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ABSTRACT
We describe the statistical application of the habitat-based standardization 

(statHBS) of catch-per-unit-effort (CPUE) data to derive indices of relative abun-

dance. The framework is flexible, including multiple component models to accom-

modate factors such as habitat, sampling, and animal behavior. It allows the use of 

prior information or the completely independent estimation of model components 

(e.g., habitat preference). The integration with a general linear model framework 

allows convenient comparison with traditional methods used to standardize CPUE 

data. The statistical framework allows model selection and estimation of uncertain-

ty. The statHBS model is applied to bigeye tuna in the western and central Pacific 

Ocean. We describe several additional improvements to the methodology.

Knowledge of trends in population abundance is important for the development 

of appropriate management actions. Methods used to estimate trends in abundance 

range from population dynamics models and observational studies to surveys and 

experiments. Unfortunately, there are many factors that can influence our percep-

tion of results obtained from these methods, and these become more problematic as 

our control over the data collection process decreases. For example, opportunistic 

observational studies can be influenced by factors such as the time of year in which 

observations were recorded, which may change from year to year, resulting in bias in 

the estimated trends. Attempts are made to minimize bias by designing the data col-

lection appropriately or by collecting additional variables than can be used to adjust 

for these factors. With such ancillary information, it is common to employ a general 

linear model (GLM) to model the dependent variable, which is assumed to be related 

to abundance (e.g., catch-per-unit-of-effort, CPUE) and to include the ancillary data 

as explanatory variables to remove variation that is not related to abundance (Maun-

der and Punt, 2004). In GLMs, time is usually modeled as a categorical variable, and 

is used to represent the temporal changes in relative abundance.

One of the principal factors influencing observations of animal abundance is habi-

tat. Habitat is generally defined as an abiotic factor such as temperature or a physical 

structure that may be abiotic (e.g., bottom type) or biotic (presence of sea grass), but 

could be extended to any relevant factor such as presence of other species. Habitat 

influences observations, either because the density of individuals varies among habi-

tat types, or because the ability to observe the individuals varies among habitat types. 

Therefore, analyses of information on abundance should be adjusted for habitat type. 

For example, habitat type could be included as one of the explanatory variables in a 

GLM, but this requires that habitat type be recorded for each observation. 

GLMs are just one group of a multitude of methods that have been used to derive 

indices of abundance. They have some desirable properties, in that they can include 

habitat data and in that they are carried out in a statistical framework. The statis-

tical framework allows estimation of parameters and a description of uncertainty. 

However, GLMs exhibit weakness in their limited ability to include scientific under-
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standing about the system, particularly nonlinearities, and in some situations, they 

are unable to adequately model observations that sum information across multiple 

habitats.

Hinton and Nakano (1996) derived a general framework, commonly called habi-

tat-based standardization (HBS) that overcomes the weaknesses of the GLM models 

described above. The HBS method matches the sample effort data, in this case fishing 

effort, with distributions of the habitat and the habitat preference of the species. It 

does not require that the exact location of capture within the habitat be known, only 

that the total catch resulting from the effort (e.g., set) and a measure of the habitat 

for each unit of effort (e.g., hook) be known, which provides a significant advantage 

when designing sampling schemes for cryptic or hard-to-observe captures. The HBS 

method is a process model that incorporates the sampling process and scientific un-

derstanding of the system. Component models can be developed for each of the pro-

cesses (e.g., habitat, sampling, and animal behavior).

Hinton and Nakano (1996) illustrated their method with a simple deterministic 

application to Japanese longline catch and effort data for blue marlin (Makaira ni-

gricans Lacépède, 1802) in the Pacific Ocean. The sampling effort component model 

was generated using the depth of hooks between the floats of a longline from a cat-

enary curve function of the number of hooks deployed between the floats (Fig. 1). 

