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1. Introduction

In general, it is difficult to objectively compare oceanic model results to observations, as
observations are usually noisy and inaccurate, and the sample too limited, resulting in a small
signal-to-noise ratio. The noise of the observed signal results from both measurement uncertainties
and real disturbances, like mesoscale eddies when studying the general circulation, vortical modes
when studying internal waves, or interannual fluctuations when considering the seasonal cycle; this
noise mostly has large correlation scales, so that simple point-by-point comparisons with model
predictions are difficult to interpret, and a multivariate viewpoint is needed. Moreover, and this is
specific to the oceanic case, most motions are externally forced but precise information is lacking on
the forcing and on the initial conditions. Thus, even a perfect oceanic model will not provide
predictions that are fully consistent with the observations, i.e., within their uncertainties, and it is
necessary to distinguish between model inadequacies and the model response uncertainties caused
by poor knowledge of the input data.

This applies in particular to tropical motions, which are primarily wind forced and could be
simulated deterministically for the most part if the wind stress were accurately known. However,
information on surface wind is sparse and noisy, and the bulk formulae used to estimate the wind
stress are rather inadequate. As equatorial model simulations have become increasingly realistic,
visual comparisons, which reveal obvious differences, are unable to unambiguously identify model
inadequacies, and more refined validation procedures are needed. Frankignoul et al. (1989) have
thus developed a model testing method based on multivariate statistical analysis that could take into
account explicitly all the observational uncertainties. So far, the method has been used to test and
intercompare simulations of the tropical ocean. However, the approach is general and could be used
to test dynamical models of the intemal wave field, as suggested below.

In the next section, the model testing method is described in a general manner. A possible
application to internal wave studies is then briefly discussed. In section 4, the method is illustrated
by summarizing the testing and intercomparison of model simulations of the tropical Atlantic.

2. The multivariate model testing method

The simulation of oceanic motions can often be represented as an input-output problem. A
model is driven by a prescribed forcing field f(x,t), which could include the initial conditions, and
it predicts in particular the space/time behavior of a variable that is also observed. We denote the
model prediction by m, with m = L(f). To test the model, m is considered in the whole x-t domain
where the model is believed to be realistic and observations, denoted by d, are reliable, which is
normally a highly dimensional space. The observations are usually inaccurate, so a probability
region more properly describes the true oceanic state (Fig.1). As the forcing field is generally not
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Fig. 1  Sketch of the effects of data uncertainties on the comparison between model predictions
and observed data, from a multivariate statistical viewpoint.

known accurately, it should be considered as a (noisy) realisation of the true forcing field, and other
equally plausible input data often are available (e.g., different wind stress products) or could be
generated by Monte Carlo technics. This is represented in Fig.1 by a probability region for the true
forcing <f>. Thus, several equally plausible model responses can be generated, and the model
prediction m really should be considered as the sum of the (unknown) model response to the true
forcing field, say <m>, and that resulting from the input errors, which is again represented by a
probability region in Fig. 2. If the multinormal assumption holds, these uncertainties can be
described by their error covariance matrix, denoted by D for the observations and M for the model
predictions. The model testing problem can now be viewed as that of comparing two noisy vectors
with unequal error covariance matrices. It should be stressed that a crucial, and often cumbersome,
step in the procedure is the evaluation of the two etror covariance matrices; this may require much
data analysis and many simulations.

The agreement between the observations and the simulations is characterized by the misfit

T2 =(m-dy M+D) ! (m-d) 1D

which provides a measure of the differences between the two fields, weighted by the data
uncertainties. If the null hypothesis that <m> = <d> holds, (1) is the appropriate test statistic
which is distributed as a %2 variable (or a Hotelling T2 variable if sample estimates of the error
covariance matrices are used), and the usual acceptance and rejection rules can be applied. If the
null hypothesis does not hold, T2 is approximately distributed as a non-central x? variable, and
confidence intervals can be constructed to compare different models or model versions. Details are
given in Frankignoul et al. (1989).

