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SEA TURTLE STOCK ESTIMATION USING GENETIC MARKERS: 
ACCOUNTING FOR SAMPLING ERROR OF RARE GENOTYPES 
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Abstract. The contributions of different sea turtle rookeries to mixed-stock populations 
on foraging grounds can only be estimated by indirect methods such as analysis of mito- 
chondrial DNA samples from the mixed stocks and rookery populations. We explain and 
evaluate methods for genetic stock estimation using simulations and data from previous 
studies. We focus on Markov Chain Monte Carlo (MCMC) estimation, a relatively new 
method. MCMC differs from older combinations of maximum likelihood (ML) with non- 
parametric bootstrapping in (1) using a Bayesian prior to quantify previous knowledge; (2) 
taking account of multiple modes in the probability distribution of contributions; and (3) 
incorporating sampling error more flexibly, allowing for the possibility that rare haplotypes 
actually present in a particular rookery were not detected in a small sample. In the context 
of sea turtle stock analysis, the differences in point estimates between ML and MCMC 
methods are relatively small, but MCMC gives wider and more accurate confidence limits 
than ML with bootstrapping, which tends to underestimate small contributions as zero. 

Key words: bootstrap; Caretta caretta; Chelonia mydas; Markov Chain Monte Carlo; maximum 
likelihood; migration; mtDNA; sea turtle; stock analysis; uncertainty. 

INTRODUCTION 

Sea turtles are a group of threatened and endangered 
species that are being intensely studied in the hopes of 
discovering enough about their ecology to guide con- 
servation efforts. They have many of the typical traits 
of endangered species: long generation time, restricted 

reproductive habitats, and few nonhuman predators as 
adults. They also are subject to typical threats: legal 
and illegal harvesting, bycatch in commercial fisheries, 
and habitat destruction. Reproductive females may mi- 
grate thousands of kilometers to their natal beaches 
from foraging grounds with wide geographic distri- 
butions (Bowen and Karl 1997). These strong homing 
instincts maintain the separation of maternal lineages 
in different rookeries, leading to discrete stocks iden- 
tifiable by their maternal (mitochondrial) DNA hap- 
lotypes. After emerging from their nests, hatchlings of 
most marine turtles (with the exception of the Austra- 
lian flatback, Natator depressus) enter an oceanic stage, 
followed by recruitment to neritic habitats. This paper 
focuses on Atlantic loggerhead (Caretta caretta) and 

green (Chelonia mydas) turtles, for which we have 

good data, but our general conclusions should also ap- 
ply to other regions and species. Loggerheads in the 
North Atlantic spend about eight years in oceanic hab- 
itats in the eastern Atlantic (Bjorndal et al. 2000), 
where individuals from a number of rookeries combine 

in mixed stocks, before recruiting to neritic habitats 
(Bolten et al. 1998). The location and duration of the 
early life stage of green turtles are still unknown. In 
the Atlantic, green turtles recruit to neritic habitats at 
-25 cm carapace length and then move among a num- 
ber of foraging habitats where further mixing of stocks 
occurs (Lahanas et al. 1998, Bass and Witzell 2000). 

Ecologists must gauge the proportions of a mixed 

population that originate in geographically disparate 
rookeries, both to improve management efforts and to 
understand the population dynamics of the full popu- 
lation, including rookeries and mixed populations on 
foraging grounds. Elucidating the source rookeries of 
mixed-stock foraging aggregations identifies regions 
that should be included in regional management plans 
and, because different rookeries have different survival 
outlooks, focuses protective measures on those for- 

aging grounds with higher proportions of individuals 
from more threatened rookeries. Because of the diffi- 

culty of tracking individuals during the oceanic stage, 
assessments of the contributions of different rookeries 
to a particular mixed population must use indirect 
methods, such as the statistical analysis of mitochon- 
drial DNA (mtDNA) haplotype composition in rook- 
eries and mixed populations. 

Maximum likelihood (ML) methods that use the dis- 
tribution of genetic markers to estimate the contribu- 
tions of different source pools to a mixed stock have 
a long history in fisheries (Miller 1987, Pella and Mil- 
ner 1987, Utter and Ryman 1993). ML analyses of 

green and loggerhead turtle mtDNA data have shown 
that these species recruit to mixed populations in the 
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Caribbean and eastern Atlantic from a variety of rook- 
eries throughout the eastern Atlantic and Mediterra- 
nean (Bowen et al. 1996, Bolten et al. 1998, Lahanas 
et al. 1998). ML methods, however, suffer from some 
technical problems, particularly in their handling of 
rare and apparently missing haplotypes. A new (to con- 
servation ecology) statistical method called Markov 
Chain Monte Carlo estimation (MCMC) has recently 
been used to address these problems (Pella and Masuda 
2001). In this paper, we apply ML and MCMC methods 
to simulated data sets to assess the effectiveness of 
different methods; we reanalyze existing turtle mtDNA 
data with MCMC; and finally we discuss the impli- 
cations of the statistical methods for turtle conservation 
and for stock analysis in general. 

Conditional and unconditional maximum likelihood 

Conditional maximum likelihood (CML) and uncon- 
ditional maximum likelihood (UML) estimation are 
well described elsewhere (Pella and Milner 1987), but 
we start with a brief description of these methods to 
put the problem in perspective. Our data are the num- 
bers of individuals with each mitochondrial haplotype 
(h) sampled in each rookery (r), Frh, and the numbers 
sampled in the mixed population, Mh. The number of 
rookeries is R and the total number of distinct haplo- 
types represented in all stocks is H (in general, we will 
use capital letters to denote numbers of samples and 
lower case to denote frequencies). We want to estimate 
c,, the proportion of the individuals in the mixed pop- 
ulation contributed by each rookery. CML and UML 
are both based on finding the set of parameters with 
the highest likelihood: the probability of observing the 
sampled data given a particular set of parameters. CML 
assumes that the true haplotype frequencies in each 
rookery are equal to the actual frequencies observed 
in the sample: frh = FrhI=1 Fsh where s is a summation 
variable and the summation is over all rookeries sam- 
pled (Pella and Milner 1987). Given these assumed 
frequencies, the expected frequencies in the mixed pop- 
ulation are equal to mh - crfrh, and the likelihood is 
the probability of drawing a multinomial sample Mh 
from a population with true frequencies equal to mh. 
(The negative log likelihood, which is useful for com- 
putation, is equal to -I Mh 1ogmh plus a constant, 
which can be ignored when maximizing the likelihood.) 

