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ABSTRACT

First, two terms of a resonant transfer integral are derived for a simple one-dimensional analog to
the equations of fluid motion. The purpose of this rather academic exercise is to more clearly
illustrate the assumptions of the resonant interaction approximation. Second, it is shown that, in
much of the region of phase space where nonlinear interactions are usually considered weak
enough for the theory to be applicable, nonlinear transfers due to bottom scattering and other
mechanisms cannot be ignored.

INTRODUCTION

Weakly nonlinear resonant interactions have been studied extensively as a model for predicting
the temporal evolution of various broad-band wave spectra. Hasselmann (1962, 1966) derived a
general wave-wave resonance theory, which I will refer to as the resonant interaction
approximation (RIA). RIA has been used with some success on the surface wave interaction
problem (WAMDI, 1988), but it is still unclear how applicable it is to internal waves. RIA-based
internal wave spectral evolution equations were derived and evaluated by Olbers (1976),
McComas and Bretherton (1977, henceforth MB), and Pomphrey, et al. (1980). Results of these
calculations have yet to be verified for any realistic ocean internal wave field, however, and the
validity of RIA for large portions of the internal wave spectrum has been called into question by
Holloway (1980, 1982), Henyey et al. (1986), and Miiller, et al. (1986).

The initial portion of this paper will attempt to highlight some of the basic points of an RIA
derivation using a 1-D analog. The somewhat ad hoc derivation will follow Hasselmann (1966);
a more careful derivation using the method of multiple time scales is given by Benney and
Saffman (1966), who also begin with a one dimensional example for readability. It must be
stressed that, since RIA reduces the dimension of any problem by one, the resonant "surface" for
this example will just be a set of three points. The purpose of this exercise is strictly to clarify the
mechanics of an RIA derivation, and not to offer a new way of solving one dimensional
problems.

In the past, criticisms of RIA have focused on mapping out regions of phase space where RIA
predicts interactions so strong that they violate the theory’s assumptions of "weakness." There are
regions of phase space, however, where RIA predicts interactions which are so weak that they
will be overshadowed by other nonlinear mechanisms, most notably bottom scattering. The
second portion of this paper attempts to map the regions in wavenumber and frequency space
where resonant interaction theory either violates its own assumptions or predicts interactions so
weak that they will be overshadowed by other mechanisms.

211



Hirst

DERIVATION OF A SPECTRAL EVOLUTION EQUATION

Derivation of a resonant spectral evolution equation directly from the equations of fluid motion
is, among other things, a monumental exercise in algebra. Fortunately, the critical steps may be
highlighted by deriving a similar evolution equation for a one dimensional analog. The
somewhat modified Korteveg-DeVries (KdV) equation,

2, 0, 53 _
FYd % +&d = - 0, 1

has many of the same basic properties as the equations of fluid motion. It is first order in time,
non-dissipative, dispersive, and contains a quadratic nonlinearity. The dependent variable ¢(x,¢)
is assumed to be of order one, and ¢ is a small parameter, analogous to a Rossby number for low
frequency internal waves.

The first step in our streamlined derivation will be to expand (1) in a Fourier series. If we assume
a periodic solution in a domain -L<x<L , we may write
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where the summation is over all integer mode numbers, and
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To handle the nonlinear term, we make use of the convolution rule,
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where J, , .., is the Kronecker delta. The KdV equation may then be written

~
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where k = n7t/L is the wavenumber, and 5 ;= $(n ;). Note that the factor k/2 = (n +n)n/2L
appears due to the Kronecker delta and the symmetry of the summation.

It would be possible to find a numerical scheme to evaluate (5) directly for a finite number of

modes. The convolution sum could be handled by a fast Fourier transform algorithm, and a
suitable procedure could be used to integrate in time. This technique is simply a pseudo-spectral
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Fourier-Galerkin scheme, however, and has the same basic strengths and weaknesses as any of
the competing numerical methods. To take advantage of the supposed weakness of the nonlinear
term, we instead make a perturbation expansion about a first order linear solution.

Expanding our solution in powers of €, we may write
$=1$+2‘$€+3&2+"‘» (6)
where ,«; = 0(1). The linear solution is then
16 = A(n1=0)e’™, Q)

where o =k is the intrinsic frequency, and the time ¢ is measured from the most recent time the
spectrum was measured or calculated. The A (n,0)’s are chosen such that 9=A=¢datt =0, The
second order solution will then be obtained from

A

o0 , .2 —ik i
_gt-—m)zq, = —2_228!:.&#{4 1A g OO (8)

where the subscripts on amplitudes A; and frequencies o ; denote dependence on mode number
n; = Lk;/m. (Unsubscripted forms will generally be dependent on mode number n.)

