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ABSTRACT

The conservation equations for scalars are developed in forms that are suitable for use in inverse
models and with emphasis on the ways in which mixing processes are represented. The difference
between the lateral Lagrangian and Eulerian velocity vectors is discussed and a suitable parameterization
for the difference velocity (the Stokes drift) is proposed. The conservation equation for potential
density is developed and is shown to be much more complicated than the normal diapycnal advective-
diffusive balance. The extra terms that have not previously been included are often as large as the more
obvious terms that have been retained in the past. In order to be able to draw comparisons with
previous inverse models, the scalar conservation equations are developed with respect to potential-
density surfaces rather than neutral surfaces. The differences that arise here are due to the lateral
mixing being directed along neutral surfaces rather than along potential-density surfaces, and again the
extra terms can be surprisingly large. The conservation statements for spiciness and Veronicity have
their own set of problems since these variables are as nonlinear as is potential density.

The special problems that can beset box inversions are then described, including the need to include
vertical diffusion as well as interfacial advection. For the purpose of deducing information about
vertical mixing, perhaps the most serious failing of previous box-model inversions has been the
masking of the information contained in the scalar conservation equations (particularly the salinity
equation) by noise in the continuity equation. This has led previous workers in this field to conclude
that vertical mixing was not needed by their inversions even when the results had strong diapycnal
advection. A solution is suggested to overcome this problem with the divergence form of the
conservation statements.

INTRODUCTION

Due to increasing societal pressure to predict the impact of the Greenhouse Effect on future climate, the
role of the ocean in climate change is becoming more widely acknowledged and the subject of greater
study. On the timescales of decades to centuries, the intermediate and deep waters of the ocean play a
crucial role in the complicated feedbacks between the ocean and the atmosphere, and the circulation at
these depths is intimately linked to the existence of vertical mixing processes (Bryan, 1987). We do
not yet know how the strength of this mixing is regulated nor whether it is widely distributed in space
or localized in small regions such as near topography. For these reasons it is increasingly important to
use all methods at our disposal to deduce the strength of vertical mixing processes. One such method is
to apply inverse procedures to hydrographic and tracer data to infer the strength of mixing processes
that must have been present to cause the observed three-dimensional tracer patterns.

Much of the effort on oceanographic inverse models has been directed to determining the time-averaged
circulation of the ocean, and so the models have concentrated on using the thermal wind relation in
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conjunction with the continuity equation or the conservation of potential vorticity to solve for the lateral
velocity vector for every station-pair at some (deep) reference level. Much less effort has been spent on
using these techniques to deduce the magnitude of mixing processes in general, and the vertical
diffusivity in particular. Three recent papers that have made substantial progress in this direction are
Olbers, Wenzel and Willebrand (1985) and Hogg (1987) that have both been based on the B-spiral
technique, and Schlitzer (1988) that has used the box-inverse technique. Another paper that was not
only successful in detecting oceanic mixing, but was also able to distinguish between two different
types of vertical mixing processes (salt-fingering and vertical eddy diffusion), is that by Bauer and
Siedler (1988). This paper used the form of the conservation equations that did not explicitly include
dianeutral advection, and so ensured that there could be no confusion in their model between dianeutral
advection and dianeutral diffusion. While their work is not a full inversion in the sense that it did not
solve for the velocity components simultaneously with the mixing parameters, I hope that it is typical of
the results we can expect when inverse models are set up specifically with mixing processes in mind.

There is a distinct advantage in determining vertical diffusivities from hydrographic data as compared
with determining the strength of lateral mixing processes. This advantage is due to the large separation
of vertical scales between the small vertical scale at which the mixing processes act (of order 1 m), and
the large vertical scale on which either an inverse model or a forward model is constructed (of order
100 m). Because of this large separation of scales we can expect that any answer that we believe for
the vertical diffusivity from an inverse model will also apply to a forward model since the vertical scales
in both models are so much larger than the scales of the mixing processes. A similar favorable ratio of
relevant scales does not apply to lateral mixing processes so that one cannot be sure that a lateral eddy
diffusivity that one obtains from an inversion using data at a certain horizontal spacing will be
applicable to a forward model that has its grid points at a different horizontal resolution.

The paper begins with a review of the conservation equations for scalars in the neutral surface
framework and goes on to derive a parameterization for the lateral bolus transport or Stokes velocity.
Then, in order to compare what has been done by previous inverse modellers, the conservation
equations for scalars are derived when mixing is performed with respect to potential-density surfaces.
Many extra terms arise due to the different slopes and curvatures (in x,y,z space) of potential-density
surfaces and neutral surfaces. These terms are often not negligible. An additional set of problems can
arise when using the divergence form of the conservation equations, as is necessary in box-model
inversions. The straightforward use of a salinity conservation equation in these box models seldom
finds mixing processes to be important, even though the B-spiral techniques, using data from the same
region, are able to detect the influence of ocean mixing. We show that this is most likely because the
salinity conservation equation is dominated by uncertainty in the net volume flux into or out of the box.
A suggestion is offered to overcome this problem, thereby increasing the rank of the solution and
allowing mixing information to be recovered from the inversion.

A REVIEW OF SUITABLE CONSERVATION EQUATIONS FOR INVERSE MODELS

Since the lateral mixing by mesoscale eddies is believed to occur along neutral surfaces, it is convenient
to develop the conservation equations in this reference frame. The vertical turbulent property fluxes are
then parameterized by a vertical diffusivity, D, acting on the vertical property gradients, but the lateral
turbulent fluxes are parameterized separately on the basis of a further Reynolds decomposition
performed in this section. The continuity equation, V -u =0, and the divergence form of the
conservation statement for a tracer, C, are integrated over the thickness, A, between two neutral
surfaces (see Figure 1), to obtain
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Here C is any conservative scalar variable (including § and 6), e is the vertical velocity of fluid through
the neutral surface (henceforth called the dianeutral velocity), V is the instantaneous two-dimensional
horizontal velocity vector, and V, is the two-dimensional lateral gradient operator for propertics
measured in the neutral surface. The exact nature of the geometrical transformation between the
Cartesian and neutral surface reference frames is explained in McDougall (1987a). The superscripts u

- and £ refer to the upper and lower neutral surfaces, as in Figure 1.
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Fig. 1. Sketch showing two neutral surfaces separated by a height A(x,y). Mixing
processes can cause fluid to flow vertically through these neutral surfaces with the
velocities e* and ef.

Now we specifically allow for the lateral eddy motions by performing a Reynolds decomposition on the
lateral velocity vector and on the scalar fields. The quasi-Lagrangian velocity vector is defined as

- —p WV
Vi=VE 4

, 3)

(called “quasi-Lagrangian” because, while VX follows the average position of marked fluid parcels
along a neutral surface, it doesn’t follow the dianeutral motion). V” is the usual Eulerian average
velocity vector as would be measured by a current meter at a fixed position. Reynolds decomposing all
the variables in (1) and (2) and averaging yields

%ﬁ +an(EVL) +e—ef =0 4)

= s V,;'(EVLC_) + [eC], = - V,,-{EW + WC' VE +h’C’V’} )

+ [DC]: :

Note that the mean value of C that appears in Eq. (5) is the Eulerian average value, not the quasi-
Lagrangian value that would be defined in a similar way to Eq. (3). We are very likely to be justified in
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assuming that the triple correlation term on the right-hand side of Eq. (5) is quite small, and probably
also WC' VE << C'V’h (Rhines, 1982) but in any case, we will assume that the lateral diffusivity,
K, of a scalar is defined by

~hkv,C = [TV + RO VE + WOV} (6)
If the term a[il'_c'|,,] / dt is taken to be zero, the divergence form, Eq. (5) simplifies to
d(hC
—(at—)l" + V,-(hV-C) + [eCl; = V,(hKV,C) + [DC,], )
where the overbars have been dropped from all the variables, while the continuity equation is
oh
=tV (hVE) + [el; =0. (8)

The advective form of the conservation equation for C is found by letting % tend to zero so that
[eC]; — hleC],, [e]; — he,, and [DCZ]: — K[DC,],, and combining Eq. (7) and Eq. (8), so that

C| +VE-V,C+eC, = h7'V,-(KKV,C) + [DC,],. )

This conservation statement (and also the divergence form, Eq. (7)) holds for any conserved scalar
quantity including salinity and potential temperature. The conservation statements for potential vorticity
take different forms since potential vorticity is not mixed vertically in the same manner as a conservative
tracer. Potential vorticity conservation statements are not discussed in this paper.

The spatial gradients of 8 and S along a neutral surface and also their temporal derivatives on a neutral
surface are related through the thermal expansion coefficient, ¢, and the saline contraction coefficient,
B, so that

ab| = BS| ., and aV,6 =pgV,S. (10)
Using these relations and the advective conservation statements for S and 6, Eq. (9), one finds
L_ -1 2 2 g3 qd°S
8, + [VE- 'V, (hK)|-V,0 = KVi0 + DgN6;f—= -
de (11)

+ KgN26,{C,V,0-V,0 + T, V,0-V,p},

and

[e-D,] [a8,-BS,) = D[ad,,-BS,.] - K{C,V,6-V,0 + T,V,8-V,p}, (12)
where Cp and T}, are the cabbeling and thermobaric parameters respectively, defined by

da ada o aﬁ] [aa a aﬁ]
Co=|—7+2—— - —35—= and T,=|— - ——|.
’ [89 Bas B " B

Typical values are 10~ K2 for the cabbeling parameter and 2.6x107® K~' (db)™ for the thermobaric
parameter.

If one were able to measure the Lagrangian rate of change of a fluid property, say potential temperature,
following a fluid parcel, vertical mixing with diffusivity D would cause the parcel’s potential
temperature to change at the rate [D@,],. However, since we are only able to observe the ocean after a
series of mixing processes has occurred, this Lagrangian approach cannot be pursued. By using the
neutral surface reference frame, the vertical advection caused by vertical mixing can be accurately

identified (Eq. 12) and then eliminated from the conservation equations in the form of Eq. (11).
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Vertical mixing processes affect the conservation statement both through the non-advective diffusion of
tracer and also through dianeutral advection. The ratio of dianeutral diffusion to dianeutral advection is,
in general, different for different tracers.

