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ABSTRACT

It appeared some years ago that a number of theoretical and observed features of the
internal wave field can be reconciled with a diapycnal diffusivity of no more than about
10~° m?s~!. This “paradigm” is re-examined here, with particular attention to the
arguments concerning the alleged universality of internal waves in space and time. A key
question concerns the influence of nonlinear interactions on horizontal spreading, but the
simple picture still seems reasonable for the main thermocline. However, there are clearly
significant departures from it in various regions, such as the upper ocean or close to the
sea floor. The influence of a sloping bottom on both diapycnal fluxes and the velocity
boundary condition for low frequency flows is emphasized; some general theoretical results
are presented but there is a need for further observations. Finally, a simple model for the
mixing by, and decay of, an interfacial solitary wave is summarised.

1. INTRODUCTION

In January 1984 I had the pleasure of attending the Third ‘Aha Huliko’a Hawaiian Winter
Workshop on “Internal Gravity Waves and Small-Scale Turbulence”. Figure 1 shows my
attempt then to present a “zeroth order view” of the effect of internal waves on the ocean
interior, summarising and perhaps oversimplifying the theoretical and observational
progress made by many people. Seven years later it seems worthwhile to ask whether this
paradigm should be abandoned or merely qualified.

Section 2 thus briefly reviews and extends the arguments leading to Figure 1, pointing out
their weaknesses, but suggesting that the synthesis may still be appropriate for the main
thermocline. It probably is not relevant, however, near the sea surface or sea floor. The
role of the bottom boundary in determining the spectral shape of the internal wave
spectrum is discussed briefly in Section 3. Diapycnal mixing by shear instability of bottom
reflected internal waves, and the way in which this may control the velocity boundary
condition for low frequency flows, is also reviewed; the need for more observational work
near sloping boundaries is emphasized. Returning to the upper ocean, Section 4 briefly
presents a simple model for the shear-induced decay of an internal solitary wave. Section 5
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Figure 1: Schematic of a zeroth order view of various features of internal waves and turbu-
lence that seem to be consistent with a diapycnal diffusivity of about 10~% m?s~!. (From
Garrett, 1984).

is a personal impression of topics that need to be emphasized in future research.
2. THE PARADIGM

The purpose of Figure 1 was to demonstrate that a number of theoretical and
observational properties of internal gravity waves in the main thermocline are compatible
with a vertical eddy diffusivity there of no more than about 10~° m?s~'. Specifically:

(i) The rate of energy transfer through a typical internal wave spectrum has been
estimated by McComas and Miiller (1981b) using weak interaction theory and by Henyey
et al. (1986) with a theory based on ray tracing. As pointed out by Gregg (1989), the two
theories give essentially the same form E?N? for the functional dependence of the energy
flux on buoyancy frequency N and total internal wave E, but differ by a factor of nearly 7.
Both theories depend on assumptions of limited validity; it remains to be established
whether they are complementary, by applying in different regions of wavenumber-
frequency space, and whether the factor of 7 discrepancy is an artifact of different, but
hidden, assumptions.

The calculations of McComas and Miiller (1981b) have been criticised for violating the
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assumption of weak nonlinearity (Holloway, 1980), but the assumption does seem to be
valid for the regions of the spectrum at low frequency and low vertical wavenumber which,
after all, contain most of the internal wave energy. Thus, provided that these regions are
not affected by back fluxes from the much less energetic regions where the assumption
breaks down, it does seem reasonable to accept the McComas and Miiller (1981b)
estimates of the energy transfer to high wavenumber and ultimately to dissipation €. For
typical spectral levels, and with the increase in potential energy of the basic state being 20
to 25% of € (Osborn, 1980; Oakey, 1982), the McComas and Miiller (1981b) results then
lead to a depth-independent Ky of less than 2 x 10~5 m?s~! ( following Gregg (1989) in
allowing for the energy transfer from low modes by both induced diffusion and parametric
subharmonic instability).

(i) Gregg’s (1989) comparison of direct measurements of € at various locations and depths
led him to adopt a parameterisation for ¢ similar in form to those of McComas and Miiller
(1981b) and Henyey et al. (1986), but a factor of about 3 smaller than obtained by the
former and a factor of 2 more than obtained by the latter. This in turn led to K- v less
than about 5 x 107® m2s™! for typical internal wave energy levels.

