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Abstract: Recruitment estimates for yellowfin tuna (Thunnus albacares) in the western and central Pacific Ocean
(WCPO), derived from a stock assessment model, are highly variable seasonally, interannually, and over decadal periods.
A generalized linear model (GLM) was developed that predicts the variation in yellowfin tuna recruitment in response to a
range of oceanographic variables. The GLM model accounted for 54% of the variation in quarterly recruitment for the pe-
riod 1980–2003, with the inclusion of seven different oceanographic variables derived from a zone within the northwestern
equatorial region of the WCPO. The robustness of the recruitment model was investigated by cross-validation. The GLM
was complemented by a cluster analysis approach that identified five principal oceanographic states within the northwest-
ern zone selected by the GLM. Incorporation of the recent GLM recruitment indices in the yellowfin tuna stock assessment
model is likely to improve the precision of estimates of current and projected (next 1–2 years) biomass and exploitation
rates. In a broader context, the recruitment model provides a tool to investigate how yellowfin tuna recruitment might vary
in response to short- and long-term variation in the oceanographic conditions of the WCPO.

Résumé : Les estimations du recrutement de l’albacore à nageoires jaunes (Thunnus albacares) dans l’ouest et le centre
du Pacifique (WCPO), obtenues à l’aide d’un modèle d’évaluation des stocks, varient fortement en fonction de la saison et
de l’année et au cours des différentes décennies. Nous mettons au point un modèle linéaire généralisé (GLM) qui prédit la
variation du recrutement de l’albacore à nageoires jaunes en réaction à une gamme de variables océanographiques. Le
modèle GLM explique 54 % de la variation trimestrielle du recrutement pour la période 1980–2003 avec l’inclusion de
sept variables océanographiques différentes mesurées dans une zone du nord-ouest de la région équatoriale de WCPO.
Nous avons étudié la robustesse du modèle de recrutement par validation croisée. Le GLM est complété par une méthode
d’analyse de groupement qui identifie cinq états océanographiques principaux dans la zone du nord-ouest retenue par le
GLM. L’incorporation des indices récents de recrutement provenant du GLM dans le modèle d’évaluation des stocks des
albacores à nageoires jaunes va vraisemblablement améliorer la précision des estimations de la biomasse et des taux d’ex-
ploitation courants et projetés (sur les prochaines 1–2 années). Dans un contexte élargi, le modèle fournit un outil pour dé-
terminer de quelle manière le recrutement de l’albacore à nageoires jaunes peut changer en réaction aux variations à court
et à long termes des conditions océanographiques de WCPO.

[Traduit par la Rédaction]

Introduction

Yellowfin tuna (Thunnus albacares) is a dominant pelagic
species in equatorial waters of the world’s oceans. The spe-
cies is principally distributed in the epipelagic zone in areas
where sea surface temperature exceeds 26 8C, with the dis-
tribution centered on tropical waters and extending to tem-
perate waters (Suzuki et al. 1978; Maury et al. 2001).
Yellowfin tuna are multiple spawners, and a reproductive
behaviour appears to be related to water temperature, with

the onset of spawning triggered above 24–26 8C (Ueyanagi
1969; Suzuki 1994; Wild 1994).

Yellowfin tuna in the western and central tropical Pacific
Ocean (WCPO) support a large fishery that yields an annual
catch of ~400 000 tonnes (Fig. 1a; Langley et al. 2006). His-
torically, yellowfin tuna were principally caught by domestic
and distant-water longline vessels. Since the early 1980s, the
fishery has become increasingly dominated by the purse
seine method and small-scale domestic fisheries operating
within the national waters of Indonesia and the Philippines
(Langley et al. 2006).

In the WCPO, most of the yellowfin tuna catch is taken
within the western Pacific warm pool (Fig. 1a), a relatively
deep (~150 m depth) surface layer of warm (>28 8C) water
usually confined to the western side of the ocean basin
(Fig. 1b). The warm pool is formed by converging upper
ocean currents (Fig. 1c) forced by the northeast trade winds
in the Northern Hemisphere and the southeast trade winds in
the Southern Hemisphere (McPhaden and Picaut 1990). Var-
iability in the spatial extent of the warm pool on interannual
time scales is described by the El Niño – Southern Oscilla-
tion (ENSO), with the warm pool extending into the eastern
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Fig. 1. Spatial distribution of (a) yellowfin tuna (Thunnus albacares) catch in the western and central Pacific Ocean (WCPO), (b) average
sea surface temperature (SST), (c) average current flow, and (d) spatial stratification used in the generalized linear model (GLM) model.
Yellowfin tuna catch is aggregated for 1980–2003; catches are in 103 tonnes. The broken line in panel (a) represents spatial domain of
MULTIFAN-CL (MFCL) stock assessment model. SST and current are averaged over 1980–2003: SST is represented by 28 and 29 8C
isotherms; current is represented by vectors. Major currents are labeled: NEC, North Equatorial Current; NECC, North Equatorial Counter-
Current; SEC, South Equatorial Current. Panel (d) presents the finest scale spatial resolution used to aggregate oceanographic data (small
boxes) and the larger area used in the final GLM (bold broken lines).
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Pacific during the El Niño phase and contracting back to the
western Pacific during La Niña (Picaut et al. 1996 and 2001).
The longitudinal distribution of the equatorial tuna purse
seine fishery also follows this pattern (Lehodey et al. 1997).

Variability of the pelagic environment at seasonal to dec-
adal scales is likely to contribute directly to the observed
variation in yellowfin tuna recruitment. The availability of
oceanographic data at appropriate spatial and temporal reso-
lution provides the opportunity to identify those variables
that are most correlated with yellowfin tuna recruitment
and, thereby, determine the relevance of oceanic variability
to tuna recruitment at different spatio-temporal scales.