Equation (8) has the solution

. '
0 = -‘Zie"“ {dczzs,,,m,,«t A ¢ f(@rorar ©)

Rina

This may be integrated in 1 to obtain

6 = :;&““Zzﬁkm,z« 1428(0:0), (10)

where Q = w,+0,—®, and

ine_
AQ) = L

(11)

A similar but slightly more complicated expression may be obtained for ,¢. While the third order
quantities must be included in the full resonant transfer equation for both KdV and internal wave
systems, they will be ignored in this discussion.
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At this point, we should make some observations on just what "linear solution” we are expanding
about. Recall that the purpose of RIA is to predict the temporal evolution of a given spectrum.
Presumably at ¢ = 0, we know the spectrum and the A(N)’s are chosen such that the first older
solution 1¢ is the complete solution ¢. It is clear from (9) that 2 ¢= 0 atz = 0; the same applies
to higher order terms. But for larger times, the spectrum will evolve, and the A(k)’s will peri-
odically have to be updated (and ¢ reset to zero in my notation) for the series (6) to correctly
approximate the true solution.

In an actual RIA calculation, phase information is sacrificed and A (k) is not actually calculated.
Instead we look for an equation governing the temporal evolution of an action density a (k,¢),
defined as

1

a(k,t) ;<&B‘> (12)

1 A Ay
= m<1¢l¢ >
+ g{<l¢z¢ >+ <09 >}
+ o <1P30 >+ <00 >+ <3010 > p+ -0,

where the brackets represent ensemble averages and asterices indicate complex conjugates Our
choice of first order solution ;¢ implies that the lowest (second) order action term o™'<;¢,¢"> will
be constant. If we can assume that all amplitudes A (k) are uncorrelated and Gaussian, then the
third order terms, with their associated triple correlations, vanish identically. It must be
recognized that strong interactions in even an initially Gaussian wave field might set up
correlations between interacting wave modes. In this case, the third order (cumulant) terms may
not be neglected, and the theory will fail. If our Gaussian assumption is valid, we have

% = ‘g—%{ 153& >+ <2¢2¢ >+ <3¢1¢ >}+ (13)

To perform the averaging on the middle term, it is useful to first write equation (10) as a smgle
sum without a Kronecker delta.

=3 " TA @A (-n A, (14)
where A; = A(a(k; H+o(k—k;)-o,r). We then have

<b'> = —):}:<A(n DA (n-n A" (1 )A" (n-n5)>DA;. (15)

nyny
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Again assuming that the A’s are Gaussian random variables, we split up the fourth order moment
into second order moments to obtain

" e 2 - L
<0’> = —"4—22{«1 (R DA (n—n1)><A" (1A " (n-n;)> (16)

nyn;

+<A(n)A ‘(n-nz)><A (n—n)A '(n2)>

+<A(nA (n)><A(n-n A" (n-ny)> }AIAZ'.

Because <A (n1)A (n,)> vanishes for n; #-n, (A" (n)=A (-n)), each of the second order moments
in the first term vanishes for n # 0. Because of the k2 factor in front of the integral, we may then
drop this term.

The second term vanishes except when n; + n,=n. If we replace the summation variable n, with

nyt+n, we find that the third term vanishes except when n = n; — n,. We may then insert and
make use of two new Kronecker deltas to write

A A, k2
<P > = Tzzsk,kﬁk,IA(ml"'mf'w’t )1%a 0,00, 17)

ARy

+ 8 bt AM@1~0y—0,t ) | %a 1a 200, 0.

Here we have made the SubSﬁmﬁon
a(n t) = — ¢ ¢ > = —<A(H)A (n)> (18)
’ © 1¥1 0 4

valid for short amounts of time since the most recent update to the spectrum. The amount of time
for which this is valid will be inversely proportional to the strength of the interactions.