It is important to realize that the diancutral advection, e, is not a separate mixing process in its own
right. Rather, e occurs simply because of the vertical diffusivity, D, and also due to cabbeling and
thermobaricity. Once these physical mixing processes are specified and the hydrographic fields are
known, e follows directly from Eq. (12). Eq. (11) is the appropriate form of the 8 conservation
equation for water-mass analysis since such studies are performed in property-property space and are
inherently not fully Lagrangian. Vertical mixing by small-scale (isotropic) turbulence causes
observable changes of fluid properties only if the relevant property-property plots are curved. Eq. (11)
is sometimes called a water-mass transformation equation, since the temporal change of potential
temperature on a neutral surface is equivalent to a change of the S-8 curve of a water-mass.

The reason for concentrating on the advective form of the conservation equations in neutral surfaces is
because scalar properties are usually measured with high precision and so one can detect quite small
changes in property-property diagrams (like the S-6 curves), and a change in such a property-property
diagram is equivalent to a change on some kind of density horizon such as a neutral surface. In their
divergence forms, the conservation equations contain not only the information of how mixing
processes change properties along neutral surfaces, but they are also affected by the temporal change of
the volume of the control volume, and the uncertainty in the volume fluxes into and out of a control
volume bounded by two neutral surfaces. This volume is never well known in oceanographic
observations because internal waves and mesoscale eddies cause large vertical excursions of neutral
surfaces and so cause a large temporal variability of the height between neutral surfaces. However,
these same wave-like processes do not change the property-property diagrams at all, and so these
diagrams and the advective conservation equations in the neutral surface framework contain information
that is sensitive to mixing processes and insensitive to the vertical heaving motions caused by internal
waves and the like. ‘

A simple scale analysis of the potential temperature conservation equation, Eq. (11), can reveal the
magnitude of cabbeling and thermobaricity in relation to the epineutral mixing of 6 by the lateral
Laplacian term. At a thermoclinic front the magnitude of the epmeutral Laplacian scales as the lateral
gradient divided by the half-width of the front, L, that is, IV 6| =|V,60|/ L. Setting half the
epineutral 8 and p contrasts across the front equal to A@ and Ap respectively (A8 = L|V 6| and
AS = L|V,S|), we find from Eq. (11) that

KgN26,{C,V,6-V,8 +T, V,6-9,p}/(kV26) = [RR‘l 1]{C° 46+ 2apl

|

{01206 ¢ 3x107ap).  (13)

o

In the Antarctic Circumpolar Current where Rp is about 2, A@ is about 1 K, and Ap is about 500 db
(and in the same sense as A0), Eq. (13) is about 0.5, 1mply1ng that the peak contribution of
thcnnobarlcuy and cabbeling to water-mass conversion is 50% of the peak contribution of the
epineutral Laplacian term. However thermobaricity and cabbeling are much more important than this
comparison suggests because the epineutral Laplacian term changes sign across the front and so
averages to zero in the frontal region, while cabbeling and thermobaricity contribute a term of the same
sign across the whole front.
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SUGGESTED PARAMETERIZATION FOR THE BOLUS TRANSPORT

The conservation equations that have been developed above have all included the bolus transport, RV,
of volume along neutral surfaces. This is equivalent to recognizing that in both the advective and
divergence forms of tracer conservation statements, the relevant velocity vector is the Lagrangian-mean
velocity, not the Eulerian-mean velocity (Rhines, 1986, p 121). The difference between Lagrangian
and Eulerian velocities in the dianeutral direction does not arise since the coordinate frame is already
quasi-Lagrangian in this direction. The prefix quasi- is used to indicate that the coordinate frame does
not quite move with the fluid: the difference being the dianeutral velocity, e. This means that the
dianeutral velocity, e, is inherently a Lagrangian velocity component with respect to neutral surface
coordinates. The lateral velocity vector that a current meter would measure at a fixed point is the
Eulerian lateral velocity, VE, whereas the mean lateral velocity of a patch of dye or a cluster of floats is
the Lagrangian velocity, VL, which is the sum of the Eulerian velocity and the Stokes drift, IRV
In Cartesian coordinates, this bolus transport arises as a skew diffusion tensor when the diffusion
tensor contains antisymmetric terms (Haidvogel and Rhines (1983), Rhines (1986), and Middleton and
Loder (1989)).

The geostrophic and thermal wind equations relate the Eulerian velocity to the pressure and in-situ
density fields, while the above equations show that it is the Lagrangian velocity vector that appears in
the continuity and tracer equations (in both the advective and the divergence forms). To date inverse
models have not distinguished between the Eulerian and Lagrangian lateral velocity vectors, and we do
not yet know whether the distinction between these velocity vectors is significant in the ocean. In this
section a parameterization is suggested for the difference velocity, the Stokes drift, v =vi - VE
By trying this parameterization in inverse models we may be able to deduce the importance of the
Stokes drift in the conservation of tracers.

In a quasi-geostrophic layered eddy-resolving model, Holland and Rhines (1980) have found that the
eddy flux of potential vorticity is directed down the lateral gradient of mean potential vorticity, and that
this eddy flux is dominated by the thickness flux. The only exception to this was in the western
boundary current where the eddy relative vorticity flux was larger than that due to the bolus transport.
The eddy flux of relative vorticity was much smaller, had smaller spatial scales and was both up and
down-gradient at different locations. Brown, Owens and Bryden (1986) have used the LDE (Local
Dynamics Experiment) current meter data of POLYMODE to determine both the eddy flux of relative
vorticity and the thickness flux of potential vorticity at depth of about 600 m.. They found that the
thickness flux of potential vorticity was an order of magnitude larger than the eddy flux of relative
vorticity, and that the thickness flux of potential vorticity was directed almost exactly down the large-
scale lateral gradient of potential vorticity (i.c. in the sense of a positive diffusivity, that is, in the
direction of —V 4 ( f / hai()]. The lateral diffusivity of potential vorticity that is implied by their
measurements is about 2600 m2 s-1. Since ¢’V’ = — gh™'R’V’, the Stokes velocity, KWV, was
directed up the epineutral gradient of potential vorticity. Their observed thickness flux of potential
vorticity is equivalent to a Stokes velocity, KWV, of about 1.5 mm s-1.

The observation from both quasi-geostrophic ocean models and from the LDE measurements of Brown
et al (1986) that the thickness flux of potential vorticity is directed down the lateral q gradient suggests a
parameterization for the eddy flux of potential vorticity as being minus a diffusivity times the epincutral
gradient of potential vorticity. Because of the difficulty in Reynolds decomposing ¢ = f / h, (since h is
in the denominator), and because 4 and 4’ do arise unavoidably in the continuity equation, I denote the
reciprocal of g as a new variable, 7, and assert that the thickness flux of 7 is directed down its lateral
gradient, so that
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W=—BV”F = —BV,[[E/f], where r=h/f, F=h/f, and v =K/ f. (14)

For small amplitude perturbations, this is equivalent Lo the more obvious ¢'V’ = — BV, 7
parameterization, but at large amplitude when 4’/A is not small, it is not clear how to link g and g to
W and h. With this parameterization of the epincutral flux of r due to eddies, the bolus flux is given by

(vsz Vi - VE = WV = BY,[tng] = BV, [nk] + [6/118]. (15)

where § = 77! = f/h. The overbars will henceforth be omitted from averaged variables. Since the
magnitude of the neutral-surface potential vorticity generally increases towards the poles, the Stokes
velocity will often be directed poleward.

The lateral advection term in the scalar conservation equations contains the combination of terms,
vi_p! V,(hK), and this can be most readily expressed as (using the geometrical identity
V,lenh] = 0|V, (]/9z where A[x,y] is the height of a neutral surface)

VE— WV (hK) = VE — [B+ K)J[V, N0z - V,K + (B/f]Bi. (16)

0. 036 086 15 25 3.7 54 7.8 11. 15.

Fig. 2. Map of the magnitude of the lateral Stokes velocity, V°, as given by Eq. (15), on a neutral
surface that lies at about 1200 m in the equatorial Pacific (where ogis about 27.5), and with the lateral
diffusivity, B, equal to 1000 m? s~1. The grey-scale covers the range from 0-15 mm s-! and is evenly
spaced in £n(1 +|V* D.

301



McDougall

Following Rhines and Holland (1979) we take the lateral diffusivity of potential vorticity to be equal to
that of passive scalars, that is, B = K, so that

[VE- k7 V,(hK)] = VE - 2K3[V,()f0z - VK + [B/FIK]. a7)

This is the effective lateral veldcity that advects tracers, whereas VZ is the lateral velocity that is
evaluated from the thermal wind equation plus the reference level velocity.

The difference between Lagrangian and Eulerian lateral velocity vectors has not yet been incorporated
into any inverse model of the ocean circulation. Rather, inverse models to date have assumed that the
same lateral velocity vector appears in the tracer conservation equations as in the thermal wind equation.
In fact, we have very little insight from either oceanographic theory or observations about the
magnitude of the bolus transport. The deduction of a Stokes drift of 1.5 mm s-!1 from the work of
Brown et al (1986) is a rare insight into the importance of this process.