Once the likelihood is defined, finding the maximum 
likelihood estimates is a straightforward computational 
problem, searching among parameter combinations for 
the combination that gives the highest likelihood (or 
lowest negative log likelihood). There are certain tech- 
nical difficulties (contributions must be between 0 and 
1, and must sum to 1), but these difficulties can be 
handled by standard transformations and numerical 
methods (see Appendix A: CML/UML methods). 

The main problem with CML is the assumption that 
the true rookery haplotype frequencies are exactly 
equal to the frequencies observed in the rookery sam- 

TABLE 1. A small simulated data set. 

Rookery Mixed 
Haplotype A B population 

I 10 50 10 
II 50 10 50 

III 0 1 1 

ples. If sample sizes are small, or if some haplotypes 
are rare, this assumption is questionable; sampling er- 
ror leads to discrepancies between the underlying fre- 

quencies and the sample frequencies. 
For example, consider the data set in Table 1. The 

pattern of the common haplotypes (I and II) suggests 
that rookery A contributes almost all of the mixed pop- 
ulation; in this relatively large sample, the haplotype 
frequencies in the mixed population match those in 
rookery A, and are quite different from those in rookery 
B. In contrast, the CML estimate of the contributions 
(0.92 from rookery A, 0.08 from rookery B) is strongly 
influenced by the evidence of two individuals with hap- 
lotype III, even though sampling error could easily ex- 
plain the absence of haplotype III in rookery A. 

One solution to this problem is unconditional max- 
imum likelihood (Smouse et al. 1990), which allows 
for sampling error by simultaneously estimating the 
true frequencies in the rookeries (frh) and the contri- 
butions from the rookeries (c,). The negative log like- 
lihood is the sum of the negative log likelihood of the 
match between expected and observed frequencies in 
the mixed population (-_ Mh logmh plus a constant) 
and the match between the expected and observed fre- 
quencies in the rookeries (- Frh logfrh plus a con- 
stant). UML can ascribe lack of fit either to an unlikely 
sample from the mixed population, given the true hap- 
lotype proportions (which are a function of the con- 
tributions of different rookeries and of the true hap- 
lotype proportions in the rookeries), or to an unlikely 
sample from the rookeries. The balance between these 
sources of error depends on the sample sizes from the 
rookeries and the mixed population (the method prefers 
to attribute sampling errors to a smaller multinomial 
sample, where they are more likely) and the detailed 
pattern of the data. In the previous example, UML sug- 
gests that it is more likely that haplotype III is actually 
present in rookery A, but was not sampled, and that 
0.995 of the mixed population really comes from rook- 
ery A. 

UML demands more computing power than CML, 
and specialized algorithms have been developed for it 
(Pella and Milner 1987), but (especially in light of ever- 

increasing computational power) it can also be done 
with standard algorithms as detailed in Appendix A: 
CML/UML methods. 

BOOTSTRAPPING 

In addition to the maximum likelihood (point) esti- 
mates given by CML and UML, we need confidence 



June 2003 SEA TURTLE STOCK ESTIMATION 765 

limits describing the range of uncertainty in the esti- 
mate. Both large sample sizes and large differences 
between haplotype frequencies in different rookeries 
contribute to accurate estimates. The nonparametric 
bootstrap resamples the data from each rookery and 
from the pooled population with replacement, and then 
estimates the rookery contributions anew from the new 

bootstrapped data set. This procedure is repeated many 
times, and the confidence limits are estimated from the 
distribution of bootstrapped estimates: for example, the 
25th- and 975th-largest estimates from 1000 bootstrap 
samples give the estimate of the 95% confidence limits. 
The nonparametric bootstrap is equivalent to drawing 
a new multinomial sample with the sample sizes and 

haplotype frequencies observed in the original data. 
However, nonparametric bootstrapping still suffers 
from the problem of missing haplotypes. Resampling 
a rookery where no individuals of a particular haplo- 
type were initially sampled can never produce that hap- 
lotype in the bootstrapped data set (cf. Walsh 2000). 

MARKOV CHAIN MONTE CARLO 

An alternative to UML with nonparametric boot- 

strapping is Markov Chain Monte Carlo (MCMC), a 

very general approach to estimating parameters in sit- 
uations with multiple levels of random variation, such 
as the current problem where there is uncertainty in 
true haplotype frequencies and in sampling. Although 
these kinds of situations are common in ecology and 
conservation ecology, the use of MCMC is rare in ecol- 

ogy (Gibson 1997, Gibson and Renshaw 1998, Got- 
twald et al. 1999). MCMC can flexibly account for 
some of the uncertainties that nonparametric bootstrap 
misses; in particular, observed samples of zero can be 

resampled as nonzero values in a way that is consistent 
with other information in the data set. 

MCMC refers to a particular way of sequentially 
picking random guesses (based on the data, on prior 
information, and on the prior guess) at plausible values 
of the parameters. When done according to the appro- 
priate recipes, this procedure produces a set of values 
that are an estimate of the probability distribution of 
the parameters for which we are looking. The advan- 

tages of MCMC are (1) it accounts better for sampling 
error (or multiple sources of random variation) than 
does bootstrapping; (2) with a sufficiently clever im- 

plementation, it can be as fast or faster than bootstrap- 
ping; and (3) the foundations of MCMC lie in Bayesian 
estimation, which means that we can incorporate prior 
information and interpret our results as probability dis- 
tributions of parameters in a natural way. The advan- 
tage of Bayesian frameworks is still controversial; in 
this paper, we will simply compare what the methods 
have to tell us about turtles. 

