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bstract

Tracking marine animals with electronic tags has become an indispensable tool in understanding biology in relation to movement. Combining
ight based geolocation estimates with an underlying movement model has proved helpful in reconstructing the most probable track of tagged
nimals. These tracks can be further improved by including the tag measured sea-surface temperature and matching it to external sea-surface
emperature (SST) data. The current methodology for doing this in a state-space model requires that external sea-surface temperature be smoothed
efore it is used in the model, and further that its gradient field is pre-calculated. This two-step approach has a number of technical drawbacks,
nd the final statistical inference about the most probable track is consequently less convincing. This paper presents a new methodology (refer to

s UKFSST) where all steps, including the SST smoothing, are handled within one coherent model. An additional benefit is that even the degree
f smoothing, which was previously pre-determined and fixed, can now be optimally selected. UKFSST offers better handling of non-linearities
n Kalman filter, and provides a statistically sound model for geolocation applications, as opposed to ad hoc SST matching approaches.

2007 Elsevier B.V. All rights reserved.
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. Introduction

Electronic data storage tags, both archival tags and popup
atellite archival tags, are used extensively to study a variety of
arine species, from squid to turtles, tunas, billfishes and sharks

Arnold and Dewar, 2001; Gunn and Block, 2001). Information
erived from these tags provides valuable new insights into the
patial dynamics (Schaefer and Fuller, 2002; Stokesbury et al.,
004; Bonfil et al., 2005; Sibert et al., 2006), habitat utilization
Horodysky and Graves, 2005; Schaefer et al., 2007), behavioral
nd physiological ecology (Lutcavage et al., 1999; Block et al.,
001; Weng et al., 2005; Dagorn et al., 2007; Malte et al., 2007),
opulation structure (Block et al., 2005) and fisheries interac-

ions (Graves et al., 2002; Moyes et al., 2006) of these species.

easuring depth (pressure), temperature and light-level data,
ata storage tags are often deployed on animals that spend most
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f their time submerged underwater, where satellite telemetry via
lobal Positioning System or Argos is unavailable. Thus, hor-

zontal position estimates from these tags can only be inferred
rom the recorded ambient light-level data (i.e. light-based geo-
ocation). Estimated times of dawn and dusk are used to calculate
ongitude from the time of local noon, and latitude from the local
ay length (Wilson et al., 1992; Hill, 1994; Ekstrom, 2004). Pre-
ious studies on the accuracy of light-based geolocation have
stablished that raw geolocations (i.e. unfiltered and uncorrected
stimates), especially for latitude, are often unreliable (Gunn et
l., 1994; Welch and Eveson, 1999; Metcalfe, 2001; Musyl et al.,
001). Physical (e.g. days around the equinox, where day length
s nearly equal at all latitudes) and biological factors (e.g. diving
ehavior in swordfish or bigeye tuna) confound the position esti-
ation from light data even further. The magnitude and extent of

eolocation errors severely limit the utility of electronic tagging

ata, and have prompted the development of various improved
pproaches.

Sibert and Fournier (2001) introduced a state-space statis-
ical model in combination with the Kalman filter to estimate

mailto:chihinl@usc.edu
dx.doi.org/10.1016/j.fishres.2007.11.002
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“most probable” track with geolocation errors and parame-
ers relevant to population movement. A widely used approach
Musyl et al., 2003; Sibert et al., 2003; Wilson et al., 2005), this
odel is freely available as the KFtrack package (Nielsen and
ibert, 2004), a plug-in for the open-source statistical software
. Nielsen et al. (2006) extended this model by incorporating

ea-surface temperature data and made it available as the KFSST
ackage (Nielsen and Sibert, 2005). We present here a new
ethod that further refines this state-space model by using the

nscented Kalman filter and sea-surface temperature to improve
eolocation estimates.

