixed depth intervals are found to be very nearly Pois-
son for vertical bins, H, of order 3 m and greater. The corresponding Eulerian and Lagrangian pdfs of
isopycnal separation are very nearly gamma pdfs, as would be predicted from elementary Poisson theory.
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This surprising finding enables the simple modeling of strain and gradient statistics in both reference
frames. A single parameter, A, specifies the entire description at all vertical scales Az >3 m.

The measurements and data are described next. Statistical results are then presented, followed by discus-
sion of these findings.

MEASUREMENTS

The data considered here are a set of 9,000 CTD profiles from the surface to 560 m. These were obtained
during October 1986 from the Research Platform FLIP. FLIP was located at 34°N, 127°W, approxi-
mately 500 km west of Point Conception, CA. Position was maintained to within 300 m by a two point
moor. Water depth at the site is 4 km.

The CTD’s used are Seabird Instruments model SBE-9s. Two such instruments are profiled. The upper
unit is cycled from the surface to 320 m. The lower system covers the depth range 250-560 m. Profiles
are repeated at 3 min intervals. The drop rate of the sensors is approximately 3.5 m/s. It is not necessary
to pump water through the conductivity cell to achieve adequate spatial resolution at this drop rate.

Following a time response correction to the temperature sensor, the vertical resolution of both the tem-
perature and conductivity sensors is limited to 2 m by a low pass filter (Sherman 1989). Density profiles
are then produced. A set of 560 isopycnals, of mean separation 1 m, is then followed for the duration of
the data experiments (Fig. 1). The experimental approach is discussed in greater detail in P91.

The three hour record presented in Figure 1 represents a small portion of the 18.75 day data set. In it one
sees a general trend toward decreasing isopycnal depth, associated with the baroclinic tide. Superim-
posed on this trend are higher frequency (1-2 cph) internal waves. These are extremely coherent with
depth. Against this large scale background, the fine scale straining of the density field is seen. Isopycnals
converge to form "sheets" of high vertical gradient and diverge, forming low gradient "layers". The typi-
cal time-scale for the fine scale variation appears to be from one-half to several hours, in this short record.

Protagonists in the present study are:
the isopycnal separation Az = z(p;;t) — z(p;,t)
the normalized separation ¥;(t) = Azij(t)/Eij

and the finite difference strain ';'ij=yij(t) -1

The finite difference strain can be thought of as an approximation to the actual strain, an(p,t)/dz, where

n = z(p,t) — zZ(p). Alternatively, separation variance statistics can be considered as precise estimates of
the structure function

F(Az)=1/n [ (1 - cos kAz)S(k)dk=<y*|(Az)>~1 (Tennekes and Lumley, 1972). 1)
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Fig. 1. Anexample of isopycnal depth fluctuations as seen in the PATCHEX data set. The statistics of
isopycnal separation are the focus of the present study.

Here, S(k) is the vertical wavenumber spectrum of strain.

Obviously, no technique can produce quality estimates of ' the spectrum at high wavenumber in the
absence of accurate measurements at small vertical scale Az. Evenly spaced estimates of F at intervals of
Az = n meters, n = 1, N, result in a wavenumber spectral estimate with Nyquist wavenumber of .5 cpm,
and wavenumber resolution of N~! m (McKean, 1974),

Three aspects of the measurements, sensor noise (€), resolution, and statistical precision impact the present
discussion. Sensor noise results in error in the estimates of density profiles. Noise has both correlated
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and uncorrelated aspects. At separations greater than a few meters, the noise which influences the esti-
mate of one isopycnal is independent of that influencing another. Strain variance estimates are biased in
the presence of noise.

2 2

<> = fz> , 2<_82> 2)
AZ? Az

The error in the estimate of the depth of a given isopycnal is approximately .25 m rms in the PATCHEX
data set. This corresponds to a strain variance bias of .12 at Az = 1 m, decreasing to .005 at Az =5 m.
Thus the bias can be as large as 20 % of the total signal at Az=1m (assuming the errors assocxated with
two closely spaced isopycnals are indeed uncorrelated) Since the variance bias decreases as Az > while
the strain signal decreases more nearly as Azl (Fig. 7) random error quickly becomes insignificant.