In the most general sense, all we have to do to take 
one step in a MCMC analysis is to pick a new, random 
set of parameters that are consistent with the data, the 
previously guessed set of parameters, and possibly 

some amount of prior information about the parame- 
ters. The core property is that the relative probability 
of moving from one set of parameters to another is 

proportional to the relative probability of those param- 
eters, given the evidence of the data (the likelihood, as 

previously defined) and any prior information. There 
are (of course) many technical details, but any set of 
rules for picking new parameters that has this property 
will lead, in the long run (after discarding parameters 
from an appropriate "burn-in" period), to an appro- 
priate set of estimates. 

The Methods section will present more detail on the 

particular implementation of MCMC for estimating 
contributions from different rookeries, introduce a sim- 
ulation framework for comparing the effectiveness of 
different methods, and describe the criteria we use for 

evaluating point estimates and confidence limits. In 
Results, we show results for both a broad range of 
simulations and for the available loggerhead and green 
turtle data. Finally, we discuss the implications of 
MCMC estimation for stock analysis, in general, and 
for turtle stock analysis, in particular. 

METHODS 

MCMC implementation 

Our implementation of MCMC uses a two-stage al- 

gorithm (an example of a so-called Gibbs sampler, 
which resamples parameters sequentially) for picking 
new sets of parameters (Pella and Masuda 2001). The 
first stage (Fig. 1, Step A) starts with an initial guess 
at the parameters (both the true haplotype frequencies, 
frh, and the contributions of different rookeries to the 
mixed population, c, (Fig. 1, Step 0), and estimates the 

probability of a turtle in the mixed population with a 

particular haplotype coming from a given rookery. 
With given estimates of frh and c,, the expected con- 
tribution of a particular haplotype (h) from a particular 
rookery is c,frh; the probability of a mixed-stock in- 
dividual with haplotype h coming from rookery r is 
this contribution divided by the total contribution from 
all rookeries, cfrh• Crfrh. We then pick multinomial 

samples Irh - Mult(Mh, frh) with these probabilities, 
which give a consistent guess for the unknown origins 
of the individuals sampled from the mixed pool. An- 
other way of describing this procedure is that we impute 
rookery origins to each of the turtles in the mixed pop- 
ulation in a way that is random, but consistent with our 
current set of parameters. 

The second stage (Fig. 1, Step B) takes these guesses 
of rookery origins for granted, estimates the probability 
distributions of the rookery haplotype frequencies and 
contributions, and picks random samples out of these 
distributions. (These distributions are so-called Diri- 
chlet distributions; for details, see Appendix B.) For 
this step, we must also specify prior information on the 
haplotype frequencies (Fh) and rookery contributions 

(Cr) 
(Fig. 1, PRIOR); we use upper case for these priors 
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DATA 

a) Numbers (Frh, Mh) b) Frequencies (Frh /hj Frh) 
Rook A Rook B Mixed Rook A Rook B Average 

I 10 50 10 I 0.167 0.83 0.17 
II 50 10 50 II 0.833 0.15 0.82 
III 0 1 1 III 0 0.02 0.01 

sum F1 = 60 F2= 61 

PRIOR 
c) Contribution, Cf (all equal) d) Haplotype freq.,f, (overall average) 

Rook A Rook B Rook A Rook B 
1 1 I 0.17 0.17 

II 0.82 0.82 
III 0.01 0.01 

STEP 0 
e) Initial contributions, Cr f) Initial hap. freq., (= observed freq.) 
(all equal) 

Rook A Rook B Rook A Rook B 
0.5 0.5 I 0.167 0.83 

II 0.833 0.15 
III 0 0.02 

STEP A 
g) Estimated prob. of origin: h) Imputed origin: {Ih} 
{Wrh 

= Crrh 

Rook A Rook B Rook A Rook B 
I 0.168 0.832 I 0 10 
II 0.847 0.153 multinomial II 44 6 
III 0 1 sample III 0 1 

sum Il = 44 12 17 

STEP B 
New parameters: {Ifr} = Dirichlet ({Fh + I?h +f}), {Pc} = Dirichlet ({cp+ I }) 

i) Dirichlet parameters j) New values (fr', c) 
Rook A Rook B Rook A Rook B 

I 10+0.17+0=10.17 50+0.17 +10=60.17 --- I 0.116 0.852 
II 50 + 0.82 + 14 = 94.82 10 + 0.82 + 6 = 16.82 Dirichlet II 0.882 0.132 
III 0 + 0.01 + 0 = 0.01 1 + 0.01 + 1 = 2.01 sample III 0.002 0.016 

Contrib. 1 1+14 =45 1 + 17 = 18 Contrib. 0.617 0.383 

FIG. 1. One round of the Gibbs sampler algorithm (Pella and Masuda 2001) for estimating turtle stock mixtures, with 
the data presented in Table 1 (a, b); initial estimates of the haplotype frequencies (f) equal to the observed haplotype frequencies 
(b) and initial estimate of equal contributions from both rookeries (e); prior estimates of haplotype frequencies (d) equal to 
the average observed frequencies (b); and prior estimates of rookery contributions set equal (c). See Methods: MCMC 
implementation for description of the procedure, which cycles repeatedly between Step A and Step B. In DATA (b), average 
refers to the harmonic average of the rookery haplotype frequencies. 
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case, information on haplotype rookery frequencies 
and on contributions. We follow the methods of Pella 
and Masuda (2001) for picking priors that are weak, 
although not completely uninformative. The contri- 
bution priors are set equal with a strength of 1/R; a 

prior strength of 1 corresponds to complete ignorance, 
and a prior <1 actually shifts the estimates toward 

larger contributions from large-contributing rookeries 
and smaller contributions from small-contributing 
rookeries, although the effect is not strong. Pella and 
Masuda's priors for the haplotype frequencies are pro- 
portional to the among-rookery harmonic means of 

rookery frequencies, set to a strength that minimizes 
the sum of squared deviations between the observed 

frequencies and the weighted average of the priors and 
the observations. These priors allow for some unde- 
tected overlap of haplotypes among rookeries. 