The current model in KFtrack and KFSST (collectively
eferred to here as KF) assumes that the movement of a tagged
nimal can be approximated by a biased random walk, and
hat raw geolocations are representations of the true positions
ith some measurement errors. Measurement errors are param-

terized to produce larger latitude errors during the several
ays around the equinox, which is often an artifact of light-
ased geolocation (Hill and Braun, 2001). KFSST combines
he raw geolocations with external (e.g. satellite-derived) sea-
urface temperature data and uses both types of information
n the state-space model. This requires the external sea-surface
emperature field to be smoothed and its gradient calculated
efore entering the model. This two-step approach has a num-
er of technical drawbacks, including the need to decide, a
riori, on an appropriate scale of smoothing, which depends
n factors like ocean dynamics and cloud cover in the study
rea (Nielsen et al., 2006). This paper addresses this shortcom-
ng with a new model that eliminates the two-step approach,

nd handles all observations, including the necessary smooth-
ng of SST data, within a single coherent state-space model.

e will refer to this new approach as UKFSST, or simply,
KF.

l
t
e
3

able 1
arameter estimates for all tags analyzed with UKFSST

ag obs log L u v D bx

pen ocean
1. Marlin Tag 34 108 415.83 8.83 7.20 402.73 0.34
2. Marlin Tag 38 49 185.08 2.30 −7.14 270.72 −0.06
3. Blue shark 45 320.25 −7.92 4.56 1229.45 0

ear coast
4. Marlin Tag 7 68 290.84 −3.45 −4.47 345.40 0
5. Marlin Tag 8 21 96.31 −10.48 −23.26 279.27 0.05
6. Marlin Tag 13 82 401.64 0.82 −14.18 894.69 0
7. Marlin Tag 46 27 82.65 3.72 4.06 87.73 −0.36
8. Mako 3 138 811.12 0.66 0.53 175.79 0.33

FSST error estimates
a. Blue shark
b. Marlin Tag 7
c. Marlin Tag 46
d. Mako 3

value of zero indicates models in which the parameters were not active, and thu
egative log-likelihood value of a model (the smaller the value, the better is the m

y , σsst are in degrees; bsst, σsst are in Celsius; a0, b0 are in days and smoothing ra
sed as the SST field for all runs except Tag 38, where CoastWatch Blended SST (
urposes.
search 91 (2008) 15–25

. Materials and methods

.1. Tagging data

Data from eight pop-up satellite archival tags (PSATs) and
ne satellite telemetry tag from three separate studies were
btained for our analysis. The number of available geolocation
bservations from these tags varies from 21 to 138 (Table 1).
his corresponds to a range of 21–182 days at liberty, since

ight-based geolocation may fail to generate a position estimate
or some days in the tagging period. Six striped marlins, Tetrap-
urus audax (Tag 7, 8, 13, 34, 38 and 46), were fitted with PSAT
ags from Wildlife Computers as part of a Pacific-wide study of
triped marlin movement. Details of the study and tagging pro-
edures are described in Domeier (2006). Data recovered from
hese tags were processed with the manufacturer light-based
eolocation software that employs the dawn and dusk symme-
ry method (Hill and Braun, 2001). One blue shark (Prionace
lauca) was fitted with a PSAT tag from Microwave Teleme-
ry in an investigation to determine post-release survivability.
ata from this tag are available as an example dataset in the
FSST package. Tagging procedures are described in Nielsen

t al. (2006). In a survey conducted by the Southwest Fisheries
cience Center shark research program, one mako shark Isurus
xyrinchus (Mako 3), was tagged with a Wildlife Computers
SAT tag and a smart position only (SPOT) tag (D. Holts, unpub-

ished data). Data from the PSAT tag were processed with the
anufacturer light-based geolocation software. The SPOT tag is
satellite telemetry tag that communicates with the Argos satel-
ite system for its position estimates. An accuracy flag, referred
o as the location class (LC), is associated with each position
stimate. Only estimates with known errors (i.e. LC 1, 2 and
) were selected for our analysis. Errors for LC 1, 2 and 3 are

by bsst σx σy σsst a0 b0 Radius, r

0.26 0 0.09 1.34 0.39 0.006 −13.27 127.16
0.82 0 0.08 1.39 0.20 0.004 −8.28 180.97

−3.22 0 3.21 2.77 0.60 0.125 43.71 719.35

−1.87 0 0.34 1.56 0.42 0.159 44.65 288.76
1.21 0 0.16 2.35 0.64 1.10e−08 −20.72 358.68

