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1. INTRODUCTION

A broad spectrum of gravity waves propagates through the middle atmosphere,
analogous to that found in the oceans. As in the oceans, this spectrum
exhibits a degree of universality over a decade or more in vertical wavenumber
m: the wind power spectral density is approximately of the form KN, 2m™ over
the universal range, where N, is the unperturbed buoyancy frequency and K is a
constant variously taken to lie between 0.1 and 0.5. (In this paper,
frequencies and wavenumbers are to be measured in radians per second and per
meter, respectively, though it matters not for this particular purpose.) This
"saturated" portion of the spectrum is found irrespective of meteorological
conditions, time, place and height (Balsley and Carter 1982; Dewan et al.
1984; Tsuda et al. 1989; VanZandt 1982; Vincent 1984). The cause of
saturation in the atmosphere is still a matter for debate, as is that in the
oceans; the two may have — indeed, are likely to have — similar origins and
differences of detail only.

The most frequently employed theory of saturation in the atmosphere attributes
it to linear instability (Dewan and Good 1986, henceforth DG86; Smith et al.
1987, henceforth SFV87), though a recent paper by Weinstock (1990) makes an
important challenge based on the diffusive dissipation imposed by nonlinear
combination of the smaller—-scale waves. The present paper outlines yet
another mechanism: wave-wave interaction imposed by the advective nonlinearity
of the Eulerian fluid-dynamic relations. It adapts and summarizes a three-
part set of papers recently accepted, and a fourth part recently submitted,
for publication (Hines, 1991a,b,c,d, henceforth H9la,b,c,d, respectively).

The three parts correspond to Sections 2, 3 and 4 respectively, with the
fourth part included in Section 3, and an over—all discussion is presented in
Section 5.

To set the stage for oceanographers, I should remark here on two important
differences between the atmospheric and oceanic cases: (1) The wave spectrum
in the middle atmosphere is believed to be dominated by waves propagating
their energy upward from sources at lower levels (such as winds blowing over
mountains, moving cold fronts, shear in jet streams, and tropospheric
convection that penetrates to or through the tropopause). Partial internal
reflections may occur in the middle atmosphere, but there is no strongly
reflecting single level analogous to the surface of the ocean. Instead, the
upper levels act primarily as a dissipative region, the effective diffusion
coefficients increasing with height z. (2) Wave amplitudes tend also to
increase with z, in response to the decrease of gas density. (The amplitudes
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tend to grow as exp z/2H while the density decreases as exp — z/H, where the
scale height H is about 7 km.) In consequence, the wave-induced wind variance
would be expected to grow by some five or six orders of magnitude on ascending
from the tropopause (at heights of 8 — 16 km) to the turbopause (at heights of
100 — 110 km), were it not for the limiting effects of saturation and
dissipation; in fact it increases by about three orders of magnitude only, but
this still constitutes a wide range. The factor K in the saturated portion of
the spectrum is found to remain relatively constant despite these wide ranges
of anticipated and observed intensities, but the saturated range of wavenumber
m is found to shift, with at least the lower bound progressing to smaller m
with increase of height (e.g., SFV87). These features open to the
atmospherist a degree of freedom not available to the oceanographer, one that
may inspire new modes of attack on the problem of saturation and one that
provides for a testing of any new theory.

2. CRITIQUE OF LINEAR-INSTABILITY THEORY

The linear—instability theory of DG86 and SFV87 attributes saturation to
instability engendered by the wave spectrum in consequence of the latter's
growth with height. The theory is a descendant of an analysis by Hodges
(1967) in which a monochromatic, upgoing gravity wave was considered. I shall
represent such a wave as having phase variations given by [kx + ly — mz - wt],
with z the upward coordinate, m and w positive, and I shall term it a single
"mode", there being no overlying reflector to produce a downgoing complement.

Hodges determined the Richardson number Ri as a function of phase for a single
mode under approximations appropriate to much of the atmospheric spectrum.
These approximations, which I also adopt, produce the dispersion relation

(w/h)2=(N_/m)? eH)

as in an incompressible medium (neglecting Earth’'s rotation), h = + (k% + 12)*
being the horizontal wavenumber, taken to be << m. He found that the minimum
Ri in a single mode could fall below 1/4 (and so produce dynamic instability)
only if it in fact fell below O at an appropriate phase (and so produced, at
that phase, static — or convective — instability). The required condition
for instability could be stated as 0,2 = 0.5, where o, is the standard
deviation of the wave-induced shear, nondimensionalized (here and henceforth)
by division by N,. At greater heights, the wave amplitude was expected to
remain constant (be "saturated", in later parlance), or perhaps even be
reduced, in consequence of the transfer of wave energy to turbulence energy.