(#ii) For Ky ~ 10° m?s™?, with € = 4 to 5Ky N? per unit mass and with an e-folding
depth of 1,300 m for N, the typical vertically integrated internal wave energy level of
about 4,000 Jm~? is dissipated or converted to mean potential energy in about 40 to 50
days. A decay time of this order or even longer is compatible with the rather small
variability in internal wave energy levels in space or time. H, for example, we think of the
internal wave energy level E in an area as being governed by the equation

dE/dt + E[r = F (1)

where 7 is the decay time and F some exterior forcing, then the response to
F = Fy + F coswt is

E =1[R+ R +w?r?)"1/? cosw(t — tg)] (2)

where the time lag % = w™! tan~! wr. This may have some relevance to the finding by
Briscoe and Weller (1984) and Briscoe (1984) of a lag of 2 to 3 months between internal
wave energy levels and seasonal variations in wind stress. Taking to = 75 days and

w = 27 /365 days implies 7 = 200 days, somewhat longer than the 50 days or so (requiring
to = 40 days) corresponding to Kv = 10~% m?s~! but not much more than the 100 days
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(requiring to = 60 days) or more associated with Gregg’s (1989) value of less than
5 x 107 m?s™! for Kv.

Equation (2) also implies that the variation of E about its mean should be less than the
variation of the forcing by a factor (1 + wzr’)“/ 2 For T = 50,100,200 days this factor is
0.76, 0.52, 0.28. Briscoe’s (1984) North Atlantic data (his Figures 6b and 8) do suggest
that the internal wave energy has less variation than the monthly average wind stress
which is assumed to be the driving mechanism; a factor of about 0.4 seems appropriate,
corresponding to a decay time of a bit more than 100 days.

Any further discussion of this should be regarded as over-interpretation, but it does seem
possible that the time lag and variability of the internal wave energy level is associated
with a decay time of about 100 days. Briscoe (1984) suggested that the lag represents the
time for wind-forced mesoscale eddies to pass on their energy to the internal wave field,
but has later also recognised the connection with the decay time of the internal wave
spectrum (Mel Briscoe, personal communication) .

Tt has also been suggested in the past that the tendency for internal wave energy levels to
be similar from place to place, in spite of spatially variable forcing, is a consequence of the
rather long decay time which permits significant horizontal spreading of a patch of high
energy. An important unpublished paper by Cox and Johnson (1978) discussed the way in
which the spread of a patch of high internal wave energy is a diffusive process, with a
horizontal diffusivity Kz proportional to the time for horizontal anisotropy to be removed
by wave-wave interactions. An appropriate model in this situation, for forcing that varies
in strength with wavenumber [ in the north-south direction y, is

Kyd*E|dy?> — E[T + Fo + Ficosly = 0, (3)

with 7 the internal wave decay time as before. The response is

E=rt{Fo+(1+ Kurl®)™ 1 F cosly] (4)

so that variations in forcing are smeared out if K gt > 1.

For Cox and Johnson’s (1978) estimate of 1.4 x 10* m?s™! for K, taking 7 = 100 days

and with { = 1.9 x 10~ m™!, as for the 30° north-south wavelength of wind stress in the
Atlantic (Briscoe, 1984), the factor (1 + Kg7i*)™ = 0.70. Thus significant variations in

E, as reported by Briscoe (1984), should be observed, but this conclusion is highly
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sensitive to Ky and hence to the time for horizontal anisotropy to be removed. Cox and
Johnson (1978) took this to be 72 hours for the frequency of 1.3f contributing the most to
their integral expression for Kz, but further analysis is long overdue.

It is also quite likely that it is dangerous to lump together all the frequencies in the
inertio-internal wave spectrum. The seasonal variations reported by Briscoe and Weller
(1984) and Briscoe (1984) were for high frequency internal waves (either w > 1.15f or
w > 0.1 cph in different analyses); the inertial band energy at the LOTUS site discussed
by Briscoe and Weller (1984) showed a more complicated time dependence, with
occasional bursts of high energy.

Spatially, Fu (1981) found that the inertial peak in the abyssal North Atlantic over
smooth topography scaled as if it had originated as super-inertial energy at a lower
latitude (though elsewhere it had a component due to local generation). This seems to
imply that the wave does not lose much of its energy as it travels to its turning latitude, is
internally reflected and travels back equatorward again. Taking y northward, with y = 0
at the latitude where f = w, then f = w + By with 8 = wR™! cot ¢, R being the earth’s
radius and ¢ the latitude. A wave of frequency w and horizontal wave number then
proceeds towards its turning latitude at a speed 9w /&I, where the dispersion relation near
the inertial frequency f is approximately

@ = PV = (B + B)V2ej, ¢ = Nob(jm)™ (5)
for modenumber j in an ocean with a buoyancy frequency that is Ny near the surface and

decreases exponentially downwards with a scale depth b (e.g. Garrett and Munk, 1972).
Hence, within the limits of ray tracing,

dy/dt = 8w/dl = (28/w)'/* ¢;(~y + o) '/* (6)
where yo = —c2k?(2wp3)™? defines the turning latitude for east-west wavenumber k..