Since the contours of potential vorticity and of other tracers are often nearly parallel (although with the
gradients often pointing in opposite directions), the Stokes drift or bolus transport can be expected to
have a substantial component across the mean epineutral gradients of other tracers (including S and 6),
and its direction will be up the epineutral tracer gradients as often as down them. Because the lateral
velocity vector generally points almost along epineutral isolines of tracers rather than down the
epineutral tracer gradients, the Stokes drift will be much more important for the conservation of tracers
than a simple velocity estimate of say 1.5 mm s~1 would suggest. For example, a lateral velocity of 1
mm s~! down an epineutral potential temperature gradient of 10-6 K m-1 (one degree of potential
temperature change in 10° of latitude) creates the same amount of water-mass conversion as a dianeutral
velocity of 107 m s-! acting on a vertical potential temperature gradient of 10-2 K m-1. Since this
dianeutral velocity is as large as that expected from vertical mixing processes, it is concluded that the
Stokes drift is likely to be important in tracer balances in the ocean.
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Fig. 3. Histogram of the number of occurrences of various magnitudes
of the Stokes velocity (from 0 to 15 mm s-1) in the map of Figure 2.
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The Levitus (1982) atlas has been used to generate two neutral surfaces throughout the world ocean that
were at depths of 1100 m and 1200 m respectively in the equatorial Pacific. The height, 4, between
them was used in Eq. (15) to estimate the Stokes velocity using 1000 m2 s-1 for the lateral diffusivity.
The magnitude of this estimate of the Stokes drift is shown in Figure 2 and the distribution of these
estimates is shown in the histogram of Figure 3 where it is seen that a value of order 1 mm slis
typical. It remains to be seen whether the incorporation into inverse models of the difference between
the lateral velocity vectors in the tracer equations and in the thermal wind equation, using the above
parameterization Eq. (15) for the Stokes drift, makes any significant differences.

MIXING PRESCRIPTIONS IN B-SPIRAL INVERSIONS: The Advective Forms of
Conservation Statements in Potential-Density Surfaces

Inversions of the -spiral type are local in nature, in that a solution is found for the reference-level
lateral velocity components and the mixing coefficients from the information at just one location. The
inversion procedure can be cast in terms of the slopes of the surfaces of the conserved quantity (Schott
and Stommel, 1978) or in terms of the conservation equation of this scalar quantity (e.g. Olbers et al.,
1985). In either case a conservation statement is written in the advective form as opposed to the flux,
or divergence, form. Here the equation for the conservation of potential density is derived and
compared with that used by previous researchers. Important differences are found. Then the
conservation equations of potential temperature and spiciness will be discussed.

The Potential Density ‘“Conservation” Equation

In a potential-density surface the temporal and lateral gradients of salinity and potential temperature are
related by (McDougall, 1987b)

d@,la =BS’,0’ and aVy0 = ﬁVGS ’ (18)

where @ and ﬁ are the values of the thermal expansion and saline contraction coefficients evaluated at
the reference pressure of the potential density variable, that is, & = a(S,6,p,) and B = B(S,0,p,).

The material derivative in the advective form, Eq. (9), of the tracer conservation equation can be written
with respect to either neutral surfaces or potential-density surfaces, so that

C|,+VE-V,C +eC, = Cly+ VE-VoC +wiC, = h7'V,-(hKV,C) + [DC, ]

where w4 is the vertical velocity of fluid through the potential-density surface (henceforth called the
diapycnal velocity). This equation applies for both potential temperature and salinity, and these
equations can be multiplied by & and f3 respectively and then subtracted so as to eliminate the temporal
and isopycnal advective terms, obtaining (after rearrangemelnt) the following equation for the diapycnal
velocity , (since /3s,|6= @6,|,. BV S = GV 40, and (pg) (pg), = BS, - &6, see McDougall,
1987b),

(19)

P

4119 - [p19e
w [Pa % | = [Dpo x |,
+ D% g? (20)

+6{c - 1)}V, -(hKY,0)+ S K{C,V,0-9,0 + T,V,0.V,p).
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This is the full conservation equation for potential density. The first term on the right-hand side is the
only one that would occur if potential density were a conservative variable. If so desired, the left-hand
side can be written with respect to Cartesian coordinates (as in Olbers et al (1985)) as

Ipe

9ps _ w4 dps
ot

L
+ V&V + w2 wt =& .
2 2Pe % Ley % Iy

@1

The usual aaPproach with the potential-density equation is to equate the diapycnal advection of potential
density, w® (dpg/dz), to (minus) the diapycnal flux divergence, d[Ddpy/ dz]/ dz. Thatis, normally
one sees the left-hand side of Eq. (20) being balanced by only the first term on the right. Here we
investigate the magnitudes of the other terms that are usually neglected. The second term on the right of
Eq. (20} arises because while the vertical gradient of potential density is given by

—(ps)” (Ps), = @8, — BS,, when casting the right-hand side of Eq. (20) in terms of (pg)__, the extra
term, D(ad/be)ef appears. (The relatively small variation of & with S and the variation of B with
both @ and S have been ignored.) McDougall and You (1990) have shown that this extra term is larger
than the correct term, —D{ &6, — BS,, |, in much of the subtropical thermoclines of each of the world’s
ocean basins (see their Figure 9). This is illustrated in Figures 4-6 which show three different
combinations of terms mapped on a neutral surface in each of the three major oceans. On much of the
neutral surface of Figure 4 in the North Atlantic, the correction term in Eq. 20), D %% 03 , is larger
than the sum of the first two terms ip Eq. (120), —D[ 10,, — BS,, ], (ignoring D), implying that the
straightforward term in Eq. (20), D\Bpe )" 9pg/az| , has the opposite sign to the correct right-hand
side of Eq. (20) in these places. In the Pacific in Figlre 5 the nonlinear term is up to 40% of the correct
term, while in the Indian Ocean in Figure 6 it is as large as 30% of the correct term. It is concluded that
serious errors have occurred in the conservation equation of potential density in present inverse models.
From these figures it can be seen that in Hogg’s (1987) study of the circulation and mixing in the
central North Atlantic, the second term in Eq. (20), D(0&/ 3662, which Hogg omitted, was 50% of
the correct term, D[&Bzz — 3S,, |, on the upper of the two 0 surfaces he considered. In parts of the
North Atlantic, the relative error is more than 100%, and this type of error was built into the Olbers et al
(1985) model.

In the third term in Eq. (20), the parameter ¢ is defined by ¢ = {a/ [3][&/ B ] " and is unity at the
reference pressure, py, of the potential density. This third term in the equation scales as K &[c—l]ViG
and the magnitude of this term can be estimated as follows. Consider the use of potential density
(referenced to the sea surface) down to a depth of 2000 m (as in Olbers et al., 1985). At that depth, ¢
is about 1.5 and KV ,2,0 can be taken to be the same order as €@, where the dianeutral velocity is
1x10-7 m s-! and the vertical gradient of potential temperature is 3x10-3 K m~1. When divided by
the vertical gradient of potential density at 2000 m in the North Atlantic, this third term in Eq. (20)
amounts to a contribution of 0.3x10-7 m s~! to the diapycnal velocity. Again, this is not an
insignificant diapycnal velocity, although it is rather unusual these days to find researchers using
potential-density surfaces as far as 2000 m away from their reference pressure.

The last term in Eq. (20) is due to thermobaricity and cabbeling, (sce the corresponding terms in the
dianeutral velocity equation, Eq. (12)). Because the buoyancy frequency is related to the vertical
gradient of potential density by N =y (B/ﬁ) [ —(g/pg)(apg/é?z)] = U [—(g/pg Xdpe/0z) ] (see
McDougall, 1987b and Eq. (23) below for a definition of ) the diapycnal velocity induced by
cabbeling and thermobaricity will in fact be larger by the factor y than the dianeutral velocity, e, caused
by these processes. McDougall and You (1990) assumed a lateral diffusivity, K, of 1000 m2 s~! and
have shown that in parts of the North Atlantic and in the Southern Ocean, cabbeling causes a
downward dianeutral velocity as large as ~1x10~7 m s1, so that the contribution of the last term in
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Fig. 4. Graphs of various terms on a neutral surface in the Atlantic at a depth of approximately 800
m in mid-latitudes. (a) The term plotted here, N “2N? - gN"*{aB,, - BS,,}, is approximately
equal to gN 2 3—‘;‘ 0,3 in the up;z)er 1000 m of the ocean. (b) When multiplied by the vertical
diffusivity, D, this term, gN—>{a@,, — BS,, }, is the rate at which vertical mixing contributes to the
dianeutral velocity. (c) When multiplied by the vertical diffusivity, D, this term, gN "263[3 :—‘g , 18
the rate at which vertical turbulent mixing causes potential temperature to change on a neutraf’
surface. (From McDougall and You (1990) Figure 1).
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Fig. 5. Graphs of various terms on a neutral surface in the Pacific at a depth of approximately 900
m in mid-latitudes. (a) The term plotted here, N _ZNZQ - gN*Z{aBZZ = ﬂSzz}, is approximately
equal to gN_2 ‘;—g 92 in the upger 1000 m of the ocean. (b) When multiplied by the vertical
diffusivity, D, this term, gN "~ {aezz - BS,, } is the rate at which vertical mixing contributes to the
dianeutral velocity. (c) When multiplied by the vertical diffusivity, D, this term, gN -2 93{3 ZL%’ is
the rate at which vertical turbulent mixing causes potential temperature to change on a neutra

surface. (From McDougall and You (1990) Figure 4).
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Fig. 6. Graphs of various terms on a neutral surface in the Indian at a depth of approximately 950
m in mid-latitudes. (a) The term plotied here, N 2N} — gN~*{a6,, — BS,,}, is approximately
equal to ngz %% 63 in the upger 1000 m of the ocean. (b) When multiplied by the vertical
diffusivity, D, this term, gN "~ {aBZZ - BS,, }, is the rate at which vertical mixing contributes to the
dianeutral velocity. (c) When multiplied by the vertical diffusivity, D, this term, gN 4293 B g—f, is
the rate at which vertical turbulent mixing causes potential temperature to change on a neutral
surface. (From McDougall and You (1990) Figure 6).
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Eq. (20) to the diapycnal velocity will be larger than this in these locations. The neglect of this
cabbeling term in their potential density conservation equation would have caused significant errors (of
order —~1x10-7 m s~! in the diapycnal velocity) in Hogg (1987) and in Olbers et al. (1985). Following
the results of McDougall and You (1990), thermobaricity is as large as (and in the same sense as)
cabbeling in the Southern Ocean and together they cause large negative (downward) dianeutral and
diapycnal velocities. The proper inclusion of these processes in the potential density conservation
equation of Olbers and Wenzel (1989) must be expected to lead to large changes to the implications of
mixing processes in this model.