Noise has an effect on the pdfs of separation. The observed pdfs are a convolution of the true pdf of
separation with the pdf, presumably Gaussian, of the noise. Thus, observed pdfs will be broader than the
true, with their variance increased by the variance of the noise. This effect will be significant at small
separation Az.

Resolution is a concern when considering closely spaced isopycnals. One would expect to observe fewer
than the actual number of instances of close isopycnal spacing (small y) in pdfs of separation. Con-
versely, fewer observations of "many isopycnals found in a fixed size bin", are expected in the discrete
probability functions presented below. The finite resolution of the CTD is particularly damaging to the
present study given that the spatial autocorrelation of strain transitions from positive (...if two adjacent
isopycnals are squeezed into a sheet, it is likely that the immediate neighboring isopycnals are being
drawn into the sheet...) to negative (...if five isopycnals are being drawn into a sheet, it is likely that there
will be an absence of isopycnals, a layer, five m away) at about the resolution scale of the CTD, 2 m.

At sufficiently small scales the strain correlation is high and positive. A principal conjecture of P91 is
that strain statistics approach log-normal form in this region. If the log-normal regime indeed exists, it
occurs at scales unresolvable by the present CTD. Further exploration of the log-normal issue awaits
improved instrumentation.

Statistical precision is often a concern when trying to compare pdfs estimated from data with classical
functional forms. In this work, estimates of pdfs are formed in four 100 m depth ranges, 100-200 through
400-500 m. Thus, 9x10° measurements (9,000 profiles * 100 isopycnals) are available for each 100 m
estimate. At issue is the fraction of these points that is statistically independent. This question is
discussed by Briscoe (1977) in his investigation of the Gaussianity of the horizontal velocity and vertical
displacement of the IWEX data set. From numerical simulations Briscoe finds that the effective decorre-
lation time for displacement is of order 1/2 day. A nineteen day displacement time series would consist
of 38 independent samples, corresponding to 76 degrees of freedom.

The situation is more complicated for the strain field, given the significance of non-linear distortion at
small scale. P91 demonstrate that the characteristic lifetime of "layer" events (y> 1) is shorter than
"sheet" events (y < 1). The number of independent estimates of y < 1 events per unit time is less than that
of y> 1 events. Monte Carlo simulations of the strain field will not model this effect appropriately unless
the bi-spectrum of the field is properly specified.
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In PA91 an attempt to estimate the statistical precision of the strain, as a function of y itself, is presented.
The variability of independent estimates of the strain pdf, from depth to depth at fixed ¥, is used to deter-
mine the effective number of degrees of freedom. When large mean separations, Az > 3 m, are con-
sidered, the observations are consistent with an 100 degree of freedom process, more or less independent
of y. At very small mean separations, variations in statistical stability with y is clearly seen. The effec-
tive number of degrees of freedom varies from 80 to 100 as y increases from .2 to 2.

THE PDF OF STRAIN AND DISPLACEMENT

Joint pdfs of strain and displacement have been formed using the PATCHEX isopycnal displacement
time series. The pdfs are formed for isopycnal pairs of mean separation Az = 1 — 50 m. For each mean
separation, the pdfs are binned into 100 displacements (+ 50 m) by 100 strains (y=0to5) in four depths
zones (z = 100 - 200 through 400 - 500 m).

Two sets of joint pdfs are produced. Lagrangian pdfs are formed by tracking the evolution of specific iso-
pycnals pairs (p;,p;) through the 19 day data set. Corresponding Eulerian pdfs are formed by tracking the
separation between that pair of isopycnals, separated in the mean by Az, which is spanning a specific
fixed depth, z,, at each instant of time. The Eulerian study is repeated for fixed depths of 100-500 m, at 1
m increments. The resulting pdfs are averaged into 100-200 through 400-500 m bins, in correspondence
with the averaging used in the Langrangian study.

A representative joint pdf of strain and displacement is presented in Fig. 2. The pdf is formed in a
Lagrangian frame, using isopycnals of mean separation 3 m. Although not clearly apparent in the figure,
it can be shown (PA91) that the data are consistent with the assumption that the joint pdf is separable, and
that the pdf of average displacement ;=M + N(p;))/2 is Gaussian. The pdf of strain is clearly non-
Gaussian, with observations of close isopycnal spacing (y < 1) more frequent than those of large separa-
tion (y> 1).