Assuming that this WKB approximation is adequate to estimate the travel time T from
some position —~Y to —yo, then

T = 2R(Y - yo) tan ¢]'/?¢;2. (1)

If we take Y — yo = 1,000 km, ¢ = 45°, Ng = 5.2 x 10~3 s~! and b = 1,300 m, then
T = 205 days. This suggests that any processes that would tend to remove the inertial
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peak in the spectrum cannot do so in less than several tens of days.

On the other hand, as also recognised by Eric Kunze (personal communication), the
latitudinal scaling of spectra is a two~way process; perhaps some of the energy at
frequencies above f originates as inertial energy at a more poleward location. In fact, the
higher-than-WKB inertial peak found by Fu (1981)in some locations suggests that the
extra energy must be lost rather quickly.

To summarise this discussion:

(a) The temporal variability of the typical high frequency internal wave field suggests a
decay time of order 100 days, with Ky no more than 10~° m?s™1.

(b) Spatial variability of annual average high frequency energy levels can occur even if
the decay time of the energy is 100 days or so, though this conclusion is strongly
dependent on the poorly-known rate at which horizontal anisotropy is removed from
a spectrum.

(c) To the extent to which the inertial peak is a latitudinal turning point effect, it also
seems to imply a lifetime of several tens of days. However, regions with more
elevated peaks must lose their energy in a time less than this.

(iv) The last main feature of Figure 1 concerns the kinematics of breaking waves. Garrett
(1984) argued that typically observed shear spectra in the ocean would lead to shear
instability and overturning on a vertical scale of order 1 m (as typically observed; e.g.
Gregg, 1989) and that, if mixing events occur no more frequently than shear maxima, then
again Ky is no more than about 10~% m?s™!. These arguments seem as valid now as they
did in 1984, and it does seem appropriate to point out that the estimate of the vertical
scale was based on integral properties of the whole shear spectrum rather than on the
vertical wavenumber of some particular kink in the spectrum!

In conclusion, to the extent to which Figure 1 represents a paradigm, it still seems
reasonably valid for the ocean interior away from the surface or bottom topography where
bursts of inertial energy may lead to a local increase in Ky . As before, though, it largely
remains as a reminder of some of the different conceptual elements which need to be
considered in developing any unified picture of the mixing produced by internal waves. It
must also be remembered that processes other than internal wave breaking can lead to
diapycnal mixing,.
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3. THE ROLE OF THE BOTTOM BOUNDARY
3.1 Effect on the Spectral Shape.

Most discussions of the internal wave wavenumber-frequency spectrum assume that it is
determined by some combination of generation (most likely at the sea surface by wind)
and nonlinear interaction in the ocean interior. Calculations by Eriksen (1982),
Rubenstein (1988), Garrett and Gilbert (1988) and Xu (1990), however, show that
reflection off bottom topography can scatter energy to higher wavenumber (though the
frequency of each wave is unchanged). Thus waves which can reach the sea floor in a time
short compared with their interaction time may have their energy scattered to higher
wavenumbers, at the same frequency, sooner than they lose energy to other frequencies
and wavenumbers by nonlinear interactions.

The vertical component of the group velocity of a wave of frequency w and vertical
wavenumber m is

= (§r=4) (o) ®

~ (“—"f;;mﬁ) forwg N (9)

with m ~ jr N (bNo)™! in an ocean with an exponential N profile of scale height b (Munk,
1981), where j is the mode number. If b is significantly less than the ocean depth, the
vertical travel time of waves with frequency less than N at the bottom is then

Twj(w? — f2)71, or 7jw~! away from f.

Now McComas and Miiller (1981a, b) showed that, for a typical internal wave spectrum,
the time scale for parametric subharmonic instability to drain energy from low modes with
w > 2f is given by (0.27Em.mN~2)"1w=! where m, is the vertical wavenumber
bandwidth. Taking m = jxN(bNog)~1, m. = jurN(bNo)™!, ju =3, No = 5x 1073 51,
b=1300 m and E = 27 x 10~°b? No N, this time scale becomes 2 x 103(No/N)j~1w™1.
Ignoring the depth dependence here by taking N = Np, we see that this interaction time is
greater than the vertical travel time mjw=1 if j < 25.

