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a b s t r a c t

A Spatial Ecosystem and Population Dynamic Model (SEAPODYM) is used in a data assimilation study
aiming to estimate model parameters that describe dynamics of Pacific skipjack tuna population on
ocean-based scale. The model based on advection–diffusion–reaction equations explicitly predicts spatial
dynamics of large pelagic predators, while taking into account data on several mid-trophic level compo-
nents, oceanic primary productivity and physical environment. In order to improve its quantitative abil-
ity, the model was parameterized through assimilation with commercial fisheries data, and optimization
was carried out using maximum likelihood estimation approach. To address the optimization task we
implemented an adjoint technique to obtain an exact, analytical evaluation of the likelihood gradient.
We conducted a series of computer experiments in order to (i) determine model sensitivity with respect
to variable parameters and, hence, investigate their observability; (ii) estimate observable parameters
and their errors; and (iii) justify the reliability of the computed solution. Parameters describing recruit-
ment, movement, habitat preferences, natural and fishing mortality of skipjack population were analysed
and estimated. Results of the study suggest that SEAPODYM with achieved parameterization scheme can
help to investigate the impact of fishing under various management scenarios, and also conduct forecasts
of a given species stock and spatial dynamics in a context of environmental and climate changes.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

High rates of exploitation of tuna populations during the last 20
years have led to widespread concern over the status of tuna pop-
ulations (Sibert et al., 2006). Tunas are very mobile animals that
are classified as ‘‘highly-migratory” under international law. They
typically occupy entire ocean basins, but their populations are
not uniformly distributed nor are tuna fisheries uniform in space
and time. Movements on all scales are mediated by environmental
conditions. Therefore, models of tuna populations must include
population temporal and spatial dynamics, and dependency
dynamics on environmental forcing for application to fishery man-
agement (Sibert and Hampton, 2003).

Continuous advection–diffusion–reaction equations (hereafter
ADRs) provide excellent tools for studying the influence of spatial
structure of the environment and spatial behavior of individuals
on overall population dynamics (Berezovskaya et al., 1999;
Govorukhin et al., 2000; Petrovskii and Li, 2001). They have been
successfully used for explicit descriptions of population spatial
dynamics since early 1950s (Skellam, 1951; Okubo, 1980;
Edelstein-Keshet, 1988; Murray, 1989; Czaran, 1998; Turchin,
ll rights reserved.
1998). ADRs enable investigation of a range of biological phenom-
ena on different scales, such as occurrence of spatial patchiness
due to chemotaxis (Keller and Segel, 1971; Berezovskaya and Kar-
ev, 1999), biological invasions (Petrovskii et al., 2002), schooling
and shoaling (Grunbaum, 1994; Tyutyunov et al., 2004) based
on attraction and repulsion between organisms. When applied
to trophic systems ADRs can be used to take into account individ-
ual interactions, which produce non-linear functional response
(Arditi and Ginzburg, 1989) on a macroscopic scale (Arditi et al.,
2001).

Describing the spatial dynamics of fish population at large
scales (i.e., ocean basin) is of paramount importance for fisheries
management, so as to understand and predict the consequences
of fishing, climate change and changes in fishery management reg-
ulations. However, before applying the model to solve fishery man-
agement problems we need to be confident in the reliability of
model predictions. Hence, we first need to work on improving
the model dynamics and initial conditions under the tight coupling
of the model predictions to observations. This is referred to as
‘‘data assimilation” in the field of quantitative ecosystem model-
ling, the purpose of which is ‘‘to provide estimates of nature which
are better estimates than can be obtained by using only the obser-
vational data or the dynamical model” (Robinson and Lermusiaux,
2002).
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The SEAPODYM model was specifically developed for investi-
gating tuna spatial dynamics linked to the ocean ecosystem (see
Bertignac et al., 1998; Lehodey, 2001, 2004a,b; Lehodey et al.,
2003). The main features of this model are (i) taking into account
the climate variability, which is known to have a strong influence
on fish population dynamics and (ii) predicting both temporal
and spatial distribution of age-structured populations. Setting the
value of each parameter in SEAPODYM has, however, been per-
formed mostly by ad hoc manual ‘‘tuning”, by using independent
models estimates, and by application of parameter values gleaned
from the scientific literature. The resultant lack of confidence in
parameter values has been a serious barrier to the application of
SEAPODYM to practical fishery management problems, such as
estimation of fishing impact, testing various restrictions on effort,
area and seasons of fishing (Senina et al., 1999).

The purpose of the current study is to test whether model
hypotheses and predictions are consistent with observations. This
step is prerequisite to application of SEAPODYM as a tool for esti-
mating the broad suite of anthropogenic effects on tuna popula-
tions. As a first step, we estimate parameters governing
dynamics of skipjack tuna (Katsuwonus pelamis). Skipjack tuna is
the most abundant tuna species in the Pacific and its contribution
to the total tuna catch is very significant (about 80% in Western
and Central Pacific Ocean (WCPO) and 72% of tuna catches on en-
Fig. 1. General scheme of the mode
tire Pacific during last 15 years). A short life cycle, and the avail-
ability of spatially-distributed catch data make skipjack a very
convenient species for the initial model validation. Similar model
with optimization approach is being developed by Faugeras and
Maury (2005), with application to skipjack population in the Indian
Ocean.

Although SEAPODYM is a coupled predator–prey model, such
coupling is ‘‘off-line” in that forage biomass and physical forcing
variables are treated as an input data by the predator sub-model.
However, despite such simplification the uncoupled model optimi-
zation study allowed us to achieve reliable fit between model pre-
dictions and observations. The description of the forage sub-model
is presented in Lehodey (2004a) and will be therefore omitted from
this paper. Herein, we focus on the description of the predator pop-
ulation sub-model and the optimization method. A series of
numerical experiments is presented, along with the estimated
parameters and their errors.

2. The model

The major model compartments are schematically shown in
Fig. 1. SEAPODYM incorporates multiple categories of forcing.
Predator dynamics are forced by the physical environment, as pre-
dicted by an independent Ocean General Circulation Model (see
l with optimization approach.
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Chen et al., 1994; Murtugudde et al., 1996). Biogeochemical forcing
is the output from the Nutrients–Phytoplankton–Zooplankton–
Detritus model (Christian et al., 2002), and biomass of tuna forage
components are predicted by SEAPODYM forage sub-model
(Lehodey, 2004a).

Several studies on tropical ocean variability and coupled eco-
system variability have reported the model’s ability to capture
the ocean dynamics and biogeochemical fields at seasonal to in-
ter-annual time scales (Murtugudde et al., 1996; Christian et al.,
2002; Christian and Murtugudde, 2003; Wang et al., 2005, 2006).

Predicted fields of physical environmental data are averaged by
month over three depth layers: 0–100 m, 100–400 m and 400–
1000 m. Let us denote vz = (uz,vz), the vector of oceanic horizontal
currents, Tz is the temperature, and Oz is the dissolved oxygen at
layer z = 0, 1, 2. Primary production P is integrated over the depth
range 0–400 m and is given in units of mmol C m�2 d�1. Anthropo-
genic forcing is represented by fisheries effort data, grouped by
gear type. Effort data are used to parameterize fishing mortality
and therefore predicted catch.

The top predator population in SEAPODYM can be structured
either by age or life stage. Considering age structure let Jk(t,x,y),
k = 0, 1, 2 denote juvenile density so that J0 is the density of larvae
of age 0–1 month, and let Na(t,x,y), a = 1, . . . ,K be the density of
adults tuna of age a at time t 2 (0,T) and position in two-dimen-
sional space (x,y) 2X. The maximal index K depends on the step
used for age discretization.

We construct a discrete-continuous system in two-dimensional
space, consisting of discrete ageing equations and continuous
advection–diffusion–reaction (ADR) equations for describing trans-
port of tuna population. The state variables Jk and Na as well as
environmental variables are determined at point (x,y) and time t
(hereafter we will omit the notations of space and time). For brev-
ity, we use gradient operator r = (ox,oy)T, divergence operator of a
vector field div(v) = oxu + oyv and D = div grad for Laplacian of scalar
field of population density.

