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Abstract

A behavioral study on the entry, stay and exit decisions of the fishers in Hawaii’s longline fishery was undertaken in a random

utility framework by applying the multinomial logit (unordered) model. Pooled annual cross-sectional and time-series (1991–1998)

data were used. The empirical results confirm that the entry, stay, and exit decisions are significantly associated with the earning

potential of fishers, crowding externality, resource abundance and some managerial factors. The probability of a vessel to stay (or

exit) in the fishery increased (or decreased) for an increase in the earning potential of a fisher. A larger fleet size shows vessels were

more inclined to exit from the fishery than stay in the fishery. The probability of vessel entry (or exit) was also positively (or

negatively) associated with an increase in stock levels of major target species. Further, a vessel was more likely to stay in the fishery

when the vessel owner was a Hawaii resident or a vessel captain. Simulation of the probability for a vessel to enter, stay, or exit for a

change in fleet size or stock level was also carried out.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The effect of entry and exit on the competitive
performance of firms occupies a prominent role in
theoretical discussions of industry behavior [1]. An
explanation of the rise and fall of firms’ output levels is
not sufficient to account for the changes in the industry’s
output, since output changes are often accompanied by
changes in the number of firms in the industry. An
important adjustment mechanism in the theory of the
long run competitive market consists of firms entering or
leaving the industry when profits are above or below
normal levels. Under the free entry equilibrium condi-
tion, the equilibrium number of firms is determined by
the condition that economic profit equals zero [2,3].
The entry-stay-exit process is also associated with an

adjustment in capacity utilization. When market de-
mand is unknown, excessive entry may be observed and
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a wave of exits is expected to follow. Over time, firms
learn the size of the market demand and capacity
converges to the true size of the market [4]. A declining
industry must reduce its capacity to remain profitable
[7,8]. Firms learn about their efficiency as they operate
in the industry. Efficient firms grow and survive [9].
Government regulation by means of quota, permits,
licenses, etc., also affects capacity adjustment [10]. Exit
can also be associated with the aging of the capital since
it requires more maintenance to produce the same
output [11].
Entry and exit occurrences of firms (fishers or vessels)

in the fishing industry are assumed to be more
pronounced than in other industries due to production
uncertainty/stochasticity and the ‘‘open-access’’ nature
of ocean resources.1 As a result, a fisher may geogra-
phically relocate his vessel to another fishery when profit
condition warrants. Entry to and exit from a fishery is a
1Although the high sea fishery is characterized by ‘‘open access’’

from an international perspective, the fishery at the national level is

usually under a local jurisdiction.
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long-run choice depending on the relative profitability
across alternative fisheries or fishing locations. Long-run
decisions can involve new vessel purchases as well as exit
from or entry to the fishing industry [12].2 A profitable/
or unregulated ‘‘open-access’’ fishery also tends to
attract new capital in the form of new or improved
vessels that may lead to depletion of fish stock and rent
dissipation. On the other hand, existing vessels may
continue to operate profitably without attracting addi-
tional entry, simply because capital costs for new
entrants may be prohibitive. The potential threat of
stock depletion and its impact on reduced profitability
may also deter new entrants from risking their capital.
Over-expansion during the profitable initial develop-
ment of a fishery may result in an equilibrium in which
rent only cover variable costs, but not the sunk fixed
costs. The ultimate bio-economic equilibrium may still
yield positive rents to exceptionally skilled fishers [13].
The marine fishery is an important natural resource of

the United Sates. However, its fishery has been suffering
from over-capitalization and over-exploitation.3 The
excess capital results in a number of problems, such as
rent dissipation, juvenile fishing, incidental bycatch, and
high discards [6]. Because of these problems, a
continuous phenomenon of entry and exit of some
vessels in a fishery can be expected. As a result,
externalities tend to be transferred from a more
regulated fishery to a less regulated fishery because of
fishers’ motive for a profit in a fishery. Movement of
many Atlantic longliners to the Pacific in the late 1980s
to early 1990s and the movement of Hawaii’s longliners
to Californian waters and the South Pacific in late 2000
in search of more productive fishing grounds are a few
examples of vessel entry-exit.
Although Japanese immigrants introduced the long-

line fishing technology to Hawaii in the early 20th
century, the fishery has only witnessed a sheer surge in
the number of longline vessels recently. A large number
of modern, capital-intensive longline vessels entered
Hawaii from the continental USA during the late 1980s.
The high demand for swordfish in the mainland USA
and the high-grade tuna demand in Japan might also
have favored the growth of the longline fishery in
Hawaii. Thus, in a relatively short time span, the
longline fishery in Hawaii has grown to be the largest
and most prominent commercial fishery in the state.
After an initial surge of vessels in the late 1980s, the
process of vessel entry and exit continued in a limited
number throughout the 1990s. Each year there are some
entering and some exiting vessels. But a large number of
2Entry and exit is a long run choice because the decision to purchase

or modify a vessel incurs substantial capital cost which has to be

recovered from subsequent earned fishery revenue.
3Depletion of swordfish stocks in the North Atlantic Ocean is a

good example [42].
vessels exited after a regulation that banned swordfish
harvest in the summer of 2000.
It is crucial to understand analytically the underlying

process of vessel entry-exit in the longline fishery. Entry
and exit of fishing vessels to and from a fishery affects
aggregate fishing effort and fish supply. There may be
several reasons for vessel movements, such as relative
profitability between different fisheries or fishing loca-
tions, stock fluctuations and resource abundance levels,
regulatory measures, fleet congestion, and vessel-specific
managerial issues. In some instances, some of the vessels
staying in a fishery may not be operating profitably, but
may be there just to cover the operating costs. Despite
widespread entry-exit of firms in the fishing industry,
there are very few studies related to the behavioral
process of fishing vessel entry to and exit from a fishery.
So far there has been no systematic study about the
underlying behavioral process on vessel entry-stay-exit
in pelagic fisheries. Such a study would be important in
understanding the underlying dynamics of natural
resources in general, and long run fleet dynamics and
fish supply process in particular.
In this paper, a behavioral model of entry, stay and

exit decision of the longline fishers in Hawaii is
developed. The analysis is carried out in a random-
utility framework, and the analytical model is estimated
by applying the multinomial logit (unordered) model.
Annual cross-sectional and time-series data for the
period 1991–1998 was used in the analysis. Factors
affecting the vessel entry-stay-exit decisions of fishers in
the longline fishery were analyzed. The marginal effect
of a change in the characteristics of the fisher and other
external factors on the probability of entry, stay, or exit
decisions was also estimated. The predictive perfor-
mance of the model was examined by comparing the
observed outcome with the estimated probabilities of
each entry, stay, and exit decision. Finally, the prob-
ability of entry, exit and stay decisions in the longline
fishery was simulated under different fleet sizes and
stock conditions. We believe that this research would
make an important contribution to the body of fishery
economics literature. In subsequent sections, a brief
description of the longline fishery and evolution of the
entry-stay-exit of the longline vessels in Hawaii is
presented, followed by a conceptual/empirical model
specification, discussion of the results, and conclusion.
2. Longline fishery and vessel entry-stay-exit