Notice that only one of the additional terms in the diapycnal velocity equation, Eq. (20), relies on the
difference between the in-situ pressure and the reference pressure; this being the term proportional to
the epineutral flux divergence of potential temperature, K, -(hKV ,8). The other three terms
(cabbeling, thermobaricity and D%%Bzz ) contribute to the nonconservation of potential density even if
p=p,and ¢ =1. The fact that the “‘¢” equation, Eq. (12), does not contain the epineutral Laplacian of
potential temperature is an attractive feature in comparison with the w4 equation, Eq. (20), since the
epineutral Laplacian is relatively noisy to evaluate. This is an added argument in favour of using
neutral surfaces rather than potential-density surfaces.

Where thermobaricity is significant in the ocean, it makes a positive contribution to Eq. 20)
(McDougall and You, 1990), so that three of the four additional terms in Eq. (20) are positive.
Assuming that the term due to the epineutral flux divergence of potential temperature is either positive,
or if it is negative, it is small, then the sum of the four extra terms in Eq. (20) will be positive. The
simplistic conservation equation of potential density which regards potential density as a conservative
variable then results in a diapycnal velocity that is too large (for a given vertical diffusivity, D), by as
much as 100%, or by more than 1x10~7 m s-1. This crror in the diapycnal velocity then feeds into the
conservation equations of other tracers like potential temperature and salinity so that the interior water-
mass conversion in these models does not occur at a rate proportional to the curvature of the vertical S-
0 curve, but rather is dominated by the diapycnal advection term (if it is positive). If one assumes that
the inverse model retains the correct diapycnal velocity for dynamical reasons, the use of the simplistic
equation for the diapycnal velocity proves to be equivalent to a corresponding underestimation of the
diapycnal diffusivity, D (for a positive wd). Hence we expect that the omission of the nonconservative
terms in the conservation equation of potential density has resulted in either an overestimate of the
diapycnal velocity or an underestimate of the vertical diffusivity (for w4 > 0), or, quite probably, a
combination of both.

The Potential Temperatur nservation ation

The conservation equation of potential temperature with the total material derivative written with respect
to potential-density surfaces is (from Eq. (19))

0, + Vi V50 + w0, = 1V, (hKV,6) + [D6,],

(22)
# LV, (h°KV,0) + [DE,],.

The lateral flux divergence of potential temperature in a neutral surface framework is not the same as
that in a potential density framework, and here we derive the differences.

The lateral gradient of potential temperature in a neutral surface, V, 6, is related to the lateral gradient in
the intersecting potential-density surface, V8, by the simple expression (McDougall, 1987b)
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V,0= uv,e, where | p= [R,-1]/[R,~c|, 23)

¢ is defined by ¢ = [t/ ][d/ B ] : and R, is the density ratio &8, / S,. The same multiplying factor,
U, applies to the temporal derivatives of potential temperature in the two reference frames. In order to
find the relationship between the lateral mixing terms in the two different reference frames in Eq. (22),
the following relationship between the lateral differential operators is used (McDougall and Jackeit,
1988)

Vo =V, + [VoR — V,,m[]g;lx'y, 24)

where K[x,y] and A(x,y] are the heights of a particular potential-density surface and the intersecting
neutral surface respectively, so that VR = ﬂ(,,ﬂ(y] and V, N = [.‘A[x,ﬂ\[y] Applying the differential
operator, Eq. (24), to V0 (= uV,0) we find that

Vo0 = uvie + V,u-v,0 + [Vor - V. A](V46),. (25)

and the potential temperature conservation equation can be rewritten in the form

0l +VE-Vo0 +w0, = LV, -(hkV,0) + [D8,],
- -1V, (hKV,0)- KV, 1u-V,0 (26)

- K([u? - u]e;‘v,,e.v,,e)z + Uv,0-(V,K-V,K),

where the following geometrical relationships between the slopes of potential-density surfaces and
neutral surfaces have been used (McDougall, 1988),

[VO'K. - Vn%] = [/1 - 1]Vne/ez » (27)

[VoR ~VoX], = 5Voh" - 1V,h. (28)

The usual conservation equation of potential temperature in a potential density framework involves just
the terms on the first line of Eq. (26). The additional terms on the second and third lines arise because
of the different lateral gradients of potential temperature in the two coordinate frames and because of the
different slopes of potential-density surfaces and neutral surfaces. As an example of the importance of
the first term on the second line, consider the use of potential-density surfaces down to a depth of 2000
m in the North Atlantic, as in the inversion of Olbers et al (1985). At 1500 m in the North Atlantic, u
is generally greater than 1.5 so this term, — [y — 1] ly,. -(hK'V 9) represents a correction of 50% of
the correct lateral mixing term that appears on the rlght of this equation (see Eq. (22)). In addition, the
next term, — KV, 41 -V, 0, is of similar magnitude at this depth in frontal regions of the North Atlantic.

The third line of Eq. (26) contains the term — Ky, [2p - 1]6; 'v,0-V .0, which does not go to zero as
U tends to 1; that is, as the in-situ pressure tends to the reference pressure. Neither does the

»H -V, term go to zero as p tends to p,. These terms arise because while the two types of
surface are tangent where (is 1, they do not have the same curvature in space. Even though Hogg’s
(1987) study used 0'1 surfaces rather than oy surfaces so that u was close to unity, the
- Ku,[2u - 1]0' V,8-V,06 term is estimated to contribute 10~ K s-! to the rate of change of
potential temperature in thc southern part of his western box; a magnitude that is as large as that of any
of his mixing or advection terms. In the Antarctic Circumpolar Current — KV, 4-V,0 is as large as
any other term in (26) even if p, = p, due to the pressure dependence of ¢ through the term
~K211,9,0.9,p.

369



McDougall

When the diapycnal velocity is estimated using just the first line of Eq. (20), the constraint that the
potential temperature conservation equation places on the temporal and epipycnal changes of 6,

9,| +VE. V59, is not due to the (correct) mixing terms that would result from inserting the full
expression Eq. (20) for w4 into the correct conservation equation for 6, (the top line of Eq. (22) or all
of Eq. (26)), but has additional terms due to the errors made in estimating the diapycnal velocity.
Using Eq. (20) and Eq. (26), it can be shown that

8]+ VE-V,0 = L V,-(h°KYV,0) + [D6,), - 0,[a0, - fs,] [ D(ae, - Bs.))

B -2 déa g3
+ ZugN“D<4%0
-KV,u-v,0 - K([uz—y]e;‘v,,e-v,,e) +uv,0-(V,K-V,K)

+ uKgN%6,{C,V,0-V,0 + T,V,0-V,p}.

The top line of the right-hand side of this equation represents the way in which the mixing processes
parameterized by D and X affect the temporal and epipycnal changes of potential temperature in such a
truncated model, while the additional terms are corrections that result partially from the fact that @ has
been mixed along potential-density surfaces rather than along neutral surfaces (the many error terms in
Eq. (26)) and partially due to the inagcurate estimation of the diapycnal velocity from just the first term
in Eq. (20), that is, as [ @6, — fS, [Deas, - Bs, )], rather than using the full Eq. (20). Note that the
divergence of the epineutral flux of potential temperafure terms that appear in both Eq. (20) and Eq.
(26) have cancelled and do not appear in Eq. (29). The BB~ ugN"2D9Z 6} term in Eq. (29) is
important in the upper ocean, while thermobaricity and cabbeling tend to be larger at thermoclinic fronts
deeper in the water column, and the other terms involving the lateral diffusivity, X, have been
illustrated following Eq. (26). The discussion following Eq. (13) above indicates how serious the
omission of thermobaricity and cabbeling is in the water-mass conversion equation, Eq. (11) or Eq.
(29), at a thermoclinic front such as the Antarctic Circumpolar Current (cf Olbers and Wenzel, 1989).

This section has shown that even though potential temperature, 8, is a conservative variable, the use of
a potential density rather than a neutral surface reference frame for the lateral mixing process results in
many additional terms in the conservation equation (see Eq. (26)). None of these terms have
previously been included in inverse models. Two of these terms, — KV 1 -V, 8, and

- Kp,[2p ~ 1] 6, ! V,6-V .0 remain even when the reference pressure of the potential density is equal
to the in-situ pressure. We have also seen how a mistaken estimate of the diapycnal velocity feeds
through into the tracer conservation statements so that these equations represent an incorrect balance
between epipycnal advection (LHS) and mixing (RHS). This leads to an error in the estimated lateral
flow field. A similar misestimate of the lateral velocity field occurs in the linear vorticity equation
through the vortex stretching term, part of which is due to the difference of the diapycnal velocity
through neighboring potential-density surfaces.

The pg “‘Conservation’ tion as a Lin ombination of d ation

Rather than carrying a conservation equation for potential density in an inverse model, one can instead
carry conservation equations for both potential temperature, 6, and salinity , S. The linear combination
of these equations using the multiplying coefficients, & and f is the potential density equation. It
would actually be desirable to replace either the 8 or the S equation with this linear combination of the S
and 6 equations because it is independent of any errors in the lateral velocity vector and so yields a
more direct link (better signal to noise) between the mixing processes and the consequent diapycnal
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advection (see the discussion around Eq. (41) below). Another real advantage of approaching the
potential density equation by usmg the 8 and S equations is that one does not leave out the nonlinear
term due to vertical mixing, D 9 that is commonly omitted from Eq. (20). Also, the nonlinear
terms due to lateral mixing are smallcr (at least when at the reference pressure). To see this we need to
first derive the conservation equation for salinity that is analogous to Eq (26) for potential temperature.
This is done by applying the differential operator, Eq. (24), 1o VS = V S, obtaining

Silo+ VE-VoS +w?s, = LV, (h9KV,S) + [DS,],

- [% - 1] 1y, .(hKV,S)- KV,,(LC‘-)-V,,S 30)
K(—g—[yz - u)6;! V,,0~V,,0) + £V,5.(V,K-V K).
z

Multiplying this equation by ﬁ and subtracting & times Eq. (26) we find

wd [%% - %Va‘(h"KVaS) - 2,.(h°KV,6) + [DS,], - &D8,],

+a(c-1)4V,-(hKV,0) + GLKV,c-V,0 (31)

K& w* - u]v.0.-9,0 - 5[& - 1]K{C,V,6-,0 + T,¥,6-V,p)}.

