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Abstract

We investigate the role of potential vorticity in nearly two dimensional flows of
importance in geophysical fluid dynamics. Potential vorticity conservation arises from
particle interchange symmetry in the Lagrangian formulation of fluid dynamics and is
associated with an infinite dimensional symmetry group. In truncating the number of
degrees of freedom of these fluid flows, as one does when making numerical
integrations of the theory, it is not possible to keep the full infinite dimensional
symmetry group. We show, in the context of the shallow water equations, how to
modify the symmetry algebra and construct a Hamiltonian for the fluid which
preserves the maximum symmetry consistent with the finite number of retained
degrees of freedom and which becomes the original fluid as the number of degrees of
freedom increases to infinity. The construction is done in planar geometry without
rotation, but it also goes through for f or 3 plane settings, for flows on a sphere
(rotating or not) and for stratified fluids. The latter application includes both
internal and surface gravity waves.

1 Introduction

This is a talk about methods of truncating or restricting the number of degrees of freedom
in equations of motion of relevance to geophysical fluid dynamics while preserving the
symmetries leading to conservation laws respected by those evolution equations. In

particular, the symmetry which will concern us here is that of particle relabeling in
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Lagrangian coordinates [Eckart 1960] which leads to conservation of potential vorticity in
either Lagrangian or Eulerian formulations of the theory. The results provide a consistent
mode truncation of the full continuum theory which preserves the invariance of as many of
the conserved quantities of the continuum theory as is consistent with the number of
retained degrees of freedom. Further, as the number of degrees of freedom goes to infinity,
the original continuum theory is recovered and the full set of conserved quantities is
recovered as well. This provides the possibility of reducing the number of degrees of
freedom of a continuum geophysical fluid dynamics flow to a finite number, the only
situation which can be treated numerically, and still preserving the maximum possible

symmetry of the underlying theory.

The methods we present here are Hamiltonian, and the fluid dynamics is cast in

Lagrangian realization. The advantage of this is that the underlying Lagrangian theory is

canonical in the classical mechanics sense and the symmetries of the theory are manifest
and easy to deal with. The corresponding Eulerian theory is non-canonical and the
symmetries are hidden or “mysterious”. The reason for this disguise of the symmetries is
that the Eulerian theory is “reduced” from the Lagrangian formulation by considering the
flow only on hypersurfaces in phase space where the conserved quantities are constant. The
manifestation of these symmetries in terms of conserved quantities seems unnatural in

Eulerian formulation while appearing quite natural in Lagrangian formulation.

An outline of this talk is as follows:

e (1) Lagrangian formulation of the Shallow Water Equations and the Internal Wave

Equations
o (2) Invariance under particle interchange and potential vorticity conservation.
¢ (3) Truncating the Fourier modes and SU(N) symmetry

— Algebra of Symmetry Generators and Dynamical Variables

— Conserved Quantities

e SU(N) symmetric Hamiltonian, Hy; N — oo leads to usual equations

In the SU(N) symmetric truncated theory there are &~ N conserved quantities. As N — oo,

we recover the continuum theory and an infinite number of conserved quantities.
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This talk focuses on the shallow water equations [Pedlosky 1979] because it is for these
that we have concrete results at this time. The shallow water equations are also formulated
on an f-plane, that is Cartesian or flat geometry, in this talk. We know how to extend the
results to flows on the surface of a sphere, but the algebra is difficult and will be reported
elsewhere. In progress is work on extending these results to quasi-two dimensional
geophysical flows including internal waves on a plane ( f or ) and surface gravity waves.
The reader will see that our methods are generally applicable to flows with a conserved
potential vorticity. If there is driving and damping also present in the physical setting,
then we can regard the work here as establishing a finite set of coordinates for such
dynamics. When the driving or damping is not significant, then in the coordinates we
present the required conservation laws are respécted automatically. In that sense they
provide a rational choice of truncated modes for all numerical work on geophysical

problems where quasi-two dimensionality is a feature.

Our motivation for concentrating on potential vorticity modes is two fold:

o The work of Miiller and co-workers [Miiller 1988a, Miiller 1988b] has provided
evidence for the geophysical importance of potential vorticity carrying motions even

at small scales.

o Conserved quantities are always important for constraining the allowed physical
motions of a system and for checking numerical integrations of those equations of

motion.