The pelagic longline fishery in Hawaii is generally
confined in the mid-North Pacific Ocean in the range of
40�N to the equator, and 145�W–175�E [14]. In 1998,
the longline fishery accounted for 85% of the state’s
commercial catch that totaled nearly 29 million pounds
with an ex-vessel value of about $47 million [15].
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4Active Vessel (sample)=Stay+Entry+Exit. The number of active

vessels (sample) is based on the data generated from matching the

Federal logbook and State’s trip record. Population-wide actual

number of vessels is higher as shown in the second column in Table 1.
5A same vessel may make multiple exit or reentry during 1991–1998.

If it does, it is considered as a separate case.
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Landings of important pelagic species in Hawaii’s
longline fishery include three tuna species (bigeye tuna,
Thunnus obesus; yellowfin, T. albacares; and albacore,
T. alalunga), three billfish species (swordfish, Xiphias

gladius; striped marlin, Tetrapturus audax; and blue
marlin, Makaira mazara), and several miscellaneous
pelagic species. Bigeye tuna has been a major target
species since the 1950s. Swordfish was a minor species
until the 1990s when it became the major target species
with the entry of modern longline vessels targeting
swordfish [16,17]. Until June 2000, there was no limit on
the total allowable catch on any commercially important
species. Recently, swordfish harvest has been banned
due to concern over the impact of longline swordfish
fishing on protected species like marine turtles. As a
result, a large number of vessels exited after this
regulation came into effect.
Hawaii’s longline fishery has witnessed a dramatic

change in vessel movement in the past two decades.
Pooley [18] noted that there might have been less than 15
longline vessels in 1975, but as many as 45 vessels in
1984. The number of permitted longline vessels quad-
rupled from 37 vessels in 1987 to a high of 141 vessels in
1991. This number then leveled off at about 120 vessels
from 1992 to 1994, declined slightly to 103 vessels in
1996, and then increased to 125 vessels in 2000 [19]. It
appears that between 1975 and 1991, the number of
longline vessels grew exponentially, declined during
1991–1996, and grew again mildly during 1997–2000.
There are several reasons for the growth of longline
vessels over the past three decades. A favorable export-
oriented fishery policy of the state of Hawaii, the
increased demand for swordfish in the continental USA,
and the demand for high-quality tuna in Japan in the
late 1980s also triggered the surge of longline vessels.
Vessels in Hawaii also had a comparative advantage
over other vessels not only in the export market, but
operationally they were fuel-efficient and less labor-
intensive relative to the vessels used in other fisheries
[18]. Moreover, the growth in the longline fishery could
be due to relatively more abundant fish resources and
less vessel congestion as compared to other fishing
regions in the United States.
The National Marine Fisheries Services (NMFS)

instituted the permit and logbook requirement for all
US domestic longline vessels operating in the Western
Pacific in order to monitor the longline fleet. The vessels
were issued longline fishing permit applications begin-
ning 27 November–December 1990. Initially, 145 gen-
eral longline permits were issued, and by the first week
of 1991, 155 vessels had been issued permits. During
1991, there were 23 vessels from the US east coast, 60
from the Gulf of Mexico, 18 from US west coast, and 62
from Hawaii itself. On 23 April 1991, Federal ‘‘limited
entry’’ permits were required in addition to the general
longline permits. Subsequently, 163 such permits were
issued during 1991. The ‘‘limited entry’’ plan tempora-
rily restricted the number of longline vessels participat-
ing in Hawaii’s pelagic longline fishery in order to assess
the optimal fleet size [17]. As of 2001, there were 164
Federal limited entry permits issued for the Hawaii-
based longline fishery [19].
The initial surge of longline vessels resulted in some

conflicts with the near-shore fishers and may have
impacted endangered species, and possibly caused
localized overfishing. Some longline fishing vessels had
started exiting from Hawaii in the early 1990s. Of the
registered longline vessels in 1991, 18 left the state and
started fishing elsewhere, four switched to bottom
fishery, five switched to lobster fishing, and 18 were
not in operation for various reasons, i.e., they were
under repair, impounded, for sale, or inactive for
unknown reasons [17]. There were 49 vessels that had
never left the Hawaiian fishery ever since they entered
Hawaii’s longline fishery during 1991–1998. Similarly,
there were 45 cases where a vessel once exited, but then
returned to fishing in Hawaii. Among the returning
vessels, some made a final exit during a subsequent year
while others are still actively fishing. Milder levels of
entry and exit of longline vessels continued throughout
the 1990s, but a one-time massive exit occurred only
after the recent swordfish harvest ban in the summer of
2000. A recent lawsuit charging that the longline fishery
is a threat to the survival of turtle populations has led to
this injunction barring the longliners from harvesting
swordfish. This has forced a substantial proportion of
longline vessels harvesting swordfish to leave Hawaii or
to switch to tuna fishing. Of the existing 57 vessels
engaged in targeting swordfish (out of the 125 active
longline vessels in 2000), about 40 of them were
displaced to the continental USA for other fishing
opportunities there; 12 have been currently retained by
NMFS for scientific research on ways to reduce sea
turtle interaction with swordfish fishing. The rest of the
other vessels might either have adapted to longline tuna
fishing or might have gone to Western Samoa, as that
island has recently experienced a surge in longline
vessels there [20]. Table 1 presents the details about
entry, stay, or exit of longline fishing vessels on a year-
to-year basis for the period 1991–1998.4

The vessels considered for entry, exit, and stay in the
analysis have different entry and exit points during this
period.5 Each year there are some incoming or exiting
vessels. There were more vessels exiting from the
longline fishery than entering during the first half of
the 1990s, and the reverse was true in the second half of
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Table 1