THE PROBABILITY DENSITY FUNCTION OF STRAIN

The joint pdfs previously discussed can be integrated with respect to displacement to produce univariate
pdfs of strain. Strain pdf are presented in Figs. 3 and 4 for the semi-Lagrangian and Eulerian frames

respectively, for mean separations of Az of 1-10 m. Sample pdfs have been formed for mean separation as

great as 50 m. At scales greater than 10 m these appear very nearly Gaussian. Nevertheless, skewness and
kurtosis estimates are significant to separations of order 30 m.

The observed pdfs have been fit to a variety of classical forms, including Rayleigh, Weibull, log normal
and gamma. Significant discrepancies are subjectively apparent in all comparisons, with notable excep-
tion of the gamma pdf, which fits very well (Figs. 3, 4, light curves). The gamma pdf has the form

_ Ea+ lxae—Bx
G(x) T 3)

with mean <x> = /B and variance <x?> — <x>? = /p? (eg. Papoulis 1984)
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Fig. 2. Anexample of a joint probability denotes function of strain and displacement. This estimate was
formed in a semi-Lagrangian frame, considering isopycnal pairs separated in the mean by 3 m. The
PATCHEX data are consistent with the hypothesis that strain and displacement are independent

quantities, with displacement obeying Gaussian statistics.

The semi- Lagrangian data are constrained to have <y> = 1, <Az> = Az, by initial choice of isopycnals.
Hence o = BAz. The fits presented in Fig. 3 are thus one parameter fits, with sample variance matched to
the model variance. The Eulerian observations are not constrained to unity mean. The fits are thus two
parameter fits. The observed mean and variance are used to set model pdf parameters in Fig. 4.

The model gamma pdf is seen to fit the observations well in the 200-300 m depth range, except at separa-
tions less than 4 m. The fits are comparable in the other depth ranges, with the exception of the 300-400
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Fig. 3. Probability density functions of normalized separations, ¥, formed in a semi-Lagrangian frame,
for mean isopycnal separations 1-10 m. Light lines give model gamma pdfs, constrained to have unity
mean and the observed variance. Data from 200-300 m depth zone are presented.
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Fig. 4. Probability density functions of normalized separation, ¥, as in Fig. 3 except formed in an
Eulerian frame. Light lines give model gamma pdfs, constrained to have mean and variance identical to
the observations. Data from 200-300 m depth zone are presented.
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m interval, where the Lagrangian pdfs appear distorted at small Y over a range of Az =3 -7 m. This issue
is addressed in PA91. The fits could be improved by employing a least squares fitting procedure. How-
ever, optimizing the fit is not the point of the present exercise.

Gamma pdfs are associated with the classical theory of Poisson processes. They describe the statistics of
separation between the occurrence of Poisson "events" (Papoulis, 1984). If, indeed, a simple Poisson
statistics describe the non-Gaussian behavior of the fine scale field, the problem of modeling the motion
field in this regime can be significantly advanced.

POISSON STATISTICS

Poisson statistics describe the occurrence of discrete "events". If the probability of occurrence of these
events is uniform and the occurrence of one event in no way influences the occurrence of any other
events, Poisson statistics will apply (Papoulis, 1984). The Poisson probability function gives the proba-
bility that the number of events which occur in a dimensional interval of length H will equal any specified
value, k.

(AH)keM

P(n=k|H) = 0

4)

The Poisson probability function has the interesting property that the mean number of "events" occurring
in an interval H, AH, is equal to the variance in the number of events.

It is not clear exactly what constitutes a "Poisson event" in the context of the fine scale variability in the
thermocline. We have tracked a set of isopycnal surfaces with mean spacing arbitrarily chosen to be 1 m.,
A Poisson-like investigation can be conducted, tracking the number of isopycnals which are found to
occur in fixed depth bins of varying size H. This is done for the four 100-m depth ranges used in the
previous studies. The results are presented for the 200-300 m range in Fig. 5. Not surprisingly, the mean
number of isopycnals found in a depth bin of thickness H is H, given our initial choice of isopycnals
mean separation. The oceanic signal is seen in the variation of the higher moments with H. To facilitate
comparison with the classical Poisson distribution, which is constrained to have mean equal to variance,
the observed probability functions are re-scaled in terms of equivalent "Poisson events", i = An. Here fi is
the number of "events" alleged to occur in the fixed depth bin, n is the observed number of isopycnals,
and A is a scale factor chosen such that the mean number of "events" is equal to the event variance. The
fitting of model Poisson probability functions (Fig. 5, light line) to the data is accomplished by setting the
model mean equal to the rescaled observed mean, AH. The fit is impressive, with significant discrepan-
cies apparent only in 1 and 2 bin sizes.