Thus for the energetic low modes at frequencies greater than 2f, interactions with bottom
topography might be as significant as interactions with other waves in the water column.
Conceivably the tendency for non-inertial waves to have a less red vertical wavenumber
spectrum than inertial waves (Tom Sanford, this volume) may reflect this, although such a
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Figure 2: Definition sketch for mixing near a sloping boundary.

tendency may also be a consequence of nonlinear wave interactions (McComas and Miiller,
1981a).

3.2 Mixing by Internal Waves Breaking Near a Slope

Figure 2 presents a schematic of a plane bottom slope at which internal waves are
reflected, mainly into shorter vertical wavelengths with higher energy (e.g. Eriksen, 1982).
This may well lead to shear instability and mixing close to the boundary (Eriksen, 1985;
Garrett and Gilbert, 1988), though less so in concave regions (Gilbert and Garrett, 1989).
It is assumed that the subsequent eddy fluxes of momentum and buoyancy can be
represented by eddy viscosity and diffusivity profiles »(z), (z) as functions of the
bottom-normal coordinate z. (This does not assume that a mixing length theory is valid;
v and K are the eddy fluxes divided by the mean gradients). The mean buoyancy B(z) is
reduced near the boundary by the mixing, but 8B/8z — N2 cosf as z — oo with N 2 the
constant interior stratification. In the upslope direction 8B/8y = N?sin 8 for all z as the
problem is assumed independent of y to lowest order.

The physics and mathematics of this boundary mixing problem are discussed by Phillips
et al. (1986), Thorpe (1987) and Garrett (1990) amongst others. Here I wish merely to
draw attention to some key factors that suggest the need and opportunities for
observational work in this region.

Garrett (1990) showed that the vertical buoyancy flux is the value Js° w(2)N2dz/sin 6
that it would take if the stratification was unchanged by the mixing, multiplied by an
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“effectiveness”

I= / n(z)[sm o+(1‘;’,f/az 20] dz / / xdz (10)

This is 1if B/3z = N2 cos 6 throughout the boundary layer but is reduced if

0B [3z < N2 cosf. Due to secondary circulation the reduction factor in the second term
in (10) is the square of what it would be due to reduced stratification alone. Now if v, Ko
are the eddy coefficients close to the boundary, then 8B /0z is very small over a thickness
of order hyjxeq Where

hmisea = (L + 000) 1y

= hExman(1 + § Pr)_1/4' (12)

Here hgxman = (vo/f)Y/? is an Ekman depth, § = N?5in?/f? is the Burger number
based on the ocean interior stratification and the bottom slope and Pr = 1y /K is the
eddy Prandtl number close to the boundary.

If significant mixing dies away outside a boundary layer of thickness approximately
Prixed, then the boundary mixing effectiveness from (10) is small since dB/dz is small
where & is large and vice versa. If, however, vigorous mixing extends well into the region
above hpixed, where buoyancy driven flows can restore the stratification, then I can be
significant. This may be the case for internal wave breaking. The stratification is, of
course, tied to the values of v(2), k(z). Garrett (1991) shows that if v(2), K(z) fall off to
very small values over a distance much greater than Pmixed, but assuming

v/k = Pr =constant for simplicity, then, for z2hpixed,

(13)

0B/8z ~ N? cosO( S Pr )

1+85 Pr

The nature of this region is that both the thermal wind equation for the along-slope flow
and an advective (upslope)/diffusive (bottom-normal) balance for buoyancy are satisfied.
For this solution, (10) gives

S Pr \?
= () 9
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so that the mixing is particularly effective if § Pr is not small.
3.3 The Alongslope Flow

Steady state boundary mixing theories also lead to formulae for the alongslope mean flow
U(z). For arbitrary profiles of ¥(2), &(z) it can be shown (Garrett, 1990) that

U(z) = /0 * f cotO[keo — k(0B [02)/N? cos 8]y~ dz (15)

where Koo is the (small) value of k as z — co. The bottom-normal buoyancy gradient

OB /dz, which tends to N 2 cosf as z — 0, is, of course, part of the solution. For

Pr = v(2)/k(z) = constant and with mixing, as before, extending over a distance H from
the boundary much greater than Apixed, (15) shows that as z — o0, U (2) — Us given by

M
Uoo >~ —fH cot @ (m) . (16)

As argued by MacCready and Rhines (1991) and Garrett (1991), it is this
downwelling-favourable alongslope flow that becomes the boundary condition for the
ocean interior velocity and very slowly diffuses into the interior.