The terms in the second and third lines of this equation are due to having assumed that the lateral
diffusion occurs along potential-density surfaces rather than along neutral surfaces. In contrast to the
pe equation, Eq. (20), there are no correction terms in Eq. (31) due to vertical mixing. If the reference
pressure is equal to the in-situ pressure, the only error term in Eq. (31) comes from the az Lkv V0
term and is K7, bV 0.V, p, that is, thermobaricity, whereas in Eq. (20) there is also the cabbelmg term,
KCpV,0-V 0, in this situation. Of course, if the lateral mixing had been parameterized as being
epineutral there would be no correction terms in Eq. (31). It is concluded that carrying both the 6 and
S conservation statements, even in their truncated forms (i.e. the top lines of Eq. (24) and Eq. (30)), is
more desirable than using the top line of the conservation equation for potential density, Eq. (20). As
noted above, signal-to-noise considerations mean that it is preferable to carry either the S or the 8
equations, and the linear combination B times Eq. (30) minus & times Eq. (26).

The Spiciness “Conservation” Equation

Olbers et al., (1985) and Olbers and Wenzel (1989) chose to use Veronicity, 7V, instead of salinity or
potential temperature in their beta-spiral inversions of the North Atlantic and Southern Ocean. Here it is
shown that just as potential density is not a conservative variable, neither is Veronicity, and the non-
conservative nature of Veronicity has introduced significant errors in these inversions. The non-
conservative nature of Veronicity can be noted from the fact that contours of constant 7V are not straight
lines on the S-6 diagram (see Figure 7) so that mixing between two water parcels that have the same
Veronicity will produce a parcel with a different value of Veronicity. The curvature of the 7V isolines
on this diagram is similar to that of the oy isolines, so nonlinear effects of a similar magnitude may be
expected. For a given (and arbitrary) value of the relative scaling of the two axes, Veronicity has the
property that its isolines are orthogonal to lines of constant potential density on the S-6 diagram.
Jackett and McDougall (1985) have proposed a different definition of orthogonality that does not
depend on the scaling of the axes of the S-6 diagram, and here a conservation equation is developed for
their variable, spiciness, 7.
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Fig. 7. Contour plots of, (a) Veronicity, 7V and (b), spiciness, 7, on the S-0 diagram. The other lines
shown are of potential density referenced to the sea-surface.

To a good approximation, variations of spiciness are related to those of potential temperature and
salinity by _

dt = pdS + adé. | (32)
For this total differential to define a path-independent function, 7, one needs Jf8 /96 = 3@/3S which is
not true of the real equation of state of seawater. One can imagine an equation of state that did satisfy
this constraint (by for example, having 3%p [363S = 0), and then a linear combination of the
conservation statements of potential temperature and salinity can be taken to arrive at the following
conservation equation for T

7], + VE-Var+wr, = 7| + V- Vet +wit, = b7V, (hKV,7)+ [D7,],

. . (33)
-k%v,0-V,0-D%0..
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Just as in Eq. (20) above where the nonlinear mixing terms in the potential density conservation
equation were found to be large in the thermoclines of many ocean basins, so too in these regions will
the above terms, — D9267 and - K42 V,0- V,0 be important in Eq. (33).

In practice, the lateral mixing of 7in previous inverse models has been along potential-density surfaces,
rather than along neutral surfaces, and the differences can be found by applying the differential
operator, Eq. (24) to V7 (=2aV;0) so that Eq. (33) can be written as

T+ VE-Vor+wir, = Ly, -(h"KVar) + [D7,],
- D420}

- &2(u-1)~(c-1)]+V, (hKV,0) - 26KV u-V,0 (34)

- 28K ([u* - u]6;" V,0-9,8) + 2auv,0-(V,K -V k)

-2 5KY,0-9,0 + SK{C,V,0.9,60 + T,V,0-9,p}.

The mixing terms that were included by Olbers et al (1985) and Olbers and Wenzel (1989) were the
first two, on the top line of this equation; all the other terms are due to the nonconservative nature of
both potential density and spiciness. There are now five terms that do not disappear when Prisequal to
p (i.e. when c=p=1). These are — 26KV 41 -V, 0, — 2aKu,[2u —1]6;'V,6-V,0, and the three
terms on the last line of the equation. Since C, = -%%, cabbeling will effectively appear as

—{2u? -1lx C,p V,0-V,6. All of these terms have been discussed above and they were found to each
be large in'different parts of the ocean, notably at thermoclinic fronts where either V,, 0 - V,.6 or
V,8-V,p is large.

Since the diapycnal velocity is commonly estimated with a truncated conservation equation, the
effective constraint that the spiciness conservation equation would maintain between the epipycnal
advection of T and the mixing processes is illustrated better by the following 7 conservation equation,

Tlot VE Vot = £V, (h9KV,1)+ [D1,), - 7,[a8, - Bs,]"’[u(ae, - Bs,)]z

24 3G p2 ~
+(R,,-1) D% 6; - 206KV,u-v,8

(35)
—2&K([u2 - u]6;! v,,o.v,,e)z + 26uY,0-(V,K-V,K)

%, j

5 2z
-2u* 92KV, 0.V,0 + Rl

K{C;V,0-V,0 + T,V,0-V,p}

Again, only the top line was included in the previous inversions. Notice that the 4™'V,, -(hKV ,6)
term has again cancelled from this equation. The nonlinear mixing term due to vertical diffusion has
changed si n between Eq. (_314) and Eq. (35) and has increased in magnitude by the factor

2R, - lf = 20(Rp —c¢) . At 1500 m in the North Atlantic this factor is about 3. Similarly,
cabbeling and thermobaricity has a different multiplying factor, 2Rp(Rp — ¢} , and this is about 5 in
the North Adlantic at 1500 m. These multiplying factors increase the magnitude of these nonlinear
terms which were already as large as the physically correct terms in the conservation statements that
have been considered above. It is the compounding of the errors from the potential density
conservation statement, and the assumption that spiciness is a conservative variable that has led to
these large multiplying factors.
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The simple lesson for us to learn here is that just as potential density is not a conservative variable,
neither is Veronicity, 7V, or spiciness, 7, and so conservation statements for these variables must take
this into account. What many will find surprising is the magnitude of the many nonconservative terms
in relation to the traditional terms in the conservation statements, and also the fact that the difference
between epipycnal and epineutral mixing remains even when the potential density’s reference pressure
is equal to the in-situ pressure.

MIXING PRESCRIPTIONS IN BOX MODEL INVERSIONS: The Divergence Forms
of Conservation Statements in Potential-Density Surfaces

The Nonconservative Pr: ion Terms in the Divergence Forms of th nservation ion

As far as the conservation equations are concerned, the distinguishing feature between [-spiral
inversion methods and box-inverse methods is that the B-spiral methods use advective conservation
statements while box-model methods use divergence (or flux) conservation statements. In addition, the
B-spiral method is often used with data that have been laterally smoothed in some way, whereas the box
models are generally used with unsmoothed data. The B-spiral method examines the balance of terms
at a point while the box-inverse method is concerned with the balance of fluxes through the six faces of
abox. The streamfunction method is a sub-set of the box-model approach that expresses the Eulerian
lateral velocity vector in terms of a geostrophic streamfunction. Note that the Lagrangian lateral
velocity vector does not satisfy the required relationship to be expressible as the derivative of a
streamfunction. However, since inverse methods have not yet addressed this question of the difference
between the Lagrangian and Eulerian mean flows, this aspect has not yet been an issue. Some models
can be a little hard to classify as a box inversion or as a B-spiral inversion. For example, Hogg (1987)
used a divergence form for the lateral gradient operator (using a streamfunction) but evaluated the
vertical derivatives on a potential-density surface rather than between a pair of surfaces. In this way his
model is like a B-spiral method in the vertical while being like a box model in the lateral directions.

In neutral surface coordinates, the divergence form of the general conservation statement for a
conservative tracer, C, is given by Eq. (7), and when integrated over the sides of a box of volume V
and lateral area A, is

va(l;f)l.Jr[LNshuLc]fV +[LEWthC];V +[AeCT =[LNShKc,]§,+[LEWhKcy]2' +{ADC,];,  (36)

where Lgw and Lys are the horizontal length scales of a face of the box in the east-west and north-
south directions respectively, and the lateral derivatives of C are evaluated in neutral surfaces. Here ul
and W are the x and y components of the Lagrangian-mean velocity vector

To date, box models have used potential-density surfaces as their upper and lower boundaries rather
than neutral surfaces, and here we examine the errors so introduced in the lateral transport of
properties. To do so, divergence forms of conservation statements are needed in the potential-density
surface coordinate frame. These are obtained by noting that the continuity equation can be written with
respect to potential-density surfaces as (cf Eq. (8)),

oh°® ol d1%

= Vo (hOVE) + [w ]04 =0, 37)
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and taking C times this equation plus 4 times the advective form of the C conservation equation, (Eq.
(9) with the advection terms on the left-hand side written with respect to potential-density surfaces),
one finds

‘9(";C)|v + Vg (hOVEC) + [wdc]: = Vo (h°KV4C) + [DC,]

Oy,
o (38)
+ h"{%V,, (hKV,C) = LV, -(h"KVGC)} .

The exira terms due to the different coordinate frames appear in the second line of this equation and
exactly correspond to the extra terms in the advective forms of the equation, for example, in Eq. (22)
and Eq. (26) in the case of potential temperature, and in Eq. (30) for salinity. The extra terms in the
conservation equations for potential density (Egs. 20 or 31) and spiciness (Eq. 34) due to the non-
conservative nature of these variables also carry directly across to the divergence forms. We conclude
that all the extra terms due to the non conservative nature of potential density and spiciness that have
been found in the previous section of this paper for the advective forms apply equally to the divergence
forms of these conservation equations. For this reason we do not need to repeat the error analysis. for
these extra terms. Suffice it to say that these terms that have been missing from previous inverse
studies are often as large as the straightforward mixing terms in various parts of the model domains.