2 Lagrangian Fluids

In the description of fluids by the Lagrangian method [Abarbanel 1987] we are required to
give the position of a fluid particle y(r,t) and its canonical momentum p(r,t) for each

particle label r, which is a two or three dimensional continuum of labels for particles. The
evolution equations of these variables follows from an Action Principle which is really just

Hamilton’s Principle. This states that the action § in d-dimensions:

S,p) = [ dt [dtrpoz 20D D _ () oy ()

is stationary under changes of y(r,t) near the orbit of the system. Here the internal energy

density €(p, s) is a thermodynamic quantity from which the pressure is derived. It is a
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function of the density and the specific entropy. In this expression for the action all partial

derivatives with respect to time are with r held fixed. The density p(y) is

Y1) = ple) s )

and s = s(r) is the entropy per unit volume. Varying S with respect to y(r,t) with r and t

fixed leads to the equations of motion

p(y)%f{” = =Vp(y,t),
%D vy (20D,
0s
i
p = pe. ®3)

“To reach the Eulerian formulation of fluid dynamics we identify a fixed point in space x
with the location y(r,t) of a particular fluid particle at time t. This defines a particular

label R(x,t) which identifies the fluid particle which arrives at X at the appointed time, so

x = y(R(x,1),1), | (4)

and the Eulerian velocity ug(x,t) is defined as

dy(r,t
ug(x,t) = ( )|r—R(x,c)° ()
The Lagrangian derivative at fixed label r becomes

atlr T |x +ug(x,t) - Vx. (6)

The Eulerian formulation at fixed spatial points x is a reduced description of the fluid
theory [Marsden 1984] since it describes flows restricted to surfaces in the fluid state space
which have constant values of the conserved potential vorticity. Lagrangian fluid dynamics
describes the evolution of siz fields: the canonical coordinates y(r,t) and their canonical
momenta p(r,t). Eulerian fluid dynamics describes the evolution of five fields:

ug(x,t), p(x,t), and the specific entropy s(x,t). This reduction in number can be traced to
the restriction of the flows to motion on constant potential vorticity surfaces, and that

brings us to potential vorticity and its interpretation.
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In this talk we consider the shallow water equations as our paradigm for a nearly two
dimensional fluid with a conserved quantity. We wish to truncate to a finite number the
continuum degrees of freedom of the fluid and to do so in a fashion which preserves a
subset of the symmetry leading to potential vorticity conservation The truncated theory
must become the correct continuum theory as the number of modes goes to infinity.

The shallow water equations result from stationarity of the action

with J = 2 5 One can absorb the initial “height” ho(r) into the definition of the labels

[ &rho(r) — [ d?r without any loss of generality, and we do that to simplify our formulae.
The canonical momentum is defined in the usual way as the derivative of the Lagrangian
S = [2dt [ d®rL[y(r,t),8,y(r,t)] with respect to dy(r,t), so p(r,t) = 8,y(r,t). The

shallow water Hamiltonian is then

_ _1_ ‘ 2 2, 9
H(y,p) =5 [ érilpr, 0P + 3], ®)
and the equations of motion follow from the Poisson bracket relation

%:— = {.,H(y,P)}, (9)

using the fundamental Poisson bracket
{a(r, 1), po(x', 1)} = 6,46%(r — 1'). (10)

Under particle interchanges which preserve the density (or ho(r) here) the action is
invariant. This is formally expressed by requiring that §pS = 0 with y(r,t) and density
held fixed, and was pointed out first by Eckart in 1960 [Eckart 1960]. The conserved
quantity which results from this symmetry of the action is the potential vorticity

Oy, (r,t) dp,(r,t
e pa(r,, . )

and

Oq(r,t)
5 = 0. (12)

Translating this into Eulerian variables using the prescription given above results in
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£ Vx % UE(x,t)
hE(xat) ’ : (13)

QE(X, t) =

and
0
(5 +ue Vx)ee(x,t) = 0. (14)
hg(x,t) is the usual Eulerian fluid thickness in shallow water theory and comes from the
Lagrangian quantity h(r,t) = 1.