MCMC only converges to the appropriate distribu- 
tion of parameter values in the long run, after the start- 

ing values of the parameters (e.g., Fig. 1, Step 0) have 
been "forgotten." There are standard methods for eval- 

uating how long this so-called "burn-in" period should 
be, and how long the chain must be run to get reason- 
able estimates; we use the implementation in the 

(R version of) the publicly available CODA package 
(version 0.5-12, 6/02).4 In particular, we first use the 

Raftery-Lewis criterion, which estimates how long a 

single chain should be to achieve a particular level of 

accuracy in estimating a particular quantile of the pa- 
rameter distributions (Raftery and Lewis 1996). We 
estimate the time required to estimate the 97.5% quan- 
tiles within a 2% margin of error with a 95% proba- 
bility. Once we have a chain long enough to pass this 
criterion, we double-check with the Gelman-Rubin cri- 
terion (Gelman et al. 1995), which makes sure that the 
variance between a set of MCMC chains started from 
different points is not much larger than the variance 
within chains. This makes sure that the different chains 
have all moved away from their starting points and are 

covering the same region of parameter space. We use 
one chain for each rookery, each starting with an es- 
timate of 95% contributions from that rookery and the 
remainder evenly split (5/(R - 1)% each) among the 
others. For the simulations and data that we will pre- 
sent, our burn-in times are surprisingly short (on the 
order of 100 steps) and our convergence times are on 
the order of 20 000 steps. 

Masuda and Pella have built a stand-alone Windows 

program that implements these algorithms, using the 
same input formats as their previous stock analysis 
programs." We re-implemented the algorithms using R, 
a public domain statistics and programming language 
(Ihaka and Gentleman 1996; available online),6 as a 

Rookery 
A B C D E 

I , c i r r r 

II'i c r r r 

Haplotype III r r c i r 
IV r r 'i c i 
V r r Ir i c 

L -J 

FIG. 2. Haplotype frequency structure: c, common hap- 
lotype; i, haplotype that occurs at intermediate frequencies; 
and r, a "rare" haplotype. The turtle rookeries are organized 
into two blocks, each of which shares common and inter- 
mediate haplotypes. Common haplotypes for one block are 
found only rarely in the other block (in simulations, r is set 
to either 0% or 4%). 

graphical and data management framework. The actual 
MCMC code was written in C for speed (and was com- 

piled for Windows and Linux; native R code is also 
available, although slower). An R library for stock 

analysis by CML, UML, and MCMC is available.7 Our 

library can only handle haploid data, not the full range 
of possible genetic data (e.g., microsatellites or diploid 
markers), and requires the R package. On the other 
hand, for those who do choose to use R, it may provide 
a more convenient interface. 

Simulations 

We constructed a framework for simulation that al- 
lowed us to evaluate different stock analysis methods 
for a variety of possible configurations of rookery ge- 
notypes and contributions. Each simulation run incor- 

porates the true distribution of haplotypes among rook- 
eries, the true contributions of rookeries to the mixed 

population, and the sizes of samples taken from dif- 
ferent rookeries and from the mixed population. The 
main properties of the haplotype distribution are the 
dominance of the most common haplotypes, the overlap 
of haplotypes among rookeries, and the characteristics 
of the "tail" of the haplotype distribution (whether rare 

haplotypes really appear at low frequency throughout 
all rookeries, or whether they are really confined to one 
or a few rookeries). 

We set up a fairly general structure that mimics the 
observed structure of haplotypes among sea turtle rook- 
eries (Fig. 2). 

We varied the characteristics of a given simulation 

by changing the ratio of common to intermediate hap- 
lotypes (cli), and whether the "rare" haplotypes were 

really absent (r = 0) or present at low frequency (r = 

0.04). With this scheme, the degree of overlap between 

neighboring rookeries is hard to manipulate indepen- 
dently of the dominance of common haplotypes within 
rookeries (both are controlled by cli), but the block 
structure indicated in Fig. 2 does change the overlap: 

4 URL: (www.cran.r-project.org/src/contrib/PACKAGES. 
html#coda) 

5 URL: (ftp://ftp.afsc.noaa.gov/sida/mixture-analysis/bayes/) 
6 URL: (http://www.r-project.org) 7 URL: (www.zoo.ufl.edu/bolker/turtle) 
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Total sample size Total sample size 

FIG. 3. MCMC estimates of known turtle rookery contributions (1) using all information, (2) discarding rare haplotypes 
and using only common haplotypes, and (3) discarding common haplotypes and using only rare haplotypes. Total sample 
sizes are allocated 0.50 in the mixed stock and 0.25 in each rookery. Each rookery has a dominant haplotype, which appears 
in the other rookery at a lower frequency, and two rare haplotypes, which are absent from the other rookery. Haplotype 
frequencies in rookery A are {0.65, 0.31, 0.01, 0.01, 0.0, 0.01; in rookery B, they are {0.31, 0.65, 0.0, 0.0, 0.01, 0.01}. True contributions are 0.90 from rookery A (shown as a horizontal line) and 0.10 from rookery B. Mean and 95% confidence 
limits shown are averages of estimates from five MCMC estimates from each of five simulations for each sample size and 
choice of data. 

there are two groups of more closely related rookeries 
with less haplotype overlap between them. For rookery 
contributions, the characteristics of dominance (ratio 
of common contributions to intermediate contributions) 
and of rarity (presence or absence of rookeries that 
contribute at low levels) are both important, and we 
can specify both in a way similar to the definitions for 
the haplotypes. Specifying sample sizes is also straight- 
forward; we used various sample sizes per rookery (25, 
50, and 100 were our default values), and doubled this 
sample size in the mixed population. 