In DG86, arguments previously presented by Phillips (1977) for ocean waves
were adapted to the atmospheric case. The wave~induced winds of the saturated
portion of the atmospheric spectrum were taken to be produced by a succession
of wave groups (structured in the vertical) having a range of vertical
wavenumbers Am proportional to m, and these were taken to become unstable —
statically or dynamically — when their o, reached some critical value taken
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to be of order unity. With this critical value independent of m, DG86 found
that the corresponding wind variance must be proportional to N, 2 m™2, and so
the power spectral density within the Am group must be proportional to N,2 m™3,
the factor of proportionality being assumed to be of order unity. They then
attributed this spectral form to the observable saturated wind spectrum as a
whole, and thereby provided an explanation for the observations. A second
argument by DG86 obtained the same spectral form on dimensional grounds, with
the assumption that N, represented the only background atmospheric parameter
and m (taken to be >> h) the only spectral parameter relevant to instability:
the dimensions of the power spectral density of the winds then required that
the density itself be proportional to N,2 m™ as before. The same spectral
form was adopted by SFV87, based only on a reference back to DG86, not on any
further argument.

The first argument of DG86 (and so that of Phillips) is subject to severe
criticism even if one accepts the assumptions that go into it: it in fact
requires yet another assumption -- a hidden assumption to date -- that the
postulated wave groups must enter the observations with equal frequency of
occurrence across the m spectrum. I see no basis for such an assumption, even
if the Am « m assumption might be justified on some scaling grounds (which I
doubt), and so I cannot accept that the first argument is relevant. The
second, dimensional argument will be valid if its assumptions are, but one of
those assumptions is that wave instability is indeed the mechanism that shapes
the spectrum: consistency is found, which is a necessary but not a sufficient
finding to establish wave instability as the relevant mechanism. The theory
of stratified turbulence, for example, as in Lumley (1964), leads to the same
spectral form, as does the diffusive wave nonlinearity of Weinstock (1990).
Below, I shall argue that the total wind standard deviation o, is a relevant
parameter, thereby negating the purely dimensional argument, and indeed I
shall argue that the m™® form is only an approximate accident anyway, subject
to some change from case to case and plausibly from atmosphere to ocean.

In DG86, the multiplier of N,2 m™ was left unspecified other than that it be
roughly of order unity (probably). 1In SFV87, on the other hand, a critical
value of 0.5 was adopted for 0,2 by analogy with the case of the single,
monochromatic wave. This critical value was first applied to a wave group
with Am = m and shown to produce N 2/2m® as the requisite spectral power
density. Subsequently, a model spectrum of the form (1 + [m/m.]3)"?! was
assumed, m, being a characteristic vertical wavenumber determining the
transition from an unsaturated (flat) portion of the wind spectrum at smaller
m to the saturated, large-m, m™3 tail spectrum. With a further assumption as
to the length of the tail — it was taken to extend to about 200 m, — and of
the form of the frequency spectrum (assumed separable), the shear power
spectral density was integrated over m and set equal to the assumed critical
shear variance, 0.5. This procedure determined the absolute intensity of the
spectral form and led to a wind power spectrum of N 2/6m® in the saturated
tail. This spectrum was claimed to be in good agreement with observations —
better agreement, in fact, than that given by the N,2/2m® result of the Am =
m "narrow-band" group. The agreement was taken as evidence not only in favor
of the instability theory, but also of the requirement to integrate the shear
over the full spectrum when establishing the condition for instability —
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thereby denying the individual-group model on which the form of the spectrum
had first been based.

Here again, the favorable conclusion is one of compatibility rather than
determinacy. It could be turned quite the other way around: the wave spectrum
might be established in the model form by processes other than instability,
and the SFV87 calculation would then merely establish that the modeled
spectrum, if extended to the assumed maximum m, would indeed be unstable.

Since the linear—instability theory maintains consistency with observation, it
cannot be disproven by the criticisms I have made here; but the strength of
the arguments in favor of that theory should, I think, have been undermined.
In any event, given that theory, a further point must be made: the linear-
instability theory has been developed to date on the basis of linear wave
theory, but the model adopted to illustrate it reveals that the waves are
highly nonlinear.