Number of active longline vessels and year-to-year entry-exit-stay of the vessels

Year Number of active vessels (population) Number of active vessels (sample)a Choices of the active vessels (sample)

Stayb Entry Exitb

1991 141 126 104 — 22

1992 123 109 97 7 5

1993 122 113 94 8 11

1994 125 108 59 2 47

1995 110 69 50 6 13

1996 103 63 47 6 10

1997 105 74 51 19 4

1998 114 93 68 24 1

Source: Data (sample) compiled from NMFS longline logbook records. Data on the number of active vessels (population) is from the WPRFMC

[20]. The number of active vessels in 1988, 1989, 1990, and 1999 were 50, 88, 138 and 119, respectively.
aThis summary of statistics was generated from the data set where the trip level information from the Federal logbook was matched with the

State’s trip record for the period 1991–1998.
bThe number of vessels active in the current year but have decided to stay and exit in the following year.
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the decade. Some of the vessels entering in the later half
of the 1990s were returning vessels.
7Michael Foy from New Jersey, a participant in the Second

International Fishers Forum 2002, shared his experience that the first

8 months of his entry year to Hawaii’s longline fishery were not
3. Conceptual framework

Let us make some behavioral assumptions about a
typical commercial fisher in the context of a vessel entry,
stay, or exit decision. A fisher invests capital in a fishing
vessel and incurs initial fixed investment and recurrent
expenses annually, but then expects a stream of future
returns from it. The return is supposedly sufficient to
cover the fixed investment and operating expenses,
including a return for entrepreneurship with an ultimate
objective of maximizing the net present value of the
investment to achieve a return rate at least equal to the
market rate of return. The fisher operates in a fishery or
fishing region where he expects to achieve these
objectives.6 The fisher decides on the potential locations
for business based on prior knowledge about the fishery
acquired through inheritance from family business,
partnership, or experience gained as a captain or crew
member. This includes knowledge about the prices,
market, stock conditions, weather and sea environ-
ments, and other regulatory information. It is also
assumed that fishers have some networking with their
fellow fishers to remain self-informed about the oppor-
tunities and incentives in other fisheries and to share
experiences within or outside a fishery so that one may
relocate their business to another area when need arises.
For a new entrant to a fishery the initial years may not

be profitable relative to incumbent fishers’ as the new
6A fisher could also leave the fishery for an alternative form of

employment. In this case, the wages earned would have to be greater

than the return to labor from fishing. Firms will continue to switch

between fisheries until, for marginal firms, the utility between fisheries

are equal [6].
fisher may have to adapt to a new fishing environment,
e.g., locating a productive fishing ground, deciding
which species to catch, etc.7 Thus, the new entrant’s
performance in the new fishery is also assumed to be a
reflection of his performance in the old fishery, at least
in the initial years to the new fishery.8 If the annualized
rate of return is as expected, the fisher may remain in the
current fishery; else he will move to an alternate fishery
or fishing location. The fisher evaluates this each year by
considering the total costs and sales, perceived stock
abundances, and fleet congestion level. Based on the
past year’s performance, he decides whether to stay in
the same fishery or exit to an alternate fishery or fishing
location. In making the decision, he also considers the
transaction cost of his decision. Overall, it is assumed
that efficient fishers or vessels will remain in the fishery
and inefficient ones will exit.
We can accommodate the above situation in the

random utility maximization (RUM) framework pro-
vided by McFadden [21]. In the RUM hypothesis, the
decision-maker can be described as facing a choice
among a finite and exhaustive set of mutually exclusive J

alternatives. He chooses an alternative j in J if and only
if Uij > Uil for laj: Since utility is not directly
observable, one has to examine variables presumably
associated with the utility attached to each choice.
Preferences are described by a well-behaved utility
function whose arguments include a vector of exogenous
constraints on current decision-making. For a given
profitable. He operated longline vessel in Hawaii during 1991–1994.
8This assumption is made since past performance data for an

entrant vessel or fisher usually are not available for the modeling

exercise. One may then presume that a vessel was not performing as

well in the old fishery may seek to enter to a new fishery for better

income prospectus.
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in the multinomial logit (unordered) model is PrðY ¼ jÞ ¼
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individual i; the probability that a choice j within the
choice set C is made can be expressed as

Pi
cðjÞ ¼ P½Ui

j ¼ max
lAC

Ui
l � 8l; jAC; laj;

where Ui
j is the maximum utility attainable for an

individual i if he chooses a decision j ¼ 1;y; J:
Typically, the linear utility function is specified as the

function of observable variables that are assumed to
impact the relative utility of alternative choices.
Specifically, the utility function can be decomposed into
a systematic (deterministic) term (V ) and a stochastic
component (e) as in Greene [22]:

Uij ¼ Vij þ eij ¼ y0ZijðXi;WijÞ þ eij ¼ Xibj þ Wijaþ eij ;

ð1Þ

where y; bj and a are vectors of coefficients providing
information on the marginal utilities with respect to the
relevant characteristics. Uij is interpreted as the indirect
utility function. The deterministic component Vij can be
thought of as the expected utility the individual can
obtain and the random component eij represents
unobservable factors, measurement errors, and unob-
servable variations in preferences and/or random
individual behavior [23]. The error term is assumed to
be uncorrelated across choices, and this assumption
leads to the independence of the irrelevant alternative
property in the choice model, i.e., outcome categories
can be plausibly assumed to be distinct in the eyes of
each decision-maker. Utility depends on characteristics
specific to the choices as well as to the individual-specific
(or vessel specific in entry-stay-exit decision analysis
here). Wij are the attributes of the choices for which the
values of variables vary across choices and possibly
across the individuals as well. Xi contains the character-
istics of the individual and same for all choices.9 The
unobserved component of the utility is assumed,
through extreme value distribution, to have a zero
mean; the observed part of the utility, Vij ; is the expected
or average utility [24]. The parameters of this function
that are used to predict the relative probabilities of
individual choices can be estimated using various
discrete choice statistical methods, such as the condi-

tional logit and multinomial (unordered) logit models
[22,25–28]. The statistical model is driven by the
probability that choice j is made, which is Pij ¼ PrðVij 