The ADR system describing dynamics of age-structured tuna
population is

ot Jk ¼ �divðJkv0Þ þ dDJk �mkJk þ SJk
; k ¼ 0;1;2; ð1Þ

otNa ¼ �divðNa~vþ NaVaÞ þ divðDarNaÞ �MaNa þ SNa

a ¼ 1; . . . ;K; ð2Þ

where d is constant diffusion coefficient of larvae and juveniles;
m0 = m0(x,y) = f(T0,P,F) is larval (age zero) natural mortality rate,
a function of water temperature at surface layer T0, primary pro-
duction P and forage density F; m1,2 = m1,2(x,y) = f(T0,N) are juve-
nile (ages 1, 2) natural mortality rates dependent on surface
layer temperature and total adult tuna density. In Eq. (2) ~v denotes
weighted average (by the accessibility to depth layer, see Appendix
A for details) of oceanic currents through all layers, Va is vector of
directed velocity of adult tuna at age a, which is proportional to
the gradient of the habitat index (Appendix A), diffusion rates
Da = Da(x,y) = D(a,T,O,F) are functions of age and environmental
factors, and Ma = Ma(x,y) = M(a,F,Na,Ef) are total (natural and fish-
ing) mortality of adults. Terms SJk

and SNa represent sources of new
population density to corresponding variable and include both sur-
vival from younger age classes as well as the effects of spawning
and recruitment.

The system ((1) and (2)) is completed by Neumann boundary
conditions describing impermeability of the domain bounds oX:

n � vjx2oX ¼ n � rJkjx2oX ¼ n � rNajx2oX ¼ 0: ð3Þ

These conditions mean no additional source of biomass and no loss
are possible when recruitment and mortality are absent.

Since age discretization in time can be different from the time
step chosen to numerically solve the system (1)–(3), ageing equa-
tions were constructed in order to smooth transition from one age
group to another. In the present study, we consider 3 monthly
juvenile and 16 quarterly adult groups. The system (1)–(3) is sup-
plemented by the discrete equations implying that tuna survivors
of each age class are computed as a number of individuals remain-
ing in the age class at a current time step plus recruits from youn-
ger age, minus the number of individuals which pass to the older
age group. Thus, we have simple relationships:

Jtþ1
k ¼ qn;k�1Jt

k�1 þ ð1� qn;kÞJ
t
k; k ¼ 1;2; ð4Þ

Ntþ1
1 ¼ qn;2Jt

2 þ ð1� pn;1ÞNt
1; ð5Þ

Ntþ1
a ¼ pn;a�1Nt

a�1 þ ð1� pn;aÞN
t
a; a ¼ 2; . . . ;K: ð6Þ

The survival coefficients qn,� and pn,� determine the rates of decay of
the density due to natural, predation and fishing mortality depend-
ing on the time spent in corresponding age. They are relative values
between 0 and 1, such that

qn;k ¼
e�nmkPn

i¼1
e�imk

;

pn;a ¼
e�nMaPn

i¼1
e�iMa

;

ð7Þ

where n is the ratio between time step in population age structure
and the time step of discretization in numerical approximation of
(1)–(3), i.e., Ds = nDt (month). Note that if n = 1, i.e., age discretiza-
tion coincides with time discretization, then q1,k = 1 and the corre-
sponding equation, i.e., Eq. (4) simplifies to Jtþ1

k ¼ Jt
k�1.

A detailed description of functional links between fish popula-
tion dynamics and physical environmental processes is presented
in Appendix A, along with the biological meaning of each estimated
parameter. A list of mathematical symbols can be found in Appen-
dix B.

3. Numerical simulations

Numerical approximations of system (1)–(3) and discrete age-
ing relationships ((4)–(6)) define the simulation model of tuna
population dynamics. The partial derivatives of ADRs ( (1) and
(2)) are approximated by second order finite differences with up-
wind differencing of advective terms (see discretization scheme
in Sibert et al., 1999). Although a non-optimized version of SEAPO-
DYM runs on the spatial domain of the entire Pacific ocean, in the
optimization study we restricted the computational domain to
X = {x 2 (99�E,69�W), y 2 (45�N,39�S)} since this is the region
where skipjack catches have been recorded during the 1950–
2005 period (see Fig. 2). We assume that skipjack abundances
are very low outside the area. Boundary conditions (Eq. (3)) are
implemented in the discretization scheme. The complex boundary
of the domain is presented by the land mask generated from ocean
floor topography (ETOPO2 – 2-min worldwide bathymetric/topo-
graphic data). A regular square grid is used, with Dx = Dy = 120 N-
mi (nautical miles, 120 Nmi � 222.24 km) . The resulting algebraic
problem is solved using the alternate direction implicit (ADI)
method, with a time step of Dt = 1 (month) for (1)–(3).

Initial conditions are generated by the following ‘‘spin-up” pro-
cess: starting from uniform zero spatial distribution, the population
density is modelled by Eqs. (1)–(6) which are forced by the climato-
logical environment (generated over the period 1948–2005) during
first 3 Ds0 + KDsa time steps. Every month, a new larval source is
computed using the temperature only (i.e., SJ0 ¼ RUðT0Þ, see A.2).
The duration of the spin-up was set up to match the total lifespan
of skipjack population, so that the density of each age class can be
computed at the end of the climatological run. After spin-up, the
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Fig. 2. Computational domain with 3-layer mask (black color – land; dark gray – upper layer with depth < 100 m; light gray – layer 100–400 m) and 2� grid. Numbered
regions 1–7 are the regions used in the MULTIFAN-CL stock assessment.
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simulation continues with actual forcing fields for another 2 years
in order to reduce the influence of initial climatological forcing. Fi-
nal distributions were saved for later use as initial conditions for
optimization experiments. As the initial distributions play an
important role in parameter estimation process, we then repeated
the same procedure several times re-generating initial state of the
model using the optimized parameters.
4. The optimization approach

SEAPODYM explicitly describes spatial dynamics of pelagic fish
populations influenced not only by intrinsic population dynamics
processes, but also by extrinsic environmental variability. Predic-
tions of the model strongly depend on environmental forcing which
is taken by the model as the input. Use of oceanographic data allows
the model to reflect the impact of ocean temperature, currents and
primary production anomalies associated with El Niño or La Niña
events, which results in changes of population abundance and dis-
tribution - from juveniles to adults (see Lehodey et al., 1997). How-
ever, in order to have confidence in the model predictions,
particularly the adequacy of the population dynamical responses
to environmental variability, we need to combine simulations with
quantitative optimization (see the lower part of Fig. 1) and to ex-
press how well the model describes the observational data.

4.1. Fisheries data

Historical data collected from multiple fisheries operating in the
Western and Central Pacific ocean were provided by the Secretariat
of the Pacific Community (SPC), and data available for Eastern Pa-
cific ocean are supplied by Inter-American Tropical Tuna Commis-
sion. Monthly spatially distributed data on fishing effort Etfij (in
days) and catch Cobs

tfij (in tonnes) are aggregated into six generalized
gear types or ‘‘fisheries” defined by unique values of the ‘‘catchabil-
ity coefficient”, qf with f = 1,2, . . . ,6 corresponding to four WCPO
(PLSUB, PLTRO, WPSASS, WPSUNA) and two EPO fisheries (EPSASS
and EPSUNA). Summarized distribution of catch by these six fisher-
ies is shown on Fig. 3. Seasonal size composition of the catch is
available for each fishery aggregated over seven spatial regions in
Fig. 2.
4.2. Model predictions

The predicted catch, Cpred
tfij , at time t for fishery f is computed in

the model using observed fishing effort Etfij at location (i, j) by

Cpred
tfij ¼ qf Etfij

XK

a¼1

sfawaNaijDxDy;

where wa is the mean weight of fish in the ath cohort.
The predicted proportion at age a in the catch at time t for fish-

ery f in region r is

Qpred
tfar ¼

sfa
P

i;j2rEfijNaijDxDyPK
a¼1sfa

P
i;j2rEfijNaijDxDy

:

4.3. Likelihood function

We use the maximum likelihood method to estimate model
parameters hk that would allow the model predictions to approach
observations. In the WCPO most of the skipjack catch is made by
purse-seine fleets targeting skipjack, and we assume that spatially
scattered catch data have a Poisson distribution. Skipjack catch
data from Eastern Pacific Ocean (EPO) fisheries contain many zeros
since fleets target mostly yellowfin tuna, and we assume these data
follow a negative binomial distribution with zero inflation. This
yields the following likelihood components for WCPO fisheries:

L1ðhjCobsÞ ¼
Y

tfij

Cpred
tfij Cobs

tfij e�Cpred
tfij

Cobs
tfij !

; f ¼ 1;2;3;4 ð8Þ

and for EPO they are correspondingly

L2ðhjCobsÞ ¼

Q
tfij pf þ ð1� pf Þ

bf

1þbf

� �bf Cpred
tfij

1�pf

0
B@

1
CA if Cobs

tfij ¼ 0;

Q
tfij ð1� pf Þ

C Cobs
tfij þ

bf Cpred
tfij

1�pf

� �

C
bf Cpred

tfij
1�pf

� �
Cobs

tfij !

bf

1þbf

� �bf Cpred
tfij

1�pf 1
1þbf

� �Cobs
tfij

0
BB@

1
CCA

if Cobs
tfij > 0;

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

f ¼ 5;6;

ð9Þ
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where the parameters bf and pf, are the negative binomial parame-
ters (showing how much variance exceeds expected value) and
probability of getting a null observation, respectively. Both are esti-
mated in the optimization process.