The spectral evolution equation for a (k) will be of the form

2 A A.
%7' = %%<2¢2¢ >, (19)

where again the (non-negligible) <1£3$> terms have been dropped for simplicity. The time
derivative acts only on the |A|? functions on the right hand side of (17), which have the explicit
form

|AQ)|? = %‘;‘é@—l (20)
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The limiting behavior of these functions is essential to the validity of RIA theory. We find a
short time limit of

lim [|A(Q,z)|2] = 12, @D
t—0
and a long time limit of
lim [| A(Q,r)l’] = 2mt §(Q), (22)

where 8(Q) is now a Dirac delta. For intermediate values of ¢, we find a sinc-like function inQ
with a bandwidth = 2n/¢, as shown in Figurel. The value of ¢ chosen for this function must be of
the same or lesser order than the amount of time our expansion (12) remains accurate and rapidly
convergent, such that (18) remains valid.

RIA theory chooses to take the long time limit (22) as an approximation of |A| 2, In doing so, it
assumes that the first order solution holds steady long enough for the bandwidth of the function in
Figurel to become small in comparison with a characteristic bandwidth in the internal wave
frequency spectrum. By "characteristic bandwidth," I mean a bandwidth over which amplitudes
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l I |
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Figure 1. The function |A|*2ns, approximated as a Dirac delta in RIA theory.
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vary essentially linearly, such that the filter function depicted in figure 1 may be safely replaced
by a Dirac delta. This bandwidth has traditionally been taken as the period of the wave n,
yielding the validity criterion

ZT’“’ <1, (23)

where v! is the interaction time over which (18) remains valid. It must be stressed that 23)isa
necessary but not sufficient criterion for RIA’s validity -- we must also be able to somehow
justify dropping the cumulant term in (12). However, (23) is an easy test to perform, and
Holloway’s (1980) implementation of it is still the only quantitative attempt to establish a high
wavenumber cutoff for RIA.

Applying (22), we obtain

2.2
'%:' = %&f—'zz&. k] 1+,,28(a)1+(02—a))a 14200;0 (24)

+ anﬁx—nls(ml_ml_m)a 18 20,0,
plus similar forms for the <,¢;¢> terms. In the limit of a continuous spectrum, we have

da _ mk%?
ot 20

j J' dk 1dk d(k —k 1—k 2)6(W1+Wy—W)a 1a ;0,05 (25)

+ a(k -k 1+k 2)8((01—(02—0))0 14 2010,

Notice that RIA has reduced the dimension of the problem by one. Equation (25) is now a zero-
dimensional integral(!); the corresponding equation for internal waves will be two-dimensional.

The transfer integral for internal waves takes the form (Milller, et al, 1986)

%iz- = [ [ dwidk,T*8(k-k~k)8(00+00,-0)(a 10 ,-aa aa ) (26)

+ 2T—8(k—kl+k2)8((01“0)2—0))(a 18 +aa ;—aa 2),

where a is the internal wave action density and T* and T~ are rather messy coupling coefficients
depending on the wave vectors k, k;, and k,. Resonant interactions, then, are confined to "triads"
of three waves satisfying the conditions k=k;+k, and o=0,+w,.

The appeal of RIA theory is perhaps chiefly tied to the reduction in dimensions associated with
the & functions acting on the frequencies. However, the validity of this § function is by no means
assured, as suggested by the requirement (23). Additionally, the Gaussian assumption, which
allowed us to drop the cumulants in (12), suggests another restriction on the strength of the
interactions, namely that the "forcing" waves n; and n, must have rapid decorrelation times
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compared to the interaction rates. This restriction is discussed briefly in Miiller et al. (1986), in
the context of their equation (70), but imposes a criterion which has been relatively difficult to

quantify.

For very weak interactions, we may expect the perturbation expansion to be a useful model.
However, it will be pointed out in the latter section of this paper that when resonant interactions
become too weak, other nonlinear transfer mechanisms must also be considered.

VALIDITY AND APPLICABILITY OF RESONANCE THEORY

In the tradition of Holloway (1980), interaction times predicted by McComas (1977), and MB
were compared with other readily available characteristic time scales. Approximate formulas for
induced diffusion (ID) and parametric subharmonic instability (PSI) time scales, given by
McComas and Miiller (1981, henceforth MM), were applied to the GM76 (Cairns and Williams,
1976) model spectrum. The model spectrum and the resulting time scales are shown in Figures 2
and 3, respectively. Numerical values for the GM76 spectrum were inertial frequency

f =17.0x107%7!, buoyancy frequency N = 71f, stratification scale b = 1300m, peak mode number
j* =3, and dimensionless energy scale E = 6.3x10~°, The hydrostatic dispersion relation

k
0= f2+N2—k"—2, 27

where &, and k, are the horizontal and vertical wave numbers, was used throughout.