In addition to these general simulations, which we 
used to evaluate a broad range of conditions, we also 
developed two more specific simulation protocols to 
answer particular questions. First, in order to under- 
stand how the power to detect the absence of contri- 
butions from a particular rookery varies with total sam- 
ple size, we started with the estimates of contributions 
of green turtles to the mixed population and set the 
contributions from low-contribution rookeries (Suri- 
name, Brazil, Mexico, Ascension, and Cyprus) to zero. 
We tried a range of total sample sizes, of which half 
were taken from the mixed population, with the other 
half evenly divided among the nine rookeries. Simu- 
lations took multinomial samples with these sample 
sizes from the estimated haplotype frequencies in each 
rookery and from the expected haplotype frequencies 
in the mixed population. 

Second, in order to understand how rare and common 
haplotypes contribute to statistical power (Fig. 3), we took 

a simple six-haplotype, two-rookery example with rookery 
A haplotype frequencies {0.65, 0.31, 0.01, 0.01, 0.0, 0.0}; 
rookery B haplotype frequencies {0.31, 0.65, 0.0, 0.0, 0.01, 
0.011; and true contributions, 0.90 from rookery A and 
0.10 from rookery B. We then used MCMC to estimate 
the contributions using (1) all of the haplotype data; (2) 
common haplotypes (>0.01) only, discarding rare hap- 
lotypes; or (3) rare haplotypes (?0.01) only, discarding 
common haplotypes. 

Criteria 

In order to decide whether ML or MCMC methods 
are better suited to turtle stock analysis, we have to 
establish criteria that define a good estimate, for both 
point estimates and confidence intervals. Given a set 
of simulations in which one knows the true values of 
the rookery contributions, and given an estimate such 
as the ML estimate, one can calculate the bias (expected 
deviation of the estimate from the true value) and the 
variance (expected variance of the estimate around its 
expected value). There is a fundamental trade-off be- 
tween minimizing bias and minimizing variance. To 
determine the best balance between bias and variance, 
one can also quantify the total squared error of the 
estimate around the mean, which is equal to the bias 
squared plus the variance. 

Traditional frequentist estimation methods like CML 
and UML attempt to find the single best-fit value of 
the parameters, which, in these cases, means the max- 
imum likelihood value or, in Bayesian terms, the mode 
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of the probability distribution of parameters. MCMC 
and other Bayesian methods estimate the entire prob- 
ability distribution, so one can choose among different 
summaries of the probability distribution: the mode is 
one possibility, but the mean is more commonly used. 

Using the mean rather the mode of the distribution 
means that low-probability but important possibilities 
(such as large contributions by a particular rookery) 
are included in the point estimate. Thus, even though 
MCMC and UML are essentially estimating the same 
distribution, they give different answers. It is also pos- 
sible (as recommended by Pella and Masuda [2001]) 
to use the Bayesian mode as one's point estimate when 

using MCMC, bringing the ML and MCMC answers 
closer together; this is essentially a matter of taste or 

philosophy. In our simulations (and, we suspect, in 
those of Pella and Masuda [2001]), the mean and the 
mode are nearly equivalent in statistical efficiency, rep- 
resenting a simple trade-off between bias and variance. 
One may reduce the bias slightly by using the mode, 
but only at the cost of increasing variance and, hence, 
total error. 

The standard criterion for the confidence interval is 
the coverage: the, percentage of the time in repeated 
simulations that the estimated confidence interval in- 
cludes the true value. If the coverage is greater than 
the nominal size of the confidence limits (e.g., 98% 
instead of 95%), then the confidence limits are larger 
than they should be, or too pessimistic; if the coverage 
is smaller, then the confidence intervals are too opti- 
mistic. 

RESULTS 

We have computed CML, UML, and MCMC esti- 
mates (point estimates and confidence limits), accord- 

ing to the algorithms described in the Methods section 
and in the technical appendices, for a wide range of 
simulations and for the available loggerhead and green 
turtle data. Although stock estimation has traditionally 
focused more on the performance of point estimators 
than on confidence intervals, we will focus (after a brief 
discussion of point estimates) on the performance of 
the confidence intervals. We do care about the accuracy 
of point estimates (despite statisticians' cautions, man- 

agers still want a "best" estimate), but accurate con- 
fidence intervals may be more critical for avoiding truly 
worst case scenarios and coming up with management 
strategies that are robust to uncertainty. We can only 
know the performance of the estimators relative to true 
values (bias, variance, coverage) for the simulation 
runs, in which we know the true values; we discuss 
these results first and then turn to what the different 
estimators tell us about the turtle data. 

Simulations 

Point estimates.-The bottom line is that there is 
little difference between the point estimates for ML 
and MCMC methods (Table 2); after all, both are es- 

sentially using the same set of data to solve the same 
likelihood problem. What differences there are appear 
when estimation is especially difficult because of over- 

lapping haplotypes in rookeries, small contributions by 
a number of rookeries, and small sample sizes. The 
differences in the estimates represent different trade- 
offs between bias and variance (neither method is really 
more-accurate) and can be ascribed to the effects of 
the prior and to the differences between the mean and 
the mode of the distribution of estimates. 