This was done because the Japanese longline fleet has increased the number of hooks 

between floats over time to increase the depth of the hooks so as to target bigeye 

tuna (Thunnus obesus, Lowe, 1839), a species that occurs at deeper depths (Nakano 

and Bayliff, 1992). The depths of the hooks estimated from the catenary curve model 

were then matched with habitat distribution from a component model based on the 

temperature difference from the mixed layer and the time at temperature for blue 

marlin relative to the mixed layer derived from acoustic telemetry data (Holland et 

al., 1990). The effort (number of hooks) was then converted into effective effort by 

weighting each hook by the appropriate habitat preference and summing over all 

hooks on the entire longline.

Much controversy has surrounded the applications of the Hinton and Nakano 

(1996) HBS method (Goodyear et al., 2003; Ward and Myers, 2005; Prince and Good-

year, 2006). Much of this is related to the details of the specific illustration of HBS 

using blue marlin data as presented by Hinton and Nakano (1996), which they stated 

was intended “To illustrate the method …” (p. 176). However, the HBS method is 

a general framework, and many of the criticisms are unfounded or have been ad-

dressed in later works (e.g., Bigelow et al., 2002). For example, a criticism that the 

method does not consider when individuals are feeding is not a deficiency of the 

method, but a deficiency in the component process model and data used to deter-

mine the habitat, and if “differences are found, then … [HBS] may be structured to 

account for [them]” (Hinton and Nakano, 1996, p. 178). In limited simulation stud-

ies, Hinton (1996) illustrated that the method could perform well in the presence of 

environmental variability. 

Several tests have been used to determine the appropriateness of the HBS-derived 

indices of abundance. Comparison of total likelihoods from stock assessment mod-

els, including indices of abundance based on nominal effort and those based on HBS 

(e.g., Hinton, 2001; Hinton and Bayliff, 2002), have been used to determine if the 

HBS effort was more consistent with the assumed population dynamics and other 

data (e.g., total catch) compared to nominal effort (Hinton and Maunder, 2004a). 
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In another indirect test, population dynamics model (MULTIFAN-CL) results with 

nominal effort were unreasonable, but results obtained from effort obtained from 

HBS allowed model fits with reasonable estimates of ancillary parameters, such a 

growth and mortality (Kleiber et al., 2003). The controversies continued over the 

appropriateness of the results obtained from applications of the HBS method, which 

inspired further testing of estimation and modeling using the method.

A more traditional testing approach using several testing criteria (Akaike Informa-

tion Criterion [AIC], Bayesian Information Criterion [BIC], Bayes factors) was ap-

plied by Maunder et al. (2002). This method compared observed and predicted catch 

using nominal and HBS effort for yellowfin (Thunnus albacares Bonnaterre, 1788) 

and bigeye tuna in the Pacific Ocean. They found that the HBS effort was substantial-

ly better than nominal effort. However, these and other results indicated that certain 

habitat preference models developed from archival tag information may not always 

be the best or appropriate models to use in a given habitat-based standardization. 

More discussion about the inappropriateness of the archival tag data is presented 

later.

The method of testing the HBS method used by Maunder et al. (2002) led to a logi-

cal process of estimating the parameters of the HBS method in a statistical frame-

work (statHBS). In statHBS, the estimation of the habitat preference parameters (or 

parameters for other components of the model) can be allowed to improve the fit 

of the model to the observed catch data. This allows for more direct model testing 

and calculation of confidence intervals than would be possible in a non-statistical 

framework. There have since been a number of applications of statHBS (e.g., Bigelow 

et al., 2003; Hinton and Maunder, 2004b; Langley et al., 2005). However, the statHBS 

model has yet to be described in the primary literature. Applications of HBS and 

statHBS are not limited to situations involving longline catch and effort data. The 

method is more general and can be applied in many other situations. 

First we describe why GLM and related approaches may not be suitable for ap-

plication when observations sum information across multiple types of habitat. Next 

we describe the basic concepts of statHBS. Then we apply statHBS to the Japanese 

longline catch of bigeye tuna and effort data in the western and central Pacific and 

compare it to two alternative approaches, a “deterministic” application of the HBS 

method (detHBS), which is similar to the Hinton and Nakano (1996) illustration 

shown with blue marlin and nominal effort. Finally, we describe potential modifica-

tions of the statHBS.