There are no direct measurements of recruitment strength
for yellowfin tuna. However, estimates of recruitment
strength at quarterly or annual time intervals are available
from assessment models for each of the main yellowfin
tuna stocks: eastern Pacific Ocean (EPO) (Hoyle and Maun-
der 2006), WCPO (Langley et al. 2007), Atlantic Ocean (In-
ternational Commission for the Conservation of Atlantic
Tunas 2004), and Indian Ocean (Indian Ocean Tuna Com-
mission 2006). The recruitment estimates are derived as pa-
rameter estimates from the statistical population models,
which integrate the available biological and fisheries data,
including catch, fishing effort, and the size composition of
catch. For each of these stocks, recruitment is highly varia-
ble over short and long time periods, with models for some
stocks (especially in the EPO) revealing decadal shifts in re-
cruitment (Hoyle and Maunder 2006).

For the WCPO fishery, estimates of quarterly recruitment
are considered to be more reliable from the early 1980s on-
wards (i.e., the period for which length frequency data is
available from the fisheries that predominantly catch small
yellowfin tuna). These data provide the stock assessment
model with sufficient information to link the individual length
modes to the respective quarter when spawning occurred via
the estimated growth function. Conversely, quarterly recruit-
ment estimates from the earlier period of the model ( before
1980) are likely to be less precise. Size data for this period
are only available from the longline fisheries, which predom-
inantly catch large (adult) yellowfin tuna. The modal structure
of these size data represents the amalgamation of many quar-
terly age classes, and consequently, the model has limited in-
formation with which to resolve individual age classes.

The apparent high variation in yellowfin tuna recruitment
over the short- and long-term may provide sufficient con-
trast to link the trends in recruitment with key oceano-
graphic indicators and, thereby, formulate a predictive
model for yellowfin tuna recruitment in the WCPO. A pre-
dictive model for yellowfin tuna recruitment would have di-
rect application in future stock assessments for yellowfin in
the WCPO and the application of the assessment model in
the provision of management advice.

As in most stock assessment models, the most recent esti-
mates of recruitment are frequently the least precise, and
consequently, there is a high level of uncertainty regarding
current biomass levels and fishing mortality rates, particu-
larly for those fisheries targeting smaller fish. Unfortunately,
it is this information that is most crucial to fishery manag-
ers. A reliable, predictive model would considerably im-
prove estimates of recent and current recruitment, thereby
improving estimates of current biomass and increasing the

accuracy of forward projections of the stock assessment
model (see Langley et al. 2007).

A predictive model may also provide greater insights into
trends in recruitment for the period predating the develop-
ment of the fisheries whose catch is dominated by juvenile
yellowfin tuna. This may assist in resolving whether histor-
ical trends in recruitment represent genuine phase changes
in productivity of the stock or, rather, are due to a mis-
specification of the assessment model. Lastly, the develop-
ment of such a predictive model may increase the under-
standing of the inherent relationship between yellowfin
tuna recruitment and the environment and improve our abil-
ity to interpret future trends in recruitment from the stock.

Materials and methods

Overview
A series of ‘‘observed’’ recruitment values were derived

from a stock assessment model that encompasses the core
distribution of yellowfin tuna within the WCPO. Oceano-
graphic data were obtained and configured in such a way
that a generalized linear model (GLM) could be developed,
relating oceanographic variability to yellowfin tuna recruit-
ment for the period 1980–2003. This model was then hind-
cast to predict yellowfin tuna recruitment for the period
1948–2003. A cluster analysis was also applied to the oce-
anographic data set included in the GLM to discriminate
the predominate categories of prevailing oceanographic con-
ditions occurring in the study area.

Observed recruitment
The observed recruitment values for yellowfin tuna were

estimated from a stock assessment conducted using MULTI-
FAN-CL (MFCL; Hampton and Fournier 2001). MFCL im-
plements a statistical, size-based, age- and spatially
structured model developed and used for stock assessments
of Pacific tuna and other highly migratory fish species
(www.multifan-cl.org). MFCL provides estimates of popula-
tion parameters, including recruitment, biomass, and fishing
mortality, based on observed size frequency, catch, effort,
and tagging data from the fisheries. For this study, the MFCL
model was configured for yellowfin tuna in a similar manner
to the model formulated for the 2007 stock assessment of yel-
lowfin in WCPO (Langley et al. 2007); however, the spatial
extent of the current model was restricted to the main area of
the yellowfin tuna fishery — the western equatorial region,
which accounts for 80% of the total yellowfin tuna catch
from the WCPO (see Fig. 1a) and approximately 65% of the
total WCPO recruitment (Langley et al. 2007). The single re-
gion model is described in detail in Langley et al. (2007).

The population model incorporates catch, effort, and size
(length and weight frequency) data from 10 fisheries: three
longline fisheries, two purse seine fisheries (associated and
unassociated set types), a distant-water pole-and-line fishery,
the Philippine handline fishery, and the domestic fisheries in
Indonesia and Philippines waters. More details on these fish-
eries and the associated data are given in Langley et al. (2007).

The model encompasses the 1952–2006 period, divided
into quarterly time intervals. Recruitment estimates are de-
rived for each quarter of the model period. The recruitment
estimates are computed as deviates from the estimated
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Beverton–Holt stock–recruitment relationship (SRR). The
model assumes an uninformative prior for the value of
steepness of the stock recruitment relationship and a very
low penalty for recruitment deviations from the SRR.
Growth is considered to be constant for the entire model pe-
riod. The model estimate of steepness, a value of 0.865, in-
dicates a weak relationship between recruitment and
spawning biomass (i.e., a reduction in spawning biomass to

20% of the unexploited equilibrium level is predicted to re-
sult in a 13.5% reduction in equilibrium recruitment).

