
JANUARY 2000 233N O T E S A N D C O R R E S P O N D E N C E

q 2000 American Meteorological Society

Vortex Merging in a 1½-Layer Fluid on an f Plane*

RICK LUMPKIN AND PIERRE FLAMENT

School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, Hawaii, and
IFREMER, Plouzané, France
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ABSTRACT

Mass, angular momentum, and energy budgets are examined in an analytical model of vortex merging relevant
to midlatitude mesoscale eddies. The vortices are baroclinic and cyclogeostrophic. The fluid surrounding them
is assumed to remain quiescent. It is shown that due to this surrounding fluid, angular momentum is conserved
when expressed in both the inertial and rotating frames of reference.

Lens-shaped solid-body vortices can conserve mass, angular momentum, and energy when they merge. If an
upper-layer of thickness H1 is included in the model, the merged vortex must have either less energy or mass
than the sum of the original two vortices.

A more complex model of the vortex azimuthal structure is then considered, which includes a constant vorticity
shell surrounding the solid-body core. If the shell is large compared to the core, the mass, angular momentum,
and energy can all be conserved in the merged vortex. However, if the shell is small, the merged vortex must
have less energy or mass than in the solid-body case.

1. Introduction

Like-sign vortices merge in rotating tanks (Nof and
Simon 1987; Griffiths and Hopfinger 1987) and in the
ocean (Cresswell 1982; Tokos et al. 1994). Merging has
been numerically modeled in a wide range of settings
(Melander et al. 1988; Verron and Valcke 1994; Carton
and Bertrand 1994; Valcke and Verron 1997). Presum-
ably, the characteristics of the merged vortex are set by
those of its parents and the relevant conservation laws.
But what properties are conserved in vortex merging?
Gill and Griffiths (1981) demonstrated that, if potential
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vorticity and mass are conserved by two merging an-
ticyclones, the final state contains more energy than the
initial state. This ‘‘energy paradox’’ is at odds with the
known spontaneous nature of vortex merging (Cush-
man-Roisin 1989). Several attempts to resolve this par-
adox have questioned the assumptions of potential vor-
ticity or mass conservation (Nof 1988; Cushman-Roisin
1989; Pavia and Cushman-Roisin 1990).

Once vortices come into contact, merging takes place
in two stages: fusion and axisymmetrization. During
fusion, the vortices rapidly exchange fluid and homog-
enize into a central, elliptical vortex. In the subsequent,
relatively slow axisymmetrization stage, the elongated
vortex becomes S-shaped and sheds part of its mass into
spiral-shaped filaments while its core becomes circular.
This inviscid process is particularly dramatic in poten-
tial-vorticity-conserving numerical models (Melander et
al. 1988; Pavia and Cushman-Roisin 1988) and has been
observed in tank experiments (Griffiths and Hopfinger
1987). Cushman-Roisin (1989) proposed that filamen-
tation plays a fundamental role in the merging, acting
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FIG. 1. Side view of a vortex and surrounding quiescent fluid in
the 2-layer model. For a vortex in solid-body rotation, the surface
and interface displacements are parabolic, as sketched here.

to relax mass conservation in the framework of the Gill
and Griffiths (1981) merging model.1 He also introduced
an additional constraint, conservation of the absolute
angular momentum (the angular momentum formulated
in the inertial reference frame). He argued that this an-
gular momentum must be conserved in the final vortex
if the merging is complete, a condition not met by the
solutions of Gill and Griffiths (1981) (Pavia and Cush-
man-Roisin 1990).

Cushman-Roisin’s (1989) model assumes that the po-
tential vorticity of each fluid parcel is conserved. He
concludes that a significant fraction of the initial mass
must be shed into filaments. However, when Nof and
Simon (1987) allowed anticyclonic lenses to merge in
a rotating tank, the initial vortex mass was conserved
in the merged vortex (i.e., filamentation was negligible).
Furthermore, the central depth of the vortices rapidly
decreased as they fused. This depth must increase to
conserve potential vorticity, suggesting that potential
vorticity is not conserved during fusion (Nof and Simon
1987). Nof (1988) argued that highly viscous, turbulent
mixing occurs along the interface of the vortices, which
can cause an O(1) alteration in the fluid parcel’s poten-
tial vorticity (Nof 1986). This hypothesis suggests that
the energy paradox can be resolved by relaxing the a
priori assumption of potential vorticity conservation.
However, Pavia and Cushman-Roisin (1990) examined
solutions to the merging model that conserve mass and
energy in the final vortex; they argued that angular mo-
mentum was not in general conserved, rendering these
solutions physically unacceptable.