Figure 1. Vertical distribution of hooks based on catenary geometry from a typical longline set in 
the Japanese longline fishery that deployed 15 hooks between floats. 
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Summing Data Across Multiple Habitats

There are many possible scenarios for which observed data can be summed across 

multiple habitat types. The longline catch and effort application of Hinton and Na-

kano (1996) is a common example in fisheries. Other marine examples include plank-

ton tows with continuous or periodic oceanographic (e.g., temperature) recorders, 

and trawl surveys with continuous or periodic depth recorders. To model this type of 

data, an equation is needed to predict the observations. The equation must sum the 

predicted catches for each of the units of effort with reference to the habitat type and 

compare that sum to the total observed catch. For a simple example, let C
i,j

represent 

the predicted catch for component j for observation i, and T
i,j

 represent the tempera-

ture as a continuous variable for component j of observation i. If a linear relationship 

is assumed between catch and temperature 
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where J is the total number of components. A GLM can now be applied, using C
i
 as 
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j

/  and as the explanatory variable. However, if the standard 
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Therefore, a GLM framework can no longer be used, and a nonlinear model estima-

tion procedure is required.

An alternative is to change the habitat variable to a categorical variable
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A GLM can then be applied by summing the amount of effort in each habitat and 

using each of these habitat groups as explanatory variables. Unfortunately, most de-

sirable modifications of the model make the GLM framework impossible to use. For 

example, including a multiplicative year effect I
y
 (the desired quantity for an index of 

abundance) makes the model a combination of additive and multiplicative models,

...C E H E H Ii y1 1 2 2= + +] g .
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If a nonlinear estimation framework is used, there is no restriction on the model 

structure, and this allows for the scientific understanding of the system to be in-

cluded in the model. Each process can then be modeled as a component model that 

includes the understanding of that process. The component models can be combined 

into a single model used for parameter estimation in the statHBS framework.

The Statistical Habitat-based Standardization (statHBS) Model

We describe the statHBS model using a fisheries longline CPUE example with the 

main goal to estimate the year effect, but CPUE can be replaced with other quantities 

and year can be replaced with another measure of time or some other dimension. Let 

i index the longline set and j index the hook in that set. 

Basic Model.—The CPUE is assumed to be proportional to abundance, N
t
, at 

time t

CPUE
E
C qNt= = ,

where C is catch, E is the effort, and q is the constant of proportionality (catchability 

in this example). This equation can be rearranged to predict the catch.

C qENt=

A basic premise of this application of statHBS is that catchability is proportional 

to habitat type,

q H\

For this illustration, let the habitat be discrete categories. Let q
base

 be the overall 

catchability and define H
h
 as the difference from the overall catchability for habitat h.

q q H, ,i j base i j=

where H
i,j

 represents the habitat effect for hook j in set i, and H
i,j

= H
h
 if the habitat 

type for observation i,j is h.

The main objective is to estimate the year effect, I
t
, which represents the relative 

abundance and is proportional to N
t
. Therefore, the predicted catch is 

C q H I E, , ,i j base i j t i j=

where t represents the time for observation i,j and E
i,j

 is the effort for observation i,j.

E
i,j

 = 1 in this example.

To accumulate the catch for the whole longline, the predicted catch is summed 

over the habitat types, 

C q I H E ,

,

i base t h i j

i j hh

=
!
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The parameters of the model are q
base

and the vectors H and I. However, q
base

 is 

confounded with I and H, so the initial I is set to one and the H’s are constrained to 

sum to 1.

The parameters of the model are estimated by fitting to the observed catch. This 

is accomplished by minimizing the negative log-likelihood. For this example, we use 

the lognormal likelihood function 
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where Ci
O  is the observed catch, and δ is a small constant (e.g., 1.0) added to avoid 

computational problems when the observed or predicted catch is zero. The standard 

deviation, σ, of the likelihood function is an estimated parameter in the model.