Only recruitment estimates from 1980 to 2003 (96 quar-
ters) were included in the subsequent analysis. Recruitment
estimates from the last 12 quarters included in the model
(2004–2006) were also excluded from the subsequent analy-
sis. Recruitment estimates were expressed as numbers of
fish in the first quarterly age class included in the model
(3–6 months). The distribution of the recruitment estimates
closely approximated a lognormal distribution (mean =
18.74, SD = 0.40).

Oceanographic data
The analysis incorporated oceanographic data from two

different sources. Most of the data, including sea surface
temperature (averaged over 0–100 m depth), east–west
(zonal, u) current component, north–south (meridional, v)
current component (averaged over 0–100 m depth), and pri-
mary production (averaged over 0–400 m depth), were de-
rived from a physical–biogeochemical model for the Pacific
Ocean, developed at the Earth System Science Interdiscipli-
nary Center (ESSIC), University of Maryland (Christian et
al. 2002a, 2002b; Christian and Murtugudde 2003). In addi-
tion, u and v wind components at 10 m altitude were ob-
tained from the National Centers for Environmental
Prediction – National Center for Atmospheric Research
(NCEP–NCAR) reanalysis provided by NOAA Earth System
Research Laboratory from their web site (www.cdc.noaa.
gov/cdc/data.ncep.reanalysis.derived.surface.html; Kalnay et
al. 1996). All data were available for 1948–2004 and the
spatial and temporal resolution was 18 � 18 (latitude, longi-
tude) and 30 days for ESSIC data and 2.58 � 2.58 and
30 days for NCEP data, respectively. For each 2.58 � 2.58
and 30-day period, an index of turbulence was calculated
from u and v wind components based on the fact that turbu-
lent kinetic energy is proportional to the third power or cube
of absolute wind speed (Niller and Kraus 1977).

Generalized linear model
A two-phase approach was developed to investigate the

relationship between the range of available oceanographic
variables and the yellowfin tuna recruitment indices for
1980–2003. The first phase involved the identification of
key zones within the western equatorial Pacific Ocean for
which the oceanographic data were most highly correlated
with the yellowfin tuna recruitment indices.

Table 1. Summary of oceanographic data, sources, and a description of composite variables used in the statistical approach.

Attribute Description Unit Source
tempavg Mean sea temperature within 0–100 m depth (for spatial–temporal stratum zr,itj.) 8C ESSIC
temprange Range in sea temperature within 0–100 m depth 8C
currentuavg Mean zonal (E–W) current velocity within 0–100 m depth m�s–1 ESSIC
currentrange Range in zonal current velocity within 0–100 m depth m�s–1

currentvavg Mean meridional (N–S) current velocity within 0–100 m depth m�s–1 ESSIC
currentvrange Range in meridional current velocity within 0–100 m depth m�s–1

currentdir Current direction quadrant ESSIC
ppavg Mean primary production within 0–400 m depth mmol�m–2�day–1 ESSIC
winduavg Mean zonal (E–W) wind speed at 10 m altitude m�s–1 NCEP
windvavg Mean meridional (N–S) wind speed at 10 m altitude m�s–1 NCEP
turbulence Index of turbulent kinetic energy (wind speed cubed) m3�s–3 NCEP

Note: ESSIC, Earth System Science Interdisciplinary Center; NCEP, National Centers for Environmental Prediction.

Fig. 2. (a) Quarterly estimates of yellowfin tuna (Thunnus alba-
cares) recruitment (millions of fish) and (b) juvenile (light grey fill)
and adult (dark grey fill) yellowfin tuna biomass for 1952–2004
from the MULTIFAN-CL (MFCL) stock assessment undertaken for
western subequatorial region of the western and central Pacific
Ocean (WCPO). Grey line in panel (a) represents the smoothed
trend in recruitment estimates.
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The location and spatial extent of these zones were as-
sessed using a GLM approach with the natural logarithm of
the observed recruitment values (numbers of fish) as the de-
pendent variable with a normally distributed error structure.
The oceanographic variables were included in the model in
a stepwise fitting procedure. The resulting additive model
incorporates the significant oceanographic variables to ex-

plain the variation in the natural logarithm of the observed
recruitment values.

The western equatorial region of the Pacific Ocean (lati-
tude 108S to 208N, longitude 1258E to 1408W) was divided
into zones configured at six different spatial resolutions (r),
resulting in 99 different spatial zones (z): 58 latitude � 158
longitude (36 zones), 108 � 158 (18 zones), 158 � 158 (12

Fig. 3. Akaike’s information criteria (AIC) values from generalized linear models (GLMs) incorporating oceanographic data from
158 latitude, 158 longitude spatial strata for the three different temporal strata (a: quarter prior to spawning; b: quarter of spawning;
c: quarter after spawning). The asterisk (*) in panel (b) shows the spatial cell used to define oceanographic data sets included in the final
GLM.
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zones), 58 � 308 (18 zones), 108 � 308 (9 zones), 158 � 308
(6 zones) (see Fig. 1d).

For each zone, the oceanographic data included within the
zone were aggregated over the spatial extent of the zone and
by quarterly time period (t), and summary statistics were
computed, principally the mean value and the range. The re-
sulting list of oceanographic variables is described (Table 1).
For example, for a given spatial zone of resolution r indexed
by location i (zr,i) and temporal interval tj, the mean value of
sea surface temperature was computed from the 18 � 18
latitude–longitude cells within the boundaries of the spatial
zone and three monthly periods that comprised the quarterly
time strata (i.e., the value of the tempavg variable, see Ta-
ble 1). Similarly, the range (maximum – minimum) of sea
surface temperature data from the same spatial–temporal
stratum was used to calculate the value of the temprange

variable. In addition, the average u and v current compo-
nents (currentuavg and currentvavg, respectively) were used
to derive the current direction (currentdir; in quadrants).
Comparable variables were derived from the aggregated
east–west and north–south current flow data (average and
range) and the primary production and zonal and meridional
wind components (average).