In practice, however, this cannot be done unless the dimensionality of the system is first
strongly reduced. Indeed, the error models normally are very approximate (they are either estimated
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Fig. 2. Top: Ellipse principal axes of the intemal wave horizontal kinetic energy (HKE) at 400 m
depth for the internal wave frequency band (0.2-0.4 cph) in a 4-day period during MODE (the
central mooring is at 28°N, 69°40'W). Arrows show 4-day mean current, and dotted lines
corresponding isotherms. Bottom: Time series of HKE averaged over the line of moorings 2, 3
and 5 for three frequency bands in the internal wave continuum. From Frankignoul (1976).
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from a limited sample or from a necessarily oversimplified error analysis), so that the inverse in (1),
even if it exists, is dominated by unreliable information. A strong data compression is thus needed
for the problem to be well-posed. This can be done efficiently using principal component analysis,
as illustrated below. The main point is to perform the model-reality comparison in a sufficiently
small orthonormal space where the main "trustable” features of both model simulations and
observations are well represented, and the error models sufficiently reliable. Noisy details are
filtered out, but of course so is a small part of the signal. Note that the test is very stringent as no
model is expected to be perfect. However, much progress may be expected from an understanding
of the discrepancies between models and observations, and the method is very efficient at
distinguishing the true differences from those due to data uncertainties.

3. Application to internal wave studies

These concepts could be applied to the internal wave case. Suppose for example that we want
to test a model of the dynamics of the internal wave field, which requires understanding their
sources, sinks, and main interactions. Theoretical models of intemal waves do not yet predict how
the various energy sources control their spectral distribution, but plausible generation mechanisms
have been suggested (wind forcing, topographic scattering, interaction with the mesoscale shear
flow, forcing by the barotropic tides, etc.), and predictions of the spatial and temporal evolution of
the averaged internal wave properties could be obtained. In particular, the variations of the total
internal wave energy E(x,t), should obey the radiation balance equation (Muller and Olbers, 1975)
which can be written in the approximate form

(d 1+ U+V) E = SU) + Si(atmosphere) + Si(bottom) +...+Sd  (2)

where U(x,t) is the mean current, St denotes the source terms, and Sd the dissipation. If models
are available for the source terms, they can be tested by comparing the predictions from (2) with
corresponding observations. Intemal wave spectra have been shown to be modulated both on the
seasonal scale (Fig. 2), and on short time and space scales (Fig. 3); also, evidence of energy
propagation and/or transfer has been found (Fig. 4). These observations contain critical clues on
internal wave energy sources and sinks, but their interpretation has been disappointing, as the
dynamics is complex and the signal-to-noise ratio very low.

We believe that the key to a successful interpretation will be a multivariate model testing
approach where predicted changes are compared to the observed ones, as this strongly enhances
statistical significance in model-observation comparisons (see, ¢.g., Hasselmann, 1979). However,
the input in (2) will be poorly known: the wind stress is difficult to observe at the internal wave
scales, the mean shear can only be coarsely estimated from current-meter data, the bottom
topography and bottom currents are inaccurately known, and little information will be available on
the boundary conditions for the region of interest. Thus, there will be a large uncertainty in the
forcing data that will have to be considered in addition to that of the internal wave spectral
estimations, when testing the theoretical predictions. The method of section 2 should then be
applicable, even if some adaptation to the problem will be needed. On the other hand, neglecting the
effects of data uncertainties or the multidimensionality of the fields could result in erroneous
conclusions.
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Fig. 3. Monthly high-frequency (0.1-2 cph) HKE from 17 data sets in the North Atlantic,
normalized by the Brunt-Viisili frequency, versus time of year. The solid line connects the
monthly averages. From Briscoe (1984).

One remark is in order. Dynamical models of the internal wave field will unavoidably contain
parameterizations and adjustable parameters (e.g., relaxation or dissipation time). A poor choice in
the values of the arbitrary parameters may also be responsible for model-observation discrepancies,
without impairing the model validity. Thus, it is of interest to include model tuning in the statistical
method. If there is only one or two parameters, their influence on the misfit (1) can be easily found,
with the optimal choice corresponding somehow to its minimum (see an example in Frankignoul et
al., 1989). However, if there are many parameters, the problem becomes tedious. Recent efforts at
combining model testing and parameter optimization by inverse methods are underway, and they
may also prove useful in the internal wave case.