1f, for example, one adopts as the wind power spectral density WPSD the form

WPSD = (N2/6ml)/ (1 + [m/m,]]3), (2)
favored by SFV87, one finds upon integration over m the wind variance

0% = (r/9y3) (N3/m?) = 0.20(w/h)?2, (3)

where o; is the wind standard deviation as before and (w/h). is the horizontal
trace speed of a wave with the characteristic vertical wavenumber m,, use
having been made of (1). This reveals that, at m., the horizontal trace speed
is little more than twice the standard deviation of the wave-induced wind
field through which the wave is propagating. Waves having greater m will have
proportionately smaller horizontal trace speeds, via (l1). At a point in space
where the wave-induced wind V has a component V, (assumed horizontal, for the
moment) in the direction of the wave’s propagation, the total time derivative
of the Eulerian fluid-dynamic equations is

D/Dt = 3/0t+V.V = (1+V,/[w/h])d/3t, (4)

with the V,/[w/h] term representing a nonlinear interaction between the chosen
wave and the whole of the wave-induced wind field (plus any background wind,
in general). This interaction will clearly be of import to all waves except,
perhaps, to those with w/h > 2 V,, which will be roughly those with m < m,.
Integration of the (nondimensionalized) shear power spectral density
corresponding to (2), namely

SPSD = (m?/6m?) / (1+ [m/m,]1?), )
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now shows that these relatively immune waves contribute only 0.04 to o,2. If,
as has been supposed, the critical value of 0,2 is of order unity (e.g., 0.5
as assumed by SFV87), it is evident that the requisite shears must come
primarily from the tail portion of the wave spectrum, the portion that suffers
strong nonlinear interaction. To take an extreme: at the tip of the tail,
where m = 200 m, according to the rough estimate of SFV87, the wind standard
deviation would be about 72 times the horizontal trace speed. This confirms
for the middle atmosphere a conclusion about the relevance of nonlinearity
reached many years ago for the ocean (e.g., Holloway 1980, 1981, Munk 1981).
(My own estimate of the length of the tail — to about 23 m,, as is derived
below — leads to a horizontal trace speed at the tip of the tail equal to
about o0.,/8. This corresponds closely to Holloway's 1980 statement, that
oceanic internal waves are too energetic by two orders of magnitude to be
considered weak waves.)

These considerations reveal that, even if one wanted to pursue an instability
theory of saturation, one would in principle be forced to pursue that theory
nonlinearly, specifically with the effects of the advective nonlinearity V.V
being taken into account. As I shall argue below, the effects of this
nonlinearity seem to be adequate in themselves to shape the tail into
something like an m™ form, at least if there is a dissipative process acting
strongly at large m. This (secondary) process could be instability, if the
tail extends to large enough m such that o,2 attains the critical value,
whatever that may be, but it could alternatively be molecular diffusion (as I
shall argue it is, above the turbopause) or the nonlinear, wave—wave diffusion
examined by Weinstock (1990).

The analysis of H9la includes a derivation of the probabilities of insipient
instability (i.e., the probabilities of finding Ri < 1/4 for dynamic
instability and < 0 for static instability) for an azimuthally isotropic,
Gaussian distribution of wave—induced winds. It shows that each probability
increases continuously from O as o, increases from 0 and reaches appreciable
levels (of order 0.1) for o, of order unity, thereby confirming the criteria
adopted by DG86 and SFV87 for their critical shears, and providing a firm base
for future application.

3. DEVELOPMENT OF DOPPLER-SPREAD THEORY

The intent of this section is to make an analytic estimate, necessarily crude,
of the consequences of the advective nonlinearity in a spectrum of waves such
as the middle atmosphere supports. For the purpose, I assume an atmosphere
that is wind-free and nearly isothermal in the absence of the waves,
gravitationally stratified and nonrotating. I further assume a power spectral
density of x—component (u) and y-component (v) of wave—induced wind given by

02 =(k/h)2 0¥k, 1,m = cos?a O%a,h,m (6)

and

02 = (1/h)? 0¥k, 1,m = sin®a Q%a,h,m (7
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respectively, where « =marc cos k/h= arc sin 1/h is the azimuth of wave
propagation and Q? is the power spectral density of the wave-—induced wind in
the azimuth of the wave'’s own propagation. The notation within braces is
intended to indicate that Q2 may be thought of as a function of horizontal-
component wavenumbers k and 1, or azimuth « and horizontal wavenumber h, in
addition to vertical wavenumber m.