We assume that fish lengths at catch are normally distributed,
which gives the following contribution from length frequency data
to the negative log-likelihood:

�L3ðhjQ obsÞ ¼ 1
2r2

Q

XT

t¼1

X6

f¼1

XK

a¼1

X7

r¼1

ðQ pred
tfar � Q obs

tfarÞ
2
; ð10Þ

where the proportion at age a in the catch computed from the ob-

served length-frequency data is Qobs
tfar ¼

Nobs
tflrP
l
Ntflr

, l 2 ½la; laÞ. Nobs
tflr is the

number of fish of length that belongs to the cohort of age a. The var-
iance r2

Q is fixed at the constant value of 1.5 cm.
The negative log-likelihood function, L� = �ln(L), to be mini-

mized is thus the sum of the three components given in (Eqs.
(8)–(10)), i.e.,

L� ¼ � ln L1ðhjCobsÞ � ln L2ðhjCobsÞ � L3ðhjQ obsÞ: ð11Þ

Instead of setting penalties to the boundaries of h, we chose to per-
form a constrained minimization through parameter scaling (see
e.g., Bard, 1974; Vallino, 2000). The latter implies that the optimiza-
tion routine operates in the unbounded parametric space that is
mapped to the bounded one with the transformation hk ¼ hkþ

ð �hk � hkÞð1þ sin ph0k
2 Þ, i.e., variable h0k can vary from �1 to 1 while

hk remains within the imposed bounds.

4.4. Implementation of adjoint method

Solving the problem of function minimization with gradient
methods, requires evaluation of the derivatives of objective func-
tion with respect to each control parameter. We evaluated these
derivatives using the method of integration of the adjoint model.
First, we attempted to use automatic differentiation for deriving
adjoint computer code, however for SEAPODYM it gave unrealistic
demands of computer memory needed for storing the model vari-
ables during forward computation (see e.g., Griewank and Corliss,
1991). As result all computer codes for the adjoint model were
manually written and then tested using utilities of automatic code
differentiation library AUTODIF (Otter Research Ltd., 1994). This li-
brary also provided quasi-Newton numerical function minimizer
and parameter scaling algorithms (see above).

The resulting analytic derivatives were verified in two ways.
First, they were simply compared to derivatives computed by
AUTODIF. Second, it was verified that

L�ðhk þ hÞ � L�ðhk � hÞ
2h

�rkL� ¼ Oðh2Þ;

i.e., that the discrepancy between each gradient component rkL�

obtained by analytic differentiation and its finite difference approx-
imation changes parabolically with step h (which was varied from
10�6 to 10�1).

4.5. Optimization experiments

Three optimization experiments spanned three different time
periods: 1980–1990 (E1), 1990–2005 (E2), and the total 25-year
range from 1980 to 2005 (E3) to determine the extent to which
the estimated parameters depend on data from different periods,
and consequently, how model predictions change as a result of
assimilating data over different time periods.

In order to reduce the influence of initial conditions (spatial dis-
tributions of cohorts produced by the model with initial guess
parameters) on the results of minimization procedure, the first 6-
month predictions in each optimization experiment were excluded
from the likelihood function.

As initial guess parameters of the mortality and recruitment
functions we used estimates from recently published skipjack
stock assessments for the WCPO using MULTIFAN-CL (Langley
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et al., 2005). See the pre-specified values of model parameters in
Table 1.

Preliminary optimization experiments revealed several prob-
lems. As expected, the simultaneous estimation of the parameters
of the recruitment function (Eq. A.11) and the natural and fishing
mortality functions (Eqs. (A.12)–(A.14)) lead to biased estimates
of the total population size. Namely, if we try to estimate simulta-
neously parameters R, b, bP and bS, the minimization procedure
tends to increase the total stock and also the computational time
(i.e., the number of iterations) increases by a factor of more than
three compared to experiments in which R is fixed. Such drastic in-
crease of the number of iterations due to the release of one more
parameter is an indication of strong correlation with other param-
eters. Considering the importance of the estimation the mortality
rate for each cohort given its functional form over ages, and taking
into account availability of more information for the adult cohort
in the fishing data than for larvae stage, we have chosen to fix
the recruitment parameters (see Table 1).

We further noticed that the coarse spatial resolution (2�) of the
grid being used and a bias in the predicted seasonal peak of tem-
perature in the forcing field for the Kuroshio region do not allow
the model to resolve the fine scale habitat variability that deter-
mines seasonal population migrations in this area. Therefore with
the current grid resolution SEAPODYM cannot adequately describe
the seasonal skipjack migration through the Kuroshio extension
(Nihira, 1996) and attempts to assimilate data within this geo-
graphic area would bias parameters of habitat indices. Conse-
quently, the sub-tropical pole-and-line Japan fleet catch data
were excluded from the likelihood calculation, and the catchability
coefficient (fishing mortality) for this fleet was fixed.
Table 1
Control parameters of the constrained optimization problem, imposed lower (h) and uppe

h Description

�mp Maximal mortality rate due to predation, Eq. (A.13)
bp Slope coefficient in predation mortality, Eq. (A.13)
�ms Maximal mortality rate due to senescence, Eq. (A.12)
bs Slope coefficient in senescence mortality, Eq. (A.12)
A Threshold age (in month) of tuna for senescence mortality
� Variability of tuna mortality with habitat quality, Eqs. (A.14) and (A.15
r0 Standard deviation in the temperature function of I0, Eq. (A.2)
TI

0 Optimal surface layer temperature for juveniles, Eqs. A.2 and A.3
a Half saturation constant for the food to predator ratio in the spawning
rT Standard deviation in temperature function of I2,a, Eqs. (A.4) and (A.6)
TI

K Optimal temperature for oldest tuna, Eqs. (A.4) and (A.5)
c Slope coefficient in the function of oxygen, defining adult habitat indexbO Threshold value of dissolved oxygen, defining adult habitat index, Eq. (
c Coefficient of diffusion variability with habitat index, Eq. (A.10)
Vm Maximal sustainable speed (in body length) of tuna, Eq. (A.9)
R Maximal number of larvae at large spawning biomass of adults, Eq. (A.
b Slope coefficient in Beverton–Holt function, Eq. (A.11)
q1 Catchability of the fishery
11 Steepness of selectivity function, type I, fishery
l̂f Threshold fish length (see Eq. (A.17)) for the fishery
q2 Catchability of the fishery
12 Steepness of sigmoid selectivity function, fishery
l̂2 Threshold fish length (see Eq. (A.17)) for fishery
q3 Catchability of the fishery
rs,3 Coefficient of selectivity function, type II, fishery
l̂3 Target fish length (see Eq. (A.17)) for fishery
q4 Catchability of the fishery
rs,4 Coefficient of selectivity function, type II, fishery
l̂4 Target fish length (see Eq. (A.17)) for the fishery
q5 Catchability of the fishery
15 Steepness of sigmoid selectivity function, fishery
l̂5 Threshold fish length (see Eq. (A.17)) for fishery
q6 Catchability of the fishery
16 Steepness of sigmoid selectivity function, fishery
l̂6 Threshold fish length (see Eq. (A.17)) for fishery

Parameters marked by asterisks were fixed at their specified values in all experiments.
Finally, to avoid the parameterization problem caused by the
interplay between parameters, we reduced the number of mortal-
ity function parameters (Eqs. (A.14) and (A.15)) by fixing the coef-
ficient of variability with habitat index e at its guessed value 0.5.
Sensitivity analysis (see below) indicate that the model is barely
sensitive to this parameter.
5. Results

5.1. Sensitivity analyses

We applied sensitivity analyses to reveal which parameters can
be estimated from available data and which can not. If model pre-
dictions are insensitive to some parameters, it is unlikely that they
will be determined uniquely from available observations and
should, therefore, be removed from the optimization. The parame-
ters of the model h 2 Rn, where n = 35 (see Table 1).