−1.46 0 0.97 2.48 0.28 0.119 16.66 189.40
0.37 0 0.43 0.17 0.38 0.015 76.37 92.69
1.50 0 0.47 3.13 1.72 0.025 −10.70 116.49

3.34 2.64 0.48
0.38 1.58 0.44
0.58 0.77 0.71
0.50 3.88 1.08

s not estimated. obs is the number of observations in each track; log L is the
odel fit). u and v are expressed in nm day−1; D is in nm2 day−1; bx, by , σx,
dius, r, is in nautical miles. Reynolds Optimally Interpolated SST (RS) was
BA) was used. Error estimates from KFSST are also shown for comparative
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000, 350 and 150 m, respectively. To facilitate comparison with
SAT data, Argos estimates for a given day were averaged to
enerate a single longitude and latitude estimate (locArgos).

.2. Satellite sea-surface temperature (SST) imagery

Three satellite-derived SST products were acquired for
nclusion in the UKF model. The NCEP Reynolds Optimally
nterpolated SST product is an interpolation of satellite-
erived Pathfinder Advanced Very High Resolution Radiometer
AVHRR) and in situ measurements of SST (Reynolds and
mith, 1994). It provides a continuous 1◦ by 1◦ globally grid-
ed dataset that eliminates data gaps due to cloud cover. To
implify computations, the 8-day composite (accuracy esti-
ated at 0.5–0.7 ◦C), was used as the default SST field for

unning the UKF model. Two finer-scale products were also
sed to look at the influence of SST spatial resolution on UKF
odel performance. The NOAA POES AVHRR Global Area
overage (GAC) 8-day SST composite product is gridded at
.1◦ by 0.1◦ (∼11 km) and has an accuracy of 0.3–0.5 ◦C
Walton et al., 1998; Vazquez et al., 1998). Lastly, the NOAA
oastWatch Experimental Blended SST is derived from both
icrowave and infrared sensors carried on multiple platforms

NOAA, 2007a). The advantage of including microwave sensors
s that they can acquire measurements in the presence of clouds,
lthough their coarser spatial resolution may be considered inad-
quate for coastal applications. This shortcoming is addressed by
upplementing with SST measurements collected via multiple
nfrared (IR) platforms. Resulting 5-day composite data of 0.1◦
y 0.1◦ resolution (accuracy unknown) were obtained through
he publicly available NOAA BloomWatch 360 website (NOAA,
007b).

.3. Model description

The UKF model is very similar to the KF model described
n Nielsen et al. (2006), and will only be briefly described here
ith focus on the differences. The model is a state-space model,
here the transition equation is describing the movements. A

andom walk model is assumed:

i = αi−1 + ci + ηi, i = 1, . . . , T (1)

ere αi is a two-dimensional vector containing the coordinates
αi,1, αi,2) in nautical miles along the sphere from a translated
rigin at time ti, ci is the drift vector describing the deterministic
art of the movement, ηi is the noise vector describing the ran-
om part of the movement and T is the number of observations
n the track. The deterministic part of the movement is assumed
o be proportional to time ci = (u �ti, v �ti)′. The random part
s assumed to be uncorrelated and follow a two-dimensional
aussian distribution with mean vector 0 and covariance matrix
i = 2D �tiI2×2. Here D is a model parameter quantifying the
iffusive movement component and I2×2 is the two-dimensional
dentity matrix. The measurement equation is a non-linear func-
ion describing the expected observation at a given state (αi).
ach observation yi consists of three elements: longitude, lati-

T
s
K
t

search 91 (2008) 15–25 17

ude and SST. The first two coordinates are the raw light-based
eolocation estimates and the last is the SST recorded by the
ag. The measurement equation describing yi is:

i = z(αi) + di + εi, i = 1, . . . , T (2)

he first two coordinates of z comprise the coordinate change
unction, and the last coordinate describes the expected SST at
given position. z is given by:

(αi) =

⎛
⎜⎜⎜⎜⎜⎝

αi,1

60 cos(αi,2π/180/60)
αi,2

60

τr

(
αi,1

60 cos(αi,2π/180/60)
,

αi,2

60

)

⎞
⎟⎟⎟⎟⎟⎠ (3)

ere the factor π/180 converts from degrees to radians and 60
s the distance corresponding to 1◦ of longitude at the equator.
he function τr (longitude, latitude) describes the expected SST
t a given location and time. The function τr predicts the SST by
weighted average of SST observations from satellite within a

adius of r nautical miles. The inner workings of τr is the subject
f the next section.