The Impact of Uncertainty in the Continuity Equation on the Tracer Equations

The single most important aspect of many past box-inverse models that has precluded them from being
influenced by and detecting oceanic mixing processes is the overwhelming effect of errors in the
continuity equation (the incompressibility equation) on the tracer conservation equations. In order to
demonstrate this, the left-hand side of Eq. (38) is rewritten as the linear combination of Eq. (9) and Eq.
(37) as

(e}

c{a—h- vV, (koVE) [wd]‘“}

ot G (39)
+ ho{C|,+VE-V,C + wic,} = 8.9, (hKV,C) + [pc.]g:-
The physical constraint that we wish to glean from this equation is the connection between the mixing
of tracer C (the right-hand side) and the Lagrangian advection of C (the second curly bracket on the
left). The first curly bracket is included so as to be able to write the lefi-hand side of Eq. (38) in a
divergence form. When integrated over the sides of a box of a typical oceanic box model, the
uncertainty in the continuity equation (first bracket in Eq. (39)) is typically 1 Sv (106 m3 s-1) and this is
so large as to swamp any signal that represents the physically interesting “advective-diffusive” balance
of C-stuff. As an example, consider the conservation of salinity in box 11 of Wunsch and Minster
(1982). From their Figures 1c and 3a the epipycnal and vertical advection of salt amount to only 1% of
the mean salinity (35 psu) times the volume flux imbalance into the box. That is, the solution has the
left-hand sides of our Eq. (38) and Eq. (39) being dominated, by a factor of a hundred, by the error in
the continuity equation. The consequence of this is that the signature of mixing processes and the
balancing advection of C are simply small terms in the equation so that even when the mixing and
advection are modelled correctly, the variance of the salt equation can only decrease by two percent.
Effectively, the salt conservation equation becomes simply another continuity equation and
consequently (i) the rank of the system of equations suffers because of the nearly collinear nature of the
equations, (ii) the information that is contained in the salinity contours in three-dimensional space is not
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imposed as a constraint on the solution, and (iii) no information on the mixing processes can be
obtained from the inversion.

The same comments apply to many other box-inverse papers including Wunsch (1984), Joyce Wunsch
and Pierce (1986), and Wunsch, Hu and Grant (1983). In all of these papers, the balancing advective-
diffusive terms in the salinity conservation equations were typically 1% of the residual error left in the
salt conservation equation by the fact that the continuity equation was not satisfied identically. Similar
comments apply to other conservation statements (e.g. potential temperature, dissolved oxygen or
silicate) but the situation is worst for salinity simply because its mean value is quite large in relation to
its variations in the ocean.

The Wunsch and Minster (1982) paper is especially interesting in this regard because it carried both
epipycnal and diapycnal diffusivities, and surprisingly, the lateral diffusivities of the model were of
order 1-10 m2 s~1, or a factor of between a hundred and a thousand less than what we believe for the
ocean. One would think that any inconsistencies in a model’s data or its equations would cause the
magnitude of its parameters to increase so as to soak up somg of {ﬁe noise. Why then were the lateral
diffusivities close to zero? I believe the answer is again related to the volume flux imbalances in the
continuity equation. When using all the eigenvectors, in addition to satisfying the equations identically,
the SVD solution procedure also minimizes the norm of the solution vector. When some of the
eigenvectors are discarded (the ones with the smallest eigenvalues) the solution norm becomes even
smaller and the equations are no longer satisfied exactly. The method then represents a tension between
satisfying the equations while also having a small solution vector. This competition between
minimizing the equation errors and the solution norm is more mathematically obvious in the ridge
regression or tapered least squares procedure. Because the error in the salinity conservation statement
is dominated by the error in the continuity equation for each box, a respectable value of the lateral
diffusivity (of order 1000 m2 s~1) would only reduce the error variance in the salinity equation by 2%
so the solution procedure chooses instead to have a small solution vector, and in particular, to have
small lateral diffusivities. In this situation, the solution will be sensitive to the column weighting, and
presumably a different choice of column weights could also have yielded very small vertical
diffusivities as well. This explanation of the unrealistically small values of the lateral diffusivity found
by Wunsch and Minster (1982) is due to the combination of (i) the signature of mixing and advection of
salinity being well below the allowable error in the salinity conservation equation, combined with (ii), a
solution procedure that prefers small values of the diffusivities.

The inverse model of Wunsch, Hu and Grant (1983) is, I believe, another example of a study that has
been unwittingly plagued by the salt equation being effectively another continuity equation. The paper
concludes that there is no need for vertical mixing in their model, even though the downward diapycnal
velocities were of order 10~7 m s~1 (see their Figure 11a). The necessity for diapycnal advection but
not for vertical diffusion was argued because the imbalances in the tracer conservation equations
(notably salinity) were almost completely explained (a posteriori) by interfacial advection with little
apparent need for vertical diffusion. However 99% of the interfacial advection that was added into the
salt conservation equation went into correcting the first curly bracket in Eq. (39) by adding the vertical
part of the volume flux divergence, leaving a comparatively small salt residual (called & by the authors)
that resembles the physically interesting Lagrangian advection of salinity. From Figure 5b, one finds a
value of gN"*{a#,, - BS,,} of about -1x10-3 m~1 in the region of the South Pacific between the two
Scorpio sections at a depth of about 1000 m. At this depth Wunsch et al (1983) find a (downward)
diapycnal velocity of about -0.7x10-7 m2 s-1, Wthh is consistent with a vertical diffusivity of
0.7x10~4 m2 s! acting on the above value of gN~ {a@zz ﬂSzz} However, deeper i m the water
column at 1400 m in this region, McDougall and You’s (1990) figure S shows that gN™— {aOzz ﬁSn}
is positive so that a positive vertical diffusivity would not be consistent with the downward diapycnal
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velocity found by Wunsch et al (1983) at this depth. Since the salinity equations in Wunsch et al
(1983) were functionally linearly dependent with the continuity equations, the reference level velocity
vectors that came out of the inversion were effectively not influenced by the advective-diffusive salt
balances. Only by allowing this advection of salinity to emerge as signal in a conservation equation,
rather than being hidden in the last few percent of an equation’s noise, and at the same time balancing
this advection of salt with a parameterized mixing term, will we be able to say whether mixing
processes are required by the data.

Is there a procedure by which mixing processes can be made to stand out above the noise in tracer
equations in box inverse models? The answer is yes, and the key is to minimize the influence of the
first curly bracket in Eq. (39) by writing a conservation equation, not for the tracer itself, but for the
tracer anomaly, C’, from some fixed value, C. The reason why this procedure works is that the
advective form of the conservation statement applies equally well to C” as to C, since it involves only
various derivatives of the tracer. Hence in forming Eq. (38) and Eq. (39) we can multiply Eq. (37) by
the primed tracer variable instead of by C, and Eq. (38) and Eq. (39) become exactly the same
equations with C replaced by C’. This procedure has in fact been used to good effect by several
researchers, including Hogg (1987), and Lee and Veronis (1991). This procedure is easiest to justify if
the same mean tracer value is subtracted from every box, but in the last subsection of this paper it is
argued that it may be beneficial to subtract a different mean tracer value for each box.

Memery and Wunsch (1990) were able to balance the volume fluxes into and out of their boxes to
within about 0.02 Sv without having an excessively large solution norm. This was most likely due to
the fact that they used the Levitus (1982) data set that is that is temporally and horizontally averaged and
so does not contain the complicating features such as internal waves and mesoscale eddies that are
found in real cruise data. Presumably the salinity conservation equations were not unduly correlated
with the continuity equations in the Memery and Wunsch (1990) study, and that if vertical diffusivities
were added to the model, the inversion would have found them to be necessary. Conservation
equations for potential temperature should also be added to the system in order to provide added
information on the mixing processes (see the section below). Schlitzer (1987, 1988) also used the
Levitus data set and was able to specify the volume flux imbalances to as little as 0.001 Sv, and he
resolved both diapycnal advection and diapycnal diffusivities. This lends support to the present claim
that the errors in the continuity equation are what have been precluding most box-inverse models from
resolving mixing processes.

Many box-inverse models of the Atlantic and Indian Oceans (e.g. Wunsch and Grant (1982), Rintoul
and Wunsch (1991) and Fu (1986)), have found that salinity conservation did not add any information
to their inversions. Since these oceans contain substantial variations of salinity along neutral surfaces,
some of which information has previously been used to determine flow directions of water types by the
Wiistian tongue method, it would be quite incredible if the salinity field contained no information on
mixing and advection: the challenge is to extract this information.

The Need for Vertical Diffusion as well as Interfacial Advection

It has been quite common in box inversions to include a diapycnal flux of volume but not to have any
diffusive flux of tracers such as potential temperature or salinity. Since diapycnal advection occurs
only in response to mixing processes (see Eq. (20)), it is clearly dangerous to include one part of the
effect of mixing processes (the advection of tracer) without at the same time carrying the other part (the
diffusion of tracer). For example, in the solutions for the North Atlantic circulation presented by
Waunsch and Grant (1982) and by Wunsch (1984), many of the isopycnal interfaces had diapycnal
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velocities of more than 10x10-7 m s-1 passing through them. That is, the diapycnal velocity was more
than ten times the canonical value of the upwelling velocity in the deep ocean. On the face of it, this
implies that the vertical diffusivity must be about ten times its canonical value, or about 10x10~4 m?2 -1
in order to fuel this seemingly large (but probably not impossibly large) diapycnal flow. Wunsch
(1984) has obviously wrestled with this aspect of his model, as the discussion around his equation (18)
shows (and the corresponding discussion in Wunsch, Hu and Grant (1983)). There it was proposed to
regard the model’s interfacial velocity as a combination of a true interfacial velocity and a diffusive flux
of density. But a scale analysis shows that the eddy diffusion of density is a very small fraction (less
than 0.3%) of the advection of density (i.e. Ddpgy/dz << pewd ). We are obviously never going to be
able to account for terms in conservation equations to this accuracy.