When haplotypes, contributions, and sample sizes 
are such that estimation is fairly easy, there are few 
differences between the results of CML, UML, and 
MCMC estimation. In order to make estimation easy, 
one needs a few common haplotypes that are fairly 
specific to particular rookeries, roughly equal contri- 
butions from different rookeries, and large sample siz- 
es. Even in the opposite case (with overlapping hap- 
lotypes, a single dominant rookery with other rookeries 

contributing little or nothing, and small sample sizes), 
the differences in point estimates are relatively minor 
and stem from two sources: (1) the difference between 

using the mean vs. the mode as a point estimate and 

(2) the MCMC prior. 
The other difference between ML and MCMC meth- 

ods is that MCMC methods (like all Bayesian ap- 
proaches) necessarily incorporate some estimate of pri- 
or information. The prior is typically made weak (one 
assumes that there is little prior information), but it 
still has an effect in any part of the estimation problem 
where there is little information in the available data. 
The priors suggested by Pella and Masuda (equal con- 
tributions from all rookeries, and equal haplotype fre- 

quencies in all rookeries) tend, in those places where 
the data shed little light, to shift the estimate toward 

equal contributions and to predict greater uncertainty 
in the estimates. Depending on whether the assump- 
tions made by the priors match the "true" situation 

(the assumptions or parameters in the simulation), the 

priors may make the estimates either better or worse. 
For example, if some haplotypes are widely distributed 

among rookeries but are at low frequency in each rook- 

ery, such that they will often be missed by sampling 
error, the Bayesian prior will improve the estimates by 
making the right assumption; conversely, if haplotypes 
are really restricted to a few rookeries and are com- 

pletely absent elsewhere, the prior will degrade the 
estimates by making the wrong assumption. We con- 
clude that ML methods are more or less at the limit of 

efficiency, extracting as much usable information as is 
present in the data set; without making further as- 
sumptions in the form of a prior, one can play with the 
bias-variance trade-off, but cannot reduce the total er- 
ror of estimation. 

Confidence limits.-In contrast to the minor differ- 
ences in point estimates, the confidence limits esti- 
mated by ML and MCMC are different in an important 
way (Table 2). The use of a Bayesian prior in the 



770 BENJAMIN BOLKER ET AL. Ecological Applications 
Vol. 13, No. 3 

TABLE 2. Simulation results: bias, variance, error, and minimum/mean/maximum of coverage by turtle rookery, for UML 
(unconditional maximum likelihood) and MCMC (Markov Chain Monte Carlo) methods. 

Factors 

Haplo- Rare UML MCMC 
type con- Rare Sam- Estimatell (%) Coverage? Estimatel (%) Coverage? ratio, trib.t hap.t ple 
cli (%) (%) size? Bias Var. Error Min. Mean Max. Bias Var. Error Min. Mean Max. 
5 0.0 0 25 0.754 43 43.7 82 88.6 96 1.08 27.9 29.2 87 96.2 100 
5 0.0 0 50 0.431 25.7 25.9 83 90.4 97 1.5 18.5 21.4 82 95.4 100 
5 0.0 0 100 0.312 10.8 11 80 89.6 97 1.72 8.08 12.6 93 97.2 100 
5 0.0 4 25 2.39 68.8 76.1 71 84.8 94 2.26 36.3 43.2 94 96.8 98 
5 0.0 4 50 1.67 35.7 39.4 76 87.8 98 1.56 21.7 24.3 96 97.2 99 
5 0.0 4 100 1.06 19.4 21 77 88.8 97 1.48 13.6 16 94 96.6 99 
5 2.5 0 25 1.03 45.5 46.7 81 88.2 98 0.855 31.3 32.1 92 97.4 100 
5 2.5 0 50 0.61 24.6 25.1 91 94.0 96 1.1 17.9 19.8 95 96.8 98 
5 2.5 0 100 0.126 11.5 11.5 91 94.6 99 1.32 9.72 13.5 92 94.4 96 
5 2.5 4 25 0.904 65.9 67.2 90 92.0 95 1.06 38.9 40.3 95 98.0 100 
5 2.5 4 50 0.872 41.3 42.4 93 94.6 96 0.74 27.7 28.6 96 98.2 100 
5 2.5 4 100 0.417 19.8 20 92 96.2 99 1.38 13.8 17.3 95 98.0 100 
8 0.0 0 25 0.427 30.7 30.9 83 89.2 96 1.02 22.5 23.6 87 95.6 100 
8 0.0 0 50 0.25 17.7 17.8 82 90.0 96 1.28 15 17.4 93 97.2 100 
8 0.0 0 100 0.231 7.44 7.51 73 87.8 97 1.21 7.94 10.3 92 96.2 100 
8 0.0 4 25 1.77 47 51.5 66 81.8 95 2.11 30.1 35.3 94 94.6 95 
8 0.0 4 50 1.35 26.2 28.9 74 86.4 96 1.28 20.4 22.1 94 95.8 97 
8 0.0 4 100 0.84 13.6 14.8 71 85.4 96 1.26 12.3 14 93 95.4 98 
8 2.5 0 25 0.606 33.3 33.7 77 87.4 96 0.867 25.3 26.2 89 96.6 100 
8 2.5 0 50 0.323 19.4 19.5 89 94.4 97 1.17 17.4 19.6 92 95.2 98 
8 2.5 0 100 0.179 8.72 8.76 90 94.2 98 1.08 9.69 12.1 88 93.0 97 
8 2.5 4 25 1.09 52.9 54.6 88 89.6 93 1.09 34.5 35.8 91 96.0 100 
8 2.5 4 50 0.702 28.8 29.5 92 95.4 97 0.897 22.7 24.1 94 97.0 99 
8 2.5 4 100 0.412 14.3 14.6 95 96.4 97 1.1 12.9 15.1 94 96.6 100 

Notes: Simulations are based on five rookeries (structured as in Fig. 2). Different simulation runs vary the ratio of common 
to intermediate haplotype frequencies (c/i). 

t Frequency of rare haplotype contributions from rookeries to the mixed stock. 
$ Frequency of rare haplotypes in turtle rookeries. 
? Sample size is per turtle rookery; the value is doubled in a mixed population. 
11 The mean absolute value of bias in percentage contribution of haplotypes; the mean variance and the mean error in 

percentage contribution. 
? Coverage is of nominal 95% confidence intervals. 