Prior on Habitat.—The original illustration of Hinton and Nakano (1996) was 

deterministic, in that all the HBS model parameters were estimated externally us-

ing auxiliary data. In the HBS framework, it was assumed that all the components 

of the model, including the habitat preference, were known. This approach can be 

approximated by fixing the H’s in the above description at set values. This model will 

be referred to as detHBS. Hinton and Nakano (1996) recognized that there is uncer-

tainty in the habitat preference estimates, and they sampled the habitat preference 

from a multinomial distribution to obtain confidence bounds for abundance trends. 

This simulation method logically leads to the use of priors in a Bayesian context for 

the habitat preference or other model parameters. 

For example, the prior for the preference of each habitat could be assumed log-nor-

mal with a given mean and standard deviation:
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The negative of the logarithm of the prior is added to the negative log-likelihood.

GLM Component.—There are many factors other than the habitat that may af-

fect catchability or relative abundance of the individuals available to the gear. GLMs 

allow for the inclusion of multiple variables, either categorical or continuous. The 

GLM framework can be integrated with the statHBS approach. In this case, the GLM 

explanatory variables are related to the longline set.

The standard log-transformed GLM model used in fisheries is

ln CPUE Xi i i= +b f6 @
Using this parallel, the expected logarithm of catchability is a linear combination 

of explanatory variables

exp Xqi i i= +b f^ h
where β is a vector of parameters, Xi is a matrix of data, and εi is the error term for 

observation i [usually iid N(0, σ2)]. Consider a model with an intercept, a continuous 

variable, and a categorical variable with three levels. The model has four parameters, 

the intercept (α), a coefficient for the continuous variable (β), and two parameters for 
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the categorical variable (p
2
 and p

3
; one of the levels is confounded with the intercept). 

The parameters of the categorical variable are offsets from the base category that is 

represented by the intercept. For example, the first row in the matrix below repre-

sents the base category, the second row the second category, and the third row the 

third category. α represents q
base

in the previous description.
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Traditionally, the year effect (I) is included as a categorical variable in a GLM anal-

ysis, and can be included in the GLM component of the statHBS model, rather than 

using the explicit method described above. 

When the intercept is replaced with q
base

 and I is used as a separate categorical vari-

able, the statHBS model is:

ln ln XC q I H E ,

,

i base t h i j

i j hh

i= + b
d
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Nonlinear Estimation.—To complete the estimation process, the habitat must 

be determined for each component of effort (e.g., for each hook). Habitat data (e.g., 

ambient temperature) can be obtained or estimated from an external source (e.g., an 

Ocean General Circulation Model, OGCM), which in some cases may require inter-

polation to ensure values are available for each piece of effort. In general terms, this 

requires computer code that determines the habitat for each hook and sums over the 

number of hooks in each habitat for each longline set. The parameters can be esti-

mated by minimizing the negative log-likelihood adjusted for the prior of the habitat 

preference (i.e., the negative log of the posterior),

|Cln lnL P Hh- -i` ]j gM
then finding the posterior mode. This can also be viewed as a penalized likelihood, 

or the habitat preference prior could be viewed as a prior likelihood (Pawitan, 2003). 

Alternatively, the prior could be replaced with an approximation to the likelihood 

from the analysis that estimated the habitat preference prior, or the data could be 

integrated directly into the statHBS analysis. Or, the prior could be eliminated from 

the analysis. 

Model Testing.—Standard model selection methods (e.g., likelihood ratio test, 

AIC) can be used to select different components of the statHBS model. For example, 

model selection can be used to determine which habitat variables to include or which 
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explanatory variables to include in the GLM component. Most components of the 

model are nested and therefore likelihood ratio tests can be used.