Two types of sensitivity analyses were performed. The first, SA-
1, examines whether the predictions of a given model are sensitive
to its parameters. For this purpose we simply need to construct a
function of the model solution, which represents model predic-
tions (see, e.g., Worley, 1991). Then, the measures of sensitivity
can be computed using precise gradients obtained from adjoint
calculations. Since two types of data are assimilated within the
SEAPODYM-APE model, i.e., catch and length frequencies, we con-
struct the following functions:

R1 ¼
X
tfij

ðCpred
tfij Þ

2
; R2 ¼

X
tfar

ðQ pred
tfar Þ

2
; r ¼ 1; . . . ;7: ð12Þ
r (h) boundaries and initial guess values (h0)

h h h0

0 1 0.5*
0 0.5 0.057
0 1 0.5*
�0.5 0 �0.167
20 40 31.29*

) 0 1 0.5*
2 4 3.5*
28.5 31.5 30

index, Eq. (A.1) 0 5.0 0.1*
1 3 2
25 28 26.0*

, Eq. (A.4) �10 0 � 8*
A.4) 0.1 3.0 1.0

0 1 0.1
0 2 1.0

11) 0 2 0.5*
0 2 1.5*
0 0.1 0.00144*

PLSUB 0 2.0 0.41*
20 70 42*
0 0.1 0.003

PLTRO 0 2.0 0.2
20 70 50
0 0.1 0.005

WPSASS 2 20 7.5
20 70 50
0 0.1 0.005

WPSUNA 2 20 7.5
20 70 50
0 0.5 0.0018*

EPSASS 0 2.0 0.22*
20 70 44.2*
0 0.5 0.0022*

EPSUNA 0 2.0 0.29*
20 70 44.1*
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Then we define two measures of relative sensitivity n1ðh0
kÞ and

n2ðh0
kÞ for corresponding model predictions and each initial guess

parameter h0
k as follows:

n1ðh0
kÞ ¼

1
R1

oR1

oh0
i

; n2ðh0
kÞ ¼

1
R2

oR2

oh0
i

: ð13Þ

The second sensitivity analysis, SA-2, examines whether the objec-
tive function (which incorporates both predicted and observed
data) is sensitive to model parameters. We compare values of like-
lihood at some found minimum h� to those evaluated at boundaries
of parameter space (Vallino, 2000). We define two further measures
of relative sensitivity:

n3ðhykÞ ¼
L�ðhy þ d�hk � ekÞ � L�ðhyÞ

L�ðhyÞ
;

n4ðhykÞ ¼
L�ðhy � dhk � ekÞ � L�ðhyÞ

L�ðhyÞ
;

ð14Þ

where d�hk ¼ �hk � hyk, dhk ¼ hyk � hk and ek is a standard basis vector
with 1 in the kth element and 0 elsewhere.

Both sensitivity tests applied for three optimization experi-
ments showed similar qualitative results for most of the param-
eters (see Fig. 4). Sensitivity measures for parameters a are
persistently low and for parameter �mP are ambiguous, showing
however weak response of the cost function to this parameter’s
variation in the experiments with larger data sets (E2 and E3
experiments). Note that both parameters define mortality of
youngest cohorts (a introduces variability into mortality of lar-
vae depending on forage and primary production ratio K (Eq.
A.1) and �mP is the maximal mortality rate of larvae due to pre-
dation). Low sensitivities to these parameters are hence not too
surprising, because explicit information about larvae and juve-
niles is not presented either in the observed catch or in size
data. Sensitivities for parameters TI

K , l4, f5 and f6 were also
low by both measures for all three experiments, and as a conse-
quence these parameters were fixed, i.e., held constant, in the
optimization.

Performing exhaustive sensitivity analysis, i.e., exploring entire
likelihood hyper-surface in n-dimensional parametric space is
practically impossible. Consequently, some non-estimable param-
eters are likely unrecognized, but large uncertainties obtained
from the error analysis will be the good indicators of poorly deter-
mined parameters. Sensitivity analysis only gives a tentative repre-
sentation of observable and non-observable parameters unless the
entire parameter space is explored thoroughly. For example, it was
found that decreasing one of the mortality parameters A increases
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Fig. 4. Log-scaled measures of sensitivity obtained for each parameter within estimatio
sensitivity of either predictions (SA-1, i.e., maxjn1,n2j) or cost function (SA-2, maxjn3,n4j
sensitivity to parameter �mp. For this reason, the number of mortal-
ity parameters was reduced by fixing �mp and �ms and controlling the
mortality-at-age function (Eqs. A.12 and A.13) with slope coeffi-
cients bp and bs only.

In contrast, despite the high model sensitivity to r0 which is
responsible for the width of the preferred temperature range for
larvae and thus can extend or shrink the area of spawning
grounds, the optimization tends to force it to its upper bound.
Relaxing this bound in turn leads to searching solutions with
unrealistic high population densities in the EPO and reducing
catchability coefficients for Eastern fleets. It seems impossible to
overcome these difficulties with the current state of the model
and available biophysical and fishing data, hence coefficients r0

and catchabilities for EPSASS and EPSUNA fisheries which appear
to balance each other were fixed during the final estimation
stage. There are several possible reasons causing the problem.
However other than the errors associated with environmental
forcing or presence of many zeros in the catch data, the most
probable cause is the improper consideration of the epipelagic
layer depth EPO which is known to be much shallower. Since
we used the constant depth (=100 m) for aggregating environ-
mental data everywhere, it could lead to lower temperatures in
the East and hence to the wider temperature range. In future
studies we envisage the use of dynamic in time and space eupho-
tic depth to define the epipelagic layer.

5.2. Identical twin experiments

In order to verify that both the model and the method allow us
to estimate chosen parameters using the available amount of
observations we conducted so-called ‘‘identical twin experiments”.
These tests consist of estimating parameters from artificial data
series constructed from predictions given by deterministic models.
If optimization works well with our model and experiment set-up,
then after sufficient perturbation of optimal parameters we should
be able to retrieve them, because they determine known a priori
solution represented in the artificial data series.

Thus, we constructed three artificial fishing data sets, using
deterministic model outputs, i.e., without adding the noise and
performed several minimizations for each experiment (E1–E3)
starting with perturbed parameters (but not changing initial con-
ditions). Control parameters were successfully recovered for all
three experiments with small relative errors e < 0.001 due to
the computer round-off error. The example plot of parameter evo-
lution during minimization process is given in Fig. 5 for the sim-
ulated twin experiment with the E2 parameter set. All control
E1, SA−1
E1, SA−2
E2, SA−1
E2, SA−2
E3, SA−1
E3, SA−2
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Fig. 5. Evolution of control parameters during twin data experiment conducted for the artificial data simulated with E2 parameter set. Parameters are grouped by their
sensitivities in descending order, except bp for which high sensitivity was calculated by both SA-1 and SA-2 analysis.

Table 2
Estimated parameters and their standard deviation uncertainties, obtained from
Hessians approximated by finite differences which utilize the exact derivatives

N h E1 E2 E3

1 bp 0.124 ± 0.0026 0.388 ± 0.002 0.296 ± 0.0018
2 bs �0.087 ± 0.0067 �0.0347 ± 0.001 �0.044 ± 0.0015
3 TI

0 29.9 ± 0.0063 31.43 ± 0.017 30.47 ± 0.0047
4 a0 1.39 ± 0.011 3.178 ± 0.015 3.67 ± 0.016
5 rT 1.26 ± 0.0047 2.116 ± 0.002 1.62 ± 0.0015
6 bO 3.65 ± 0.002 3.854 ± 0.0009 3.86 ± 0.0009
7 c 0.47 ± 0.0098 0.504 ± 0.01 0.4 ± 0.005
8 Vm 1.72 ± 0.0097 1.526 ± 0.008 1.3 ± 0.006
9 q2 0.004 ± 0.0018 0.0088 ± 0.0055 0.0045 ± 0.0016
10 q3 0.0085 ± 0.0027 0.0063 ± 0.0014 0.0044 ± 0.0018
11 q4 0.0023 ± 0.0013 0.0045 ± 0.0015 0.0024 ± 0.001
12 12 0.24 ± 0.0028 0.185 ± 0.0026 0.192 ± 0.001
13 l̂2 54 63.33 ± 0.007 60.33
14 rs,3 3.55 ± 0.0215 4.98 ± 0.004 4.96 ± 0.0036
15 l̂3 54 48.73 ± 0.0008 48.76 ± 0.0007
16 rs,4 9.48 ± 0.0089 13.98 ± 0.005 13.92 ± 0.004
17 l̂4 47.29 ± 0.0042 61.01 ± 0.004 59.3 ± 0.003
18 b5 0.004 ± 0.0009 0.0075 ± 0.0009 0.004 ± 0.0001
19 b6 0.007 ± 0.0012 0.005 ± 0.0009 0.003 ± 0.0001
20 p0,5 0.25 ± 0.014 0.29 ± 0.0097 0.24 ± 0.007
21 p0,6 0.05 ± 0.022 0.075 ± 0.017 0.05 ± 0.012

Parameters, for which uncertainties are not given, were fixed in the current
experiment.
Note: a0 here is the argument of ISE,a function (Eq. (A.7)), while it was fixed (=0.1) in

spawning function (Eq. (A.11)) and natural mortality for larvae (Eq. (14)), see text
for details.
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parameters (except bP) are grouped according to the sensitivity
measures described above – from highest sensitivities to lowest.
The parameters to which the model is most sensitive were recov-
ered after fewer iterations of the quasi-Newton method. Despite
high sensitivity of the model to bP and small relative error
(<1%), it was one of the last parameters to stabilize at its opti-
mum value. This is likely due to its high correlation with the
senescence bS mortality coefficient (see further in Table 5), which
stabilized around 100th iteration but continued to vary within a
tiny range (see Fig. 5, upper left plot) until stabilization of bP at
its optimal value.