In this note, we examine an analytical model of vortex
merging similar to those of Gill and Griffiths (1981)
and Pavia and Cushman-Roisin (1990). We examine
Nof’s (1988) hypothesis for resolving the energy par-
adox by relaxing the constraint of potential vorticity
conservation. We formulate angular momentum con-
servation in the inertial reference frame; unlike Cush-
man-Roisin (1989) and Pavia and Cushman-Roisin
(1990), we include the fluid that surrounds the merging
vortices. While this fluid is assumed to remain quies-
cent, it bears absolute angular momentum, which is al-
tered when the fluid is rearranged during merging. We
demonstrate that the absolute angular momentum of the
total system, vortices and surrounding fluid, is equal to
the background angular momentum (the absolute an-
gular momentum in the absence of vortices), plus the
sum of the vortex relative angular momentum (the an-
gular momentum seen in the rotating reference frame).
As a consequence, conservation of the total absolute
angular momentum is equivalent to conservation of the
relative angular momentum of the vortices. We conclude

1 Cushman-Roisin explicitly included an idealized model for the
filaments, and concluded that when zero potential vorticity lenses
merge, 23% of their mass goes into the filaments while 96% of their
energy is retained in the merged vortex.

that solutions exist for the merging model that do not
present an energy or angular momentum paradox. Using
a generalized model of the vortex structure, we present
two possible merging scenarios based on the choices of
conserved quantities. In the discussion, we highlight the
difference between our formulation of angular momen-
tum conservation and that of Cushman-Roisin (1989)
and discuss physical mechanisms that can account for
reduced mass or energy in the final state.

2. Development of the model
The model has two layers: the upper layer (density

r) extends from z 5 0 to z 5 2H1 and the lower layer
(density r 1 dr) extends from z 5 2H1 to z 5 2H2

(Fig. 1). The system is rotating at angular speed V (Fig.
2) and is subject to a potential that includes gravity and
centrifugal force (the familiar f -plane approximation).
Before merging, there are two identical, azimuthally
symmetric vortices in the upper layer, touching at a
single point. We assume that the fluid is reorganized
into quiescent fluid surrounding a single vortex. We as-
sume that the final vortex has the same velocity structure
as its parents; for example, vortices in solid-body ro-
tation merge to produce a vortex also in solid-body ro-
tation (though not necessarily rotating at the same rate).
Because we assume the vortices are in contact at time
t 5 0, we do not address the sensitivity of merging on
the initial separation distance of the vortices.

a. Mass and angular momentum of an isolated vortex

Consider a vortex in the upper layer with radius ro,
extending vertically from the surface z 5 h(r) to z 5
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FIG. 2. Top view of the merging model. The center of rotation of
the system is at the x.

2H1 2 h(r) (Fig. 1). The surface deflection h is related
to the azimuthal speed y by cyclogeostrophy:

2y
1 2Vy 5 g] h, (1)rr

where r is the radial distance from the vortex center and
g is gravity. Since there are no horizontal pressure gra-
dients in the lower layer,

g
h 5 h, (2)

g9

where the reduced gravity g9 is g9/g 5 dr/r. The total
mass of the vortex is

M 5 mH 1 mh 1 mh, (3)

where
ro

2m 5 prr H , m 5 2pr dr rh(r),H o 1 h E
0

ro

m 5 2pr dr rh(r). (4)h E
0

With (2), it follows that

dr
m 5 m . (5)h hr

In the rotating frame, the relative angular momentum2

of the vortex is

ro

2L 5 2pr dr r [H 1 h(r) 1 h(r)]y (r). (6)E 1

0

In the inertial frame, the vortex is centered at R 5 Ro

(the position of R 5 0, the axis of rotation, does not
affect the solutions). Its absolute angular momentum is

L̃ 5 L 1 V 1 (IH 1 Ih 1 Ih)V2MRo (7)

(the tilde indicating absolute quantities expressed in the
inertial frame), where the moments of inertia are

ro 1
3 2I 5 2pr dr r H 5 m r ,H E 1 H o20

ro

3I 5 2pr dr r h(r),h E
0

ro

3I 5 2pr dr r h(r). (8)h E
0

Using (2), it follows that

dr
I 5 I . (9)h hr

b. Angular momentum of vortices immersed in
quiescent fluid

In the absence of vortices, the absolute angular mo-
mentum of the quiescent background state would be

2L̃ 5 [H r 1 (H 2 H )(r 1 dr)] dA R V, (10)back 1 2 1 E
A

where the integral is taken over an arbitrary finite do-
main A.