Application

We apply the statHBS model to the main area of longline catch for bigeye tuna in 

the western and central component (15°N–10°S, 140°E–150°W) of the Pacific Ocean 

population (Fig. 2). Oceanographically, this spatial area represents three tropical bio-

ecological provinces (western Pacific warm pool, North Pacific Equatorial Counter-

current and Pacific Equatorial Divergence) based on primary productivity regimes 

(Longhurst et al., 1995). We fit the statHBS model to bigeye catch from the Japanese 

distant-water longline fishery grouped by time (month), area (5° latitude × 5° longi-

tude), and gear configuration [hooks between floats (HBF); range 5–23]. The area 

contained 52,741 strata (1% zero catch observations) from 1975 to 2004. The vertical 

distribution of hooks within each configuration was based on longline characteris-

tics and catenary geometry (Bigelow et al., 2002) and considered deterministic in the 

statHBS model. Habitat data (ambient temperature) were obtained from 0–600 m at 

40 m intervals from an OGCM (Simple Ocean Data Assimilation (SODA), Carton et 

al., 2000a,b). The original OGCM spatio-temporal resolution was monthly, 1° lati-

tude × 1.5° longitude, and temperature data were spatially aggregated to the scale of 

the fishery data. 

We compare statHBS indices of relative abundance to those estimated without 

standardization and using detHBS. The habitat parameters are water temperature 

grouped into 2 C bins. No GLM variables were included in the analysis. The AIC 

was used to determine which model best fit the data. The application shown here is 

used only to illustrate the statHBS model and a different spatial stratification may be 

more appropriate for assessment and management of this stock. 

The results show that the statHBS model (AIC = 18,408) fit the data better than 

the nominal (AIC = 19,618) and detHBS (AIC = 31,130) models. The detHBS model 

performed worse than just using nominal effort. The detHBS and statHBS models 

Figure 2. Distribution of cumulative bigeye tuna longline catch from 1990–2004 by 5° latitude 
and 5° longitude. Maximum circle size represents a catch of 50,000 tons. The box indicates the 
spatial stratification for applications of statistical models to bigeye tuna in the western and central 
component of the Pacific Ocean population. 
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produced a greater decline in relative abundance than just using nominal effort (Fig. 

3) because of the time-series change to deeper gear. Shallow gear (5–9 hooks be-

tween floats) represented 39.3% of the gear during the initial 10 yrs (1975–1984) in 

the study area but only 1.1% during the last 10 yrs (1995–2004). Conversely, deep gear 

(15–23 hooks between floats) was rarely deployed (0.6%) in the initial 10 yrs but was 

paramount (77.6%) during the last 10 yrs. The statHBS model estimated a different 

habitat preference than the one used in the detHBS model (Fig. 4), with a greater 

preference for warmer water. By adding a constant of 1.0 to each catch, residuals 

were normally distributed (Fig. 5) with a slightly longer negative tail. The addition of 

a constant of 1.0 was preferred over a smaller constant (0.001) as a smaller constant 

produced a bimodal distribution in residuals, because taking the logarithm of zero 

catches introduces a greater outlier. A constant of 10 produced normally distributed 

residuals without a negative skew; however, the estimated year effects may be biased 

as they were 5% less then with a constant of 1.0. 

Modifications

The following modifications to the statHBS model may improve the method. 

Total Habitat.—The model as specified above assumes that the total amount 

of habitat is constant over time. However, it is well known that the environment 

can have large temporal variation, and as the total amount of habitat increases or 

decreases, the population may expand or contract and fish densities will change. 

Therefore, the year effect will be confounded with the total habitat. To account for 

changes in the total habitat, the total relative habitat can be calculated for each time 

period by summing up the relative habitat preference for each area strata and the 

catchability multiplied by its inverse.
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Figure 3. Indices of relative abundance for a bigeye tuna in the western and central Pacific Ocean 
example as estimated from nominal effort, detHBS and statHBS.
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Matching Effort with Habitat.—The statHBS requires that effort be matched 

with the appropriate habitat. If the habitat is recorded with the sampling then this is 

automatically accomplished. In the longline catch and effort applications, a compo-

nent model describing hook depth is used in association with environmental data to 

determine the habitat associated with each hook. However, the simple model based 

on the catenary curve used to represent hook depth may be inappropriate, as many 

factors influence the depth of hooks, and differences in the characteristics of the 

gear and deployment methods may influence the depth of the hooks. In this and 

similar cases, it might be possible to parameterize the component model that associ-

ates effort with habitat and estimate or update the parameters in the statHBS model. 