4. Application to the seasonal variability of the tropical Atlantic

To illustrate the model testing method, let us briefly consider its application to the numerical
modeling of the tropical circulation. Specifically, we want to verify whether the OPA general
circulation model of LODYC is able to simulate the mean seasonal changes in the surface dynamic
topography of the tropical Atlantic, approximated by the 0-400 db dynamic height. The observed
changes have been recently estimated from historical data by Duchéne and Frankignoul (1991),
who performed an extensive error analysis to also estimate their error covariance matrix. The
observations are compared in Fig. 5 (left) to the prediction of the OPA model (right). The
simulation is the mean of a run forced by 1982-1988 monthly observed winds (Morli¢re and
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Fig. 4. Schematic representation of energy correspondences in frequency-depth space observed
at Site D (39°20'N, 70°W) during a two-month period. From Frankignoul (1974).

Duchéne, 1991), so that the effects of the random wind stress errors and the interannual variability
are automatically represented in the error covariance matrix that is calculated from the 7-year model
response. The error associated with our lack of knowledge of the drag coefficient for the wind
stress is also taken into account in a simplified manner by assuming a 20% random uncertainty in
its value, as in Frankignoul et al. (1989).

The problem is to establish whether the two series of 12 monthly maps that describe the mean
seasonal changes in space and time are consistent with each other, i.e., are within error bars. The
overall dimension is high (number of grid points times number of months), and the noise correlated
(due to data interpolation, forcing errors, etc.). Also, the sample used to estimate M is small, and D
only is an idealized error model. Thus, the details of D and M are unreliable and a strong data
compression is required. It is efficiently done by using common principal component analysis: the
first four common empirical orthogonal functions (EOFs) (Fig. 6) are sufficient to represent about
90% of the mean simulated changes around the annual mean and 80% of the (more noisy) observed
ones. Only two additional orthonormal vectors are needed to also represent the annual averages,
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Fig. 6. The six orthonormal basis vector for the model-observation comparison. The top four
vectors are the common EOFs of the seasonal variations.

which project poorly onto the common EOFs. In Fig. 7, the observed (dashed line) and simulated
(continuous line) seasonal variations are represented in the reduced space, together with 95%
confidence intervals estimated from the diagonal terms of the error covariance matrices, assuming
normality. Note that the latter are based on univariate statistics and do not represent error
correlation. Nonetheless, Figure 7 suggests that the differences between the observations and the
simulations in Figure 5 cannot be entirely explained by the data uncertainties. This is confirmed by
the results of the statistical test in Figure 8 with (left) and without (right) the annual mean. Note that
a further data compression was done in the time domain by considering only four seasons (the
dimension is thus 4x4 and 6x4, respectively).
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Fig. 7. Observed (dotted line) and modeled (continuous line) seasonal variations in the reduced
space. The error bars are univariate estimates of the 95% confidence intervals.

The results show that the model is not consistent with the observations, as the misfit is much
larger than the critical value T2y for perfect consistency at the 5% level. Recall that (1) is a
measure of the (square) difference between simulations and observations, normalized by the data
uncertainties, and not an absolute measure of the fit; if the data uncertainties had been larger, T2
would be smaller but the model would not perform better. The test only shows that the model-
observation differences are about three (no mean) or four (with mean) times (i.e. (T2 24 112)
larger than expected from the data uncertainties, at the 5% level. This indicates that there remains
substantial room for model improvements. The results also show that the GCM performs better for
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the mean seasonal changes around the annual mean than for the whole signal. This has also been
found for all other models and variables that have been considered, and presumably reflects the fact
that the long-term mean depends more on the representation of the dissipation processes, which is
generally very approximate.

Figure 8 also represents for comparison the test results for two simpler models, the linear,
multi-mode model of Cane (1984) and the 2-layer nonlinear LODY C model (Février, in
preparation). The test values show that the tropical Atlantic data are accurate enough to distinguish
between the performances of different oceanic models, and the OPA model performs significantly
better then the two other models, consistently with its much higher sophistication. This illustrate the
usefulness of the model testing approach, and the interest of quantifying as realistically as possible
all the data uncertainties.
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Fig. 8. Valueof T2 for three modeis (see text) used to simulate the seasonal cycle of surface
dynamic topography in the tropical Atlantic with (left) and without (right) annual mean. The error
bars represent approximate 95% confidence intervals, the dashed line the critical value for T2 at the
5% level.
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