The observational bias di = (blon, blat, bsst)′, describes sys-
ematic measurement errors, for instance, if the internal clock
n the tag is not absolutely correct. The measurement error εi

s assumed to follow a Gaussian distribution with mean vec-
or 0 and covariance matrix Hi. Longitude and SST variance
re assumed constant, but the latitude variance increases near
quinoxes (see Nielsen et al., 2006, for details).

.4. Data structure: Quadmap

A Quadmap is a data structure that allows quick access all
oints near any given position (x, y) in an axis-parallel plane
Finkel and Bentley, 1974). The time to lookup the objects at
r near a given point is O(max{log N, R}) where N is the total
umber of objects and R is the number or objects returned by
he query. This quick access to neighboring points is essential to
his model, as each likelihood evaluation can require hundreds,
r even thousands of these queries, and the number of points N in
he satellite SST data can be hundreds of thousands. Intuitively,
Quadmap can be considered a two-dimensional equivalent of
binary search. The neighboring points are identified by recur-

ively subdividing the initial rectangle into four sub-rectangles,
nd then only searching in the relevant rectangles.

.5. Unscented Kalman filter

The basic Kalman filter (Harvey, 1990) assumes that both the
ransition equation and the measurement equation of the state
pace model are linear. The extended Kalman filter (Harvey,
990) can handle slight non-linearities by local first order Tay-
or approximations of the non-linear functions in the model.

he unscented Kalman filter (Julier et al., 2000) is a more recent
equential estimation technique. It is very similar to the extended
alman filter, but instead of approximating the non-linear func-

ions, the transformed probability distributions are approximated
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irectly. This is done by representing the distribution by a set of
leverly selected points, transforming these points by the non-
inear function, and then approximating the mean and variance
f the transformed distribution, by the mean and variance of the
ransformed points. This approach gives a simpler implementa-
ion, not requiring derivatives of the equations in the state space

odel, and higher accuracy—at least corresponding to a second
rder Taylor approximation (Julier et al., 2000).

.6. Comparison to Argos positions

To compare the accuracy of longitude and latitude estimates
rom the UKF and KF models, the root-mean-square (RMS)
rror between the model estimates and Argos positions was
alculated. In accordance with Teo et al. (2004):

MS error =
√∑

(locArgos − locestimated)
2

n − 1
(4)

here loc is either longitude or latitude and n is the number of
amples.
.7. Comparison to EASy FishTracker

The UKF model was compared with EASy FishTracker, a dif-
erent geolocation estimation algorithm developed by Domeier

3

m

ig. 1. Most probable tracks for a marlin, Tag 13, fitted by UKF (solid line) and KF
anel shows how well the models fit the three different data types (longitude, latitude
nd observed SST are marked by crosses; the deployment point is indicated with an
riangle (�).
search 91 (2008) 15–25

t al. (2005). Similar to previous sea-surface temperature (SST)
atching approaches (Teo et al., 2004), EASy FishTracker

EASy) employs a non-statistical approach to indirectly esti-
ate position by matching tag and satellite SST data within a

ocal neighborhood. It allows latitudinal positions to be esti-
ated by only using two observation types, longitude and SST.
anufacturer latitude estimates are not necessary, but can be

ncluded where appropriate. In this particular analysis, for a
iven manufacturer longitude estimate, a SST-search neigh-
orhood was set to be 60 nautical miles (1◦ longitude) from
astward and westward of the longitude estimate, and move-
ent speed was constrained not to exceed four knots (kn, 1 knot
∼ 0.5144 ms−1). While SST imagery is not smoothed, at any

oint before or within the model, temporal composites are con-
tructed and used. For a detailed description of the EASy model,
efer to Domeier et al. (2005) and Tsontos et al. (2006). Data
rom two tags (Tag 34, 38) were analyzed with both models using
he NOAA CoastWatch Blended SST product (BA) to evaluate
heir performance.