For example, currents can reduce the depth of a hook by shoaling the longline. The 

amount of shoaling can be modeled based on explanatory variables (e.g., line charac-

teristics and ocean currents).

Parameterizing the Habitat Preference.—The description of the statHBS 

model described above uses habitat as a categorical variable. It is possible to consider 

the habitat as a continuous variable, or one of multiple dimensions, and to use either 

a simple GLM approach or to use scientific understanding to develop and parameter-

ize a functional form for the habitat preference. The parameters of this component 

model could be estimated within the statHBS framework.

Alternative Likelihood Functions.—The likelihood function we presented is 

a simple likelihood; however, other GLM error models and link functions could be 

used. The delta-lognormal methods commonly used in fisheries to deal with zero ob-

servations could also be applied with two separate statHBS models with one model 

used for the proportion of zero observations and a second for positive observations. 

If the number of individuals caught is small, then likelihoods for count data, such as 

the Poisson or negative binomial, may be appropriate.

Efficient Estimation.—It may be possible to use the efficient estimation equa-

tion of GLM theory for the GLM component of the statHBS model to greatly reduce 

Figure 4. Relative habitat effect (habitat preference) used in the detHBS analysis and estimated by 
the statHBS analysis for bigeye tuna in the western and central Pacific Ocean.
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computation times. The catchability (q) and year effects could also be included in the 

GLM framework to increase efficiency. Each function evaluation in the numerical 

iteration estimation procedure, which is defined for a set of values of the habitat pref-

erence parameters, would use the MLEs of the parameters of the GLM component 

calculated using the GLM theory. This is similar to using the analytical solution for 

the catchability coefficient when fitting a population dynamics model to a CPUE 

index of relative abundance. 

Setting and Retrieval.—It has been suggested by a limited number of studies 

that some species may be more likely to be caught on longline gear when the baited 

hook is moving through the water (Boggs, 1992). This occurs when the longline is 

being set or retrieved. For example, as a hook is retrieved it moves out of a deeper 

habitat and through shallower habitats. This process can be included by modeling 

the relative time the hook spent in each of the habitats (i.e., the depth of the habitat) 

as the gear was retrieved. This quantity is multiplied by a scalar to estimate the rela-

tive catchability that occurred during setting and retrieval.

Discussion

We have shown how applying a statistical framework to the habitat-based stan-

dardization method of Hinton and Nakano (1996) for determining relative indices 

of abundance (1) takes habitat information into consideration, (2) allows the sum-

mation of multiple units of effort associated with habitat type to predict the obser-

vation, (3) uses the scientific understanding of the system in the formulation of the 

model, and (4) estimates the model parameters and calculates uncertainty in a sta-

tistical framework that can also be used for model selection. The framework is very 

flexible and can be applied in a variety of ways. Component models can be developed 

for each process and the relevant parameters of these models estimated within the 

statHBS framework. In addition, we have shown how the model may be integrated 

with a GLM framework to allow convenient comparison with traditional methods 

used to standardize CPUE data. 

Figure 5. Residuals (log(observed catch+1) log(estimated catch+1)) for the statHBS model ap-
plied to bigeye tuna in the western and central Pacific Ocean.
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The HBS was initially applied in a deterministic framework (e.g., Hinton and Deriso, 

1998; Bigelow et al., 2002; Hinton and Bayliff, 2002; Kleiber et al., 2003). Although 

statistical tests indicated that the method provided improvement over nominal effort 

in some cases, the statistical approach provides advantages for modeling and testing, 

and it is becoming the predominant method of application. The statHBS model has 

been applied in assessment work on bigeye and yellowfin tuna (Bigelow et al., 2003, 

2005; Langley et al., 2005) and on striped marlin (Tetrapturus audux Philippi, 1887) 

(Hinton and Maunder, 2004b) in the Pacific Ocean. 

The statHBS model has been investigated and improved by several researchers, 

though much of the work to date remains unpublished. Hinton and Maunder (2004b) 

included retrieval in their application to striped marlin with limited success. At the 

conclusion of the model runs they decided to not include this variable in the model 

selected due to questions about parameter formulation and impacts on model fit. 