To examine the temporal influence of oceanographic con-
ditions on recruitment, the oceanographic data for each zone
were considered at three time intervals (t): the quarter prior to
the quarter when spawning occurred, the quarter when spawn-
ing occurred, and the quarter following the spawning period.

In total, 297 different configurations of the oceanographic
data were investigated: 99 different spatial zones (z) at the
six different levels of spatial resolution (r) and the three dif-
ferent temporal intervals (t). For each configuration (z,t), the
oceanographic variables were included as potential explana-
tory variables in the GLM fitting procedure. The explanatory
variables were represented in the form of third-order polyno-
mial functions, with the exception of current direction, which
was categorical. The stepwise GLM was implemented using
the stepAIC function in the statistical software R (Venables
and Ripley 2002; R Development Core Team 2006). The
forward and backward selection of significant variables was
undertaken based on the Akaike’s information criteria (AIC).

The initial model selection procedure can be summarized
as follows. For each spatial zone (i = 1 to n), within each
spatial resolution (r = 1 to 6) and each temporal interval
(j = 1 to 3), (1) select spatial zone zr,i and temporal interval
tj; (2) determine oceanographic summary statistics for zr,itj;
(3) construct GLM with potential predictor variables from
(2) using stepwise fitting procedure; (4) report AIC.

The spatial–temporal stratum with the lowest AIC
(z(r*,i*)tj*) was then selected as the base stratum for the final
GLM model. The next phase of the model fitting involved
testing the explanatory power of the model with the inclu-
sion of oceanographic data from different areas (of the
same spatial resolution (r*) and temporal interval (j*).

The second phase of the model building process is sum-
marized as follows. Select initial model (lowest AIC) de-
rived from z(r*,i*)tj* oceanographic data. For the other spatial
zones with an equivalent spatial resolution to the initial
model (r = r*; i = 1 to n; i = i*) and the temporal interval
equivalent to the initial model (j = j*), (1) select spatial
zone zr*,i; (2) determine oceanographic summary statistics
for zr*,itj*; (3) construct GLM using stepwise fitting proce-
dure with potential predictor variables from initial model
zone–time z(r*,i*)tj*, and second zone zr*,itj* (2); (4) report
model and AIC.

The iterative fitting procedure minimized the simultane-
ous fitting of potentially hundreds of different oceano-
graphic variables (11 variables compiled for each time–area
stratum). It may also have made the resulting model easier
to interpret, as it was based on oceanographic variables de-
rived from a relatively limited spatial range. The parameter-
ization of the individual variables included in the final GLM
was examined using the ‘‘predict’’ function in R. For the
main oceanographic variables included in the final GLM,
the influence of the individual variables was investigated by
examining the fitted values for each of the individual varia-
bles included within the additive model.

Table 2. Proportion of the variation in
observed recruitment explained by the
inclusion of successive environmental
variables to the final generalized linear
model (GLM) (R2) and corresponding
Akaike’s information criteria (AIC)
value.

Variable R2 AIC
winduavg 0.1814 86.69
+ ppavg 0.2564 83.47
+ temprange 0.3434 77.52
+ currentvrange 0.3815 77.79
+ windvavg 0.4263 76.57
+ turbulence 0.4805 73.03
+ currenturange 0.5360 68.19

Fig. 4. A comparison of the natural logarithm of the observed re-
cruitment indices (millions of fish) and predicted recruitment esti-
mates from the final generalized linear model (GLM) model and
associated 95% confidence interval. The broken line represents
unity.
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The robustness of the final GLM was assessed following
the cross-validation approach of Francis (2006). This ap-
proach involves refitting the model iteratively, successively
excluding each recruitment observation (ri). For each itera-
tion (i), the percentage of the variation explained (PVE) by
the model is calculated as the difference between the devia-
tion between the mean of the recruitment series (excluding
ri) and the observed value (ri) and the deviation between
the estimated recruitment value (from the refitted model)
and the observed value (ri). A PVE of zero means that the
model does not perform any better than the assumption of
average recruitment, while a PVE of 1.0 means that the
model estimates the recruitment index without error (see
Francis 2006 for further details).

Hindcasting
The final GLM was employed for a hindcast by applying

the predictive model to historical oceanographic data to pre-
dict recruitment for the entire period of the oceanographic
model run (1948–2003). The recruitment predictions were
compared with the observed recruitment estimates from the
yellowfin tuna stock assessment model. Further, for each of
the main oceanographic variables included within the model,
the relative influence of the variables on the short- and long-
term trends in predicted recruitment was examined.

Cluster analysis
For an individual spatial zone, many of the oceanographic

variables included in the model data set are likely to be highly
correlated. A clustering approach was applied to the oceano-
graphic variables included in the final GLM to attempt to dis-
criminate predominate oceanographic conditions within the
study area. The resulting categories of oceanographic condi-
tions were then compared with the observed recruitment indi-
ces (1980–2003) from the corresponding period.

The cluster analysis was undertaken using the ‘‘clara’’
function in the cluster package of R. The number of speci-
fied clusters was assessed by comparing the improvement in
the objective function with increasing numbers of clusters.

Results

MFCL stock assessment for yellowfin tuna
There is considerable short- and long-term variation in the

quarterly yellowfin tuna recruitment estimates derived from
the stock assessment model (Fig. 2). Over the longer term,
the stock assessment model estimates that recruitment de-
clined during the 1950s and 1960s, increased during the late
1960s and 1970s, and remained stable at a relatively high
level in the late 1970s and 1980s. Recruitment was esti-
mated to be relatively low during the mid 1990s and high

during the early 2000s. Total yellowfin tuna biomass is pre-
dicted to have declined sharply during the 1960s, increased
through the 1970s, and declined sharply over the subsequent
period (Fig. 2). Recent adult biomass levels are estimated to
be approximately one-third of the biomass levels in the
1950s.