Figure 3 is essentially an attempt to replicate figure 4 of McComas (1977) and figure 11 of MB,
without solving the full transfer integral (26). It was generated using equations (11) and (22) of
MM, with the ID equation (11) applying for frequencies ® > 2f , and the PSI equation (22)
applying for @ <2f . A value of x = 1, or " = 2.5f , was chosen in MM’s equation (22) to better fit
the PSI time scales indicated by McComas (1977) and MB. (The transfer times in figure 8 of
MM appear to be approximately ten times too high.)

The figures compare reasonably well, except at very low wave numbers, and at the region near
® = 2f , where interaction rates pass through zero in the earlier plots. The discrepancies at low
wave numbers do not substantially affect the results which will follow. Also, there is no reason
to expect the actual strength of the interactions to become small near ® =2f. The rightward
leaning "spikes" which appear in the earlier plots have therefore been truncated.

Mean Free Paths and Bottom Scattering

Horizontal and vertical "mean free paths,” MFP, and MFP, of resonantly interacting internal
waves, plotted inFigures 4 and 5, were then calculated by multiplying the resonant interaction
times inFigure3 with the horizontal and vertical group velocities. The mean free paths then
correspond to the distances which waves may be expected to propagate before they are
significantly altered by resonant interactions. If a wave propagates more than one ocean depth in
the vertical (or one ocean width in the horizontal) before it has time to resonantly interact, it
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Figure 2. The GM76 model spectrum. The energy density is multiplied by the vertical
wavenumber k, and the aspect ratio a, such that the quantity plotted integrated over the area
dlog(k,)dlog(c) gives the energy in that area.
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Figure 3. Interaction time scales predicted by RIA theory. The formulas of McComas and

Miiller (1981) are used to approximate values previously obtained by solving the full RIA
transfer integral.
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Figure 4. Horizontal "mean free paths" of resonantly interacting waves. In an infinite ocean,
waves would be expected to propagate the distances shown before being consumed by resonant

interactions. The quantity plotted is the product of the horizontal group velocity with the time
scale of Figure 3.

cannot be well modeled without considering scattering effects. Figure 4 suggests that a
substantial range of low wavenumber waves will be affected by bottom scattering.

Critical Layers

Two types of critical trapping may occur for low frequency waves, as schematically illustrated by
Kunze and Milller (1989) in their figures 1A and 1B.

In the presence of variable baroclinic vorticity {, internal waves will experience an effective
inertial frequency

fa=f+s. (28)

As a near-inertial wave propagates into a region in which f; exceeds the intrinsic frequency, its
vertical group velocity will go to zero, sending its vertical wavenumber to infinity. This type of
critical layer is discussed in detail in Kunze (1985). If we assume that f . varies linearly with
depth as |df 4 /dz| = 1.2f /3000s™'m™, where 3000m is the bottom depth, the change in f,; which
a wave may experience as it propagates may be estimated by
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Figure 5. Vertical "mean free paths” of resonantly interacting waves. The quantity plotted is the
product of the vertical group velocity with the time scale of Figure 3.

Af 5| = SLZL - min(MFP, , 3000m). (29)

When |Af 7| >0-f,a wave may reach a critical layer of this type. An appropriate stall
criterion will then be

Y>1, (30)

where Y= |Af 4| /(@ - f) is plotted in Figure 6. It is seen that, for the parameters chosen, such
critical layers may be experienced by waves with frequencies less than 1.2f and vertical
wavelengths greater than approximately 300 meters.

A second type of critical layer may occur even when the effective Coriolis parameter is constant.
A wave may have its intrinsic frequency shifted to f (or f,5) by spatial variability in the
geostrophic current. In a time independent mean flow U, the Eulerian frequency ® will be a
constant along a ray path, while the intrinsic frequency will be given by ©,=® - k-U. Thus an
appropriately oriented change of geostrophic current AU = AU,,;, = (0 — f )k, along a ray path

will push the intrinsic frequency to f and cause the wave to stall. This type of critical layer is
discussed in more detail by Olbers (1981).