Vil > eil 
 eijÞ for 8laj: Since eij and eil are random
variables, the difference between them is also a random
variable. Let Yi be a random variable that indicates the
choice made. If (and only if) the J disturbances are
independent and identically distributed with Weibull
distribution as F ðeijÞ ¼ expð
e
eij Þ; then the probability
that the decision-maker will choose alternative j is given
as in Greene [22].
9Xi may contain other factors whose values are invariant to the

choices one makes.
In the absence of choice specific attributes in the vessel
entry-stay-exit decision study, the choice-specific Wij

variable drops out from the utility function in Eq. (1)
and the appropriate model is the multinomial (unor-

dered) logit, and the selection probabilities are given
by10

Pij ¼
eX 0

i bjPJ
j¼1 e

X 0
i
bj

: ð2Þ

For J alternatives in the multinomial logit model, only
J 
 1 distinct parameter vectors may be identified. The
logit is given by the model:

ln
Pij

Pi0

� �
¼ X 0

ibj : ð3Þ

We can also find the marginal effect of each
characteristic on probability j by differentiating jth
probability (Pj) with respect to the explanatory variable
(Xk) variable as

djk ¼
qPj

qXk

¼ Pj bj 

XJ
1
j¼1

Pjkbjk

" #
; ð4Þ

where djk is the value of the estimated marginal effect of
kth variable on Pj :
The multinomial logit model is estimated iteratively

using the maximum likelihood procedure. The model
makes the assumption known as the independence of
irrelevant alternatives where all outcomes are to be
different from each other. The model can be evaluated
using one of the following goodness-of-fit, tests as in
Judge et al. [29]: (a) a comparison of the actual share in
the sample for each alternative with predicted share
allows an evaluation of different model specifications;
(b) the log likelihood chi-square test: under the null
hypothesis, all coefficients in a model are equal to zero
implies that all alternatives are equally likely; (c) the
likelihood ratio index (Pseudo r2) and the model is a
perfect predictor if r2 ¼ 1:
4. Empirical procedures

4.1. Previous works

Earlier works on vessel entry-exit were primarily
concerned with capital theoretic bioeconomic models
[30–33]. In these models, the number of fishing vessels in
a fleet equilibrates instantly by the mechanism of firm
entry-exit for any deviation from the zero profit
condition. Some other works are related to fishery
expðX 0
i bjkÞ=1þ

PJ
1
j¼1 expðX

0
i bjkÞ: The probability for the reference or

base category can simply be calculated as PrðY ¼ 0Þ ¼ ½1
 ðP1 þ
?þ PJ
1Þ�:
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regulations, such as entry restrictions through a ‘‘limited
entry’’ system, seasonal or area closures, and a
transferable quota system [34–38]. Many of these studies
analyze the effect of entry regulations on the economic
rent of the incumbent or potential entrant fishers rather
than their entry, stay, and exit behavior.
Behavioral studies in fisheries, such as fishery choices,

fishing location choices, and vessel entry-stay-exit
process are emerging very recently long after an initial
study by Bocksteal and Opaluch [39] on fishery choices.
The only available behavioral studies about fishing
vessel entry-exit are by Ward [5], Ward and Sutinen [6]
and Ikiara and Odink [40]. Ward and Sutinen [6] have
studied vessel entry-stay-exit behavior in the Gulf of
Mexico shrimp fishery. They assumed that an individual
firm uses myopic profit maximization as its entry-exit
criteria, and the alternatives available to a fishing firm
are mutually exclusive. Although Ward [5] mentioned
using the multinomial logit (unordered) model in a vessel
entry-stay-exit analysis in the Gulf of Mexico shrimp
fishery, according to the Ward and Sutinen [6] paper, the
results appear to have been generated with the ordered

probit procedure.11 The variables included in their model
were the price of shrimp, the unit harvest cost, fleet size,
vessel length, gross tonnage, shrimp abundance, vessel
mobility, and vessel bought/sold information. The price
received by the fishers is the major utility indicator in
their analysis, and unit harvest cost reflects the stock
externality. They found that the crowding externality as
represented by fleet size had a significant negative
impact on the probability of entry of a shrimp vessel
to the Gulf of Mexico shrimp fishery. Shrimp vessels
from other regions were found to be more willing to
enter the fishery when profit increased. There was no
evidence supporting that an entry decision was influ-
enced by stock variation.
On the other hand, Ikiara and Odink’s [40] study was

about fishers’ resistance to exit fisheries in Kenya’s Lake
Victoria. Their major finding was that fishers there were
not able to exit from the fisheries for lack of alternative
fisheries and employment opportunities.

4.2. Empirical model

Our approach to a behavioral analysis of fishing
vessel entry-exit differs from previous works in a few
aspects. We extend the modeling approach applied in
the literature to accommodate how an individual fisher
operating in a highly migratory pelagic fishery makes
the entry-stay-exit decision on a year-to-year basis. We
applied the multinomial logit (unordered) model in the
longline vessel entry-stay-exit analysis. In the present
study, the vessel entry-stay-exit model was specified
assuming that the decision to stay or exit from the
11Both Ward [5] and Ward and Sutinen [6] are the same study.
fishery depends on the previous period’s annual relative
revenue as a proxy of the annual earning potential of the
fisher, fleet congestion level, and stock conditions of
major targeted species (swordfish and bigeye tuna) along
with other factors like residency, captainship, and vessel
age.12 This research is expected to enhance the current
state of knowledge on fishers’ vessel entry-stay-exit
decisions, which may in turn be useful in understanding
longline fleet dynamics.
The deterministic component of the indirect utility

function in the multinomial logit model was empirically
specified as

Vijtþ1 ¼ b0 þ b1REVGTit þ b2FLEETt þ b3TUNANDXt

þ b4SWORDNDXt þ b5VAGEi

þ b6RESIDi þ b7CAPTi: ð5Þ

The response variables are the decisions of the fishers
indexed as j by the ith fisher. Therefore, the discrete
dependent variables are ENTRY to the longline fishery,
STAY in the longline fishery, and EXIT from the
longline fishery, with an assigned numeric value unique
for each choice. Entry, stay, and exit decisions are
defined on a year-to-year basis. A vessel is defined as an
ENTRY if it was not in the previous year’s (t 
 1) fleet
but is active in the current year (t). If a vessel was active
in the previous year (t 
 1), the current year (t), and will
also operate in the subsequent year (t þ 1), it is defined
as a STAY vessel. Finally, if a vessel is active in the
current year’s (t) fleet but will not operate in the
subsequent year (t þ 1), it is defined as an EXIT vessel.
If an EXIT vessel reappears after a lapse of 1 year, the
vessel is considered as an ENTRY vessel. Therefore, the
same vessel may have a different entry-stay-exit status
depending on when it entered or exited in the given
timeframe during 1990–1999.
The explanatory variables for the decision to enter,