The spectral components are taken to be randomly phased relative to one
another, and the spectrum is taken to be broad, in which case the Central
Limit Theorem establishes that the horizontal wind components will have a
Gaussian distribution: the probability of finding u between u and u + du is
given by

P {du= —1 _ expl-u?/2Vv,} du, (8)
! J2RV, J

where V, is the variance of u, given by

v, = o’ =ff (k/h)2 02k, 1,m dk.dl.dm

=fffcosza O0*a,h,m h de.dh.dm N

and likewise for the y-component. (The spectrum is taken to contain only
upgoing waves — that is, waves with positive m, under present convention —
and the integration over m is correspondingly restricted.) For convenience, I
shall assume an azimuthally isotropic spectrum, so that Q? is independent of
azimuth and the integration over « may be conducted trivially. Then each of
the two variances is equal to half the total (horizontal) wind variance o.%:

2V, = 2V, = 0% = Zﬂfoz{h,m}hdh.dm (10)
and
Pt = P} = —2— exp {~u?/o3. (11)
O,

Similarly for P,{v).

I now assume that a spectrum of the type assumed is incident on the middle
atmosphere from below, where the waves can be taken to be non—interacting —
i.e., linear wave theory applies. The Q? of the spectrum there will be
denoted by Q;2, the "i" indicating "initial". The task now is to determine
how this spectrum will alter with height, as wave amplitude increases and the
advective nonlinearity comes into play.

For the purpose, I consider a small packet of waves in the middle atmosphere

having wavenumbers in the bin Ak.Al.Am at {(k,l1,m). This is not to be
construed as a physical wave packet, engendered by some particular source, but
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rather just a mathematical construct deriving from the waves that happen to be
at hand. I take it to be propagating through the irregular wind system
provided by the full wave spectrum, but I take the effect of that wind system
to be introduced only by the horizontal component of wind and to be treatable,
in its statistical consequences, as if that component were a "background"
wind, unvarying in time or horizontal position. These restrictions will limit
the accuracy and to some extent the validity of the form of subsequent
relations, to be sure, but it is to be hoped that they do not invalidate the
general (statistical) tendencies that will be revealed.

Given these assumptions, the chosen wave packet will retain its « and h
unchanged; I shall take « = 0 for convenience at the start. In the underlying
region, the packet’s intrinsic frequency will be w; and its vertical
wavenumber will be

m; = Nk/w (12)

from (1). At some height of interest, however, where the wave—induced wind
field has x-component u, the intrinsic frequency will be Doppler shifted to

®w = w; - ku (13)
and the dispersion relation (1) then establishes that

m* =m;* - u/N,. (14)

That is to say, the spectral energy located in the bin Ak.Al.Am at {k,0,m) in
wavenumber space, at a point in physical space—time where the x—component of
the total perturbation wind is u, will have arrived there as a consequence of
Doppler shifting from the vicinity of {k,0,m;} with m; defined by (14).
Though (13) permits w and w; to differ in sign, such an occurrence would
indicate Doppler shifting through the critical condition w = 0 at which
extreme dissipation is anticipated; it will not be admitted in the present
work. Correspondingly, with m; restricted to positive values, m will be
likewise restricted.

It is known from previous work (e.g., Hines and Reddy 1967) that (u’)2 m!
must be height-invariant as a single mode (with perturbation wind u', vertical
wavenumber m) propagates through a background wind system, if reflections are
ignored (as in a WKBJ treatment). I take the spectral analogue of that
conclusion to be that Q2 m™! dm must be invariant under Doppler shifting in
the present case. (The standard exponential growth with height has not been
taken into account here. It applies uniformly across the whole spectrum and
so plays no explicit part in deforming the spectrum. It will be reintroduced
later.) Thus, were the u of (14) the only u ever encountered, we would find
that

02m™t dm = QF m;* dm, | (15)

or

02 = 07 mm;* (dm;/dm) = 0 m™* m,, (16
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where Q;2 is the Q? of the initial spectrum and the derivative has been taken
from (13) subject to u being held constant.