In the presence of N vortices (denoted by the subscript
a 5 1, · · · , N), the absolute angular momentum of the
quiescent surrounding fluid is

N r 1 dr
2˜ ˜L* 5 L 2 m 1 m ROback H,a h,a a5[ ]ra51

r 1 dr
1 I 1 I V. (11)H,a h,a 6[ ]r

This is less than L̃back because the vortices occupy some
volume below z 5 0. The absolute angular momentum
of the total system (with N vortices) is obtained by
adding (7) and (11):

2 Specifically, the vertical component of the angular momentum
vector.
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N dr dr
2˜ ˜ ˜ ˜L 5 L* 1 L 5 L 1 L 1 m 2 m R 1 I 2 I V . (12)O Otot a back a h,a h,a a h,a h,a5 1 2 1 2 6[ ]r ra a51

Vortices extend to height h above z 5 0; revolution
and rotation of this mass at speed V adds angular mo-
mentum to the background state. Similarly, vortices
extend a distance ha into the lower layer ; because this
fluid is lower in density, it subtracts angular momentum
from the background state. Using (5) and (9), (12)
simplifies to

˜ ˜ ˜ ˜L 5 L* 1 L 5 L 1 L . (13)O Otot a back a
a a

Angular momentum added by surface bulges is equal
to angular momentum subtracted by layer interface
bulges, and they cancel. The absolute angular momen-
tum of the entire system differs from the angular mo-
mentum of the background state only by the sum of the
relative angular momentum of the vortices.

c. Energy of vortices

The fluid in the rotating reference frame is subject to
a potential that includes the centrifugal force. In the
inertial frame, the potential consists of only gravity,
complicating the formulation of energy conservation in
that frame. Thus, following Gill and Griffiths (1981)
and Cushman-Roisin (1989), we examine the energy of
the vortices in the algebraically simpler rotating refer-
ence frame, that is, using the familiar definitions of the
kinetic and potential energy, the sum of which is in-
variant for a closed system (Gill 1982, p. 220). The
kinetic energy of a vortex is

ro 1
2KE 5 2pr dr r[H 1 h(r) 1 h(r)] y , (14)E 1 20

and the potential energy is
ro 1

PE 5 2pr dr r[h(r) 1 h(r)] gh. (15)E 20

The net energy E 5 KE 1 PE may be related to the
relative angular momentum as follows. The relative an-
gular momentum L is given by (6). From cyclogeostro-
phy (1),

21 y
y 5 2 2 g] h . (16)r1 22V r

Substitution yields

ro2pr 1 1
2L 5 2 dr r(H 1 h 1 h) y 2 rg] h . (17)E 1 r1 2V 2 20

The term containing ]rh may be integrated by parts,
yielding

ro 1
22VL 5 2pr dr r (H 1 h 1 h) yE 1[ 20

1
1 (2H 1 h 1 h) gh . (18)1 ]2

Using (4), (14), and (15), this becomes

E 5 2VL 2 gH1mh. (19)

The total energy of N vortices is then

N

E 5 2 (VL 1 gH m ). (20)Otot a 1 h,a
a51

If H1 5 0, that is, the vortices are lens-shaped, their
energy is proportional to their relative angular momen-
tum.

3. Vortex merging

When two identical vortices (denoted by subscripts
a and b) merge to produce a single vortex (c) without
entraining surrounding fluid, mass conservation requires

Mc 5 Ma 1 Mb, (21)

where the masses are given by (3).
By definition, the background angular momentum

L̃back remains unchanged. Thus, from (13), conservation
of angular momentum requires

Lc 5 La 1 Lb. (22)

Conservation of the absolute angular momentum re-
duces to conservation of the relative angular momentum
of the vortices.3

From (20), energy conservation Ec 5 Ea 1 Eb re-
quires

VLc 1 gH1mh,c 5 VLa 1 gH1mh,a 1 VLb 1 gH1mh,b.
(23)

Mass, angular momentum, and energy can be simulta-
neously conserved when either

mh,c 5 mh,a 1 mh,b (24)

or H1 5 0.
We now examine the merging properties of particular

vortex structures.