stay and exit in the longline fishery are annual revenue
per gross ton vessel capacity (REVGT), fleet size
(FLEET), stock abundance indices for major targets—
namely, bigeye tuna (TUNANDX) and swordfish
(SWORDNDX), vessel age (VAGE), residency of the
vessel owner (RESID), and captainship (CAPT). The
total number of parameters estimates will be ðJ 
 1ÞK ;
where K refers to the number of explanatory variables.
bj is a vector of coefficients to be estimated.
The relative income from longline fishing in terms of

annual revenue per gross ton of vessel capacity
(REVGT) is expressed as thousands of US$/Year/Gross
tonnage capacity. As mentioned earlier, the annual
revenue generated is considered here as the annual
earning potential of a fisher where his fishery specific
knowledge, experience, skills are also assumed to be
embedded in and it is, therefore, an individual-specific
12Captainship refers to a case where the vessel owner is also the

vessel captain.
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variable. It is assumed that the fisher with high-income
potential is more likely to remain in the fishery, while the
fisher with low-income potential may continually search
for a better opportunity elsewhere in the other fisheries
by the vessel entry-exit process. It is assumed that an
entrant’s performance is not better than those who are
already in the fishery, at least in their beginning years in
the new fishery. Further, an entrant’s performance in the
new fishery is assumed to reflect his potential income
performance in the old fishery. This assumption is made
since past performance data for an entrant vessel or
fisher are usually not available to include in the model.
One may then presume that a vessel underperforming in
an old fishery may seek to enter to a new fishery for a
better income opportunity. An entrant’s underperfor-
mance in the new fishery is assumed to be due to many
uncertainties related to the nature of the fishery, fishing
habitat, seasonal fluctuations, etc., in the fishery where
he decides to enter. New entrants may also observe the
incumbent fishermen’s information in building their
own expected return from the fishery. The survivability
of a new firm depends on the ability to learn about the
new environment.
The fleet size (FLEET) variable is included in the

model to examine the congestion effect or crowding
externality. Because of the ‘‘open access’’ nature of the
fishery, there may be many vessels operating in the
fishery that can adversely affect an individual firm’s
return from fishing, causing some vessels to exit from
the industry.13 The fleet size is expressed as the
aggregated annual net tonnage (in 1000 net tonnage)
of all the active longline vessels operating in the fishery
in any given year under a local jurisdiction.14 Annual
cumulative net tonnage is assumed to be a better proxy
of the congestion level or effect, because it accounts for
both the number of vessels and each boat’s carrying
capacity.
Vessel entry, stay and exit can also be related to the

annual abundance of major targeted species. In Hawaii’s
longline fishery, bigeye tuna and swordfish are the major
target species because they have high demand and also
fetch a better price. It is interesting to see how the
fluctuation in major fish stock level affects the entry,
stay and exit decisions of the fishers. It is presumed that
entry (or exit) is positively (or negatively) related to an
increase (or decrease) in the fish stock level. The annual
stock abundance index for bigeye tuna (TUNANDEX)
13The high sea where the longline fishery operates is characterized

by ‘‘open access’’ from an international perspective, but may be

regulated by the ‘‘limited entry’’ permit system or other kinds of

regulations locally.
14Because of the ‘‘open access’’ nature of the high sea fishery, there

may be many international vessels or vessels from other states

operating in the same fishery. Since their fleet size is unknown, only

the fleet size under Hawaii’s (a local) jurisdiction is considered in the

analysis as a measure of crowding externality.
and swordfish (SWORDNDEX) were included in the
model to examine entry-exit behavior. The annual stock
index is created using the trip level catch per unit effort
(CPUE), measured in terms of the number of fish caught
per 1000 hooks for each species in a trip by a fisher for
the entire fleet during 1991–1998. The trip level CPUE
for each species in the entire fleet was aggregated
annually and averaged over all fishers, and an annual
species–specific stock index was created treating the
1992 CPUE as a base year. Therefore, all fishers face the
same stock index for a given species at a given year. The
indices are expressed in percentages.
Vessel age (VAGE) is an important factor in vessel

entry-stay-exit choice. As the lifespan of a vessel is finite,
newer vessels replace the older ones and physically too-
old vessels may exit because of the higher cost of
operation and maintenance cost. Entrant vessels are
assumed to be newer ones. Vessel age is expressed in
years when a fisher decides to enter, exit, or stay.
Two dummies are included in the model, one for the

residency of the vessel owner (RESID), and the other
one for the case where the owner is also a vessel captain
(CAPT). The economic significance of these variables is
related with the principal-agent problem.15 In a fishery,
there may be an asymmetric information problem where
one economic agent knows something that another
economic agent does not. One may not be able to
observe the costs associated with the principal and
agent, but the utility of the principal is observed through
his decision to exit or remain in a fishery. The principal
exits when he perceives disutility from the entrepreneur-
ship, and may enter or stay if there is utility. For
example, a hired vessel captain might have a better idea
of how much he could produce than the vessel owner
does. It is assumed that a fisher’s production efficiency is
improved if the vessel owner is also a captain. Moreover,
he can supervise other vessel crewmembers and save the
portion of the captain’s share of the harvest as well.
Similarly, a fishing trip may be more profitable when the
vessel owner is a local resident, who might have an edge
in better management of his business, such as planning
trips and target, marketing, and close supervision of
vessel crew. The dummy variable CAPT takes a value of
(1) if the owner is the vessel captain, and (0) otherwise.
Residency location of the vessel owner was identified by
assigning a dummy variable that takes a value of one (1)
if the owner is a resident of Hawaii, and (0) otherwise.
15 In the principal-agent problem framework, the principal wants to

induce the agent to take some action which is costly to the agent. The

principal may be unable to directly observe the action of the agent but

instead observes some output that is determined at least in part by the

actions of the agent. In this situation the principal has to design an

incentive payment. The principal may choose a utility function which

maximizes his utility, subject to the constraints imposed by the agent’s

optimizing behavior [42].
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4.3. The data