. Results
.1. UKF model performance

UKF is a broader and more general model, where the KF
odel is in fact a special case of it. As expected, results from

(dashed line). The thin line connects the raw light-based geolocations. The left
and SST) and are plotted on a common temporal axis scale. Raw geolocations
open inverse triangle (�) and the known pop-up position is given by an open
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unning both models with the same set of tag data and model
arameters (except the addition of radius (r) as a model param-
ter in UKF) are similar. Differences in estimates between the
wo models are minimal for all three available types of observa-
ions: longitude, latitude and SST (Fig. 1). Both models are able
o estimate a “most probable” track that is more reliable than
hat of the manufacturer geolocation.

Cases in both the open ocean and near the coast were also
valuated. The models delivered very similar performance in all
ases (Fig. 2). Most of the longitude or latitude estimates from
he two models fall either on top of or right next to each other.

ith only a few exceptions, the estimates from KF are within
he confidence interval of the UKF model. Error estimates in
ongitude, latitude and SST (σx, σy, σsst) are similar between
he two models (Table 1), and often UKF obtains lower error in

osition estimates (σx, σy).

Table 1 summarizes the parameter estimates from UKF for
ll eight tags analyzed in this paper. The diffusion estimate (D)
pans a wide range from 88 to 1229 nm2 day−1, reflecting the

l
n

t
s

ig. 2. Most probable track estimates for longitude and latitude over time for a blue
nd KF (dotted line). The shaded region indicates the 95% confidence interval estima
search 91 (2008) 15–25 19

act that different species and individuals were analyzed. Errors
n longitude (σx) and latitudes (σy) estimates, in most cases,
re less than 0.5◦ and 3◦, respectively. The smoothing radius
r) varies from 90 to 700 nautical miles. General geographical
ocation, whether in the open ocean or near the coast, does not
eem to influence the extent of the smoothing radius.

.2. Comparison to Argos positions

The double-tagged mako shark has provided a valuable ref-
rence dataset with which to compare the accuracy of the
wo models. As evident from the Argos longitude and latitude
stimates (Fig. 3, solid line), the tagged shark exhibited two
istinct movement modes: migratory (day 0–90), and localized
ovements (day 90 onwards). Both models generate accurate
ongitude estimates (RMS error = 0.5◦ for UKF; 0.5◦ for KF,
= 86) when compared to the Argos estimates. They also cap-

ure the period with more restrained longitude estimates as the
hark became more localized around day 90. The model esti-

shark (a) and two marlins, Tag 7 (b) and Tag 46 (c), fitted by UKF (solid line)
ted by UKF. Raw light-based geolocations are not shown here for clarity.
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ig. 3. Most probable tracks for a mako shark, Mako 3, fitted by UKF (dotted
rovided positions from the Argos system (solid line). The left panel shows ho
iberty, latitude vs. days at liberty and SST vs. date). Raw light-based geolocat
ecord any temperature data.

ates fluctuate more than the Argos estimates between days
0 and 140 when the Argos longitudes were very much fixed at
41◦E. For latitude estimates, the overall shape of all estimates is
imilar for both models (RMS error = 1.2◦ for UKF; 1.8◦ for KF,
= 86). UKF estimates are located more southwards between

ays 40 and 100, and track the Argos values more closely than
F estimates. However, both models lag behind in switching
o a more constant latitude when the Argos latitude remained at
1◦E since day 85, and then eventually manage to track back the
rgos estimates around 120 days. This discrepancy is likely due

o the fact that manufacturer light-based geolocation estimates
p
c

able 2
arameter estimates for two tags fitted by UKF using three different satellite imagery

ag Imagery obs log L u v D b

pen ocean
1. Marlin Tag 34 RS 108 415.83 8.83 7.20 402.73 0

AG 108 397.13 8.49 7.37 380.04 0
BA 108 382.67 10.37 6.54 323.95 0

ear coast
2. Marlin Tag 8 RS 21 96.31 −10.48 −23.26 279.27 0

AG 21 96.40 −12.44 −19.22 484.51 0
BA 21 99.29 −11.61 −21.33 287.04 0

S denotes Reynolds Optimally Interpolated SST; BA denotes CoastWatch Blended S
odels in which the parameters were not active, and thus not estimated. A value of