THE THERMOCLINE AS A POISSON PROCESS

The excellent fits of the Gamma and Poisson pdfs to the observations at vertical scales greater than 3 m
encourages the adoption of Poisson statistics as a zeroth order model for the thermocline. In this section
we review relevant aspects of Poisson theory. Subsequently we discuss observed departures from the
predictions of the Poisson model, and why these departures are to be expected in a real fluid.
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Papoulis (1984) notes that the statistics of separation of Poisson events take two distinct forms. If two
adjacent events are considered at random, the gamma pdf

G(Az | 1, 1) = Ae™M9T(1) 5)

describes the separation statistics. However if the two adjacent random points are constrained to bracket
some fixed point, z, the pdf of separation is given by

A,ZAZC_MZ
Gz | 2,0) = T2 6)

The added constraint of requiring the points to bracket a fixed point alters the statistics.

We identify (6) as the appropriate pdf for isopycnal separation in an Eulerian frame, at the fixed depth z,.
Expression (5) is the appropriate semi-Lagrangian separation pdf, for a mean separation Az =A"!. When
considering the pdf of distance between an arbitrary random point and one removed by (n — 1) intermedi-
ate points, the order of the appropriate gamma pdf is simply increased, e.g.,

APAZD - 1 eMz
GAz|nA) = ———— 7
(Az|n,A) T )
The continuous observations presented here are consistent with the interpretation that Poisson "events""
occur every A meters. Thus the discrete parameter n can be replaced by its continuous equivalent
A =AAz.
— A* —AAz
Gl(az| Az, 3y = n- 24277 8)
I'A")
— A%+ 1 _—
GE(az| Az, A = 28D~ ey GLoaz Bz 9)

I'A*+1)

The skewness seen in the semi-Lagrangian frame reflects the relatively passive advection of the density
field by the velocity field, on the fine scale. Isopycnals which find themselves close together experience
nearly identical advecting velocity fields. Hence they remain together for a relatively long time. The
Eulerian pdf is less skewed than its semi-Lagrangian counterpart, for a given mean separation Az. This
reflects the fact that when isopycnal pairs are traveling closer together than average, they are less likely to
span a specific reference depth than when they are farther apart. Not surprisingly, the chance of spanning
a given point while simultaneously having separation Az increases linearly with Az. This result is
reflected in equations 5,6 and 8,9, and is demonstrated for arbitrary strain pdfs in PA91, under the
assumption that strain and displacement are independent quantities.

The immense power in the Poisson model results from the fact that the single dimensional parameter
A (m™) describes the variability of strain not just at a particular vertical scale Az, but at all scales.
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Thus, mean isopycnal separation is given by

=Az 10)
AX+1 =

<AZE> =

Separation variance is:

<AZ?>; - AZ* =<An*> =A* A=Az /)

1 ——
<Az2>E—<Az>,§=<An2>E=k*+?=Az/k+1/J&2 11)

The growth of variance with mean separation is linear. If this pattern were seen in the data down to arbi-
trarily small separation, it would correspond to a white vertical wavenumber spectrum of strain,

S=A"m k>0
S4k)=0 k=0 12)

The corresponding isopycnal vertical displacement spectrum is of k™2 form.

THE DOMAIN OF VALIDITY OF THE POISSON MODEL

One anticipates departures from the Poisson model at both large and small vertical scales. This can be
seen by considering the variance of isopycnal separation, Eq. 11, which is predicted to grow linearly
w1thout bound as mean separation increases. This behavior is a consequence of the fact that the model
k2 vertical wavenumber spectrum of displacement extends to arbitrarily low wavenumber. In a finite
depth ocean, the governing physics will surely change as the scale of the waveguide thickness is
approached, resulting in a departure from Poisson behavior.

At small vertical scales, of order A™, the model itself becomes inconsistent. The Eulerian separation
variance fails to vanish at Az = 0. This corresponds to a limit of infinite strain variance in the Eulerian
frame as the vertical scale tends to zero. The Poisson model Cox number presented in Table 1 also
becomes singular at small scales.