These conservation laws lead to the statements that for arbitrary functions G

2 [ eraten) =0, (15)

and '
737/ d*z hg(x,t)G(ge(x, 1)) = 0. - (1)

These are an infinite number of conserved quantities associated with the local particle
interchange symmetry. Next we examine the algebra associated with this symmetry noting

it is g(r,t) which is the infinitesimal generator of the symmetry.

Before delving into the algebra let us make the connection with internal wave dynamics.

For internal waves the flows are three dimensional and the Hamiltonian is
— poR |2
a(yp) = [ @B 4 pugyste,t) + pclol), )

where R is the rotational potential whose curl is 2f(r), and the initial density po(rs) is
taken to depend on the vertical coordinate only. The quantity conserved under particle
interchange for this theory is

3
atrt) = Sl 2D 4 R - (o (18)

a=1

or in Eulerian variables

qe(x,t) = (2f + V x ug) - Vp. (19)

3 Algebra of Particle Interchange Symmetry

To exhibit the algebra associated with the particle interchange symmetry of the shallow

water equations, it is easier to go from configuration space r to Fourier
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space [Abarbanel 1991]. For this we place the configuration space in a box of size L x L

and define Fourier transforms via

10 = 3 Fn)explien ],

N=<oc0

F(n) % / d*r f(r) exp[—ikn - r].

Here the vector n = [ny,n,] with n; are integers n; = 0, +1,4+2,,...,400,and £ =

With this Fourier transform pair we define Y(n,t) and P(n, ) as

1 =

Ya(r,t) = = Y Yo(n,t)explirn -1,
Ln=—oo
1 =

Pa(r,t) = I E FP,(n,t)explikn - r],
N=-o00

with the normalization chosen so the fundamental Poisson bracket becomes
{Ya(n,t),Pg(m, t)} = 5ap50.m+n-
The Fourier components of the potential vorticity are taken as

) = GL T oy enpfinn -1,

which leads to

Q)= 3 m'xmPy(m)Qu(m)énmim,
m,m’

(20)
23

(21)

(22)

(23)

(24)

where m’ X m = m{m; — mjm, is the z component of the cross product among vectors.

With these definitions of Fourier components we can easily evaluate the Poisson brackets of

the @(n) which are the generators of the local particle interchange symmetry with the

Y(n), the P(n), and themselves. This leads to

{Q(n), Ys(m)}
{Q(n), Ps(m)}
{Q(n),@(m)} = nxmQ(m+n),

n x mY,(m + n),

n x m P,(m + n),

(25)

so the algebra of the Q(n) closes, as it must if we have a symmetry, and the Fourier

components of the y and the p transform under the algebra as “vectors”. The factors of
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m X n are the structure constants of the group of particle interchange symmetry.

Perhaps a more familiar example of this kind of algebra is that of three dimensional
angular momentum in classical mechanics. The angular momentum L = q x p or

Lo = €abeqsPe; a,b = 1,2,3 has the following Poisson brackets with the coordinates q, the
momenta p, and L which follow from the fundamental bracket {ga,ps} = bap:

{Lo’ qb} =v €abces
{Lm Pb} = €abcPe;
{La, Lb} = Cabch- (26)

Any quantity which satisfies {L,,} = €uscv. is a vector under three dimensional rotations
which are generated by L. The dot product v - v is unchanged under rotations since
{Ls,v-v} =0, and L-L is the invariant of the algebra of the rotation group. Rotational
invariance of the dynamics of a system is guaranteed by having an Hamiltonian H(p,q)
which satisfies

{L., H(p,q)} = 0. (27)

This also leads to the conservation (under evolution in time under H(p,q)) of L* = L-L

and any function of L2.

A critical aspect of the angular momentum algebra which we must establish for our particle

interchange algebra is that the Poisson brackets satisfy the Jacobi identity

{Lm {Lb’ Lc}} + {Lb’ {Lc, La}} + {Lc’ {La’Lb}} =0, (28)

for this guarantees that a combination of rotations is also a rotation and that under

evolution through a finite time under H(p,q) angular momentum is conserved.