These steady state solutions for the density stratification, mixing effectiveness and
alongslope flow will undoubtedly turn out to be a gross oversimplification of events
occurring in the real ocean. They do, however, draw attention to the need for
measurements of eddy momentum fluxes as well as eddy buoyancy fluxes near the sloping
sea floor. An observational program on a sloping bottom, using acoustic doppler current
profilers to measure Reynold’s stresses with the techniques described by Plueddemann
(1987) and Lohrmann et al. (1990), could be very rewarding.

4. A SIMPLE MODEL FOR THE DECAY OF AN INTERFACIAL SOLITARY WAVE

Much of the study of internal waves has been concerned with their generation, interaction
and dissipation in the open ocean. They also exist, however, in the shallower water of
continental shelves, where they may have very different wavenumber/frequency spectra
and have significantly different behaviour and effects.

In particular, near-surface solitary waves, usually originating from nonlinear internal tides
at the shelf break, are a rather common feature of stratified continental shelf waters and
also occur in the deep ocean (e.g. Ostrovsky and Stepanyants, 1989). In any location they
provide a possible mechanism for vertical mixing.
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Figure 3: Schematic of an internal solitary wave in a two layer ocean with a thin interface.

In this section I summarise the simple criteria for mixing, and associated solitary wave
decay, derived by Bogucki and Garrett (1991) for a fluid with two homogeneous layers
separated by a thin interface. The situation envisaged is sketched in Figure 3; layers with
thicknesses Hy, H; and densities p — Ap and p are separated by a thin interface of
thickness A (& Hy, Hz). A solitary wave of amplitude a generates currents uy, ug in the
two layers.

In a frame of reference moving with the wave speed ¢, continuity in the two layers requires
(C - ul)(Hl + a) = CH], (C - U2)(H2 - a) = CH2 (17)

u =ca(H1+a)™!, up=—ca(H; —a)? (18)

if the horizontal length scale L of the solitary wave is much greater than H; and Hy. The

Richardson number in the interface is then

Ri = g'h(w —w)™?, ¢ =gAp/p (19)
g'h(H1 + a)2(H2 - a)zc‘z(Hl + Hg)_za_z. (20)

In the simplest situation, where H; > H; and a < Hy, we have ¢? ~ ¢’H; and

Ri = hH,/a’. (21)
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Figure 4: The internal solitary wave is progressing in the z direction and triggers shear
instability at some point on the forward face. The interface quickly thickens and keeps
thickening until the wave’s maximum displacement is reached.

Hence R: < % for instability requires

a > 2(hHy )2 (22)

This simple criterion for instability, that the solitary wave amplitude should be greater
than twice the geometric mean of upper layer and interface thicknesses, also applies if we
relax the assumption that L > H,. In that case, as for “Benjamin-Ono” solitons (e.g.
Ono, 1975) which require L < Hz, we still have u; < u; and (22) still applies subject to
a € H,; as before.

For solitary waves of amplitude greater than 2(hH;)!/? it seems plausible that shear
instability would occur on the forward face as soon as the interfacial Richardson number
drops below some critical value Ri. which is presumably -‘4- The growth and collapse of
Kelvin-Helmholtz billows, and restratification of the fluid into a thicker interface layer,
may all occur in a time scale given by some multiple of N —1 where N is the buoyancy
frequency in the interface and is given by N? = g’/h. Hence N~ = (hH1)'/*(¢' Hi )12,
This is the time taken by the wave to travel a distance (hH;)'/? which is very much less
than L, indicating that the mixing proceeds rapidly compared with the passage time of
the wave. Hence one might expect that, after the initial instability, the interface thickens
rapidly to achieve some interfacial Richardson number Ri; (=~ 0.4 according to Thorpe
(1972)). As sketched in Figure 4, the interface might then continue to grow until the wave
crest passes, after which it remains at the same thickness given by

ht = R‘lt az/Hl. (23)

This thickening of the interface, from an initial thickness of ho, has an associated increase
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in potential energy of ¢'p(h — h})/24. If we assume that this energy is a fraction e of the
total energy lost by the propagating soliton, which is assumed to hold together in spite of

the dissipation, we have

adEfdz = -g'p(h? - h})/24
= —¢pREH}(a* - at)/24

(24)
(25)

where ag = (H; ho /Rit)l/ Z is less than the critical amplitude (Hyho/ Ric)l/ 2 at which decay

of the soliton would cease.