There is a simple interpretation for these a-physical aspects of the Poisson model. The lack of predicta-
bility is central to the concept of a Poisson process. The occurrence of a specific Poisson "event" in no
way influences the occurrence of subsequent events. However, at sufficiently small scales in the ocean
one expects the strain field to be correlated. The oceanic strain spectrum cannot be white. It presumably
is band limited, with a bandwidth which is the inverse of this correlation scale. To the extent that a "sheet
and layer" model of the strain field is valid, one expects the autocorrelation function of strain to assume
negative as well as positive values. (If a large number of isopycnals is found concentrated in a given
region, a "sheet", it is likely that there will be a relative absence of isopycnals, a "layer" nearby.) A purely
Poisson model is not appropriate at small vertical scales, where the strain field is correlated.
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Discrepancies between the observations and the idealized Poisson model can be seen in plots of observed
variance vs. mean separation. These are presented in Figs. 6 and 7 for both the Eulerian and semi-
Langrangian studies. Data are presented to vertical separations of 50 m.

Focusing attention on the semi-Lagrangian separation variance, Fig. 7 c,d, disagreement with the Poisson
model is found at both smaller and larger scale. At small scales, the variance first increases more

rapidly than Az*' (Az < 4 m), then more gradually (Az >4 m). This corresponds to the positive and nega-
tive regions of strain correlation, as sensed by the low resolution CTDs used in the experiment.

At large separations, the variance increase never does approach the Az*! Poisson form, except perhaps in
the 100-200 m depth range. Simple simulations suggest that this discrepancy is related to the depth varia-
bility of the wavefield. Isopycnal displacement variance changes significantly with depth, as a result of
the changing profile of Vaisala frequency. WKB theory suggests that at depths removed from the sea sur-
face or sea floor,

No
N(z)

<N?>(z) =<n>>, 13)

(Garrett and Munk 1972).

While this classical expression is only approximately correct for the PATCHEX data, it could be used to
rescale (WKB stretch) the displacement field to produce a data set more nearly homogeneous in depth.
This has not been done here, in the interest of presenting the basic results in a model independent format.

A related check on the applicability of the Poisson model is to examine the variability in the observed
estimate of A, the Poisson "constant", as a function of bin size H or mean separation Az. This is presented
in Fig. 8, for the fixed depth Poisson study and the semi-Langrangian isopycnal separation study. At 10
m scales A has a minimum value of approximately 1.1 m-1. Slight increases in this constant are apparent
at both small and larger scales. Again, the finite correlation of the strain field is thought to cause the
small scale departure from ideal Poisson behavior. The non-homogeneity of the wavefield with depth is a
suggested source of the discrepancy at large scale.

THE MODELING OF VERTICAL GRADIENTS

If one abandons the assumption of Gaussianity, it simplifies the modeling of vertical gradients in the ther-
mocline. There is no need to linearize about small departures from the mean gradient. Recalling the
expression for the instantaneous gradient of a passive scalar,

98 _A8.
az_E Y (t)’

interest is focused on the statistics of p(t) = y~!(t). If p(y) is an arbitrary pdf of y (p(y) = O for y < 0), then
g() = p(u~1)/p? gives the corresponding pdf of the scalar gradient.

Using this approach, one can derive general expressions for quantities of interest.
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Fig. 6. Isopycnal separation variance as observed in semi-Lagrangian (a,b) and Eulerian (c,d) frames.
Poisson model would indicate a linear increase of variance with range.
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The Eulerian mean gradient is given by:

A® A8
>E =gl ngBu | Az)dp

A T 1B
= Y p(ylAz)dy
Az -!;

——JpL(le dy= = 14)

Here, we make use of the fact that p&(y) = () is a general result, applying not only to the Poisson pro-
cess (PA91). Also, the Eulerian Cox fine scale number

Cg= <(—)2>E/ <%>E = 15)

[y An)dy = [ y'pM(y1 A2) dy=<p>y
0 0

In a semi-Langrangian frame, the mean gradient is seen to be

AD A8y
< L= [ TIAndy 16)
Similarly,
CL= <G>/ 952 = [ vty B[ o1 By 17)
0 0

These results are independent of the specific form of the separation pdf p(y| Az).