3 The equivalency of these invariants can also be derived directly
from the momentum and continuity equations for a rotating, multi-
layer fluid (B. Cushman-Roisin, 1999, personal communication).
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FIG. 3. Top: ratio of final rotational frequency vc to initial frequency
va as a function of va/V, for solid-body vortices, which conserve
mass and angular momentum when they merge. The label for each
curve indicates the value of ra/Rd. The heavy line gives the solution
for a lens-shaped vortex (Rd 5 H1 5 0). Some curves end before
reaching va 5 V; at greater values of va, the vortex has negative
thickness H1 1 h 1 h at its center and is thus not geometrically
valid. Middle: ratio of final radius rc to initial radius ra as a function
of va/V. Bottom: ratio of final energy Ec to initial energy 2Ea. Except
in the lens-shaped case, the merged vortex has less energy.

a. Solid-body vortices

A solid-body vortex has the velocity structure y(r) 5
vr, where v is constant. By imposing h 5 0 at r 5 ro,
cyclogeostrophy (1) may be integrated to yield

1
2 2h(r) 5 2 v(2V 1 v)(r 2 r ), r # r . (25)o o2g

The relative angular momentum is

L 5 (IH 1 Ih 1 Ih)v. (26)

Consider two identical solid-body vortices (a and b)
merging to produce vortex c, assumed to be also in solid-
body rotation. Given va, vb, ra, and rb, two independent
conservation laws determine vc and rc. This leads to
the dilemma faced by Pavia and Cushman-Roisin
(1990): which of the three constraints (mass, angular
momentum, and energy conservation) should apply?
Following Pavia and Cushman-Roisin, we consider two
separate merging scenarios; in each we conserve two of
these properties and examine what happens to the third.
Physical interpretations of the results will be discussed
in the final section. We restrict the development to the
particular case of identical merging vortices (va 5 vb,
ra 5 rb), and reject values of (va, ra) that yield a non-
positive central thickness H1 1 h(r) 1 h(r).

1) CONSERVING MASS AND ANGULAR MOMENTUM

Figure 3 shows the values of vc and rc, which con-
serve mass and angular momentum. Several curves are
shown, each corresponding to a fixed ratio of ra to the
internal Rossby radius Rd:

1 g9H1R 5 . (27)d !2V 1 1 g9/g

In the limit H1 → 0 or ra/Rd → `, the vortices become
anticyclonic lenses; in particular, zero potential vorticity
lenses (v1 5 2V) merge such that

2 3
v 5 v , r 5 r . (28)c a c a!3 2

In the limit H1 → ` or ra/Rd → 0, the vortices become
2D cylinders that merge such that

1
v 5 v , r 5 Ï2r . (29)c a c a2

The bottom panel of Fig. 3 shows the ratio of final
energy Ec to initial energy 2Ea. For lens-shaped anti-
cyclonic vortices, energy is conserved. However, for
finite ra/Rd, energy must be lost in the merging; the loss
reaches 50% at the limit of cylindrical vortices.

2) CONSERVING ANGULAR MOMENTUM AND

ENERGY

Figure 4 shows the values of vc and rc, which con-
serve angular momentum and energy. Compared to the

mass-conserving scenario (Fig. 3), the change in period
(va/vc) is smaller for a given ra/Rd and decreases with
decreasing ra/Rd; the final radius is also smaller. For
finite ra/Rd, the final vortex has less mass than the initial
two vortices. At the limit of cylindrical vortices (ra/Rd

→ 0), the mass loss is Mc/2Ma 5 1/ 2. For lens-shapedÏ
anticyclonic vortices (ra/Rd 5 `), mass is conserved.

b. Vortices with finite-shear edges

In the solid-body model, vortices have an infinite-
shear edge separating vortex fluid from surrounding up-
per-layer fluid of identical density. However, momentum
diffusion would rapidly smear the edge vorticity into a
shell surrounding the solid-body core. Within this shell,
y(r) decreases with increasing r. If the shell’s width is
allowed to adjust during merging, its inclusion in the
model adds a degree of freedom to the solutions. Con-
sider vortices with the velocity structure:
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FIG. 4. Top: ratio of final rotational frequency vc to initial frequency
vc as a function of va/V, for solid-body vortices, which conserve
angular momentum and energy when they merge. The label for each
curve indicates the value of ra/Rd. The heavy line gives the solution
for a lens-shaped vortex (Rd 5 H1 5 0). Some curves end before
reaching va 5 V; at greater values of va, the vortex has negative
thickness H1 1 h 1 h at its center and is thus not geometrically
valid. Middle: ratio of final radius rc to initial radius ra as a function
of va/V. Bottom: ratio of final mass Mc to initial mass 2Ma. Except
in the lens-shaped case, the merged vortex has less mass.