stimated. obs is the number of observations in each track; log L is the negative log-li

x, by , σx, σy , σsst in degrees; bsst, σsst in Celsius; a0, b0 in days and smoothing radiu
and KF (dashed line). Mako 3 was also double-tagged with a SPOT tag that
ll the models fit the three different information sources (longitude vs. days at
nd observed SST are outlined with thin lines. Note that the SPOT tag did not

ad huge latitude errors (up to 30◦), making the measurements
ess useful for the model. Both models were able to match up
ith SST observations measured by the tag very closely, except

t the very beginning when the shark first swam along the coast
uring the first 10 days at liberty.

.3. SST resolution
The effect of differing SST imagery resolution on the model
erformance was investigated for an open ocean case and a
oastal case. Table 2 summarizes the UKF model parameters for

sources

x by bsst σx σy σsst a0 b0 Radius, r

.34 0.26 0 0.09 1.34 0.39 5.74e−03 −13.27 127.16
−0.02 0 0.09 1.26 0.34 4.47e−03 −11.82 114.36

.44 0.15 0 0.23 1.20 0.22 4.74e−03 −12.91 43.45

.05 1.21 0 0.16 2.35 0.64 1.10e−08 −20.72 358.68
3.07 0 0.25 2.38 0.30 1.41e−08 −21.54 37.46
0 0 0.32 4.89 0.24 4.87e−07 73.07 26.18

ST; AG denotes AVHRR-Global Area Coverage 8-day. A value of zero indicates
zero indicates models in which the parameters were not active, and thus not

kelihood value of a model. u and v are expressed in nm day−1; D in nm2 day−1;
s, r, in nautical miles.
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ach of the two cases using the coarser-scale product, Reynolds
ptimally Interpolated SST (RS), and the finer-scale products,
VHRR-Global Area Coverage 8-day (AG) and CoastWatch
lended SST (BA). Finer-scale products yield similar (Tag 8,

og L ∼ −96) or higher log-likelihood values (Tag 34, log L ∼
390) than the coarser-scale product (Tag 8, log L ∼ −96; Tag

4, log L ∼ −415). Most parameter estimates are similar across
ll model runs. The longitude error (σx) remains low, and is
n order of magnitude lower than the latitude error (σy). The
moothing radius (r) varies substantially among models using
ifferent SST products, decreasing with the higher spatial reso-
ution SST products.

Satellite SST data spatial resolution does not seem to affect
odel performance and position estimates for the open ocean.
ll model runs generate most probable tracks that are positioned
ext to each other, and match closely to each other across all
bservations (Fig. 4). For the near coast case, there are only 21
osition estimates from light-based geolocation, resulting in a
horter and more difficult track to estimate (Fig. 5). All three
uns produce very comparable longitude estimates, while lati-
ude estimates separate out into two groups according to the SST

esolution. Latitude estimates from the finer-scale products (AG,
A) are placed more southwards than those of the coarser-scale
roduct (RS). At the same time, finer-scale products (particu-
arly, BA) are able to trace the fluctuations in SST observations

m
t
c
f

ig. 4. Most probable tracks for a marlin, Tag 34, fitted by UKF using three different s
A (dashed line); AVHRR-GAC 8-day or AG (light solid line). A track estimated by
hows how well the models fit the three different information sources (longitude vs.
eolocations and observed SST are outlined with thin lines.
search 91 (2008) 15–25 21

ore closely than the coarser-scale product (RS). Plotted on a
ap (Fig. 5), finer-scale product tracks stay away from land for

he most of the time, giving more plausible estimates, while the
rack based on coarser-scale imagery is displaced over land. This
isplacement is likely an artifact of a much larger smoothing
adius for the coarser-scale product (358 nautical miles versus
30 nautical miles), where over-smoothing allows the associa-

ion of SST data with positions over land.