Many of the box-inversion papers write conservation equations for “density” or “mass”, however, in
the divergence form, a conservation equation for “density” is almost the same as a conservation
statement for volume transport. This is apparent from a scale analysis of the two curly brackets on the
left of Eq. (39), using the in-situ density (or indeed any other kind of density) for C. Since the
imbalance in the volume transport in and out of a box is allowed to be say 0.3 Sv, the second curly
bracket in Eq. (39) (the advection of density) amounts to only 0.3% of the first bracket, hence the
“density” conservation equation is equivalent to the incompressibility condition. There is an extra
pedantic twist to this issue in that McDougall and Garrett (1991) have shown that while the divergence
of the instantaneous velocity vector, V -u, is directly related to the instantaneous Lagrangian change of
density, the divergence of the mean velocity vector, V -1, is unaffected by the divergence of the
twurbulent fluxes of heat and salt (even though the molecular flux divergences of heat and salt do
contribute to V -ii!). In this way, V-1 = 0 is actually a better embodiment of the continuity equation
in a turbulent ocean than is V -(p @) = 0, although, as we have just shown, the differences are of order
0.3% and so are quite negligible.

The separate roles of dianeutral advection and dianeutral mixing in causing water-mass conversion have
been illustrated by maps of the relevant vertical derivatives of hydrographic variables on some neutral
surfaces from each of the world’s oceans in McDougall and You (1990). Maps of the dianeutral
advection caused by small-scale mixing, gN 2 {aeu - ,BSzzz}, and the rate at which vertical mixing
changes the potential temperature on a neutral surface, gN - 3[3 d—af—, (both terms are normalized by the
vertical diffusivity, D), are plotted in Figures 4-6 . These maps s'f\ow well-defined patterns in the
magnitude and sign of these terms and there are many regions where the terms have the same sign. In
these locations the rate of water-mass conversion achieved by vertical mixing is of opposite sign to that
caused by the dianeutral advection alone. An inverse model that carries only vertical advection in the
salinity or potential temperature conservation equation will tend to force the dianeutral advection to be
the opposite sign to reality. This is explained in more detail by McDougall and You (1990) and will not
be repeated here.

I wish to emphasize that there is no problem at all with the neglect of eddy diffusion terms from the
continuity equation (called by Wunsch the “mass” or the “density”” conservation equation), rather it is
the omission of vertical diffusive terms from the tracer conservation equations that causes concern. In
particular, if an inverse model carries just thermal wind equations and continuity equations, without
considering any tracer conservation equations, then there can be no argument with the interpretation of
the diapycnal velocities that one obtains from the model. One realizes that there must be some vertical
mixing going on to cause this diapycnal flow, but since the diapycnal diffusivity does not appear in the
two types of equations in one’s model (thermal wind and incompressibility) the model is quite
consistent without having to include the diapycnal diffusion. The problems referred to in the previous
paragraph and described more fully in McDougall and You (1990) arise when a tracer or several tracers
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are carried by the model. Then one has no choice but to include both interfacial diffusion and advection
in order to construct a physically consistent model.

When is it Redundant to Carry both S and 6 Conservation Equations?

One has a tendency to think that since the epineutral (and epipycnal) gradients of salinity and potential
temperature are related, the conservation equations of S and 6 must be linearly dependent. This is not
the case, as can be readily appreciated by inspecting the form of Eq. (9). While the temporal and
epineutral derivatives of S and 8 are proportional (through the ratio o/ ) the dianeutral advection terms
are in the different ratio S,/0, and the diancutral diffusion terms are related by a third different ratio. It
is only when the dianeutral advection is eliminated from the S and 6 conservation statements to arrive at
the form Eq. (11) that the S and 0 equations are redundant. Another way in which a real redundancy
can arise is if some kind of density conservation equation is used together with both the 6 and S
equations in the form of Eq. (9). Since density conservation equations (such as the “¢” equation, Eq.
(12)), are simply a linear combination of the S and @ equations, it is obvious how the linear dependance
arises when all three equations are carried.

Wunsch and Minster (1982) carried a continuity equation and both S and 6 equations and found that all
three types of equations were effectively linearly dependent. As explained above, such linear
dependence should not have been expected since their model carried both diapycnal advection and
diapycnal diffusion. The reason for the near collinearly in their case would have been the dominance of
both the S and 8 equations by the same imbalances in the continuity equation:- both the S and 0
equations were essentially repeated continuity equations with the mixing information buried in the
noise. Ibelieve that the simple procedure of subtracting a suitable mean salinity and a suitable mean
potential temperature of each box before writing down the divergence forms of the conservation
statements would have yielded very different results in their study: the rank of the model would have
risen substantially, the lateral diffusivities would have been much larger, and quite possibly, the vertical
diffusivities and diapycnal advection would have been better-determined.

Why use a neutral surface coordinate scheme rather than Cartesian coordinates?

The issue of the surfaces in which one assumes the lateral mixing to occur has been addressed earlier in
this paper, and will not be repeated here. Rather, here some observations are offered on the advantages
of casting the left-hand sides of the conservation statements in the neutral surface framework. These
remarks will apply equally well to the advective and the divergence forms of the conservation
statements and so apply to both the B-spiral and box inversions. Consider the steady-state conservation
statement for say potential temperature, 6, in a region where the epineutral gradient of potential
temperature is small in relation to the horizontal gradient, V,8 = 6,i + 0,j, and where the neutral
surface slopes significantly. The three-dimensional advection of @ is the same in both coordinate
frames so that (from Eq. (9))

{VE[VL - V,C+ [w=ec, }+VEV,CreC, = KTV, (hKV,C) + [DC,] (40)

z
The terms in the curly brackets here sum to zero exactly, but if the neutral surface is significantly
sloped, this cancellation can, and often does, represent the difference between two large numbers. In
this situation, any uncertainty in the lateral velocity components will cause an unnecessarily large
uncertainty in the left-hand side of this equation and so potentially upset the desired balance between
advection (LHS) and diffusion (RHS) in Eq. (40). When the equations are weighted by their row-
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norms, the equation error that is allowed in the inversion procedure will be unnecessarily large in the
Cartesian formulation.

This is especially obvious in the linear combination of the S and 6 conservation equations that is the ‘e’
equation, Eq. (12) (in loose terminology, this is the advective form of the ‘density’ conservation
equation). In neutral surface coordinates, this represents a very direct relationship between the
dianeutral advection, ¢, and mixing processes. Since the lateral velocity vector does not appear in this
equation in the neutral surface framework, the inherent uncertainty in the inversion’s lateral velocity
vector can neither upset this balance nor can it contribute to the expected error of the equation. In this
way the ‘density’ or ‘e’ equation is almost guaranteed to contain separate information to the other
conservation statements that contain the lateral velocity vector. However, in the Cartesian framework
this same equation does contain large balancing terms that do involve the lateral velocity vector, as in
the curly bracket below,

[VE-[aV,6 - BV,S] + [w-e](ab, - BS.)} + (a6, - BS,) =

@1)
[D,(a6, - BS,)], - K{C,V,0:V,0 + T,V,0- V,.p}
The terms in the curly brackets on the left of this equation sum to exactly zero. The individual terms in
this bracket are frequently much larger than the other term on the left, namely, e(a0, — BS,), asthe
magnitude of [w - e] is frequently much larger than that of e. The same point can be made regarding
the equation for the diapycnal velocity, wA, in the potential density framework compared with the
Cartesian framework in that Eq. (20) does not involve the lateral velocity components whereas in the
artesian form, Eq. (21), it does contain the do-nothing combination of terms,
EVL -Vopg + |Ww— w? %l Another appealing feature of the e equation in the neutral surface
amework is that it does not contain the lateral Laplacian of any property. Since the lateral Laplacian is
arelatively noisy quantity to estimate from data, this feature of the e equation, Eq. (12), augments the
absence of the lateral velocity vector to suggest that the equation is a relatively noise-free connection
between dianeutral advection and (mainly vertical) diffusion.

The above discussion of the merits of performing inversions in neutral surface coordinates has been
focused on the implications for determining the strength of mixing processes. But even in models
without mixing the different slopes of various surfaces affects the reference level velocities and other
outputs. For example, Schott and Zantopp (1979) showed that the S-spiral technique gave reference
level velocities at 1000 m that differed by 5 mm s-1 depending on whether potential density or steric
anomaly (specific volume anomaly) was conserved by the inversion. In a box model inversion of
sections in the North Atlantic, Rintoul and Wunsch (1991) have compared their model which used
interfaces that were a close approximation to neutral surfaces with a previous model that used
surfaces that were a coarser approximation to neutral surfaces. They found that the differences
between the surfaces caused the poleward flow of intermediate water to decrease by 2.4 Sv and the
equatorward flow of deep water to be reduced by the same amount. The poleward heat flux changed
by 0.1x1015 W.

Some recommendations for box inversions

The above issues for box inversions are all intimately linked because (i) the tracer (especially salinity)
conservation statements have been dominated by noise from the “mass” conservation equation (really
the incompressibility equation), (ii) diapycnal diffusion coefficients have not been resolvable from the
models and hence (iii) it has been pointless to add a conservation equation for potential temperature
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since this would also have been linearly dependent with the existing two sets of equations. It is to be
hoped that the above recommendation of forming divergence conservation statements for (a) volume
and (b) for the deviations of tracer concentrations from suitable average values, will cure all three
problems simultaneously. This simple procedure should make the tracer conservation statements
become linearly independent of the continuity equations, giving the advective-diffusive balance of say
salinity a chance of constraining both diffusivity coefficients and the mean velocity field. This will also
result in an increase in the rank of the system of equations. Conservation equations of potential
temperature and of other tracers should also be included in the inversions so as to extract the further
independent information on mixing processes that these equations contain.

The interfaces that separate the boxes should be neutral surfaces in order to avoid the many error terms
in Eq. (26) and Eq. (30) that arise due to mixing laterally along potential-density surfaces rather than
along neutral surfaces. The previous subsection also shows that the neutral surface framework should
be superior from the signal-to-noise viewpoint. In particular, the direct relationship between diancutral
advection and mixing processes can be obtained by taking the linear combination of a times Eq. (36)
with the anomaly of potential temperature as the tracer, minus f times Eq. (36) with the salinity
anomaly as the tracer.