5.3. Parameter estimates and errors

The resulting parameter estimates for experiments E1–E3 are
given in Table 2. The values differ among experiments depending
on time period. The E3 estimates should be considered to be the
most representative as describing the population life cycle because
they were obtained by assimilation of the longest time series of
fishing data.

Unfortunately, there is no simple way to evaluate the unique-
ness of the estimated parameters in non-linear problems especially
for ecosystem models due to their extreme complexity, high
dimension of the objective functional and scarcity of available
observations (Robinson and Lermusiaux, 2002; Vallino, 2000;
Matear, 1995). Thus, we used the common approach of perturbing
the model parameters and restarting the experiment but were not
able to determine if the found solutions are local minima. How-
ever, considering the dimension of the minimization problem
and the computer time to perform one experiment, it seemed
unrealistic to make an exhaustive study that would allow us to
conclude that computed solutions are global. We can, however,
determine whether the estimated parameters were well deter-
mined at the minima detected by minimization routine.
We compute the variance of the estimated parameters from the
inverse of the Hessian matrix, i.e., C = H�1 (Bard, 1974), where

H ¼ o2L�

ohiohj
; i; j ¼ 1;2; . . . ; n is the Hessian matrix evaluated at the

minimum of the negative log-likelihood function. The diagonal
elements of C provide estimates of the variance of the optimal



Table 3
Spatial monthly average correlation between predicted and observed catch by fishery,
computed in SEAPODYM simulation with non-optimized (N/O) parameter set
(Lehodey et al., 2003, see Table 1, column for S4 simulation) and simulation with
estimated E3 parameters

Fishery N/O E3

PL Japan 0.37 0.8
PL tropical 0.73 0.88
WCPO PS associated 0.7 0.84
WCPO PS unassociated 0.51 0.81
EPO PS associated – 0.67
EPO PS unassociated – 0.71
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parameters. The Hessian matrix was approximated with central
finite difference using first derivatives exactly evaluated by adjoint
calculations.

The estimated parameters and their calculated uncertainty (one
standard deviation) are shown in Table 2. All population parame-
ters ((1)–(8)) and coefficients of selectivity functions are estimated
most accurately by the optimization given their small uncertain-
ties, while catchabilities of WCPO fisheries and probability of zero
catch in unassociated EPO fisheries (see Eq. 9) have higher errors in
all experiments.

Correlation coefficients between pairs of estimated parameters
can also be calculated from the error-covariance matrix (see
Tables 4–6). These characteristics provide additional information
Table 4
Correlation coefficients between optimal parameters obtained for E1

bP bS TI

0 a rT
bO Vm c

bP 1 0.99 �0.06 0.07 �0.06 �0.05 �0.24 �
bS 0.99 1 �0.08 0.09 �0.07 �0.05 �0.19 �
TI

0 �0.06 �0.08 1 �0.24 0.97 �0.02 �0.03 �
a 0.07 0.09 �0.24 1 �0.24 �0.01 0.43
rT �0.06 �0.07 0.97 �0.24 1 �0.02 �0.03 �bO �0.05 �0.05 �0.02 �0.01 �0.02 1 0.07 �
Vm �0.24 �0.19 �0.03 0.43 �0.03 0.07 1
c �0.26 �0.21 �0.28 0.06 �0.26 �0.02 0.74
q2 �0.11 0.03 �0.01 0.05 �0.01 �0.01 0.34
q3 �0.4 �0.3 �0.05 0.03 �0.04 0.02 0.28
q4 �0.4 �0.31 �0.05 0.01 �0.05 0.02 0.35
12 0.23 0.26 0.04 0.02 0.04 �0.01 0.02 �
rs,3 0.06 0.05 0 �0.04 0 0.01 �0.09 �
rs,4 0.02 0.03 �0.02 0.01 �0.02 0 0.04
l̂4 0.01 0 �0.01 0.01 �0.01 �0.01 0.09

Table 5
Correlation coefficients between optimal parameters obtained for E2

bP bS TI

0 a rT
bO Vm c q2

bP 1 0.88 0.6 �0.03 0.38 �0.08 0.54 0.5 �
bS 0.88 1 0.27 �0.02 0.15 �0.1 0.58 0.67 �
TI

0 0.6 0.27 1 �0.05 0.72 �0.07 0.31 �0.08
a �0.03 �0.02 �0.05 1 �0.04 0.06 0.18 �0.13
rT 0.38 0.15 0.72 �0.04 1 0.09 0.14 �0.05bO �0.08 �0.1 �0.07 0.06 0.09 1 0.06 �0.07
Vm 0.54 0.58 0.31 0.18 0.14 0.06 1 0.68
c 0.5 0.67 �0.08 �0.13 �0.05 �0.07 0.68 1 �
q2 �0.1 �0.19 0.01 0.09 0.01 0.09 0.05 �0.03
q3 0.32 0.56 �0.02 �0.03 �0.01 �0.07 0.27 0.43 �
q4 0.4 0.63 0.01 �0.04 0.03 �0.1 0.25 0.39 �
12 0.29 0.41 0.02 �0.05 0.01 �0.08 0.16 0.24 �
l̂2 �0.27 �0.41 �0.02 0.09 �0.01 0.11 �0.1 �0.19
rs,3 �0.04 �0.1 0.01 �0.02 0.01 0 �0.07 �0.14 �
l̂3 0.06 0.01 0.07 �0.06 0.05 �0.03 0.01 �0.05 �
rs,4 �0.02 0.03 �0.03 �0.06 0 �0.03 �0.16 �0.13 �
l̂4 0.06 0.15 �0.03 �0.05 0.01 �0.05 �0.07 �0.02 �
to the question of identifiability of the model parameters that
we appealed to earlier. Eventually, the high correlations were
observed between selectivity and catchability parameters (Tables
5 and 6). High values for the pair rT and TI

0 (Table 4) suggests
that predicted water temperature data for 1980–1990 period
(E1) did not provide a clear signal for simultaneous estimation
of the optimal temperature for spawning and the extension of
the adult thermal habitat. Note, that a high correlation between
these parameters appears again in the E3 experiment, which
covers E1 period as well. Also, the high correlation between bp

and bs in all experiments suggests combining these mortality
parameters.

Assimilating the longest time series (E3) showed dependency
between the senescence mortality coefficient bs (i.e., mortality rate
of oldest cohorts) and catchability (fishing mortality) for pole-and-
line tropical fishery, while this dependency does not exist within
the solutions found in E1 and E2. Such a result most likely is due
to the poor choice of the selectivity parameter for PLTRO fishery,
which was fixed in the E3 experiment (see Table 2) because of
low sensitivity.

6. Discussion and conclusion

The goal of this study was to find the ‘‘best” model parameters
which would give us confidence in the ability of the model to rea-
sonably describe real ecosystem. The definition of the best solu-
q2 q3 q4 12 rs,3 rs,4 l̂4

0.26 �0.11 �0.4 �0.4 0.23 0.06 0.02 0.01
0.21 0.03 �0.3 �0.31 0.26 0.05 0.03 0
0.28 �0.01 �0.05 �0.05 0.04 0 �0.02 �0.01
0.06 0.05 0.03 0.01 0.02 �0.04 0.01 0.01
0.26 �0.01 �0.04 �0.05 0.04 0 �0.02 �0.01
0.02 �0.01 0.02 0.02 �0.01 0.01 0 �0.01
0.74 0.34 0.28 0.35 0.02 �0.09 0.04 0.09
1 0.34 0.29 0.39 �0.01 �0.05 0.03 0.07
0.34 1 0.7 0.69 0.35 �0.08 0.04 �0.04
0.29 0.7 1 0.6 0.07 �0.68 0.02 �0.05
0.39 0.69 0.6 1 0.06 �0.06 �0.05 0.27
0.01 0.35 0.07 0.06 1 0 0.01 �0.02
0.05 �0.08 �0.68 �0.06 0 1 0 0.02
0.03 0.04 0.02 �0.05 0.01 0 1 0.78
0.07 �0.04 �0.05 0.27 �0.02 0.02 0.78 1