In fact, one finds a whole range of u's at a given point of space in the
course of time; (16) is found only with a certain probability, given by
Py{u} du for a small range du about u. This small range corresponds to a
range dm; about the initial m; such that

du = |du/dm;| dm; = N, m;> dm,, n

in which the derivative has been taken from (14) subject to m being held
constant. In combination with (11) and (16), and with integration over all
contributing dm;, this implies that the Q? appropriate to {k,0,m) is given by

02 k,o,m = f 0f k,0,m} m* mj* N, PN, (m;* - m 1)} dm;.  (18)

In the present case of an azimuthally isotropic spectrum of waves, this may be
rewritten in terms of Q%(h,m;) and Q;%{h,m;}, with P, the corresponding
isotropic probability, thus:

o*h,m = fo{h,mi}—\/TN—‘i— exp -{N2 (m;*-m™)2/0%) dm,. %
T 0.mm,

If the vertical wavenumbers are nondimensionalized via multiplication by
o1/N,, the transformation may be rewritten as

2 2 o~ (Mi-M)?
o#h,M = fQi{h,Ml-}[ =t 1 dm,, (20)
n MMy |

where

M= mo /N, (21)

and similarly for M;.

The factor in brackets in (20) may be thought of as a transfer function,
leading from the initial to the observable spectrum in the scaled units. It
is independent of h as well as azimuth, and so applies equally to the one-
dimensional (in m) spectrum obtained by integration over h, the spectrum that
exhibits an approximately m™ portion in the middle atmosphere. 1Its
consequences are indicated here with the aid of Figures 1 and 2.

Figure 1 exhibits the transfer function itself, as a function of M, for a
number of values of M; in a range about M; = 1 (for which w;/h = 0;). This
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function may be thought of as the statistically observable spectrum Qs
derived from a delta—function input spectrum at M; = My, this position being
marked by the abscissa of the heavy dot on each curve in turn. This
observable spectrum is seen to be broadened — or Doppler spread —, with its
peak moving to an M value somewhat lower than M; and a tail extending to
higher M. From the form of (20), it is apparent that this tail asymptotes to
the form M™!, and yet, for M; values somewhat smaller than 1, it exhibits a
markedly stronger variation before reaching the asymptotic form. Indeed, for
M; = 1/2, it exhibits something close to an M3 form over at least a decade in
M, which would be consistent with what we know of the actually observed

spectra. (The percentages associated with the individual curves will be
explained shortly.)

Figure 2 exhibits the convolution Q.2 of the transfer function with a step-
function input — with an input spectrum that is flat (white noise) up to some
cutoff value M, (labeled and with abscissa marked by the heavy dot on each
curve in turn) and is then cut off to zero. Again a tail is found, with the

M3 form occurring again and extending over at least a decade in M, now for M,
=1/2.

2
tog IOOC

T 1.0
log 028 h ’-

n—

\\ M

-
-
-

Figure 1 Figure 2 Figure 3

It would seem from these examples that the advective nonlinearity has a
propensity for producing a semi-universal spectrum of the observed form, at
least if some mechanism exists that would prevent incident waves having M; >
1/2 or 1 playing any substantial role in the observations. I suggest that the
required mechanism is to be found in the approach of such waves to critical-
layer interactions at and below the height of observation. As an
approximation, I assume that waves with vertical wavenumber exceeding some
maximum value m, (scaled alternatively to M,) are simply obliterated.
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The probability of a wave with incident wavenumber M; having a local
wavenumber less than m,, and so escaping obliteration, is given by

P, =0.5+ 0.5 erf \N,/m0,-N,/m 01,

(22)
= 0.5 + 0.5 erf M;*-M,"}

adapted from (2.22) of H91b, erf being the error function,

1
erf(x) = 2nm Zf"eqqu.

This probability is depicted by the continuous curve in Figure 3 for the case
My = 11.5, which will be justified below, although the critical-level case

My = « is not much different. (The percentages marked on Figure 1 represent
the complementary probability, namely that waves of the respective M; values
will indeed be obliterated.)

This Pg curve applies only locally, at the height currently of interest. To
have survived to this height, the waves must have avoided obliteration at all
lower levels. The probability of this successful escape is roughly the
product of the probabilities of escape through each of the statistically
independent underlying slabs of atmosphere. I take the depth of each such
slab to be A./2, where A, = 2x/m_ is the cutoff vertical wavelength of the
incident wave spectrum — the transition wavelength between the small-m body
and the large-m tail spectra — and I number the underlying slabs with the
index n, counting downward from the current height of interest. I also take
or to vary with height as exp {z/4H} and myo, to be height-independent (see
below). The probability of successful escape through all underlying slabs is
then the product of individual-layer factors given by (22) for each in turn:

(0.5+0.5 erf [N, exp {nA ./8H/m;0, - N,/m0 ), 23
1

foam ]

I -

n

where n, is the number of slabs between the height of observation and the
source height. The II curve of Figure 3 represents this probability for M, =
11.5 again, with the use of A, = 1.07 km and H = 7 km, which are
representative of the middle stratosphere (ca. 25 km height), and n. = 30,
corresponding to a source 16 km below. This curve clearly exhibits a sharp
cutoff that might be approximated by a step function sited at some M, in the
range 0.5 — 1, as was wanted. (This calculation and these curves are newly
presented here; they are not contained in H91b but are now submitted for
publication as Part IV of the in—press series.)