GLMs
The initial GLMs, derived from oceanographic data com-

piled for individual spatial and temporal strata, accounted
for between 4% and 54% of the observed variation in the
natural logarithm of the recruitment indices (1980–2003). In
general, the highest explanatory power was obtained from
models comprising oceanographic data from the northwest-
ern spatial zones. For the range of spatial resolutions inves-
tigated, higher explanatory power was generally obtained
from models with a relatively coarse spatial resolution (i.e.,
158 latitude, 158 longitude). In relation to the temporal strat-
ification, the highest explanatory power (lowest AIC) was
generally obtained from models comprising oceanographic
variables derived from the quarterly data from the period
corresponding to when the fish were spawning (rather than
the quarter prior to or after spawning) (Fig. 3).

The model building process first selected a 158 latitude,
158 longitude zone in the northwest of the study area
(Fig. 3) for the period corresponding to the quarter of
spawning. The model was then offered each of the remain-
ing 158 � 158 zones and selected an additional zone in the
southeast. The inclusion of the second zone resulted in a
considerable improvement in the AIC; however, the two
zone models included a total of 15 explanatory variables of
the 22 potential explanatory variables (11 from each zone).
It was considered that the added complexity of the two re-
gion models (an additional eight variables) outweighed the
improvement in the explanatory power of the model.

The final GLM was restricted to the oceanographic data
set from the northwestern zone and included 7 of the 11 po-
tential explanatory variables: winduavg, ppavg, temprange,
currentvrange, windvavg, turbulence, and currenturange
(Table 2). The final GLM model has the following structure:

logðrecruittÞ ¼ meanþ polyðwinduavg; 3Þ
þ polyðppavg; 3Þ
þ polyðtemprange; 3Þ
þ polyðcurrentvrange; 3Þ
þ polyðwinduavg; 3Þ
þ polyðturbulence; 3Þ
þ polyðcurrenturange; 3Þ
þ error

Table 3. Correlation matrix for the variables included in the final generalized linear model (GLM).

winduavg ppavg temprange currentvrange windvavg turbulence currenturange
winduavg 1.0000 –0.5288 –0.5013 0.4056 0.8641 –0.7640 0.2358
ppavg 1.0000 0.4540 0.0128 –0.7613 0.7677 0.0150
temprange 1.0000 0.0167 –0.5747 0.4713 0.1115
currentvrange 1.0000 0.3205 –0.1784 0.4795
windvavg 1.0000 –0.8296 0.1702
turbulence 1.0000 –0.1985
currenturange 1.0000
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The final GLM accounts for 54% of the observed varia-
tion in the recruitment time series. The GLM approximates
the observed values over the main range of the recruitment
series data, although there is considerable deviation between
individual observed and predicted values, and many of the

predicted values are not well estimated (i.e., relatively high
standard error) (Fig. 4). Further, the GLM performs poorly
in predicting recruitment values at the extremes of the
range; low recruitment observations are generally overesti-
mated by the GLM and vice versa.

Fig. 5. Predicted relationship between yellowfin tuna recruitment (natural logarithm of number of fish, in millions) and oceanographic vari-
ables included in the final generalized linear model (GLM). Broken lines represent approximate 95% confidence interval of model predic-
tion. Distribution of data included in the model for the individual variable is presented as tick marks along the x axis.
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A comparison of the model residuals with the MFCL esti-
mates of adult biomass at the time of spawning revealed no
trend in the residuals. This observation is consistent with the
high value of steepness of the SRR estimated by the MFCL
stock assessment model.

The PVE statistics calculated from the cross-validation of
the final GLM indicate that the model has moderate predic-
tive power (median value: 0.48; range: 0.45–0.51). Essen-
tially, the model is able to account for 48% of the observed
variation in the recruitment index from the long-term mean
of the series. This indicates that the final GLM is capable
of providing a reasonably reliable estimate of recruitment
over the range of observed oceanographic conditions.

Many of the variables included in the final GLM are
highly correlated (Table 3). Consequently, it is not possible
to make definitive conclusions regarding the causal affect on
yellowfin tuna recruitment of the specific oceanographic
variables included in the model. Instead, the variables in-
cluded in the model should be considered as representing a
series of indices of the prevailing oceanographic conditions
that are directly or indirectly influential in determining yel-
lowfin tuna recruitment in the region. Nonetheless, an ex-
amination of the parameterization of these variables in the
final GLM is likely to be informative regarding the key var-
iables influencing yellowfin tuna recruitment (Fig. 5).

Of the seven variables included in the model, the u and v
wind component variables (winduavg and windvavg) are
highly correlated (Table 3) and reveal that either southwest-
erly (positive winduavg and negative windvavg) or north-
easterly winds prevail in the northwestern zone. The
parameterization of the wind variables in the GLM indicates

that higher or lower recruitment occurs during southwesterly
or northeasterly conditions, respectively (Fig. 5). However,
this is mediated by the parameterization of the turbulence
variable (calculated from u and v wind components), which
predicts recruitment increases strongly with increasing val-
ues of turbulence; turbulence is highest during period of
strong southwesterly winds (Fig. 5).

Primary production (ppavg) is the second most influential
variable included in the GLM. Recruitment is predicted to
peak at moderate values of this variable, with lower recruit-
ment predicted at the extremes of the range (Fig. 5). The
variable defining the range in the sea surface temperature
(temprange) is essentially an index of the latitudinal contrast
in the sea surface temperature within the spatial strata. The
final GLM predicts increasing recruitment with increased
values of temprange up to a threshold level.

The variables currenturange and currentvrange are rela-
tively uninformative in the final GLM; recruitment is pre-
dicted to remain relatively constant over the range of two
variables, except for the extremities of the range where the
relationship is poorly determined (Fig. 5).