q3 q4 12 l̂2 rs,3 l̂3 rs,4 l̂4

0.1 0.32 0.4 0.29 �0.27 �0.04 0.06 �0.02 0.06
0.19 0.56 0.63 0.41 �0.41 �0.1 0.01 0.03 0.15
0.01 �0.02 0.01 0.02 �0.02 0.01 0.07 �0.03 �0.03
0.09 �0.03 �0.04 �0.05 0.09 �0.02 �0.06 �0.06 �0.05
0.01 �0.01 0.03 0.01 �0.01 0.01 0.05 0 0.01
0.09 �0.07 �0.1 �0.08 0.11 0 �0.03 �0.03 �0.05
0.05 0.27 0.25 0.16 �0.1 �0.07 0.01 �0.16 �0.07
0.03 0.43 0.39 0.24 �0.19 �0.14 �0.05 �0.13 �0.02
1 �0.15 �0.31 �0.77 0.96 �0.02 �0.06 �0.18 �0.23
0.15 1 0.45 0.3 �0.31 �0.79 �0.58 �0.01 0.06
0.31 0.45 1 0.41 �0.47 �0.03 0.06 0.47 0.73
0.77 0.3 0.41 1 �0.87 �0.05 0.01 0.13 0.2
0.96 �0.31 �0.47 �0.87 1 0.02 �0.05 �0.18 �0.26
0.02 �0.79 �0.03 �0.05 0.02 1 0.88 0.12 0.09
0.06 �0.58 0.06 0.01 �0.05 0.88 1 0.15 0.14
0.18 �0.01 0.47 0.13 �0.18 0.12 0.15 1 0.92
0.23 0.06 0.73 0.2 �0.26 0.09 0.14 0.92 1



Table 6
Correlation coefficients between optimal parameters obtained for E3

bP bS TI

0 a rT
bO Vm c q2 q3 q4 12 rs,3 l̂3 rs,4 l̂4

bP 1 0.93 0.32 0.02 0.21 0.13 0.51 0.4 0.73 0.43 0.5 0.35 �0.15 �0.07 0 0.03
bS 0.93 1 0.06 0.07 0 0.04 0.61 0.59 0.91 0.62 0.68 0.42 �0.22 �0.14 �0.01 0.06
TI

0 0.32 0.06 1 �0.21 0.94 0.27 �0.07 �0.44 �0.12 �0.18 �0.23 �0.04 0.05 0.07 0.01 �0.07
a 0.02 0.07 �0.21 1 �0.21 �0.04 0.26 �0.02 0.1 0.06 0.08 0.06 �0.03 �0.07 �0.04 0
rT 0.21 0 0.94 �0.21 1 0.23 �0.13 �0.45 �0.13 �0.16 �0.22 �0.05 0.04 0.05 0.02 �0.07bO 0.13 0.04 0.27 �0.04 0.23 1 0.11 �0.17 �0.06 �0.09 �0.09 �0.02 0.05 0.04 �0.01 �0.04
Vm 0.51 0.61 �0.07 0.26 �0.13 0.11 1 0.72 0.59 0.38 0.39 0.31 �0.14 �0.09 �0.15 �0.07
c 0.4 0.59 �0.44 �0.02 �0.45 �0.17 0.72 1 0.65 0.5 0.51 0.31 �0.2 �0.14 �0.14 �0.03
q2 0.73 0.91 �0.12 0.1 �0.13 �0.06 0.59 0.65 1 0.71 0.73 0.61 �0.25 �0.18 0 0.07
q3 0.43 0.62 �0.18 0.06 �0.16 �0.09 0.38 0.5 0.71 1 0.56 0.32 �0.82 �0.64 �0.05 0.01
q4 0.5 0.68 �0.23 0.08 �0.22 �0.09 0.39 0.51 0.73 0.56 1 0.3 �0.19 �0.13 0.28 0.57
12 0.35 0.42 �0.04 0.06 �0.05 �0.02 0.31 0.31 0.61 0.32 0.3 1 �0.14 �0.11 �0.02 0
rs,3 �0.15 �0.22 0.05 �0.03 0.04 0.05 �0.14 �0.2 �0.25 �0.82 �0.19 �0.14 1 0.86 0.08 0.05
l̂3 �0.07 �0.14 0.07 �0.07 0.05 0.04 �0.09 �0.14 �0.18 �0.64 �0.13 �0.11 0.86 1 0.11 0.08
rs,4 0 �0.01 0.01 �0.04 0.02 �0.01 �0.15 �0.14 0 �0.05 0.28 �0.02 0.08 0.11 1 0.89
l̂4 0.03 0.06 �0.07 0 �0.07 �0.04 �0.07 �0.03 0.07 0.01 0.57 0 0.05 0.08 0.89 1

Predicted vs. observed catch for pole-and-line tropical fleets

C
at

ch
((1

03
m

t))

1980 1985 1990 1995 2000 2005

5
10

20
30

((R2 ==0.64)

Predicted vs. observed catch for WCPO associated purse seine fleets

C
at

ch
((1

03
m

t))

1980 1985 1990 1995 2000 2005

0
20

40
60

80

((R2 ==  ))  0.85

Predicted vs. observed catch for WCPO unassociated purse seine fleets
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Fig. 6. Domain-aggregated catches for Western Pacific fisheries taken into account in the function minimization procedure. Solid line denotes predicted catch, dotted –
observed data.
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tion here is circumscribed by the constraints posed on the param-
eters, the form of cost function being chosen, the accuracy of forc-
ing, the observational errors, and the model itself. The best fit
could conceivably be located outside the bounds of parameter
space, but the parameters which are beyond the scope of their
biological meaning would probably yield an unrealistic solution
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that does not correspond to our present knowledge of the
ecosystem.

The agreement between model predictions and observations is
presented as domain-aggregated time series of WCPO catch in Fig.
6. Also, the average spatial monthly correlation between predicted
and observed catch by fishery are compared to values computed by
SEAPODYM without optimization in Table 3. Fig. 7 shows examples
of predicted spatial distributions of adult skipjack with CPUE data
that was incorporated into the likelihood function. Environmental
conditions clearly have a strong influence on population distribu-
tions as well as on CPUE indices and it is encouraging that the model
is able to describe these effects with fairly small number of control
variables.

The dynamics predicted by the habitat-based spatially explicit
model, SEAPODYM-APE, are generally in agreement with the qual-
itatively different statistical length-based stock assessment model,
MULTIFAN-CL, (Fig. 8), with the correlation R2 = 0.46. However,
SEAPODYM-APE predictions suggest much more moderate (in
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Fig. 7. Observed catch per unit of effort for purse seine fisheries plotted over predicted sk
and development of El Niño at the second half of year 2002 (right column).
amplitude) variations in skipjack stock. Note that range of variabil-
ity predicted by the biophysical coupled model that drives SEAPO-
DYM-APE is also too low compared to actual variability (McKinley
et al., 2006).

Dynamics of the population biomass predicted by the two
models differ substantially during 1978–1982 and 1992–1997
periods. These two periods correspond to post-El Niño ecosystem
conditions which are known to be favorable for skipjack recruit-
ment (Lehodey et al., 2003) through expansion of the skipjack
spawning grounds and then, bringing more accessible forage to
the western–central Pacific region. Comparison of predicted bio-
mass time series of young tuna and the Southern Oscillation In-
dex (SOI) shows direct relationship between ENSO events and
changes in the population dynamics. The maximum correlation
between the two series (�0.63) is obtained with a SOI series
lagged by 8 months, a time lag matching with the age of recruits,
and thus suggesting that the ENSO impact occurs directly on the
early life history of the species (i.e., spawning index). This results
Adult skipjack in January 2002
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ipjack distribution (adults of size 24–71 cm) during La Niña conditions (left column)
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330 I. Senina et al. / Progress in Oceanography 78 (2008) 319–335
confirm previous analyses (e.g., Lehodey et al., 2003), but since it
emerges from a rigorous statistical approach, it provides higher
confidence in a finding that can be relevant to the economic man-
agement of the fishery, namely, the general trend in abundance of
the adult stock being predictable 8 months in advance simply
using the SOI.

The impact of ENSO variability on skipjack movement has
been also demonstrated. During El Niño, the skipjack population
moves eastward (see Fig. 9), and the biomass in the Central and
Eastern Pacific increases, while it decreases in the Western Paci-
fic correspondingly. These spatial changes very likely affect the
catch and could explain the discrepancy between SEAPODYM-
APE and MULTIFAN-CL biomass estimates. The latter would
‘‘interpret” a sudden drop of catches in the WCPO due to an east-
ward displacement of a large fraction of the stock by a decrease
in the stock abundance. Conversely, the environmental spatial
model SEAPODYM agrees with such catch reduction because it
considers the entire Pacific domain and, more importantly, it
explicitly predicts catch declines due to the population’s east-
ward migration, when application of current fishing effort gave
lower catches.