A finite My, such as I have adopted, can be imposed by molecular diffusion
(viscosity and heat conduction), and in the next section I take it to be so
imposed above the turbopause. Below the turbopause, where (by definition)
turbulence is to be found, linear instability might well provide the relevant
mechanism. But it would be the mechanism, now, for limiting the length of the
tail, not for determining the tail’s form or intensity. Examination of this
possibility in any detail analytically requires an analytic model spectrum.
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In H91b, following VanZandt and Fritts (1989), I adopt the "modified
Desaubies" spectral form

0m = km/ (1+lm/mJ) , (24)

where m, is a characteristic vertical wavenumber corresponding closely to m,
in Section 2, in that it marks the onset of the tail portion of the spectrum.
The m, notation is justified because this m, is analogous also to the cutoff
of incident wavenumbers in Figure 2, where too the tail may be said to begin.
I take as my choice m, = N /20, (or M, = 1/2, in Figure 2), on the empirical
grounds that it seems to represent as close to observed reality as a step-
function approach to the cutoff is likely to come, but with legitimacy being
provided by the II curve of Figure 3. This choice combines with (24), from
which 0,2 can be inferred by integration, to establish the value of K as
N,2/mm.*. (The integral is only weakly dependent on the upper limit of
integration m,, provided that my >> m, as I take it to be, and so integration
to infinity is appropriate.) Then (24) becomes

o¥m = N2m/mmi (1 + [m/m_]]*%), (25)

which approximates to N 2/am® in its large-m tail. The intensity of this tail
is fully consistent with observations (cf. N,2/2m® and N, ?/6m® cited in Section
2), and it was derived with no assumption being needed as to the critical
value of shear or even the existence of instability (as the linear—instability
derivations required). Those assumptions are replaced here by the assumption
of N,/20, as an effective cutoff of incident wavenumbers —— an assumption
justified by the continuous curve of Figure 3, at least for the middle
stratosphere.

I would argue, further, that in the limit of small m the waves should be
unaffected by dissipation or Doppler spreading and hence the power spectral
density in that limit should grow with height as exp z/H. This assumption,
imposed upon (25), leads directly to

m, = m, exp -z/4H (26)

[}

and so also to

o, = (N,/2m,) exp z/4H, (27)

with m, a constant that would be determined by the initial energy sources,
specifically those producing small m;. These height variations are in accord
with observations as I know them; specifically, the wind variance now grows
with height at half the rate appropriate to a nonsaturating, nondissipating
spectrum, as it was said to do observationally in Section 1.

The (nondimensionalized) shear spectrum can be obtained from (25) via
multiplication by m?/N,2, and then integrated to obtain the shear variance o,2.

o

The integral is logarithmically divergent and must be terminated at some upper
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bound m,, beyond which the spectrum is of turbulence, not of waves. Then

o = (4m)™* 1n {1+[my/m]*) = n"'1ln imy/m} (28)

where m, >> m, has been assumed. Now, if instability is to determine m,, as
being my;... Say, this shear variance must equal the critical value Oscrit®
for the marginal maintenance of instability, whatever that may be. Hence,

_ 2 29
My, ., = M, exp {M05rid. (29)

If I take o0g,;, to be 1, as suggested in Section 2, then (29) yields

Myinee/M. = €Xp 7 = 23: the tail extends over a 23-fold range in m. This is
the value that leads to the Py curve in Figure 3. The result my,../m. = 23 is
consistent with the observations known to me, and specifically with those of
Dewan et al. (1984), though perhaps for the unfortunate reason that the data
do not extend reliably over a greater range. It is possible that (29) would
be used best in the opposite direction, as a means of determining Ogerit?
empirically from observed values of my;ng./m..