FIG. 5. Top: azimuthal velocity y(r) vs radial distance for a vortex
with a constant vorticity shell surrounding a solid body core. For this
vortex, v 5 2V. Bottom: sea surface displacement h vs radial dis-
tance, calculated by integrating the cyclogeostrophic relation (1).

vr, r # ri

2 2 r ri oy (r) 5 2 v r 2 , r , r # r (30)i o2 21 2 1 2r 2 r ro i
0, r . r . o

The azimuthal speed y is continuous at r 5 ri, ro (Fig.
5). The solid-body core extends to r 5 ri, and is sur-
rounded by a constant vorticity shell extending to r 5
ro. Outside this shell, there is no circulation induced by
the vortex [i.e., this is an ‘‘exactly shielded’’ vortex as
defined by Carton and Bertrand (1994)]. The vortices
are completely included over an arbitrary finite domain.
The ratio of shell vorticity zo to core vorticity z i is

2z ro i5 2 . (31)
2 2z r 2 ri o i

In the limit ro k ri, the outer shell is nearly irrotational
and the vortex becomes Rankine-like. If ro , 2ri, theÏ

magnitude of the shell vorticity is larger than that of
the core vorticity.

Vortices of this structure may be centrifugally unsta-
ble. If a fluid parcel orbiting a cyclogeostrophic vortex
is infinitesmally perturbed, it experiences a restoring
force proportional to

F 5 ]r(yr 1 Vr2)2 (32)

(Kloosterziel and van Heijst 1991). If F , 0 anywhere
in the vortex, perturbations will grow exponentially. Ap-
plying this stability criterion to the inner edge of the
shell shows that anticyclones are unstable if z i , 2V,
while cyclones are unstable if the anticyclonic shell vor-
ticity zo is less than 2V. Thus, rapidly spinning anti-
cyclones and narrow-shelled cyclones are unstable. In
this paper, we do not explore solutions in the (v, ri, ro)
parameter space describing unstable vortices. We also
discard choices of these parameters that yield nonpos-
itive central depths for the cyclonic vortices.

There is no guarantee that the set of nonlinear con-
servation laws can be simultaneously satisfied by a
unique combination of vc, ri,c, and ro,c. Paralleling the
solid-body case, we examine two merging scenarios:
one in which mass is conserved a priori and the other
in which energy is conserved. In both scenarios, we
assume that the mass Mi of the solid-body core is con-
served:

ri

M 5 2pr dr r[H 1 h (r) 1 h (r)]. (33)i E 1 i i

0

This constraint demands that fluid parcels retain the
sign of their vorticity; that is, the core of the merged
vortex is the fused cores of the initial vortices, and mass
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FIG. 6. Top: ratio of final rotational frequency vc to initial frequency
va as a function of va/V, for finite-shear vortices, which conserve
total mass and angular momentum when they merge (ro,a 5 10ri,a).
The label for each curve indicates the value of ri,a/Rd. Some curves
end before reaching va 5 V; at greater values of va, the vortex would
have negative thickness H1 1 h 1 h at its center and is thus not
geometrically valid. Middle, upper: ratio of final core radius ri,c to
initial core radius ri,a. Middle, lower: ratio of final shell radius ro,c to
initial shell radius ro,a. Bottom: ratio of final energy Ec to initial energy
2Ea.