AU, is plotted inFigure 7; Kunze and Miiller (1989) suggest that critical layers are likely when

AU, <0.05ms™. 31
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Figure 6. The stall criterion Y= |Af,5 | /w - f). Fory> 1, the effective Coriolis frequency may
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increase to the wave frequency along a ray path, causing critical trapping.
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The likelihood of a wave ever reaching such a critical layer will also depend strongly on that
wave’s mean free path, however. To account for this, we first define a Richardson number as

_ [N min(3000m, MFP,) ]

[ AT (32)
Replacing AU with AU,,; gives a "critical Richardson number" of
2
Nk, min(3000m, MFP
Ri; = [ (3000m, MEFF.) , (33)
| o-f
which is plotted in Figure 8. We may supplement (31) by requiring that the shear be strong
enough along a wave’s mean free path for
Ri <Ri_, 34)

to hold. Since Kelvin-Helmholtz instability will occur when Ri < 1/4, we may conclude that the
region in which this type of critical layer may occur will be bounded by the contours

Loguo critical Richardson number
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Figure 8. The critical Richardson number, on a scale of either the vertical mean free path or the
ocean depth, required to cause trapping. If the actual Richardson number is greater than that
shown, the shear will be too weak for this effect to occur in the vertical distance the wave can
propagate before it is consumed by resonant interactions..
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AU,,;, =0.05ms™ in figure 7 and Ri,,;, = 0.25 in Figure 8.

It should be noted that the first phenomenon, in which f;— along a ray path, is vertically
anisotropic and may not occur among both upward and downward propagating waves
simultaneously. The second phenomenon, in which @ is shifted to f along a ray path, is strongly
dependent on the orientation of the horizontal wave vector, which must be aligned with the mean
flow. Finally, both of the critical layers described will no doubt be highly intermittent, and their
importance in the overall spectral energy transfer is still unknown.

Validity regions

Figure 9 divides the internal wave spectrum into five sections, using information from Figures 5-9
and the various cutoff criteria listed in the text and in equations (23),(30), and (31). We first
consider the three non-overlapping sections, divided by the solid lines. In the leftmost section,
the vertical mean free path exceeds the canonical 3000 meter ocean depth, and we expect bottom
reflection effects to be significant. This region also roughly corresponds to the region in which
the horizontal mean free path is greater than 100 to 1000 kilometers, as indicated in Figure 4. In
the rightmost section, which corresponds to the shaded portion of Holloway’s (1980) figure 1a,

Applicability of RIA
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Figure 9. Map of RIA’s potential applicability. In the rightmost solid region, the interaction time
is less than one wave period, and we expect the perturbation expansion to fail. In the leftmost
solid region, bottom reflections will be significant. In the center solid region, RIA may be useful.

In the two dashed regions, the types of critical trapping discussed in the text may also be
important.

224



Internal Wave-Wave Resonance Theory

the interaction time exceeds the wave period, and we expect the perturbation expansion to break
down. (Again, this cutoff is a crude one, as equation (23) is not a sufficient condition for RIA’s
validity.)

In the center region, RIA may in fact prove useful. Several possible obstacles must still be
recognized here, however. First, the Gaussian or random phase assumption must be tested to see
if cumulants may in fact be ignored. Second, we see that much of this region is overlapped by
the regions in which the two critical layer phenomena may (or may not) be significant, as
indicated by the dashed curves.

The area inside the leftmost dashed region, based on the criterion (30), corresponds to waves
which may be susceptible to the first type of critical layer discussed, in which f ;- along a ray
path. The area inside the rightmost dashed region, bounded on the left by the curve

AU.,,;; =0.05ms™ and on the right and top by the curve Ri,,;, = 0.25, corresponds to waves which
may be susceptible to the second type of critical layer, in which wy—f. Since the dashed regions
overlap much of RIA’s "applicability region," one might be tempted to abandon the RIA theory
altogether at this point. However, it should be mentioned that RIA’s parametric subharmonic
instability mechanism yields an energy flux toward the near-inertial portion of the spectrum (cf.
MB); we may (boldly and blindly) speculate that this flux is in perfect balance with critical layer
dissipation.

SUMMARY

The one-dimensional analog has made resonance theory somewhat more accessible to all who
might be interested. Also, it has been pointed out that there is a rather substantial region in
phase space where bottom reflections may dominate the nonlinear transfer. Finally, two types of
critical trapping mechanisms have been discussed for near-inertial waves. While the net contribu-
tion by these mechanisms to the overall nonlinear transfer is unknown, it has been shown that
they may affect waves over large regions of phase space, including much of the region where
resonant interactions may occur. Since RIA does not predict equilibrium for near-inertial waves,
however, it has been suggested that critical layer interactions may in fact complement RIA theory
in this region.
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