Model prediction
For the model building period (1980–2003), the time ser-

ies of predicted recruitment from the final GLM approxi-
mates the fluctuations in the recruitment estimates from the
stock assessment model (Fig. 6). Overall, 67% of the re-
cruitment predictions from the final GLM are within ±25%
of the observed recruitment estimates from the assessment
model. The recruitment predictions from the final GLM
have a coefficient of variation of approximately 15%, and
most of the observed recruitment estimates are within the
confidence interval of the recruitment predictions from the
final GLM. However, the final GLM underestimates the
magnitude of some of the higher observed recruitment esti-
mates, particularly in the early 1990s (Fig. 6).

The GLM recruitment predictions are driven by strong
seasonal trends in the winduavg, turbulence, and windvavg
variables (Fig. 7). The deviation of the recruitment indices
from these seasonal processes is largely explained by the de-
viations in the ppavg and temprange variables. For example,
the predictions of low recruitment in the middle and late
1990s are largely attributed to low values of the temprange
variable during those periods (Fig. 7). The inclusion of these
additional variables contributes to the substantial improve-
ment in the fit of the final GLM relative to a simple GLM
including season (quarter) as the sole predictive variable
(14.3% compared with 54% of the observed variation in re-
cruitment).

The final GLM was also applied to predict quarterly yel-
lowfin tuna recruitment for 1948–1979, the hindcast period
for which oceanographic data were available. For the 1950s
and early 1960s, there is a divergence between recruitment
predicted by the GLM and the MFCL recruitment estimates
(Fig. 6). For this period, the GLM predictions are highly
variable; a high proportion of the predictions are very low
and most are poorly determined. For a number of the oce-
anographic variables (temprange, currentvrange, and curr-
renturange), the observed values from the 1950s to early
1960s are beyond the range observed during the model
building period (1980–2003), and on that basis, the GLM re-

Fig. 6. ‘‘Observed’’ quarterly estimates of yellowfin tuna recruit-
ment from MULTIFAN-CL (MFCL) assessment model (broken line
with points) and ‘‘predicted’’ recruitment from final generalized
linear model (GLM) for 1948–2003 (solid black line). Broken ver-
tical line indicates the start of the period used to construct predic-
tive model. Shaded area shows 95% confidence interval of
individual recruitment prediction.
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Fig. 7. Quarterly trends for each of the key environmental variables included in the final generalized linear model (GLM) model for 1948–
2003 (points and grey line) and the partition of the total recruitment prediction associated with each variable presented in each panel (black
line). The summation of the recruitment predictions from each variable equals the prediction of total recruitment (expressed as the natural
logarithm of the number of fish, in millions).
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cruitment estimates from the early period should be disre-
garded (Fig. 7).

From the mid-1960s to 1980, the overall magnitude of the
recruitment estimates predicted from the final GLM (mean
value 144 million fish) is comparable to the average of the
observed recruitment values for the same period (143 mil-
lion fish) (Fig. 6). The predicted recruitment also appears to
reflect some of the short-term variation in observed recruit-
ment; for example, during the mid-1960s the sequences of
observed and predicted recruitments are similar. However,
the recruitment series are poorly correlated (correlation coef-
ficient = 0.189); there are significant deviations between in-
dividual recruitment observations and predictions. Most
notably, the GLM consistently underestimates the very high
recruitments observed during the mid-1970s. Partly for this

reason, the GLM does not capture the overall trend of in-
creasing recruitment observed during the late 1960s and
1970s.

Cluster analysis
The cluster analysis of the seven oceanographic variables

included in the final GLM identified five clusters. A qualita-
tive examination of the results from the cluster analysis re-
vealed that clusters are principally defined by four key
variables: winduavg, ppavg, windvavg, and turbulence
(Fig. 8, Table 4). For example, cluster 1 is characterized by
year or quarters with low values for the winduavg and wind-
vavg variables and high values for ppavg and turbulence,
while the opposite is the case for cluster 3.

The MFCL recruitment observations from each year or

Fig. 8. A comparison of the key oceanographic variables (from the northwestern zone) included in the cluster analysis. The cluster assigned
to each data point is denoted by the number (1 to 5).
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quarter were grouped into the corresponding clusters. In
general, observed recruitment was higher in clusters 1 and 5
and lower in cluster 2 (Table 4, Fig. 9). Observed recruit-
ment was more variable for clusters 3 and 4, although re-
cruitment was generally below average in the former and
above average in the latter.

The oceanographic conditions corresponding to high re-
cruitment (clusters 1 and 5) are typically characterized by
strong northeasterly winds, a moderate northwestward cur-
rent, and a relatively strong latitudinal gradient in sea sur-
face temperature (compressed isotherms) within the
northwestern area — the area used to derive the oceano-
graphic variables included in the final GLM and cluster
analysis (Fig. 10). Over the broader equatorial region, the
oceanographic conditions corresponding to high recruitment
are typically characterized by the presence of waters exceed-
ing 30 8C in the proximity of northern Papua New Guinea
and the location of the 28 8C isotherm west of 1808 along
the equator. These conditions occur more frequently during
the first quarter of the year.

In contrast, lower recruitment generally corresponds to
comparatively weaker winds, limited variation in sea surface
temperature, and either westerly or southwesterly current
flows within the northwestern area (clusters 2 and 3;
Fig. 10). These conditions tend to occur in either the second
and third quarters of the year (cluster 2) or third and fourth
quarters (cluster 3).

Discussion
The spatial extent and variability of the spawning habitat

of yellowfin tuna in the western tropical Pacific Ocean pre-
clude the direct measurement of recruitment strength of yel-
lowfin tuna cohorts. Recruitment estimates for yellowfin
tuna are available as an output of an age-structured popula-
tion model that integrates catch, effort data, and fish (length
and weight) size data from the principal fisheries operating
in the area. However, recruitment estimates may be biased
because of incorrect specification of the assessment model
or imprecise because of data limitations. More critically,
from a management perspective, the most recent estimates

of recruitment from the assessment model tend to be the
most uncertain, as there are few observations of the cohort
in the fishery. Consequently, for a relatively short-lived spe-
cies such as yellowfin tuna, estimates of current levels of
stock biomass are also highly uncertain, as the population is
dominated by a small number of cohorts. Therefore, the de-
velopment of a predictive model for this species has the po-
tential to increase the precision of the model estimates of
current biomass and also improve the ability to forecast
trends in biomass over the short term (1–2 years).