Previous box inverse models have carried continuity equations for each box (despite the different labels
of these equations as “density” or “mass” conservation statements), whereas f-spiral methods do not
enforce the continuity equation. Perhaps this is the key difference between the two methods. Box
models should continue to carry the volume conservation equations for each box (in the form of Eq.
(36) with C = 1), and it may be necessary to recognize that the Lagrangian velocity components that
appear in this equation contain the Stokes drift (Eq. (15)) in addition to the Eulerian-mean velocity that
is obtained from thermal wind.

n hoi fm acer v for each box

Consider forming the salinity anomaly for each box by subtracting a mean salinity (say 35 psu) from all
the salinities in all the boxes of a box model. The maximum value of §” for any particular box may be
say 1 psu so that the uncertainty in the salinity conservation equation due to the continuity imbalance is
improved by a factor of 35. However, this may not be enough of an improvement to guarantee that the
salinity conservation statement enforces an advective-diffusive salinity balance. In the examples quoted
above, the advective-diffusive salt balance would improve from being 1% of the residual equation error
to being 35%. If this proved to be not enough of an improvement, then one would need to use tracer
anomaly values that were referenced to a mean tracer value that is closer to the average tracer value of
each box. In order to extract the advective-diffusive tracer balance from the divergence form of the
conservation equations, the most appropriate mean value of the tracer, C, to subtract from C to form
the new variable, C’, is the mean value along all six faces of the box. The diffusive terms on the right-
hand sides of Egs. (36), (38) or (39) would still be evaluated with the original values of the tracer
variable since there is no gain in accuracy to be had by changing variables here, but the left-hand sides
of these equations would be evaluated using the refined tracer anomaly variable. In the case of salinity,
the variation of the salinity over the six sides of a box may be 0.1 psu so that the influence of the
continuity equation in the salinity balance will be reduced by a further factor of ten or more, so that
instead of the continuity uncertainty accounting for 99% of the error in this equation, it could account
for no more than 20% of the error. In this way the salinity conservation statement will tend to represent
the desired advective-diffusive balance.
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By choosing the box-average tracer value as the mean that is subtracted from each box, one has
essentially forced the divergence form of the conservation statements to have the same balance that is
present in -spiral methods, namely the advective-diffusive balance. Unlike the B-spiral methods
however, this proposed box-inverse method also carries the continuity equation (Eq. (36) with C = 1).
In this way, the method recommended above can be interpreted as a 3-spiral method, but with the
inclusion of the continuity constraint. One could of course add the normal S-spiral equations to a box
inverse method, but the grids on which the velocity components are evaluated are different for an
advective and a divergence grid. The above procedure achieves the same physical balances in the
equations as would a combined S-spiral and box inverse model, but without any complications due to
the different grids, since one uses the box-model grid throughout.

When using anomalies from box-averaged data rather than from a single constant value, the sum of the
tracer conservation equations over more than one box does not have a physical interpretation (Rintoul
and Bindoff, personal communications, 1991). Using salinity as an example, if a single mean salinity
of say 35 psu is used to form the salinity anomaly variable for the left-hand side of the conservation
equations, the sum of these equations over many boxes does not amount to the conservation of salt
over the boxes, but it does represent the conservation of a different variable, namely (S - 35 psu). But
with a mean salinity that varies from box to box, there is no such interpretation. Should one worry
about this? I think that this is not a concern for the following two reasons. First, by regarding the
above procedure as a -spiral method with the added continuity constraint, the issue of what the sum of
the salinity conservation statements represents does not seem so pressing since this has not been part of
past B-spiral methods. Second, if after performing an inversion one calculates the total salt imbalance
(not salt anomaly imbalance) summed over all the boxes, the answer will be dominated by the errors in
the continuity equation for each box multiplied by the mean salinity of that box. This will be very close
to the global-averaged salinity times the global-averaged volume flux imbalance, no matter what mean
salinity is chosen for the mean value of each box in the inversion. For these reasons I believe that
using a salinity anomaly that is defined differently for each box is a viable procedure. Of course, proof
of the pudding will be in the eating.

CONCLUSIONS

This paper has derived the conservation equations for scalars (including potential density and spiciness)
with respect to both neutral surfaces and potential-density surfaces, and in both the advective form
which is applicable to the S-spiral method, and in the divergence form that is used in box-model
inversions. In the limited space available, conservation statements for potential vorticity were not
addressed. The salient findings of the paper are listed below.

« Scalars are advected by the Lagrangian-mean velocity vector rather than the Eulerian-mean velocity
that appears in the geostrophic and thermal wind relations, and it may well be important to recognize the
distinction between these velocities. A simple parameterization for the difference velocity (the Stokes
drift) is proposed and this should be easy to implement in inverse models. Even when this Stokes drift
is relatively small, it may well be significant for the lateral advection of tracers because it will be much
more closely aligned with the epineutral tracer gradient than will be the Eulerian-mean lateral velocity
vector. The magnitude of the estimated Stokes drift is displayed in Figures 2 and 3 for a single neutral
surface in the world ocean, and values in excess of 1 mm s-! are common. A lateral velocity of this
magnitude down the epineutral tracer gradient causes as much water-mass conversion as vertical mixing
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processes. This highlights the importance of the distinction between Lagrangian and Eulerian
velocities.

» The nonlinear nature of the equation of state has been shown to cause significant errors in the
diapycnal velocity when it is deduced from the commonly used advection-diffusion balance for
potential density. The potential density variable is significantly nonconservative and more care must be
taken when writing a conservation equation for potential density. The terms that have been omitted
from the potential density conservation equation in the past are (see Eq. (20)), (i) a term proportional to
the vertical diffusivity that is largest in the upper 1000 m of the water column, (ii) a term that depends
on the epineutral flux divergence of potential temperature and arises because potential density varies
along neutral surfaces, (iii) cabbeling and (iv), thermobaricity. Each of these terms are too large to be
ignored in various regions of the ocean.

» The omission of the nonconservative terms in the conservation equation of potential density results in
either an overestimate of the diapycnal velocity or an underestimate of the vertical diffusivity (for

wd > 0), or, quite probably, a combination of both. The use of a simplistic potential density equation
also affects the way mixing processes are extracted from the potential temperature or salinity
conservation equations, as is illustrated in Eq. (29).

» Thermobaricity and cabbeling were found to be quite strong in the North Atlantic and Southemn
Oceans, causing contributions to the dianeutral downwelling velocity of order —1x10~" m s™'. These
in turn make a large impact on the conservation equations of scalars in these regions and probably also
cause significant vortex stretching in the conservation equation for potential vorticity. Of the two
processes, thermobaricity is rather smaller than cabbeling except in the Antarctic Circumpolar Current
where it is at least as large as cabbeling and also of the same sign.

» The contributions of both thermobaricity and cabbeling to water-mass conversion at a thermoclinic
front have been compared with the epineutral mixing of potential temperature. The ratios of these
processes were found to be significant and to be proportional to the changes in potential temperature
and pressure across the front (see Eq. 13). In the Antarctic Circumpolar Current each of these three
processes were found to be equally important, especially because the net water-mass conversion
achieved by the lateral diffusion term averages to zero whereas cabbeling and thermobaricity have a
consistent sign across the front.

* Many of the pitfalls with forming a potential density conservation equation are avoided if one uses the
§ and 0 equations separately rather than attempting to form a “density” conservation equation. The
remaining differences are due to the difference between the epineutral flux divergences and the
epipycnal flux divergences of S and , as in Eq. (31).

« Conservation equations for conservative variables (like potential temperature and salinity) are affected
by the nonlinear nature of the equation of state when a model’s lateral mixing is directed along
potential-density surfaces rather than along neutral surfaces. The differences between these two lateral
mixing parameterizations are explored and are documented in Egs. (26) and (30). Several terms arise
that are significant when the reference pressure of the potential density is significantly different to the
in-situ pressure, and two terms remain even when this pressure difference is zero. The difference
between epineutral and epipycnal mixing of tracers is important at regions of large epineutral gradient of
potential temperature (i.e. at thermoclinic fronts).
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« The ‘orthogonal’ variables on the S-6 diagram, spiciness and Veronicity, are significantly
nonconservative variables and the nonlinear terms that appear in their conservation equations are of
similar magnitude to those that appear in the potential density equation. It has been shown that one
cannot afford to write conservation equations for either potential density or spiciness as though they
were conservative variables.

« Box inverse models need their conservation equations cast in the divergence (or flux) form, and it is
shown that in this form, the conservation equation for ‘density’ or ‘mass’ is really simply a volume
integral of the incompressibility equation.

« One often reads that a box inverse model has not required vertical mixing in order to explain the data.
Here it has been argued that these models have been set up in such a way that the signatures of all types
of mixing processes are well hidden behind the noise due to errors in the continuity equation. The
imbalance in the continuity equation is directly reflected in the tracer conservation equations, and is a
consequence of the need to write the conservation equations in the divergence form. This causes the
tracer equations, and particularly the salinity equation, to be linearly dependent with the continuity
equation, so causing a reduced rank in the system of equations. This is similar to the well known
problem that, if the mass flux across an ocean section is not zero, the heat flux across the section is
different if the temperatures are measured in Kelvins rather than in degrees Celsius.

* A very simple solution to this deficiency of present box-inverse models is proposed: it is to subtract a
suitable mean value from the values of a tracer before the conservation equations are evaluated. This
should have the effect of (i), increasing the rank of the solution, (ii), extracting information on the
advection and diffusion of salinity, thereby constraining both the interfacial advection and diffusion,
and (iii), making the conservation equation of potential temperature independent of that of salinity.

« It is argued that the neutral surface framework provides the best link between advection and diffusion
of tracers in that the individual terms that comprise the advection of tracer are not large in comparison
with the total advection of tracer. In this way, uncertainties in the lateral velocity vector do not
introduce as much uncertainty into the left-hand side of these conservation equations as they do in
Cartesian coordinates. This is especially true of the e equation, Eq. (12) that is totally independent of
the lateral velocity vector. This e equation has the added advantage that it does not have a lateral
Laplacian term (which is relatively noisy) on the right-hand side.
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