Further development of (25) requires a formula for the total soliton energy E. For L » H,
the soliton interface displacement ¢ as a function of z is given by ¢ = asech?(z/L) where,

for a € Hy, aL? = $H}H, (e.g. Benney, 1966). Hence

3/2
E= §g',,an: = (‘::) gpH HY* 6

and, from (25) with Ri; = 0.4 and a = 0.2 (Oakey, 1982),

da/dz = —0.014H3H; 2 a~1/2(a* - af).

If, on the other hand, L € H;, the “Benjamin-Ono” solitons (Ono, 1975) have
¢ = a[(z/L)? + 1] with aL = $ H} so that

E = (x/2)¢'pa’L = (27/3)¢'pH?a.

Hence, with a = 0.2 and Ri; = 0.4 as before,

da/dz = —0.016H;*(a* - a?).

(26)

(27)

(28)

(29)

In both situations, therefore, waves which meet the instability criterion (22) decay rather

rapidly at first before eventually stabilising at a. = (Hyho /Ric)l/ 2, As

a; = (Riy/Ri;)*a} = 2.56a for Ri; = 0.4 and Ri, = 0.25, the decay rate is rather

insensitive to ho; typical decay distances in either situation are several tens of kilometres

(Bogucki and Garrett, 1991).
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Application of these simple ideas to the real ocean may require allowance for other effects
such as geometrical spreading and, more importantly, extension of the model to allow for
a continuously stratified upper layer.

5. DISCUSSION

A picture of a rather persistent internal wave field, slowly losing energy to dissipation and
vertical mixing with Ky =~ 1073 m?s™1, still seems appropriate for the main thermocline.
As remarked by Gregg (1987), diapycnal mixing may then be a rather unimportant
process compared with other processes such as ventilation from the surface mixed layer.
One part of this picture is the prediction of € from nonlinear internal wave interaction
theories. The validity of the model of Henyey et al. (1986) is still a matter of debate (e.g.
Gargett, 1990), but it is, in a sense, a local model, giving the local flux of energy to small
scales and hence mixing for a typical spectrum. The calculations of McComas and Miiller
(1981a) do seem to be valid for the energetic low—frequency, low-mode, parts of the
spectrum, but it is just these spectral regions which are sufficiently long-lived to propagate
into a region with a different inertial frequency or to interact with bottom topography.
Thus the energy losses from the energetic part of the spectrum in the McComas and
Miiller (1981b) theory do not immediately lead to turbulence. They need to be integrated
with consideration of other processes affecting the internal wave spectrum before we can
be confident of the implications for local mixing.

In particular, the pioneering study by Cox and Johnson (1978) of the consequences of
horizontal anisotropy in the internal wave spectrum need to be re-examined; the problem
is central to any consideration of the evolution of a spectrum that is distorted by bottom

reflection, surface generation or just the lateral spreading of a patch of high energy.

The simple scenario shown in Fig. 1 is probably not valid near the sea surface. In
particular, if an elevated inertial peak is generated there which is not connected in a WKB

fashion to spectra at lower latitudes, then some extra local dissipation must be occurring.

The region near the seafloor is also likely to be anomalous. It has been emphasized here
that the mixing produced by internal waves near a sloping bottom may be significant not
only for basin-average diapycnal fluxes, but also for the velocity boundary condition for
low frequency flows. There is a need to mount more observational programs, capable of
measuring eddy momentum and buoyancy fluxes, near sloping bottoms, particularly those
that are convex (to avoid destructive interference of reflected internal waves) and have a
Burger number greater than 1 (to emphasize slope effects).

Our developing understanding of the deep—sea internal wave field will probably be of
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limited applicability on continental shelves, though there are the same concerns with
surface generation and the role of a sloping bottom. A reasonably common phenomenon
of shelf seas is the internal soliton; this paper has presented a simple preliminary model of
the mixing produced at a thin interface by an internal soliton which is itself damped in

the process.

In summary, therefore, the paradigm of Fig. 1 may be appropriate for some parts of the
ocean, though some of its foundations are still rather shaky. Many interesting and
important questions remain, however, about parts of the ocean where this picture is not
appropriate but where internal waves have significant effects. In other words, our
paradigm may hold in regions where internal waves do not matter and be inadequate in
places where they do!
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