A moderate proportion of the variation in yellowfin tuna
recruitment in the WCPO can be explained by a suite of
metrics that describe the oceanographic conditions in the
northwestern tropical Pacific. The results from the GLM
model were also complemented by the results from the clus-
ter analysis of the environmental data; this analysis identi-
fied five principal ocean states, and of these, higher levels
of recruitment were associated with two ocean states and
weaker recruitment generally corresponding to another two
ocean states.

The process that links the environmental conditions in the
northwestern zone with the regional variation in yellowfin
tuna recruitment is unclear. There are two main hypotheses
that in fact are likely to represent the extremes of a contin-
uum. Firstly, the northwestern zone represents a major
source of the total recruitment to the entire equatorial region
of the western Pacific. Alternatively, the oceanography in
the northwestern zone represents an indicator of the broader
scale regional oceanographic conditions that influence yel-
lowfin tuna recruitment throughout the equatorial region.

Plankton surveys have revealed that yellowfin tuna larvae
are abundant throughout the western tropical region of the

Table 4. Median values of the principal environmental variables
for each of the five clusters defined in cluster analysis.

Cluster

Variable 1 2 3 4 5
winduavg –6.45 –3.81 0.23 –6.02 –5.81
ppavg (median) 55.35 31.53 22.81 54.67 46.07
temprange 1.09 0.78 0.72 1.00 0.78
currentvrange 0.65 0.63 0.76 0.68 0.58
windvavg –4.06 –1.65 1.45 –3.87 –2.56
turbulence 446.75 77.78 14.97 352.71 261.10
currenturange 0.22 0.26 0.26 0.24 0.27

Median recruitment 168 117 136 181.5 187.5
Mean recruitment 179.8 125.3 147.5 183.7 187.2
SD recruitment 22.8 39.4 63.9 78.1 56.1
No. of records 6 33 39 12 6

Note: The number of records (recruitment observations) and the median,
mean, and standard deviation (SD) of the recruitment observations that
correspond to each cluster are also presented.

Fig. 9. Box plot of recruitment observations (1980–2003) grouped
by the five clusters defined in the cluster analysis of the principal
environmental variables. The box represents the interquantile range
of the recruitment observations in each cluster, and the solid line
represents the median value. The whiskers represent 1.5 times the
interquantile range, and the points represent outliers in the data.
The broken horizontal line represents the average of all the recruit-
ment observations.
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Fig. 10. Examples of the prevailing oceanographic conditions from the two high recruitment clusters determined from the cluster analysis of
environmental data (a: first quarter of 1996, cluster 1; b: first quarter 1999, cluster 5) and two low recruitment clusters (c: second quarter of
1995, cluster 2; d: third quarter 1996, cluster 3). The isotherms of the quarterly average sea surface temperature are plotted (solid lines). The
arrows represent relative average current flow (black) and average wind flow (grey) for the zone included in the final generalized linear
model (GLM) model.
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Pacific Ocean, including the northwestern zone selected in
the GLM analysis (Nishikawa et al. 1985). While the north-
western zone is likely to contribute to the overall level of
yellowfin tuna recruitment, it appears more plausible that
the oceanographic conditions observed in this area provide
a broader scale index of the oceanography of the wider area
crucial for yellowfin tuna spawning and the survival of early
life stages.

The predictive model does not provide a direct, mechanis-
tic link between the prevailing oceanographic conditions and
yellowfin tuna recruitment, although the statistical models
do provide some insights into the broader scale oceano-
graphic conditions that may influence recruitment strength.
For example, a recent study linked yellowfin tuna larval sur-
vivorship to water turbulence — experimentally determining
the optimal turbulence intensity that enhances larval survival
(Kimura et al. 2004). Turbulence was included as a variable
in the final GLM model, although given the direct interac-
tion between the two wind component variables, there is a
high degree of confounding in the parameterization of these
three variables. Nevertheless, the cluster analysis reveals
that higher recruitment of yellowfin tuna is associated with
stronger northwesterly winds, which are likely to increase
turbulence of the surface layer.

The oceanographic conditions prevailing at the meso-
scale (i.e., in the northwestern zone) are, in turn, likely to
be broadly correlated with the oceanographic conditions at
the regional scale. Lehodey et al. (2003) asserted that yel-
lowfin tuna recruitment in the WCPO is driven by the varia-
bility in the spatial extent of the warm pool, which tends to
occur when the North Equatorial Countercurrent becomes
more dominant than the South Equatorial Current (El Niño
conditions), allowing the warm pool to extend further east
(Lehodey et al. 1997; Picaut et al. 2001). This assertion is
consistent with the observation from many studies that relate
yellowfin tuna spawning and larval survivorship to sea sur-
face temperature (summarized in Suzuki 1994 and Wild
1994), with spawning occurring at water temperatures above
26 8C and optimal larval survivorship at 26–28 8C.

The present study reveals a more complex set of oceano-
graphic conditions that are associated with variations in the
level of yellowfin tuna recruitment. High recruitment tends
to occur during periods of strong westward flow of the
South Equatorial Current, dominating the North Equatorial
Countercurrent, and a weak North Equatorial Current. These
conditions coincide with northwestward currents and north-
easterly winds in the northwestern zone, resulting in a strong
latitudinal gradient in sea surface temperature in that area
and a concentration of waters exceeding 30 8C in the west-
ern equatorial region. Conversely, this study reveals that low
recruitment tends to occur during periods of lower flow of
the South Equatorial Current and increased strength of the
North Equatorial Countercurrent. These results somewhat
contradict the general conclusions of Lehodey et al. (2003).