.4. Comparison to EASy FishTracker

Parameter estimates from UKF for Tag 38 and Tag 34 are
eported in Tables 1 and 2, respectively (Imagery type, BA).
ASy returns a different set of parameters that could not be
irectly compared to UKF. To allow comparison, position esti-
ates and reconstructed tracks from EASy were plotted along
ith UKF estimates. Reconstructed tracks from both models

re very similar to each other (Figs. 4 and 6). Estimates from
ASy are comparable to those of UKF for Tag 34 (Fig. 4) with

espect to all observation types. A closer look at Tag 38 (Fig. 6)
llows us to differentiate the two approaches. EASy relies on

atching tag temperature observations with external sea-surface

emperature data, and this is reflected in its estimates tracking
losely to most SST observations. Instead of assuming manu-
acturer longitude estimates are without errors, EASy allows a

atellite imagery sources: Reynolds OI SST or RS (dotted line); blended SST or
the EASy FishTracker algorithm is also plotted (dot–dash line). The left panel
days at liberty, latitude vs. days at liberty and SST vs. date). Raw light-based
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Fig. 5. Most probable tracks for a marlin, Tag 8, fitted by UKF using three different satellite imagery sources: Reynolds OI SST or RS (solid line); blended SST or
BA (dotted line); AVHRR-GAC 8-day or AG (dashed line). The thin line connects the raw light-based geolocations. The left panel shows how well the models fit the
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ser-specified search neighborhood (here 60 nautical miles or
1◦) on the either side of a longitude estimate. Consequently,

ongitude estimates from EASy deviate more from the obser-
ations than UKF. In contrast, UKF deals with errors within
he state-space model for all observation types and allows the
epresentation of confidence intervals.

. Discussion

The state-space Kalman filter approach (Sibert et al., 2003)
as been shown to improve light-based geolocation esti-
ates for electronic data storage tags and provide movement

arameters applicable to population-level models. Our latest
xtension of this approach utilizes the unscented Kalman fil-
er for estimation and sea-surface temperature as an additional
ata input.

Comparison with the KF shows that this new extension deliv-
rs very closely comparable estimates of the “most probable”
rack. This is very encouraging as both KF and UKF pro-
uce consistent results and ensure compatibility between older
esults obtained by KF and those of the latest model. It also

erves to answer a key criticism of KF on the issue of han-
ling non-linearities. The similarities allow us to conclude that
he KF model is robust, and that non-linearities are unlikely to
ave plagued the model. UKF represents a new coherent model

i
t
i
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liberty and SST vs. date). Raw geolocations and observed SST are marked by
nown pop-up position is given by an open triangle (�).

here the smoothing of the SST field is included within the
odel. Implementation of the UKF model is also streamlined

nd simplified for the end-user, which allows flexible handling
f missing observations and outliers, and utilizes a more efficient
ST data look up algorithm.

The UKF model presented in this paper can be extended
n many ways. One natural development is to expand beyond
ea-surface temperature and utilize tag temperature measured
t depths. The amount of smoothing for the temperature at
epth field can be estimated by the model as an additional
arameter, similar to what is done at the surface. Apart from
emperature, other environmental information, such as tides
Hunter et al., 2003; Gröger et al., 2007; Ådlandsvik et al.,
007), bathymetry and salinity (Andersen et al., 2007), may
lso be included. UKF parameter estimates of movement (u, v

nd D) are directly comparable to estimated movement parame-
ers from population-scale models estimated via conventional
agging programs. Potentially, the two sets of estimates can
ven be combined to strengthen confidence in both approaches,
nd to get a more precise combined estimates (Sibert and
ournier, 2001). Other applications of these parameters include
nferring behavior and distribution of tagged fish from mul-
iple tracks (Sibert et al., 2006), and serving as potential
nputs for stock assessment models (e.g. MULTIFAN-CL and
ASAL).
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Fig. 6. Tracks estimated by the UKF model (solid line) and the EASy FishTracker (dashed line) algorithm for a marlin, Tag 38. The thin line connects the raw
light-based geolocations. The left panel shows how well the models fit the three different information sources (longitude vs. days at liberty, latitude vs. days at liberty
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.1. Sea-surface temperature field and smoothing