The US National Marine Fisheries Service’s (NMFS)
Honolulu Laboratory logbook and the State of Hawaii’s
Division of Aquatic Resources (HDAR) catch records
are the key sources for the entry-stay-exit analysis of the
vessels in the longline fishery. The NMFS logbook data
provides information on catch and fishing effort while
the HDAR data provides information on fish revenue
by species. Besides these data, additional vessel-specific
information for longliners (such as tonnage, horse-
power, size, residency, vessel transaction, etc.) was
obtained from the data maintained by the US Coast
Guard. The HDAR data are maintained at the trip level,
while NMFS logbook data are maintained at the set
level. Therefore, the initial task involved the transfor-
mation of the logbook data from set level to trip level.
Then, the data from the two sources were merged. For
the period from 1991 to 1998, the total trip-level longline
observations in the NMFS logbook and HDAR data
sets were 10,597 and 8618, respectively, of which 6666
(i.e., respectively about 63% and 77% of total observa-
tions) were matched. The matched data represented
about 77% of the total catch and revenue during 1991–
1998. Since entry-stay-exit is a long-run decision, data
for each fisher or vessel were aggregated annually and
analyzed on a year-to-year basis. The matched trip level
records were further condensed to 755 annual observa-
tions for the period 1991–1998, but only 347 observa-
tions were usable due to the need for complete data for
all variables under consideration.16 Stata 7.0 SE
econometric software was used for the analysis in this
study [43].

4.4. Limitation of the model and data

The vessel entry-stay-exit model can be further
enriched if one has information about a vessel’s pre-
entry or post-exit performance records related to catch
or revenue in alternate fisheries. Entry and exit decisions
are also affected by fishery policies and regulations in
the alternative fisheries from where the vessel migrated
from or where it immigrated to. But such information
was not available. It will, therefore, be to the advantage
of the policy-makers to keep a link/track record for each
entering and exiting vessel about its previous (for
entering vessels) and future (for the exiting vessels)
performances in the alternate locations or fisheries for
future research purposes.
16Although the data size used in the model estimation was reduced

from 755 observations to 347 observations, the data used in the

analysis was fairly representative as the mean characteristics presented

in Table 3. Two were similar for both sets of data. Omitting relevant

variables in an attempt to include all 755 observations produced wrong

signs for some of the variables.
5. Results and discussion

We first present the descriptive statistics of the vessels
entering, exiting and staying in the longline fishery
during 1991–1998 in Hawaii. They typically represent
the average characteristics of those vessels making
different decisions. The annual revenue (both absolute
and relative) from the fishery was highest for the vessels
that chose to stay in the fishery, but was lowest for the
exiting vessels. Annual revenues per gross tonnage were
US$4412, $2496, and $2198 for the stay, entry, and exit
vessels, respectively. Similarly, the annual number of
trips, total trip days at sea, and the number of hooks/
sets used were higher with the vessels choosing to stay in
the fishery than with those of entrants or exiting vessels.
The details about vessel characteristics by entry, stay,
and exit decision are presented in Table 2.
The estimated results from the multinomial logit

model are presented in Table 3. The psuedo-r2 indicates
that the model explains about 21% of the variation in
entry-stay-exit choice behavior. The model also satisfied
the independence of irrelevant alternative property
suggesting that these outcomes are different from each
other.17 The loglikelihood ratio chi-square value was
also significant. Most of the variable’s parameter
estimates were statistically significant, except vessel age.
The results from the multinomial logit model in Table

3 are discussed first. The coefficient on REVGT suggests
that the odds of staying in the fishery rather than exiting
from the fishery increase with higher potential income.
Similarly, the relative annual revenue was significantly
higher for an incumbent vessel than for an entrant
vessel. It also suggests that the entering vessels may not
have made a higher income in their previous fisheries as
well in the new fishery, at least in the beginning years.
The odd of exit from the fishery rather than staying in

the fishery were significantly higher when the fleet size
(FLEET) or congestion effect increased. On the other
hand, the odds of entry to the fishery significantly
decreased when fleet size in the new fishery increased.
The odds of a vessel exiting from the fishery were
significantly lower when fish stock levels increased, as
indicated by the bigeye tuna (TUNANDX) and sword-
fish stock index (SWORDNDX) coefficients. Similarly,
the odds of vessel entry to the fishery were significantly
higher with an increase in the stock levels of these
species. Similarly, the negative coefficient on the
variable RESID suggests that a nonresident of Hawaii
had a higher likelihood of exiting from the fishery than
staying. The entering vessels were also found to be more
likely nonresidents of Hawaii. Owners of the exiting
vessels had a higher likelihood to have employed a hired
17The w2ðkÞ for the omitted choice categories were 
2.13, 0.92 and
0.31with a degree of freedom (k) equal to 8, 7, and 7 for the entry, exit

and stay choices, respectively.
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Table 2

Characteristics of longline vessels making entry, stay, and exit choices

Sample Population

Variables Unit Choice N Mean Std. Dev. N Mean Std. Dev

Revenue US$/Yr Entry 48 2,41,324 1,76,532 73 219,287 164,994

Stay 250 3,46,509 1,75,092 569 361,048 198,148

Exit 49 1,99,893 1,21,143 113 167,550 122,799

Revenue/Gtona US$/Yr/Gton Entry 48 2496 2208 73 2387 2302

Stay 250 4412 2577 569 4336 2468

Exit 49 2198 1675 113 1811 1479

Number of trips Trips/Yr Entry 48 6.33 3.85 73 6.22 3.94

Stay 250 9.12 3.94 569 9.92 4.16

Exit 49 4.80 2.52 113 4.97 3.05

Tripdays Days/Yr Entry 48 96.62 57.41 73 88.89 55.16

Stay 250 117.00 46.81 569 118.61 45.73

Exit 49 64.10 32.26 113 57.73 33.97

Sets Sets/Yr Entry 48 74.33 46.65 73 69.27 44.82

Stay 250 95.36 40.28 569 94.89 37.36

Exit 49 49.00 25.12 113 44.54 27.89

Hooks Hooks/Yr Entry 48 99,895 83,054 73 90,792 76,643

Stay 250 1,26,026 81,843 569 109,471 69,299

Exit 49 56,177 40,549 113 49,359 43,400

N is the number of observation in the population and in the sample data set.
aGton=gross tonnage vessel capacity.