The statistical modeling approach attempts to provide a
method of predicting the overall level of recruitment across
a wide range of observed oceanographic conditions. For the
model building period (1980–2003), the GLM appears to be
capable of providing relatively good predictions of recruit-
ment in the equatorial region of the WCPO; the cross-
validation study indicates the model is capable of predicting

almost 50% of the variation in future recruitment. Cer-
tainly, the potential to predict for the short term represents
a substantial improvement over the previous assumption
that recruitment would default to the long-term average re-
cruitment for short-term projections of the yellowfin tuna
stock assessment model (see Langley et al. 2007). How-
ever, for the earlier period (1962–1979), the model esti-
mates are poorly correlated with the recruitment
observations, suggesting (i) a departure from the modeled
relationship between oceanographic conditions and recruit-
ment, (ii) lower accuracy of the recruitment observations
derived from the stock assessment for this period, and (or)
(iii) lower reliability of the environmental variables derived
from the ESSIC and NCEP–NCAR models during the ear-
lier period.

The first explanation is plausible if the final GLM has
failed to include key variables that over the long term are
more crucial in determining yellowfin tuna recruitment or if
the parameterization of the relationships between key oce-
anographic variables and recruitment are poorly determined
for the model building period. The second explanation is
also plausible. The higher level of statistical uncertainty as-
sociated with recruitment observations prior to 1980 (see
Langley et al. 2007) is largely due to the lack of size fre-
quency data from the fisheries catching small yellowfin
tuna within the earlier period of the MFCL stock assessment
model.

The statistical modeling has also assumed that the output
from the ESSIC physical–biogeochemical model is without
error or, at least, without major temporal biases in the key
model outputs used in the final GLM model. Because of a
lack of observational data, only limited validation of the out-
put from the physical–biogeochemical model has been
undertaken, and these assessments have been limited to the
latter period included in the model (1990s) (Christian et al.
2002a). Christian and Murtugudde (2003) concluded that
there was a general consistency between the modeled results
and the range of observations available, although there are
some important processes that the model represents imper-
fectly; for example, the model produces excessively high
rates of primary production, especially under strong upwell-
ing conditions.

Christian and Murtugudde (2003) also noted that the
performance of the physical–biogeochemical model is
quite sensitive to errors in the NCEP monthly mean wind
stress data — the principally forcing data set included in
the physical–biogeochemical model. The authors of this
paper were unable to source published information regard-
ing the relative accuracy of the NCEP data over the time-
frame of the physical–biogeochemical model, although it
is assumed that NCEP data is more accurate since the ad-
vent of global operational satellite observing systems start-
ing in 1979 (Kalnay et al. 1996).

Overall, it is reasonable to conclude that the precision of
both the recruitment observations (from the stock assessment
model) and the key oceanographic variables (from the
ESSIC model) are likely to be less well determined prior to
1980, and both sources of error are likely to be contributing
to the discrepancy between the observed and predicted re-
cruitments before 1980. Further refinement of the yellowfin
tuna recruitment model is envisaged with the extension of
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the recruitment time series as additional observations are
available from future stock assessments and improved
oceanographic data are available from future refinements to
the physical–biogeochemical model.

The GLM includes no information regarding the magni-
tude of the spawning biomass of yellowfin tuna in the
WCPO; essentially the model attributes all the short- and
long-term variation in recruitment to the prevailing oceano-
graphic conditions and assumes there is no relationship be-
tween recruitment and adult biomass, at least at the levels
of stock biomass observed within the model domain. This is
consistent with various stock assessments for yellowfin tuna
that have tended to assume high values of steepness for the
spawning stock–recruitment relationship (SRR); (i.e., there
is no decline in recruitment until spawning biomass falls to
very low levels; Hoyle and Maunder 2006). Hilborn and
Walters (1992), in summarizing available information on
SRRs, noted that tuna species are one of the major species
groups where good relationships between stock abundance
and recruitment have failed to appear and concluded that
this is almost certainly due to the fact that the stocks are
generally not fished sufficiently hard for an SRR to be evi-
dent.

There is also a circularity in the estimation of SRR for
species such as yellowfin tuna that are relatively short-lived
and have a short generation time, particularly when recruit-
ment and, therefore, spawning biomass are highly autocorre-
lated with prevailing oceanographic conditions. For
example, a period of favourable oceanographic conditions
will result in high recruitment followed (within a generation)
by an increase in spawning biomass. Conversely, a period of
less favourable conditions will result in lower recruitment
and, therefore, lower spawning biomass. If the periods of
more or less favourable oceanographic conditions persist for
considerably longer than the generation time of the species,
then the resulting observations of recruitment and spawning
biomass may be misconstrued as a strong SRR. The premise
of this paper is that at the range of biomass levels observed
over the history of the fishery, the variation in recruitment is
essentially attributable to variation in oceanographic condi-
tions. Nevertheless, this relationship may erode at lower bio-
mass levels, as recruitment may become more strongly
influenced by the level of spawning biomass.

The development of a reliable predictive model for yel-
lowfin tuna recruitment has direct application to the ongoing
stock assessment of yellowfin tuna in the WCPO. There is
also potential to apply a similar approach to the stock as-
sessment of yellowfin tuna and other pelagic species in other
oceans, particularly for short-lived species such as skipjack
tuna (Katsuwonus pelamis). Principally, the predictive model
enables recent (last 1–2 years) recruitments to be estimated
more precisely, thereby increasing the precision of estimates
of current biomass and exploitation rates. The increased pre-
cision of the current age structure of the population also im-
proves the accuracy of any short-term (next 1–2 years) stock
projections from the assessment model. In a broader ecolog-
ical context, the recruitment model provides a tool to inves-
tigate how yellowfin tuna recruitment may vary in response
to short- and long-term variation in the oceanographic con-
ditions in the WCPO.
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