By assuming longitude estimates are accurate, Smith and
oodman (1986) first demonstrated that in the presence of

dequate thermal gradients, sea-surface temperature (SST)
atching can improve latitude errors to within 2◦. Since then,
any studies (e.g. Teo et al., 2004) have successfully applied this

pproach using a variety of satellite SST products or implemen-
ations of the Oceanic General Circulation Model (e.g. Royer et
l., 2005). Researchers are challenged by two major questions
hen employing this approach: (1) which specific imagery prod-
cts are most appropriate and (2) how to deal with gaps in data
ue to quality issues. Presently, multiple well-known platforms
e.g. Moderate Resolution Imaging Spectroradiometer, MODIS;
dvanced Very High Resolution Radiometer, AVHRR) provide
lobal and regional SST products, which can differ substan-
ially from sensor accuracy and calibration to data processing,
uality control and resolution. These product-dependent differ-
nces can affect the latitude estimates in a manner that is hard
o quantify in the absence of reference track data from GPS

r Argos. Non-statistical models with methodologies reliant on
ea-surface temperature matching will be more sensitive to the
etailed SST product specifications and qualitative aspects of the
magery. Moreover, fine-scale satellite SST products frequently

s
d
s
a

d with UKF. Note EASy FishTracker does not generate confidence interval for
the deployment point is marked by an open inverse triangle (�) and the known

ave data gaps caused by the ambient sensor environment (e.g.
lares, cloud cover). Common remedies include constructing
emporal composites, or designing a spatial smoothing proce-
ure.

State-space models like UKF provide a way to assimilate use-
ul SST information as one of several potential data types, and
llow measurement error estimation as part of the model. This
s a consistent approach where all observations along with their
rrors are considered by the model, and no prior assumptions on
ongitude, latitude estimates and SST product accuracy is made.
y estimating the amount of smoothing required for a partic-
lar SST field within the model, UKF completely eliminates
he arbitrary decisions of SST smoothing and allows tailoring
o the regional oceanographic conditions to determine the nec-
ssary amount of smoothing. This is a feature consistent with
he state-space Kalman filter approach that tag observations and
he external data fields are matched locally. The resemblance
f the “most probable” tracks using SST products of different
esolutions shows that UKF is usually less sensitive to product
ariations. In cases where the UKF model becomes more sen-

itive to SST resolution, the smoothing radius (r) serves as a
iagnostic parameter. A quick comparison between r and the
patial resolution of the SST product can identify whether the
mount of smoothing was inappropriate. Two alternative options
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re immediately available: first, by using higher spatial resolu-
ion products; second, fixing r at a particular value. The latter
ption excludes the smoothing radius from the model estima-
ion, and no longer allows r to be optimized, which is similar to
re-defining a degree of smoothing in KFSST. Given that UKF
s a better model for handling non-linearities, it is beneficial to
pply UKF to estimate the other model parameters even when r
s not included in the model.

.2. Comparison to other methodologies and future work

Approaches to improve light-based geolocation almost take
he path of convergent evolution. Our initial attempt to com-
are the UKF model with a matching sea-surface temperature
lgorithm, EASy FishTracker shows that two very different
pproaches can generate similar results. Despite this apparent
imilarity, it must be stressed that a state-space model like UKF
onsiders the measurement errors fully within a statistical frame-
ork, and no assumptions regarding the light-based geolocation

re made. Nevertheless, it is encouraging that different method-
logies arrive at similar solutions, reinforcing our confidence
n both approaches. This ensures a wide range of options for
esearchers to decide upon the best methodology to employ for
heir particular study.

Future work should seek to extend such a comparison to
ther improvement algorithms using more examples, prefer-
bly with data from double-tagged animals. This calls for
reater collaborative effort in sharing tag data, and defining
pecifications for the usage of tag data and auxiliary envi-
onmental information. A full consideration of the regional
ceanographic features (e.g. eddies and fronts), and more objec-
ive ways to determine the accuracy of position estimates
mong different methodologies beyond the basic measures like
he root-mean square error are also required. This effort to
ompare various methodologies and establish standards is a
rerequisite for the transfer of results between studies using dif-
erent geolocation estimation procedures, and the inclusion of
obust information from tagging studies in resource management
pplications.
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