Langley et al. (2005) illustrated that in some instances when spatial parameters are 

included in the GLM component of statHBS, the estimated habitat preference ef-

fect becomes constant, indicating that within the model structure, habitat and gear 

interactions are correlated with spatial structure. Such confounding has also been 

demonstrated by application of GLM models to swordfish (Xiphias gladius Linnaeus, 

1758) in the eastern Pacific Ocean. Analyses with large spatial structure had sig-

nificant factors for gear (Hinton, 2003). However, in analyses with highly detailed 

spatial structure, which provided closer conformity to the physical oceanography of 

the region, gear was not a significant factor (Y. Uozumi and K. Yokawa, National Re-

search Institute for Far Seas Fisheries, Japan, pers. comm.). These results emphasize 

the need to consider the temporal and spatial scale of the data used in the model. The 

statHBS has been used to show that studies in which longline CPUE was standard-

ized solely on depth (Ward and Myers, 2005) are misleading and encounter problems 

similar to those encountered with the detHBS model. 

In their statHBS application, Langley et al. (2005) used the canonical implementa-

tion of the year effect (Francis, 1999) to develop confidence intervals independent of 

the base year. Langley et al. (2005) also integrated multiple spatial areas to develop 

regional indices of abundance that shared a common overall catchability coefficient, 

to be consistent with the MULTIFAN-CL assessment model (Hampton et al., 2005). 

Bigelow et al. (2003) used statHBS to determine if ambient temperature values or 

temperature relative to the mixed layer is the more important habitat variable to 

explain catch rates in bigeye and yellowfin tuna. 

The results obtained in the bigeye tuna example illustrate a problem caused by 

the fact that longline sets are deployed early in the morning and completed at night. 

Some species (e.g., bigeye tuna and swordfish) are known to occupy different habitats 

in the day and night. The statHBS approach integrates over the entire longline set, 

and habitat preferences are sometimes bimodal due to incorporating aspects of both 

day and night vulnerability. A better approach would be to structure the habitat by 

day, by night, or by a combination of preferences for each period.

Previous studies have shown that in some cases the detHBS model is less able to 

predict catch than nominal effort, which is also illustrated in our bigeye tuna ex-

ample in the western and central Pacific Ocean, and that the habitat preferences can 

change from area to area. The statHBS always improves the ability to predict catch, 

which has been statistically significant in all of our applications, and the results can 

be quite different from the detHBS model. There are several problems to consider 
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when using archival tag data to determine habitat preference and vulnerability for 

use in habitat-based standardization. The most commonly cited problem is that the 

archival tagging data furnish information about where the individual fish is located, 

rather than where it is feeding or takes baited hooks, so the habitat and correspond-

ing vertical distribution estimates may reflect different vulnerabilities to capture. 

However, Bach et al. (2003) found that the distribution of bigeye tuna caught in fish-

ing experiments was similar to that estimated by electronic tags. Another major rea-

son for some of the significant differences in performance between the detHBS and 

statHBS results is the failure to correctly map the spatial and temporal scales of the 

habitat distribution data and the habitat preference. In the examples, these were sim-

ply the oceanographic data, which are usually from OGCMs and typically represent 

averages over a scale of month and 1° latitude × 1.5° longitude, whereas the archival 

tag data reflect oceanographic conditions exactly where the fish is at any instance 

in time. If the fish chooses where it prefers to be, for example, following an oceanic 

front, then the archival tag data may not correspond to the average conditions in an 

OGCM stratum. In truth, the distributions of habitat and habitat preferences are 

complex (Hinton and Nakano, 1996), and with model misspecification inevitable in 

such a simplified framework, the estimation process inherent in the statistical ap-

proach will, in almost every case, result in a significantly better fit to the data than 

will a deterministic model. Other factors, such as undocumented technology im-

provements (e.g., monofilament lines and new hooks), that are also problems in other 

CPUE standardization methods, increase CPUE over time and it may not be possible 

to separate these factors from the year effects. Research is needed to determine the 

robustness of the statHBS approach to all the other factors mentioned above, and to 

improve the model.
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