In H91b, an appendix establishes that inclusion of the Coriolis force
associated with Earth's rotation leads to a tail spectrum that asymptotes to
m2 (rather than m™? as in (19)). A second appendix outlines a failed attempt
to reach an m™® form by the further inclusion of the wave—induced vertical
wind field in the advective nonlinearity, and a third appendix deals briefly
with azimuthally anisotropic conditions. I consider my failure to produce an
m> asymptotic form to be serious only from one point of view, to be discussed
in Section 5; specifically, I do not consider it to be serious for purposes of
comparison with data. This is because I have obtained here, at least for the
cases M; = 1/2 (Figure 1) and M, = 1/2 (Figure 2), the wanted m form as a
transitional form bridging the gap between low wavenumbers, which are
unaffected by Doppler spreading, and high wavenumbers, which will be subject
to dissipative processes and so will (probably) be altered from whatever
asymptotic form they might otherwise have achieved. So far as I am aware,
that is all that the observations demand.

4. FORMATION OF THE TURBOPAUSE

Molecular diffusion increases with height through the atmosphere and imposes
an ultimate cutoff of the wave spectrum. I suggest that turbulence terminates
— the turbopause is formed — when the cutoff imposed in this manner, which
occurs at some m, given roughly by

1
3 30
My, = (N h/2mn) 3, G0

limits the length of the tail to a value just less than that required for the
occurrence of instability. (See H9lc; n is the molecular kinematic
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viscosity.) Equality of my,, and my,.. at the turbopause then requires there
that

2 -1 .{ -2/3 4-1/3 '%} (31)
Oscrit = ® ' 1n 1204 N, AR n ’

A, = 2r h™! being a (representative) horizontal wavelength. One would like to
solve this equation for the height at which it is satisfied, thereby
determining the height of the turbopause, but og.;.? is as yet unknown to the
accuracy required for a meaningful conclusion. Instead, I use it the other
way around, as a means of estimating Ogcrit?-

The turbopause is typically taken to lie at a height of 100 — 110 km, where
n = 100 m®/s and N, = 0.02 s!. If I adopt a representative A, = 50 km and a
representative o, = 30 m/s, then (28) yields og. ;.2 = 0.497, almost exactly
the value chosen by SFV87. This seems to be a perfectly reasonable value of
o, to accept as a condition for the termination of instability, particularly
since the wave spectrum might well have been narrowed to a nearly
monochromatic wave by the time turbopausal heights are reached. The same

estimates combine with the modified Desaubies spectrum (25) to imply a
spectral peak (which occurs at m, = 374 m, = 0.76 m,) at a vertical
wavelength of A, = 25 km. Such a value is frequently reported as dominating
the spectrum at turbopausal heights, often with the (possibly false)
identification of the observed wave as the diurnal 1,1 tidal mode. The
maximum m, m,, corresponds to a vertical wavelength of about 4 km, which is
consistent with observations.

With the model spectrum taken to be applicable down to the tropopause, it can
now be employed to estimate the wave spectrum in the middle stratosphere,
where it can be compared with other data. There, both A, and o; will be
decreased by the fourth root of the atmospheric density ratio, as gi&en by
(26) and (27), which root is approximately 18, yielding A, = 1.4 km and op =
1.7 m/s. If my,. ! is similarly scaled, it yields a transition from waves to
turbulence at a vertical wavelength of about 220 m, whereas if o043, is raised
to 1 before the scaling is done it yields a vertical wavelength of 46 m for
the transition. The observations of Dewan et al. (1984), for example, are
said to exhibit a tail with log-~log slope of -3.0 extending from about 1 km
down to about 200 m in vertical wavelength, with some curvature (consistent
with that in Figure 1 above) at smaller wavelengths, down to about 40 m. The
observations are said to be unreliable outside this range, but the theory is
clearly compatible with the reliable observations. Moreover, the mean wind
power spectral density at a vertical wavelength of 1 km was found to be 3.42
(m/s)2/(c/m), which converts to present units as giving a tail spectrum of
0.306 N,2/m®. This is to be compared with N,2/am® = 0.318 N,2/m® in the present
theoretical model.

It should be specially noted that, above the turbopause, molecular diffusion
simply replaces instability as the mechanism of dissipation, but the Doppler-
spread theory continues on, otherwise unaffected in principle (until the
spectrum becomes so narrow that a statistical treatment is inappropriate).
There is, however, one side-effect that comes into play. At these great
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heights, the statistically independent slabs of atmosphere are much thicker,
so there will be fewer of them in the height range 4H over which o, decreases
substantially (on moving downward from slab to slab). Consequently, the
product probability II in (23) is unlikely to be decreased from Pz in (22) by
anything like the degree illustrated by the transition from the one curve to
the other in Figure 3. The cutoff of incident waves will then not be as
sharp: a step—function approximation may be inappropriate and the spectral
form of the tail might be more like one of the forms depicted for values of M.
equal to or greater than 1 in Figure 2.