Now we return to the shallow water equations. The final ingredient we require for
constructing the truncated Hamiltonian for shallow water flow is the Fourier decomposition
of the Jacobian and the transformation properties of these Fourier coefficients under

particle interchange. This decomposition is easily established to be

_ oy(r,1)
J " (r)

= (2;‘)2 Y p(n,t)explixn - rl,
n

p(n) = %mzm (' x m) Y (m) x ¥ (') b pn e (29)
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from which
{Q(n), p(m)} = n x mp(m + n) (30)

follows. So the Fourier components of the Jacobian are also vectors under the

transformations generated by the Fourier components of potential vorticity.

Just as with the three dimensional angular momentum example above, the Jacobi identity
among the Q(n) is critical in guaranteeing that finite particle interchange transformations
such as are generated by finite time evolution under the shallow water Hamiltonian lead to

potential vorticity conservation.

Before displaying our truncated shallow water theory we recall how the potential vorticity
Q(n,1) is conserved in the case with an infinite number of Fourier components. For this we

need to compute the Poisson bracket of Q(n,¢) with the Hamiltonian

1 +§°f Pa(n) Py —n)+g/d2 (31)

l’l——oo

The Poisson bracket with the first term in H is up to a factor of 2

E (m’ x m) P(m) - P(m')én m+my, (32)
m,m’

which vanishes because of symmetry in the m, m’ sum. The Poisson bracket with the

second term is (up to a constant factor)

%/d%a(exp[—i/m -1],J71) (33)

o(r) ’
which vanishes by integration by parts. In a mode truncated theory the first part of this
will remain: the kinetic energy will still Poisson commute with potential vorticity, but

integration by parts will be absent since we will no longer have a continuum theory in label

space.
4 Truncating the Number of Modes; a New

Potential Vorticity Algebra

Now we restrict the number of Fourier modes allowed to the variables Y(n,t) and P(n, t)
by keeping the Fourier sums in the bounds —M < n; < M fori = 1,2. We now have N?
degrees of freedom where N = 2M + 1. The fundamental Poisson bracket among the Y(n)

187



Abarbanel and Rouhi

and the P(n) is unchanged except the rule is to keep all Fourier indices within [-M, M], so
when n + m appears it is to be so restricted. The problem comes when we go to the
Poisson brackets of the potential vorticity Q(n) with the coordinates or the canonical
momenta or the Fourier components of the Jacobian or with itself. In this we encounter
the cross product m x n which is the structure constant for the group action of Q(n) in the
Euclidian space of Fourier indices. By our truncation of modes we have changed the space
of Fourier modes from the plane to that of a two dimensional torus; this is because we have
introduced an effective periodicity in Fourier labels. To match this and preserve the Jacobi

identities we replace m x n by
1
nxm-— — sin[sy(n x m)), (34)
N

where ky = %’,’- Clearly as N — oo this reduces back to the Euclidian space version n X m.
For finite N, which is our concern here, we have an effectivé periodicity in Fourier space
now respected by the new structure constants. What is truly remarkable, however, is that
this simple replacement of m X n also respects the Jacobi identity so a group structure is
retained [Hoppe 1989].

With these new structure constants we can write the Fourier decomposition of the
potential vorticity
1 M
Qn(n)=— Y sin[fky(n x m)]P(m) - Y(n — m), (35)

KN m=-mM
and for the Jacobian Fourier components, we write

1 X
pn(n)=— Y_ sin[sn(n x m)]Y;(m)Y;(n — m). (36)
KN m=-M
The Poisson brackets of this new Qx(n) with any of Y(n),P(n), py(n) or @(n) takes the
form
sin[ky(m X n)]
KN .

{@n(n), f(m)} = f(m +n), (37)

with f(m) any component of the canonical coordinates or canonical momentum or py(m)

or @Qn(m). This set of Poisson brackets now defines a finite algebra of particle interchange
transformations generated by the @Qn(n). It also defines anything which transform as f(m)
here as a vector under this new transformation group. The group structure is guaranteed

by satisfying the Jacobi identity, the demonstration of which is a tedious task left to the
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dedicated reader. Our job now is to establish a Hamiltonian Hy(Y,P) in these truncated
variables which Poisson commutes with Qx(n) and becomes just the shallow water
Hamiltonian as N — co. The easiest method is to seek invariants of the finite particle

interchange algebra (it happens to be SU(N)) and construct Hy out of them.