MCMC results does affect the answers given: it tends 
to increase the uncertainty in areas where the data shed 
little light, because it smears haplotype frequencies 
across rookeries. More important, MCMC treats un- 
certainty in a fundamentally different way than does 
the nonparametric bootstrapping used with ML meth- 
ods. Rather than simply resampling the observed 
counts, it allows the actual underlying frequencies to 
vary. This resampling allows MCMC to take a larger 
range of variation into account and produces wider con- 
fidence intervals. In the worst case scenario for MCMC, 
when contributions from low-contributing rookeries 
are really zero, the wider confidence limits are inap- 
propriate and lead to coverages somewhat greater than 
95%. However, the confidence intervals produced by 
MCMC are more robust across the board than those 
from bootstrapping with UML, which fail badly when 
many rookeries contribute sparsely. 

To follow up on the effects of sampling rare and 
common haplotypes, we ran the simulation described 
in Methods in which we estimated point estimates and 
confidence limits using all data, only common haplo- 
types, or only rare haplotypes. 

Fig. 3 shows that throwing away any information, 
from either common or rare haplotypes, degrades our 
ability to estimate contributions. However, rare hap- 
lotypes alone fall far short, even when they are really 
distributed across rookeries in an informative way. 

LOGGERHEAD AND GREEN TURTLE DATA 

Having checked the properties of MCMC estimates 
using simulations, we now turn to reanalyzing mtDNA 
data on loggerhead and green turtles sampled from in- 
dividuals caught in rookeries and in the mixed popu- 
lations. These data were originally presented by La- 
hanas et al. (1998) and Bolten et al. (1998), where they 
were analyzed using UML; we redo the analysis with 
CML, UML, and MCMC for comparison. The only 
difference from the originals in our analysis is that we 
do not lump Suriname and Aves Island together in the 
analysis of the green turtle data (Table 3). 

Point estimates.-Fig. 4 shows the results of running 
the MCMC algorithm on data from green (Chelonia 
mydas) and loggerhead (Caretta caretta) turtles (taken 
from Lahanas et al. [1998] and Bolten et al. [1998], 
respectively). The point estimates (which are the mean 
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TABLE 3. Point estimates from MCMC for loggerhead and 
green turtles. 

Method 

Rookery CML UML MCMC 

A) Loggerheads 
NWFL t t 0.109 
SOFL 0.684 0.706 0.542 
NEFL.NC 0.197 0.187 0.139 
Mexico 0.119 0.107 0.158 
Greece t t 0.0499 
Brazil t t 0.00153 

B) Green turtles 
FL 0.0546 0.0537 0.0386 
MEXI t t 0.0113 
CR 0.783 0.785 0.789 
AVES 0.149 0.148 0.107 
SURI t t 0.0382 
BRAZ t t 0.00341 
ASCE t t 0.00444 
AFRI 0.0133 0.0133 0.005552 
CYPR t t 0.00174 

t Estimated contributions 
- 

0.0001. 

values given in the MCMC chain) show few qualitative 
differences from previous estimates derived using 
UML with (nonparametric) bootstrap or jackknife con- 
fidence intervals. There is a general tendency for 
MCMC to predict nonzero contributions from more 

different rookeries. For example, MCMC estimates that 
all green turtle rookeries contribute ?0.001 of the 
mixed stock, and five rookeries (Florida, Mexico, Costa 
Rico, Aves, Suriname) contribute >0.005; UML pre- 
dicts that only four rookeries contribute >0.005, and 
none of the others contributes >0.001. We believe this 
is not simply the result of a different bias toward equal 
contributions, because the estimated contribution from 
Costa Rica stays the same at -0.78. (Note that in the 

original analysis of these data, Suriname and Aves were 
combined because their sampled haplotype frequencies 
are not significantly different; the correlation between 
estimates of Aves and Suriname contributions in the 
MCMC output is r = -0.5, suggesting uncertainty 
about the relative contributions of these two rookeries.) 
Similarly, for the loggerhead data, the UML results say 
that only SOFL, NEFL.NC, and Mexico contribute sig- 
nificantly (>0.01), whereas MCMC says that all rook- 
eries except Brazil contribute. These results appear to 
be driven largely by the difference between the mean 
and the mode of the posterior distributions; if we look 
at the Bayesian posterior modes (black squares in Fig. 
4), they agree much more closely with the results from 
ML methods. Beyond this pattern of greater contri- 
bution from low-contributing rookeries (which we will 
discuss further), there is little qualitative difference be- 
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FIG. 4. Comparison of CML, UML, and MCMC results for data from Bolten et al. (1998) and Lahanas et al. (1998). 
Rookery abbreviations are: FL (Hutchinson Island, Florida, USA); MEXI (Yucatain, Mexico); CR (Tortuguero,.Costa Rica); 
AVES (Aves Island, Venezuela); SURI (Matapica, Suriname); BRAZ (Atol das Rocas, Brazil); ASCE (Ascension Island, 
UK); NWFL (northwest Florida); SOFL (south Florida); and NEFL.NC (northeast Florida to North Carolina). Note the 
multiple modes (black squares) in the estimated distributions of contributions from some rookeries (for green turtles, Aves, 
Suriname, and Cyprus; for loggerheads, south Florida and Greece). (a) Green turtles, linear scale; (b) green turtles, log scale; 
(c) loggerhead turtles, linear scale; and (d) loggerhead turtles, log scale. 
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tween the point estimate results from MCMC and UML 
for these data sets. 

Confidence intervals.-Finally, we examine the con- 
fidence intervals for the turtle data derived from UML 
with bootstrapping and from MCMC. The 95% confi- 
dence intervals from MCMC lead to major differences 
in conclusions about the presence or absence of con- 
tributions from particular rookeries. When we take 

sampling uncertainty into account appropriately, it be- 
comes very difficult to say definitively that a particular 
rookery is not contributing some individuals to a par- 
ticular mixed pool. Put another way, very large sample 
sizes are required to ensure that a few individuals, 
whose haplotypes would suggest a nontrivial contri- 
bution, have not been missed. For example, for the 

green turtle data, the upper 95% confidence for all rook- 
eries is >0.01; Surinam and Mexico both have plau- 
sible contributions >0.05. The confidence interval re- 
sults for loggerheads show less striking differences 
from the bootstrap confidence intervals, possibly be- 
cause there is a greater overall degree of uncertainty. 
The only noticeable difference is that MCMC suggests 
that Brazil could contribute up to 0.01 to the mixed 

population, rather than the definite 0.00 predicted by 
ML. 