Here we have demonstrated that the pdf of separation are very nearly gamma pdfs at vertical scales
greater than 3 m. A summary of the corresponding model pdfs for strain and vertical gradients, as well
as expressions for the Cox numbers are presented in Table 1. Note that, over the range of validity of this
model, the fine scale Cox number is of the order two or less, far below values typically encountered at
microstructure scales.
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TABLE 1. Poisson Model Results

A=1.1 A*=Az A y=Az/Az w=1/A
Semi Lagrangian Eulerian
. L e X ()‘.*Y)l"— le"l"r - = _ ()\‘* )l.“e—l"y
Strain, y p(ylAz) = TOw p(yldz) = _y——r(x*)
. . —_ A% —A*u — A¥/ )l.'+ le-l.“/p.
v , _ Qe _ Qo iesm
ertical Gradients, pu g (n]Az) Eo" g8(u|Az) SO T D)
Cox Number CL=A*-1D/A*-2) Ce=A¥(*-1)

The Poisson model pdfs can be tested against existing observations of fine scale gradients. The observa-
tions of Gregg 1977, DG81 are presented in Fig. 9. Using a single value A8/Az for Gregg’s local mean
gradient, and the parameter Ay = 1.1 m™! set by our Eastern Pacific 1986 observations, it is seen that
Gregg’s central Pacific observations, taken nearly a decade earlier, are well fit by the model. Significant
discrepancies are seen only at small differencing intervals Az. Here, separation statistics deviate from the
Poisson-gamma model, perhaps approaching a log-normal form. In addition, negative temperature gra-
dients are sometimes seen in Gregg’s observations. These intrusive/overturn events are outside the scope
of the present model.

SUMMARY

A series of 9000 CTD profiles from the surface to 560 m has been used to study the statistics of the fine
scale strain field in the thermocline. A set of isopycnals, of 1 m mean spacing, is tracked for the 18.75
day duration of the observations. Three statistical studies are performed. Isopycnal separation statistics
are formed in both isopycnal following and fixed-depth reference frames. A related investigation simply
counts the number of isopycnals found in fixed depth intervals of varying scale. At vertical scales greater
than 2-3 m, the statistics of the isopycnal counting study are Poisson. The corresponding isopycnal
separation statistics are described by gamma pdfs. The relationship between these three types of informa-
tion is very nearly as predicted by classical Poisson theory. (e.g., Papoulis 1984).

In this study, the instantaneous separation between isopycnals is simply the sum of the separations of the
intervening isopycnals. For example:

2220 — Z00 = (2210 — Z200) + (2220 — Z10)
= (2201 — Z200) + (Za02 — Zp01) +..+ (Zg19 — Z18) + (220 — Z10)  efC.

Here zy,, indicates the instantaneous depth of the isopycnal whose mean depth is 220 m. It is easily
shown that the semi Lagrangian gamma pdf associated with 20 m (say) mean separation can be given as
the convolution of the gamma pdf of 10 m separation with itself, or the convolution of the pdfof Sm
separation, repeated 4 times, etc. This key mathematical property of the gamma pdf is only applicable to
the present problem if the various "sub-separations" which are added together to form the larger separa-
tion are themselves statistically independent. Statistical independence implies that the separation (strain)
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Fig. 9. Histograms of temperature gradient obtained at a variety of fixed separations

Central Pacific in 1977 from Desaubies and Gregg (1981). The solid curves give

statistics are uncorrelated. At sufficient small scale where the strain field is correlated we expect the Pois-

son model to deviate from observation.

A single constant A (~1.1 m-! here) should describe the mean, variance, skewness, etc. at all vertical

scales where the model is applicable. The associated vertical wavenumber spectrum of strain should be

white, with spectral level A"l In fact, modest variation in A is seen in the observations. A realistic

description of (the second moment of) the strain field requires specification of high and low wavenumber
bounds on the spectrum. These bounds are necessary to insure finite variance of the strain field and to

acknowledge the finite depth of the ocean. Additional physical principles, beyond the scope of the Pois-
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son model, need to be invoked to determine these bounds. An investigation of the non-Poisson aspects of
the present data, with a focus on the small-scale/high wavenumber region of the spectrum, will be
presented in a subsequent work.

In spite of the weak but apparent discrepancy between the observations and the Poisson model at small
vertical scale, the Poisson-gamma pdfs represent a powerful starting point for a description of the fine
scale fields in the sea.
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