4.1 Invariants of the Truncated Algebra

The idea is to use the transformation properties of vectors f(m) under the Qn(n) algebra

(Qn(w), f(m)) = SlHm XD oy ) ) (39)

KN
to form “dot products” C,(f) such that
{@n(n),Co(f)} = 0. (39)

The Cp(f) made out of powers of f(m) are

M .
Cif) = Z f(m)f (m')5o.m+m'
mm=-m
Ci(f) = o g:n f(m)f(nz)f(n3)éon, +n,+n, explixn(n; X nz + n; X n3 + nz X n3)]
CL+71(f) = 3, ]I explirn(na x ng] f(n1)f(n2)... f(nr)f(~(n1 + nz +...nz)). (40)

n;.07 a<p

So these are generalized “powers of vectors”.

The kinetic energy term in the truncated Hamiltonian
KEy = - Z P(n) - P(—n), (41)

is just C3(P) up to a constant. The term involving 1 requires some thought. The idea is to
express 1 as a power series around some finite value J, and then truncate the sum with N

terms. Then we replace each of the integrals of J—‘z by Cyp(pN) up to constants. The natural
value of Jp is unity since for small displacements Y(r,?) = r + small terms, and for

Y =r,J = 1. For general J; we write
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)=
S
|
~~
S
|

Ok—o
lN—-l X
N — 1——
JO:L:B( )
1 J N
= —(1- 42
FU-=5, (42

which is very nearly % when 0 < J < 2Jy and N is large.

In the expression for the potential energy in Hy involving [ dzr-} we make this replacement

for J-! and specifically set

2. Jp+1 2”)2p+2
/d J L2(2p+1) CP+l(pN)7 (43)
s0 our truncated Hamiltonian is
1 M o 2k-2
HN = é- _Z » (n) . P(——n 2J0 Z Ck (LZ(zk 2) Ck.. (PN) (44)

This Hamiltonian, by construction, has zero Poisson bracket with Qn(n). Further
{Cpo(@N), Hn} = 0 as well.

This constitutes our mode truncated shallow water Hamiltonian and is an explicitly SU(N)
symmetric approximation to the continuum shallow water theory from which we started.
As the number of modes goes to infinity, the continuum theory is recovered in all its
details. For finite N, the symmetry constraints of particle interchange are respected as

accurately as possible.

5 Conclusions

In this talk we have presented insight into the origins of potential vorticity conservation
and in doing so have investigated the algebra of infinitesimal operations associated with
the particle interchange symmetry responsible for that conservation law. The generators of
local infinitesimal particle interchanges are the potential vorticity at a point, and in the

continuum theory their Poisson bracket algebra is infinite dimensional.

We then showed how to truncate the modes of the shallow water theory, expressed in

Fourier space of its Lagrangian representation, and to alter the symmetry algebra so it
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remains a symmetry algebra of the finite degree of freedom theory. In the planar geometry

where we worked, this replacement was straightforward.

In the future we shall address several questions:

e the application and numerical investigation of this kind of truncation to inviscid two
dimensional incompressible flow. This simplest of all theories of fluid flow has only
one Eulerian dynamical field which can be taken to be the vorticity out of the plane
of flow, and the algebra of this variable in Eulerian representation parallels that

discussed here for the potential vorticity.

e the extension of the construction presented here to two dimensional flow on a sphere

(rotating, if you like).

¢ the extension of these ideas to planar and spherical stratified flow for the study of

internal waves and surface waves.

e the numerical investigation of these symmetric finite degree of freedom systems to

understand the role played by the symmetry constraints.

® investigation of the “statistical mechanics” of these symmetric Hamilton systems and

of the paths to chaos in the systems.

Another avenue of substantial interest is to understand the Eulerian version of our
Lagrangian formulations of these symmetric theories. This is both for general interest and
since the numerical investigation of the symmetry preserving mode truncated theories may

well be easier in Eulerian variables.

Finally, since damping and driving are Physical ingredients of any real observations of the
ocean, we expect that these inviscid or Hamiltonian discussions will serve as means for
identifying variables in which to investigate both the inviscid and the dissipative physical
settings. The advantage of the variables thus suggested is that when length scales and time
scales are large enough that viscosity is unimportant, all conservation laws one would want

to be respected are respected.
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