FIG. 7. Top: ratio of final rotational frequency vc to initial frequency
va as a function of ro,a/ri,a, for finite-shear anticyclonic vortices, which
conserve total mass and angular momentum when they merge, at the
limit va/V 5 21. The label for each curve indicates the value of
ri,a/Rd. Middle, upper: ratio of final core radius ri,c to initial core radius
ri,a. Middle, lower: ratio of final shell radius ro,c to initial shell radius
ro,a. Bottom: ratio of final energy Ec to initial energy 2Ea.

changes in the energy-conserving scenario are associ-
ated solely with shell fluid.4

1) CONSERVING TOTAL MASS AND ANGULAR

MOMENTUM

Figure 6 shows the characteristics of the merged vor-
tex (vc, ri,c and ro,c) as functions of va/V for ro,a/ri,a 5
10. Compared to the solid-body counterpart to this sce-
nario (Fig. 3), the period jump va/vc is closer to 2 and

4 When 2D vortices of the exactly shielded structure are brought
into contact, their cores merge while shell fluid is lost. However, if
they have shell vorticity greater than that given by (31) (and con-
sequently induce circulation around the edge of any arbitrarily large,
finite domain), their interaction in the presence of instability may
cause the shell fluid to merge while core fluid is rejected (Carton and
Bertrand 1994). The possibility of such an ‘‘inverted merging’’ is not
considered here.

the radius jump ri,c/ri,a is closer to 2, that is, closerÏ
to those of the limiting case of infinite cylinders.

The energy loss is nearly independent of va/V. En-
ergy is lost for small ri,a/Rd, but less so than in the solid-
body counterpart (Fig. 3). For ri,a/Rd $ 8, energy is
conserved within 0.1% for all values of va/V.

Figure 7 shows how the characteristics of the merged
vortex vary as a function of shell width ro,a/ri,a, for the
limiting case of a zero potential vorticity anticyclonic
core (va/V 5 21). For nearly irrotational shells (ro,a

k ri,a), the merged vortex has a core period nearly
double that of the original vortices (va/vc ; 2) and
inner and outer radii larger by ; 2. The dependenceÏ
of the solutions on ri,a/Rd increases as ro,a → ri,a (the
solid-body limit), and energy is lost (particularly for
small ri,a/Rd).

2) CONSERVING ANGULAR MOMENTUM AND

ENERGY

Figure 8 shows the characteristics of the merged vor-
tex for ro,a/ri,a 5 10. Compared to the solid-body coun-
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FIG. 8. Top: ratio of final rotational frequency vc to initial frequency
va as a function of va/V, for finite-shear vortices, which conserve
angular momentum and energy when they merge (ro,a 5 10ri,a). The
label for each curve indicates the value of ri,a/Rd. Some curves end
before reaching va 5 V; at greater values of va, the vortex would
have negative thickness H1 1 h 1 h at its center and is thus not
geometrically valid. Middle, upper: ratio of final core radius ri,c to
initial core radius ri,a. Middle, lower: ratio of final shell radius ro,c to
initial shell radius ro,a. Bottom: ratio of final mass Mc to initial mass
2Ma.

FIG. 9. Top: ratio of final rotational frequency vc to initial frequency
va as a function of ro,a/ri,a, for finite-shear vortices, which conserve
angular momentum and energy when they merge (va/V 5 21). The
label for each curve indicates the value of ri,a/Rd. Middle, upper: ratio
of final core radius ri,c to initial core radius ri,a. Middle, lower: ratio
of final shell radius ro,c to initial shell radius ro,a. Bottom: ratio of
final mass Mc to initial mass 2Ma.

terpart of this scenario (Fig. 4), va/vc is again closer
to 2 and ro,c/ro,a is closer to 2, that is, closer to thoseÏ
of infinite cylinders.

Mass is conserved in the limit ri,a k Rd. Smaller
vortices lose mass when they merge, nearly indepen-
dently of va/V. For ri,a 5 Rd, 7%–8% of the mass is
lost in the merging.

Figure 9 shows the characteristics of the merged vor-
tex as a function of ro,a/ri,a, for va/V 5 21. For vortices
with nearly irrotational shells, mass is conserved. The
mass loss exceeds 10% for shell radius smaller than
ro,a/Rd ; 10.

4. Discussion

Although we assume that the surrounding fluid re-
mains quiescent, when the total depth H2 is finite, fluid
columns underlying the vortices may be compressed or
stretched in the merging. A column of quiescent fluid
beneath a vortex bears potential vorticity 2V/(H2 2 H1

2 h), where h is the downward displacement of the
interface. If during merging h increases by Dh, the un-
derlying column must gain anticyclonic vorticity z,

z Dh
5 2 , (34)

2V H 2 H 2 h2 1

in order to conserve its angular momentum. Thus, the
assumption of a ‘‘quiescent surrounding fluid,’’ which
allowed us to simplify angular momentum conservation,
is valid in the limit H2 k Dh and exact in the 1½-layer
limit H2 → `. This limit is appropriate for midlatitude
open ocean baroclinic eddies, but does not apply to lens-
shaped vortices whose height are an appreciable fraction
of the total water depth (Nof and Simon 1987). In this
case, cyclonic motion induced in the second layer con-
tributes significantly to the total energy of the system
(Dewar and Killworth 1990).