5. DISCUSSION

The present analysis has adopted a necessarily approximate approach to the
estimation of the effects of Doppler spreading in the middle—atmosphere
spectrum of gravity waves. Despite its failings, however, it seems to have
shown that these effects are important — are even necessary to include in any
alternative theory of the spectral tail — and on their own are of a nature
that accords with observation, without the necessity for an alternative
theory.

The importance of the advective nonlinearity that gives this Doppler spreading
has been recognized in oceanographic studies for more than a decade now (e.g.,
reviews by Holloway 1980, 1981 and Munk 1981), and some progress has been made
in numerical studies that incorporate its effects (e.g., Flatte et al. 1985).
The present analysis might well be carried over to oceanographic studies, and
perhaps improved, to account for the approximately m™ spectral form in
velocity (or m! spectral form in shear) that is found there over a middle
range of vertical wavenumbers.

In making the transition, one would have to include both upgoing and downgoing
waves, but that change will be of minimal operational consequence. One would
also have to drop the exponential growth of wave amplitude with height, a
change that would have at least two important consequences, one operational
and one conceptual.

Operationally, the step that led from the continuous to the broken curve of
Figure 3 will not have the exponential change with height that is allowed for
in (23). Instead, the full ocean depth D will act uniformly to limit the
probability of escape from obliteration, and that depth will be measured in
some height-independent characteristic wavelength A, (~ 10 m) to give a very
large number of statistically independent slabs. The relevant probability for
escape from obliteration will be given by a modified form of (23) in which all
factors are identical and the required probability becomes simply the
probability of escape from obliteration in one slab raised to the power 4D/X.,
a very large number and one that will produce an even closer approach to a
step—function form than that given by the II curve in Figure 3. (The relevant
power will be even greater than 4D/)\., if it is held that the borderline waves
can propagate up and down more than once before being obliterated. The
relevant power may, moreover, change somewhat with D from case to case and so
perhaps produce cutoffs and spectral slopes that similarly change somewhat,
observationally. These questions open the way to further investigation.)
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Conceptually, the physical growth of wave amplitude with height that occurs in
the atmosphere must be replaced, in oceanographic work, by the imagined growth
that would have occurred, had the spectrum of waves been "turned on" with a
gradually increasing intensity, a gradually increasing nonlinearity. Or,
alternatively, it might be replaced simply by a straightforward calculation of
the steady-state nonlinear result, if such a calculation can be said to be
straightforward.

Happily enough, such a basis for calculation has in fact been laid already by
Allen and Joseph (1989), but it was developed in different terms. That work
adopts (in its Case III) a canonical spectrum of waves as described in a
Lagrangian formulation and evaluates the appearance of the spectrum as it
would be seen in Eulerian coordinates. The waves are fully linear in the
Lagrangian description — their frequencies and wavenumbers lie on the
dispersion—equation surface in 4~space — but are allowed to appear nonlinear
in the Eulerian description, with the nonlinearity arising from the advective
nonlinearity of the Eulerian equations only. That is precisely the transition
that I have attempted to model here, beginning with the initial spectrum from
which nonlinearities were excluded and ending with an observable spectrum in
which the effects of the advective nonlinearity are included (albeit for
reasons of amplitude growth with height, rather than a transition from a
Lagrangian to an Eulerian description).

The Allen and Joseph work reaches (amongst other things) an m™3 form for the
ultimate tail spectrum, a thing I have been unable to do. As noted above,
inclusion of the Coriolis force (which Allen and Joseph included) would have
led me to an m™2 form, but that is not enough. Allen and Joseph automatically
included also the part of the advective nonlinearity that comes from vertical
advection, a thing I have been unable to achieve successfully, and I suppose
my failure is a consequence of my oversimplification of the means of handling
the Doppler shifts. This leaves a missing link in the chain connecting my
work to theirs, but conceptually the two approaches seem identical in the
intended transition they incorporate.

The Allen and Joseph work as developed to date does not give the form of
transition from the small-m body to the large-m tail of the wave spectrum,
which is what my own analysis does succeed in doing, however approximately.
It is this transition, rather than an asymptotic tail (which would in any
event be deformed by dissipative processes), that is seen in the middle
atmosphere, I believe. Perhaps it is this same transition in the oceans, as
well.
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