Overall parameter values estimated by optimization proce-
dures are biologically reasonable. The threshold value of ambient
oxygen level in adult skipjack habitat was estimated to bebO ¼ 3:86 ml=l. This value coincides with the current knowledge
of skipjack physiology stating that skipjack exhibit highest oxy-
gen demands (Brill, 1994) among tuna species. For example, dur-
ing a sonic tracking study of skipjack tuna of sizes 41–52 cm fork
length, Cayre (1991) observed that skipjack spent most of the
time at depths with ambient oxygen level higher 3.8 ml/l. Note
however, that at the time of the study only seasonal climatology
of O2 was available.

Summarizing results of field studies, Lehodey (2001) previ-
ously suggested that the parameter a, defining spawning habitat
spatial structure (Eq. (A.1)) as well as adult seasonal migrations
to spawning grounds (i.e., I0 in Eq. (A.7)), should be small for
skipjack and gradually increase for yellowfin, bigeye, albacore
and bluefin tuna respectively. We intended to verify this in opti-
mization experiments, however the low sensitivity of the model
to a (see Fig. 5) led us to differentiate the effects of the ratio of
primary production to forage biomass (the strength of which is
defined by a) on resulting larval distributions, and on the move-
ment of adults toward the spawning zones respectively. Namely,
when seasonal effects are not considered in the adult habitat def-
inition, the parameter estimate always tended to be 0 leading to
more smooth larval distributions defined only by temperature
function. We fixed a to a small value (0.1) in the spawning hab-
itat and released it to estimate a value representing the effect on
the movement of adult fish. In this case the model estimates a
non-null positive value for a with relatively small uncertainty
(see Table 2). These results suggest that spawning migration of
adult skipjack is important to include in sub-tropical areas where
the seasonal threshold is efficient, but that either spawning con-
ditions for adults are different from actual preferences of larvae,
or more likely, the model does not predict correctly the redistri-
bution of larvae and juveniles, e.g., because of insufficient data or
underestimated currents, or too low spatial resolution with no
mesoscale representation. Clearly, the model needs better resolu-
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Fig. 9. Skipjack biomass predicted by SEAPODYM with optimized parameters during a strong El Niño event (November 1997, left column) and during La Niña conditions
(November 1998, right column).
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tion and data on early life history for a better understanding of
this mechanism. Application to other species with a more dis-
tinct seasonal spawning behavior and habitat should also provide
useful information.

The results of this study show that a new generation of models
integrating the progress in physical and biogeochemical oceanog-
raphy modelling, a detailed spatially explicit modelling of popula-
tion dynamics and up-to-date data assimilation techniques can
provide a new powerful tool for an ecosystem-based management
of exploited species, allowing to investigate impacts due to both
fishing and environmental changes. Despite the increased level
of detail (both in space and time) in comparison to standard pop-
ulation dynamic models, this approach does not necessarily mean
more parameters to estimate. Indeed, because environment is
such a strong constraint, it allows reducing the number of param-
eters in the population dynamics model itself. Spatially-explicit
models for stock assessment based on fishing data offer also the
advantage of using gear catchability – a critical parameter in
stock assessment – in a sense closer of its true definition, since
environment-related variability (e.g., migration and recruitment)
is explicit in the model and all changes increasing space-related
fleet efficiency is directly included with the use of spatially-disag-
gregated fishing data.

But in parallel, environmental forcing fields need to be accurate,
and environmentally-constrained mechanisms need to be robust
to avoid introducing other biases in the model. In particular, due
to the general dearth of observations, predicted outputs of large-
scale micronekton biomass distributions lack a strict evaluation.
It would be beneficial to apply the current coupled model for
assimilating available forage data (e.g., acoustic profiles) together
with tuna catch data to optimize the parameterization of the
mid-trophic sub-model.

Since the mechanisms in the model are linked to the environ-
mental conditions, the optimization necessarily produces param-
eter estimates that depend on the forcing field used. It is
therefore essential to run optimization experiments with multi-
ple forcing data sets. They will highlight the most sensitive
parameters and provide an envelope (or ensemble) of predic-
tions. We can also expect that predicted physical–biogeochemi-
cal forcing fields will improve toward more and more realistic
conditions, allowing approaching actual values of the biological
parameters. These parameters can be also evaluated indepen-
dently, for example using electronic tagging data. Independent
measures or estimates of these parameters, for example using
electronic tagging data, should assist in the evaluation of model
predictions.

Finally, future efforts to optimize the model parameters for
other tuna species in the same ocean, then in the Indian and Atlan-
tic oceans should bring helpful complementary information on the
capability of the model to produce coherent estimates between
species. Given both conservation and economical concerns on big-
eye and yellowfin tunas, this task is urgent.
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Appendix A. SEAPODYM parameterization

A.1. Habitat indices

Physical and biogeochemical conditions influence fish popula-
tion dynamics through changes in spawning conditions, habitat
suitability, and distributions of food resources, thus inducing
changes in fish movement behavior, reproduction and mortality.
Environmental data are used in SEAPODYM to build habitat suit-
ability indices, and the values of these indices control dynamical
processes in the simulated populations. Three types of habitat
indices are defined which link environmental variables to the
dynamics of different life stages of tuna: spawning habitat index
I0 describing favorability of the habitat for individuals less than
one month in age, juvenile habitat index I1 defined for individu-
als aged 1–2 months, and adult habitat index I2,a, which de-
scribes influence of environment on adult tunas of age a. Two
special cases of the adult habitat index take into account season-
ality of migrations and food requirements of adult tuna.
A.1.1. Spawning habitat index
The habitat index I0 used to constrain larval production and

mortality of age 0 individuals (see below) is a function of surface
layer temperature T0, tuna forage biomass in the surface layer F0

and primary production converted to the wet weight of zooplank-
ton Pww. So, if ocean primary production P is given in mmol C m�2,
after conversion to the wet weight of zooplankton species the units
of Pww become g/m2. Let K = EPww/F0 denote the ratio between food
for larvae and the tuna forage that is considered as the potential
predator for larvae. The constant E is the energy transfer
coefficient.

Spawning habitat index is defined as the following:

I0 ¼ /ðKÞ �UðT0Þ;

where /(K) is the non-linear saturation function determined in
[0,1) interval:

/ðKÞ ¼ K
aþK

: ðA:1Þ

The curvature parameter a is unknown and included in the list of
parameters to be estimated from the data. Dependence on sea sur-
face temperature is described by a Gaussian function:

UðT0Þ ¼
g

r0

ffiffiffiffiffiffiffi
2p
p e

�
ðT0�TI

0
Þ2

2r2
0 ; ðA:2Þ

where the parameters TI

0 and r0 are the optimal temperature
and width of tolerance interval (standard deviation) in the
Gaussian.
A.1.2. Juvenile habitat index
The juvenile habitat index I1 is a function of temperature in sur-

face layer and adult tuna density, which accounts for cannibalism
by adults:

I1 ¼ 1� hNi
hþ hNi

� �
�UðT0Þ; ðA:3Þ

where hNi ¼
PK

a¼1Na, i.e., is the total size of adult portion of the pop-
ulation, and the unknown parameter h determines the cannibalism
intensity in the habitat depending on the total number of adults
tuna being present locally. Juvenile indices are used to compute
juvenile mortalities, which therefore become variable in time and
space (see below).

A.1.3. Adult habitat index
The adult habitat index I2,a is an indicator of suitability of the

habitat for feeding fish. It is proportional to the local forage densi-
ties Fn weighted by the accessibility coefficients Ha,n as the func-
tions of environmental conditions:

I2;a ¼
X

n

Ha;nFn: ðA:4Þ

The more favorable environmental conditions are for tuna of age a
at given depth layer to access nth forage component (n = 1, . . . ,6),
the more likely this habitat will be preferred by tuna for foraging.
Two factors, temperature and oxygen, are considered to be critical
for tuna during feeding. Their importance is described by a Gaussian
function of temperature and a sigmoidal function of dissolved
oxygen:

UaðTzÞ ¼
g

ra

ffiffiffiffiffiffiffi
2p
p e

�
ðTz�TI

a Þ
2

2r2
a ; WðOzÞ ¼

1

1þ ecðOz�bOÞ ;
where z denotes the depth layer. Since some forage species perform
daily vertical migrations (see Lehodey, 2001), the resulting function
depends on conditions in each layer where forage is present during
both day and night, i.e.,

Ua;nðTÞ ¼ d �UðTz� Þ þ ð1� dÞ �UðTz�� Þ;
WnðOÞ ¼ d �WðOz� Þ þ ð1� dÞ �WðOz�� Þ;

where d is the fraction of the daylight in a day, z* and z** are depth
levels at which Fn > 0 at daylight and night correspondingly (see
Lehodey, 2001). Finally, accessibility functions are the products:
Ha,n = Ua,n(T)Wn(O).