In their examination of lens-shaped vortex merging,
Pavia and Cushman-Roisin (1990) conserved the mass
and energy of the initial vortices, and showed that the
absolute angular momentum of the vortices was not con-
served. However, there is no ‘‘angular momentum par-
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adox’’ inherent in their result, due to the role of the
surrounding fluid in the total angular momentum budget.
A simple thought experiment can serve to highlight this
role: consider a pair of cylinders (density r, mass ma,
radius ra in solid-body rotation at relative rate va) touch-
ing at the center of a tank that rotates at V. The cylinders
are surrounded by fluid of density r*. Later, they have
merged to produce a single cylinder of the same density
with mass mc 5 2ma, radius rc, and rotation rate vc. It
is centered on the contact point of the parent vortices.
Conservation of mass requires rc 5 2ra, and angularÏ
momentum conservation for the entire system requires

1 r*
v 5 1 2 V 1 v . (35)c a1 2[ ]2 r

In the absence of surrounding fluid, r* 5 0, and (35)
becomes

1
v 5 (V 1 v ). (36)c a2

This expression is analogous to the formulation of
angular momentum conservation of Cushman-Roisin
(1989) and Pavia and Cushman-Roisin (1990). With r*
5 0, we are essentially considering coalescing fixed-
height disks on a rotating table. To an observer in the
rotating frame, the rotation rate of the resulting disk is
more positive (for positive V) than it would be in the
absence of rotation, due to Coriolis deflection applying
a net torque on the coalescing particles (cf. Feynman et
al. 1987, p. 19-8). However, if r* 5 r, (35) simplifies to

1
v 5 v , (37)c a2

that is, the period doubles and relative angular momen-
tum is conserved. As the cylinders coalesce, they lose
the absolute angular momentum associated with revo-
lution about their contact point, but this is balanced by
the absolute angular momentum gained by the displaced
surrounding fluid. In the rotating frame, Coriolis de-
flection of the coalescing parcels is balanced by a pres-
sure gradient in the surrounding fluid (Rossby 1936,
1948).

Our model demonstrates that solid-body vortices can
conserve mass, angular momentum, and energy in the
lens-shaped limit H1 5 0. For nonzero H1 either energy
or mass conservation must be relaxed, leading to the
two merging scenarios discussed in this paper.5 In the
first scenario, if mass is conserved, the final vortex has
less total energy than its parents. These solutions are
thus ‘‘energetically allowable’’ (Dewar and Killworth
1990) in the sense that an external energy source is not

5 A third scenario was considered in which mass and energy were
conserved. The final state contained more angular momentum than
the initial state, leading us to reject this scenario as a physically
meaningful description of free vortex merging.

required, analogous to the classical Rossby adjustment
problem that has a steady-state solution with one-third
of the initial energy (cf. Gill 1982, pp. 191–203), the
remaining energy having been removed via Poincaré
wave radiation. Turbulent mixing during merging can
also lower the energy state of the merged vortex (Nof
1986).

In the second scenario, if energy is conserved, the
final vortex has less mass than its parents. Cushman-
Roisin (1989) proposed that merging vortices eject fluid
in narrow filaments as they become axisymmetric (Grif-
fiths and Hopfinger 1987; Melander et al. 1988). Be-
cause these filaments bear negligible energy and relative
angular momentum but a significant fraction of the
mass, they are modeled implicitly by relaxing mass con-
servation, as was done in the second scenario (Pavia
and Cushman-Roisin 1990).

In summary, vortices can conserve mass, angular mo-
mentum, and energy when they merge in two physically
important limits of vortex structure: lens-shaped anti-
cyclones and Rankine-like eddies. All three properties
cannot be simultaneously conserved over the full range
of parameters considered here; in general, mass or en-
ergy must be lost, presumably due to Poincaré wave
radiation, turbulent dissipation, or filamentation. Future
laboratory experiments and field observations could de-
termine which scenario best describes the merging of
oceanic vortices.
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