Table 3

Parameter estimates from the multinomial logit (unordered) model on entry, stay, and exit choices

Variables LogðPX=PSÞ logðPN=PSÞ

REVGT 
0.4526��� 
0.3411���

(0.1152) (0.0959)

FLEET 0.8230��� 
0.6007��

(0.2210) (0.2396)

AGE 
0.0033 
0.0098
(0.0149) (0.0150)

TUNANDX 
0.0930��� 0.0589��

(0.0284) (0.0303)

SWORDNDX 
0.0909� 0.1337���

(0.0526) (0.04823)

RESID 
1.0548�� 
1.2754���

(0.4533) (0.4506)

CAPT 
1.0192�� 
0.6955
(0.4700) (0.4742)

Intercept 12.5941��� 
10.58��

(4.3837) (5.0128)

N ¼ 347 LR (2(14)=114.39; pseudo-r2 ¼ 0:2096 Prob: > w2 ¼ 0:0000; log likelihood=
215.63

PN ; PS and PX are probability of entry, stay, and exit, respectively.
���, �� and � are statistically significant at 1%, 5% and 10% level, respectively. Figures in parentheses are the standard errors.
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19Since we do not have information for those not entering into
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captain as opposed to owners of vessels remaining in the
fishery.
The linear marginal effects on the probability of an

outcome were also evaluated at the fleet mean value of
the regressor variables, and the results are presented in
Table 4. The signs of the marginal effects estimates are
mostly similar to the parameter estimates of the multi-
nomial logit coefficients.18 For an increase in the annual
potential earning, the probability that a vessel will stay
in the fishery increases, but the probability that a vessel
will exit decreases. For example, for every 1000 dollars
increase in annual potential income, the probability of a
vessel exiting from the fishery decreased by 3.15%, and
the probability for a vessel remaining in the fishery
increased by 6.02%. The probability of vessel entry was
significantly higher when there was an increase in the
bigeye tuna and swordfish stock abundance. For
example, the vessel entry probability increased by
0.65% and 1.36% for each percent increase in the
bigeye tuna and swordfish stock indices, respectively.
Similarly, a vessel is significantly less likely to exit when
there is an increase in bigeye tuna and swordfish stock
levels. The vessel exit probability decreased by 0.76%
and 0.81% for each percent increase in the bigeye tuna
and swordfish stock indices, respectively. The effect of
stock abundance has a statistically significant effect on
the probability of vessel entry and exit, indicating an
attractiveness of the fishery.
Similarly, the marginal effect of the fleet size had a

significant impact on the probability of vessel entry or
exit. For an increase in fleet capacity by every 1000 net-
tons, the probability of vessel entry to the fishery
decreased by 6.52%, and the probability of vessel exit
increased by 6.83%. If the vessel is owned by a Hawaii
resident and the vessel owner is also a captain, the
probability of the vessel staying in the fishery increased
by 22.92% and 15.63%, respectively. It appears that
most of the entering and exiting fishers were nonresi-
dents of Hawaii who mostly used hired captains.
Using the parameter estimates from the multinomial

logit model, the predictive performance of the model on
the vessel entry, stay, and exit choices by fishers was
examined at the fleet level mean values of the variables
under consideration. As shown in Table 5, there was a
very close match between the actual proportion of entry,
stay, and exit numbers and the model’s prediction of the
proportion for all choice categories. Indeed, the model
was able to predict the choices correctly in 81% of the
observations used in model estimation.
Finally, the probability of vessel stay, exit, or entry

was simulated using the estimated model coefficients
(Figs. 1–3). The policy simulation was carried out under
different levels of stock and fleet, holding the values of
18 In multinomial response models, a change in PrðYi ¼ jÞ does not
necessarily have the same sign as bjk (Powers and Xie, 2000).
other variables constant. In each figure there are two
panels. The first panel is about the choice between stay
and exit, and the second panel is about the vessel entry
probability. Although a fisher has the freedom to make
any choice, i.e., entry to a new fishery, remaining in the
fishery or exit from the fishery, when one is already in a
fishery he faces only two choices in reality: either stay in
the fishery or exit from the fishery. Similarly, a fisher
from another fishery also faces two choices: either to
enter or not enter to the new fishery. Since the
multinomial logit is the natural extension of the binary
logit model or simultaneous estimation of the binary
logit model, one may use the binary logit estimates for
the vessel entry, stay, and exit for simulation purposes.
Therefore, the first panel uses the logit coefficients of the
exit vs. stay as given in Table 3 and the second panel
uses the logit coefficients of the entry vs. stay as given in
the same table. The simulation related to vessel entry to
the new fishery is relative to those not-entering.19

The simulation exercise was carried out for a fleet size
ranging between 4000 and 8000 net tonnage.20 With an
increase in fleet size, the probability of vessel stay (or
exit) decreased (or increased) as shown in Fig. 1A. The
probability of a vessel choosing to stay in the fishery
decreased at a slower pace for an increase in fleet size
from low fleet size up to the mean fleet size, but it
decreased rapidly once the fleet size surpassed the mean
fleet size. Similarly, the attractiveness for vessels enter to
the fishery from other fisheries declined when fleet size
increased as shown in Fig. 1B.
The effect of stock abundance on the probability of

vessel entry, stay or exit was also simulated. Two stock
conditions were considered for the simulation—bigeye
tuna and swordfish stocks (Figs. 2 and 3). These
simulations indicate that the probability of vessel stay
(or exit) increases (or decreases) with an increase in the
stock level of each of these species, as shown in the first
panels of Figs. 2A and 3A. On the other hand, the
probability of vessel entry from another fishery also
increases for an increase in the stock level of these
species, as shown in the second panels in Figs. 2B and
3B. A very high stock level attracts more vessels enter to
the fishery. The results are plausible, given the recent
evidence on the massive vessel exit after the recent
swordfish harvest ban. For example, the model predicts
a sheer increase in the probability of vessel exit when
there is a low swordfish stock level (Fig. 3A). In the
recent swordfish harvest ban case, the swordfish stock
abundance in Hawaii’s longline fishery can be consid-
ered virtually very low as fishers are prohibited from
Hawaii’s longline fishery from other fisheries, one may use the logit

coefficients of entry vs. stay for the entry probability approximation.
20Annual average longline fleet capacity for the period 1991–1998

was about 5.37 thousands of net tonnage.
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Table 4