The temperature function is age-dependent with different opti-
mal temperature TI

a and tolerance interval ra for each age. They
are determined according to existing knowledge about size-depen-
dence of tuna body temperature and tuna heat budget (see
Lehodey, 2001):

TI

a ¼ TI

0 þ ðT
I

K � TI

0 Þ
la

lK
; ðA:5Þ

ra ¼ rT þ
wa

wK
; ðA:6Þ

where l and w are fish fork-length and weight.

A.1.4. Seasonality in adult habitat index
The seasonal nature of environmental variability has a strong

effect on fish reproduction and associated migrations. Changes of
daylight length, i.e., the gradient otd, can work as a trigger switch-
ing tuna behavior from foraging to searching for spawning
grounds. One of the hypothesis of how this search occurs assumes
that adult tuna tend to direct their movements to find a place with
environmental conditions as those occurring during their birth (see
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e.g., Cury, 1994). Based on such assumption, a special case of the
adult habitat index is

ISE;a ¼
I2;a

1þ ejðot d�bGÞ þ I0

1þ ejðbG�ot dÞ
; ðA:7Þ

where bG is a fixed triggering value (=0.035) of the daylight gradient
and j is large constant (=1000) producing abrupt but continuous
shift between feeding and spawning indexes.

A.1.5. Food requirement index for adult tuna
Another special case of adult habitat index considers how food

requirements of adult tuna are satisfied in the habitat. Such an in-
dex does not govern tuna movement but influences mortality rate
imposing ‘‘starvation” penalty (Eq. (A.16)). In the previous version
of SEAPODYM the same habitat index (Eq. (A.4)) was used to
constrain movement and to introduce variability of mortality
coefficient, i.e., we assumed that both physical environmental
conditions (temperature, oxygen) and food resources have equal
impact on fish mortality rate. For simplicity in this study we
tested the influence of only food factor on the population mortal-
ity. We define the adult food requirement index as the ratio
between available forage in the habitat and food required by
adult tuna at age a:

IFR;a ¼
P

nFn

w
P

nrwaNa#a;n
;

where r is the food ration of an individual, i.e., proportion of tuna
weight wa, w is a parameter responsible for consumption of forage
by other predators and # is the relative accessibility coefficient,
i.e.,

#a;n ¼
Ha;nP
nHa;n

:

Finally, in order to scale this index between 0 and 1, we use the
transformation

IFR;a ¼
1

1þ ImFR;a

: ðA:8Þ
A.2. Movement

Movements of adult tuna consist of two components, namely,
random dispersal and directed migrations, described by diffusion
and advective term in Eq. (2), respectively. Additionally, migrations
can be directed by oceanic currents (passive transport) or by envi-
ronmental stimuli. In the latter case, as in conventional chemotaxis
models (see Keller and Segel, 1971; Czaran, 1998; Turchin, 1998)
we determine velocity field of tuna (Va) as being proportional to
the gradient of external stimuli, incorporated into adult habitat in-
dex I2,a:

Va ¼ va
oI2;a

ox
;
oI2;a

oy

� �T

; ðA:9Þ

where the taxis activity constant va is proportional to maximal sus-
tainable speed of the fish Vmax,a expressed in the units of body
length, which is, in turn, inversely related to the average size at
age (Malte et al., 2004) following Vmax;a ¼ Vmð1� g l

lK
Þ, where the

parameter g = 0.1 implies small negative slope.
Local diffusion coefficients are also linked to the adult habitat

index. We define maximal diffusion coefficient in the null (extre-
mely unfavorable) habitat according to the formula of two-dimen-
sional mean square dispersal (see, e.g., Turchin, 1998), namely
Dmax = R2/4t, or if we assume that during time t individual will cov-
er the maximal distance moving with its maximal sustainable
speed Vmax, we have as upper estimate of diffusion coefficient
Dmax ¼ V2

maxt=4. Thus, in each habitat, a given upper value is re-
duced according to non-linear relationship with the habitat index
I2,a and linear relationship with its gradient, r I2,a:

Da ¼ Dmax 1� I2;a

c þ I2;a

� �
ð1� qjrI2;ajÞ; ðA:10Þ

where c is the coefficient of variability of fish diffusion rate with
habitat index. The expression (1 � q—rI2,a—) with q < 1 balances
diffusive and advective movements to ensure that maximal dis-
placement due to both diffusion and taxis does not exceed the dis-
tance which fish can cover with its maximal sustainable speed.

A.3. Spawning

The density of new recruits to the tuna population is given by
the product of two functions, the Beverton–Holt relationship giv-
ing the dependence on the density of mature adult tuna and I0,
the spawning habitat index being the function of food to preda-
tor ratio and surface layer temperature (Eqs. (A.1) and (A.2)):

SJ0
¼ RN

1þ bN
� I0: ðA:11Þ

Setting parameter b to 0 gives us Malthusian growth of population
density although still restricted by the habitat conditions.

A.4. Mortality

Tuna senescence and predation morality are functions of age in
months, s:

mSðsÞ ¼ �mSð1þ ebSðs�AÞÞ�1
; ðA:12Þ

mPðsÞ ¼ �mPe�sbP ; ðA:13Þ

where �mS and �mP are maximal senescence and predation mortali-
ties, bS and bP are slope coefficients, and A is the age at which
mSðAÞ ¼ �mS=2. The sum of (A.12) and (A.13) expresses total natural
mortality-at-age rate:

MðsÞ ¼ mSðsÞ þmPðsÞ:

With added effects of fishing and environmental variability ex-
pressed through habitat index functions, the local mortality rates
of each cohort are

m0 ¼ Mðs0Þð1� I0 þ eÞ; ðA:14Þ
mk ¼ MðskÞð1� I1 þ eÞ; k ¼ 1;2; ðA:15Þ
Ma ¼ MðsaÞð1þ e2IFR;a�1Þ þ

X
f

sf ;aqf Ef ; a ¼ 1; . . . ;K: ðA:16Þ

Mortalities of larvae and juveniles can vary in both directions, i.e., if
I < 0.5 mortality rate increases and the opposite is true for I > 0.5.
Adult mortality, in contrast, can only increase depending on the
food requirement index IFR,a that determines the level of food deficit
for each age group. Such penalty leads to highest local mortality
rates for young tunas. The coefficient qf is catchability of fishery f,
Ef is observed fishing effort and sf,a is fleet-specific selectivity, which
is specified as either sigmoid function (type I selectivity function) of
age or asymmetric Gaussian (type II):

sf ;a ¼

ð1þ e�1f ðla�l̂f ÞÞ�1
; type I

e
�
ðla �̂lf Þ

2

rsf if la 6 l̂; type II;

lf þ ð1� lf Þe
�
ðla �̂lf Þ

2

rsf if la > l̂; type II:

8>>>>><
>>>>>:

ðA:17Þ
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Appendix B. Selected notation
N
 Symbol
 Description
 Units
1
 X, x, y
 Two-dimensional model
domain with complex
boundary and its coordinates
degrees
2
 z
 Vertical layers: (1) 0–100 m, (2)
100–400 m and (3) 400–
1000 m
m

Environmental data

3
 vz
 Vector (u,v) of horizontal

currents, averaged through
each vertical layer (GCM
modelled data)
Nmi/mo
4
 Tz
 Temperature, averaged through
each layer z (GCM data)
�C
5
 Oz
 Concentration of dissolved
oxygen, averaged through each
vertical layer (Levitus database)
ml/l
6
 P
 Primary production, averaged
through 0–400 m depth
(obtained from GCM–NPZD
coupled model)
mmol C m�2 mo�1
ADR coupled model variables

7
 Fn
 Density of nth forage

component (food for tunas)

g/m2
8
 Jk
 Density of juvenile age class
k = 0, 1, 2 of tuna population
g/m2
9
 Na
 Density of adult age class
a = 1, . . . ,K of tuna population
g/m2
Env
 ronmenta
 (habitat) indices
i l

10
 Ha,n
 Accessibility of tuna cohort a to

nth forage vertical habitat

11
 I0
 Spawning or larvae’s habitat

index

12
 I1
 Juvenile’s habitat index

13
 I2,a
 Adult’s (feeding, movement

and seasonal migrations)
habitat index
Adv
 ction–dif
 sion–reaction parameters
e fu

14
 Va
 Vector of velocity of each tuna

cohort density

Nmi/mo
15
 Da
 Diffusion coefficient for each
tuna cohort
Nmi2/mo
16
 mS
 Tuna senescence mortality
 mo�1
17
 mP
 Tuna predation mortality
 mo�1
18
 mF
 Tuna fishing mortality
 mo�1
19
 sf,a
 Selectivity functions for fishery
f and age of tuna a
Optimization variables

20
 Cf
 Total monthly tuna catch by

fishery f

103 tonnes
21
 Qf, r
 Proportion of length
frequencies for fishery f and
region r
22
 L�
 Total negative likelihood
function
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