Marginal effects on the probability of an outcome for a change in regressor

Variables (Xs) qPX=qXK qPS=qXK qPN=qXK Mean of Xs

REVGT 
0.0315��� 0.0602��� 
0.0287��� 3.8347K

(0.0073) (0.0109) (0.0082)

FLEET 0.0683��� 0.0031 
0.0652��� 5.3652K

(0.0171) (0.0269) (0.0213)

AGE 
0.0001 0.0010 
0.0009 16.48years

(0.0011) (0.0017) (0.0014)

TUNANDX 
0.0076��� 0.0011 0.0065�� 103.83%

(0.0022) (0.0034) (0.0027)

SWORDNDX 
0.0081�� 
0.0055 0.01369��� 66.23%

(0.0038) (0.0057) (0.0043)

RESID 
0.0803 0.2292��� 
0.1488�� 0.86

(0.0537) (0.0854) (0.0737)

CAPT 
0.0933� 0.1563� 
0.0629 0.87

(0.0605) (0.0831) (0.0600)

PN ; PS and PX are probability of entry, stay, and exit decisions, respectively. Xk or Xs are explanatory variables.
���, ��, and � are statistical significance at 1%, 5%, and 10% levels, respectively. Figures in the parentheses are the standard error.

Table 5

Actual vs. predicted proportion of entry-stay-exit choices

Number of observations and

their proportions in the

Predicted

probabilities

(%)b

Choices Population Samplea Percent

Entry 73 (9.67%) 48 10.78

Stay 569 (75.36%) 250 80.87

Exit 113 (14.97%) 49 8.34

Total 755 347 100

aThe observations used in the multinomial logit model estimation.
bPredicted probabilities computed at mean fleet values.
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harvesting this species.21 Because of this regulation,
there occurred a massive exit of almost all the longline
vessels engaged in swordfish harvest to try seeking
opportunities in other locations or fisheries. Several
have left Hawaii to join the California longline fleet,
which is not currently subject to the same restrictions as
the Hawaii-based vessels. Of the 57 vessels engaged in
swordfishing activity (out of the 125 active longline
vessels), about 40 of them moved to California for other
fishing opportunities there; 12 have been retained in
Hawaii by NMFS for the controlled field experiments to
find ways to reduce sea turtle interaction with sword-
fishing [41]. The remaining vessels might either have
adapted to longline tuna fishing or might have gone to
21The swordfish harvest ban may have increased the real swordfish

stock abundance, but its virtual abundance was drastically decreased.
Western Samoa, as the island has recently experienced a
surge in longline vessels there [20].
6. Conclusions

In this paper, fishers’ behavior in relation to vessel
entry, exit, and stay decision in Hawaii’s longline fishery
during 1991–98 was examined. A behavioral model of
entry, stay and exit decisions was developed in a
random-utility framework, and was estimated by
applying the multinomial logit (unordered) model. Even
during this short timeframe, the entry and exit of
longline vessels were pronounced and some fishers were
geographically relocating their vessels from one fishery
to another. The empirical results confirm that the entry,
stay, and exit decisions are significantly associated with
the earning potential of a vessel, with fleet size, and with
stock conditions of major targeted species (swordfish
and bigeye tuna), as well as with other factors like
residency and vessel captainship.
The results from this study suggest that a longline

vessel was more likely to exit from the fishery when its
annual earning potential was lower. With an increase in
the annual potential earning of a vessel, the probability
that it would stay in the fishery increased. Higher levels
of vessel congestion in the fishery also influenced fishers
to exit from the fishery. With a larger fleet, vessels were
less reluctant to enter or willing to exit from the fishery.
Clearly the crowding externality had a significant impact
on a fisher’s entry, stay, or exit decision. Fishers were
also found to make entry, stay, or exit decisions based
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Probability Simulation for Vessel Exit and Stay
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Fig. 2. Probability of entry-stay-exit simulation with bigeye tuna stock level. Note: Pn, Ps, and Px denote the probability of vessel entry, stay, and

exit, respectively. The vertical line represents the mean annual bigeye tuna stock index during 1991–1998.
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Fig. 1. Probability of entry-stay-exit simulation with fleet size. Note: Pn, Ps, and Px denote the probability of vessel entry, stay, and exit, respectively.

The vertical line represents the mean fleet size during 1991–1998.
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on their perceived abundances of major species such as
swordfish and bigeye tuna. High stock levels provided
incentives to the fishers to continue to remain in the
fishery, or made them less willing to exit. Increases in
stock levels in the longline fishery attracted fishers from
other fisheries. Similarly, a vessel owned by an absentee
owner (Hawaii nonresident) was more likely to enter or
exit from the fishery. A vessel was more likely to stay in
the fishery if the vessel owner was a Hawaii resident. It
was also found that the vessel was more likely to remain
in the fishery if its owner was also the vessel captain. The
effect of vessel age had little impact on the entry-stay-
exit decision.
The predictive performance of the model regarding

probability of vessel entry, stay, and exit was close to the
actual proportion of choices made by fishers at the fleet
level. The simulation exercise carried out in this paper
provides an indicative change in vessel movement when
there is a change in fleet size and resource abundance,
and the information from it may be used in formulating
fishery policy or management in future. Fishers’
responses to both the stock and crowding externalities
suggest that fishery resource abundance affects not only
the nearshore fishery but that of the high sea. This
suggests some justifications for the enforcement of a
‘‘limited entry’’ permit system, seasonal or area closure,
and delineating between nearshore and offshore fishery
in favor of small-scale fishery. In addition, optimum
fishery effort through the cooperation of both domestic
and international fishery administrations, therefore,
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Fig. 3. Probability of entry-stay-exit simulation with swordfish stock level. Note: Pn, Ps, and Px denote the probability of vessel entry, stay, and exit,

respectively. The vertical line in the figure is the mean annual swordfish stock index during 1991–1998.
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would be needed for the long-run sustainability of
Hawaii’s longline fishery. It will also be to the advantage
of the policy-makers to keep a link/track record for each
entering and exiting vessel about its previous (for
entering vessels) and future (for the exiting vessels)
performances in the alternate fisheries for future
research purposes. The vessel entry-stay-exit decision
model can be further enriched if one has information
about a vessel’s pre-entry or post-exit performance
records related to catch or revenue in alternate fisheries,
and information about the fishery policies and regula-
tions in other fisheries from where the vessel migrated
from or where it immigrated to.
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