These results are somewhat sensitive to technical 
details of the estimation procedure, in particular, to the 

Bayesian prior one chooses. However, the general pat- 
tern is clear and independent of the details: the point 
estimates given by MCMC suggest that more different 
rookeries are contributing to the mixed stocks, and the 
confidence intervals suggest that even more rookeries 

may be contributing at significant levels. 
To further illustrate this phenomenon, we present a 

rough simulation of the expected results from resam- 

pling the green turtle data at different levels (Fig. 5). 
The upshot is that contributions from Suriname could 
not be ruled out without a total sample size of 5000 
individuals, whereas those from Mexico require 2000 
individuals. Whether contributions of 0.01-0.02 sig- 
nificantly affect the population dynamics of the turtle 
mixed stock remain to be seen, but it is very hard to 

reject them on statistical grounds. 

DIscusSION 

MCMC methods: pros and cons 

Markov Chain Monte Carlo methods present both 

opportunities and difficulties. The opportunities are 
that they take sampling error into account more broadly 
than does nonparametric bootstrapping, and that, as 
Bayesian estimates, they provide a complete account 
of our knowledge of the multidimensional distribution 
of contributions from different rookeries. 

The difficulties stem from their novelty (to biology; 
they are well established within statistics), which 
means that biologists will have to learn what assump- 
tions are involved, and will have to deal with differ- 

0.25 
o Suriname 

0.20 * Mexico 
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FIG. 5. Power to detect absence of contributions of green 
turtles from Suriname and Mexico. The UML estimates of 
contributions and haplotype frequencies were taken as the 
baseline parameters; contributions from low-contributing 
rookeries (Suriname, Brazil, Mexico, Ascension, Cyprus) 
were set to zero; and simulations were run by multinomial 
sampling. The figure shows the MCMC estimate and confi- 
dence limits for different total sample sizes. Half of the total 
simulated sample was taken in the mixed population, the other 
half was evenly divided between the nine rookeries. 

ences in interpretation that come from switching to a 

Bayesian framework. For those who are unwilling to 

accept the baggage of Bayesian thinking along with the 

power of MCMC methods (Dennis 1996), it is possible 
that parametric bootstrapping (resampling the data, al- 

lowing not just the samples, but also the underlying 
frequencies, to vary randomly) can achieve some of 
the same goals. Indeed, MCMC can be interpreted in 
a non-Bayesian way (Geyer 1996): we are exploring 
some of these options. 

Advantages.-In addition to their improved esti- 
mation of confidence intervals, MCMC methods can 

provide a complete picture of our uncertainty about 

rookery contributions. Because the MCMC chains rep- 
resent an estimate of the posterior probability distri- 
bution of the contributions, we can use the chains to 
gather further information about the contributions. For 
example, the histogram of the contributions from Aves 
Island shows multiple modes: the estimation procedure 
tells us that Aves could contribute either 0.00 or -0.12 
of the mixed population, whereas the UML estimate 
says only that the best estimate is -0.10 (Fig. 6). 

The posterior mean contributions estimated by 
MCMC incorporate the effects of multiple modes. 
Rather than estimating just the most likely contribution, 
we can use MCMC to find the mean value (or the me- 
dian) of the distribution of contributions. This differ- 
ence from ML methods is not just a method for finding 
better point estimates, or a different trade-off between 
bias and variance, but an entirely different way of look- 

ing at point estimates. 
In our implementation, the MCMC is considerably 

faster than bootstrapping with CML or UML, whether 
the likelihoods are found by direct search or by the 
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FIG. 6. Histogram of probability densities inferred from MCMC analysis of Aves Island contributions. Note the two 
modes at 0.00 and -0.12 (maximum UML estimate = 0.1). 

expectation-maximization algorithm (Pella and Milner 
1987), although the details vary between data sets. 

Finally, MCMC is extensible: we can incorporate 
other information such as rookery size, distance from 
mixed stocks, and spatial correlation into the estimates 
(we discuss this further in the Conclusions). The model 
that we use here can be implemented in the BUGS 
package (Spiegelhalter et al. 1995), which is a general 
framework for MCMC sampling; this accessibility will 
make it easier to experiment with models incorporating 
alternative information. We can also use MCMC to 

incorporate simple assumptions about the genetic struc- 
ture of sea turtle populations that will strengthen our 
estimation. For example, at present the procedure uses 
a weak prior that genotype frequencies are equal in all 
rookeries; as suggested by Pella and Masuda (2001), 
we could change this assumption to one in which ge- 
notype frequencies vary regionally (Mollid 1996). The 
real challenge, as is often the case with Bayesian meth- 
ods, is deciding how strong to make the prior. We have 

begun to experiment with hierarchical Bayesian models 
(Gelman et al. 1995), which use the data to fit param- 
eters of a submodel describing, e.g., geographic struc- 
ture, but still allow variation in individual rookeries' 
contributions around the values expected from their 

geographic location. 

Disadvantages.-The major disadvantages of MCMC 
methods are inherited from Bayesian statistics: novelty 
to ecologists, and the requirement of specifying prior 
probabilities. The novelty will wear off; despite its ap- 
parent complexity, the underlying statistical model is 

quite simple and incorporates the process of sampling 
error in a sensible way. 

Bayesian priors are valuable when we actually have 
results of previous experiments or reliable data fiom 

other sources that we want to include. Frequentists' 
main objections to priors are in cases, such as the pre- 
sent one, in which little other hard evidence is available 
(Edwards 1996). One can use a prior that corresponds 
to complete ignorance; another simple rule of thumb 
for setting prior strengths for the haplotype frequencies 
is to try to minimize the sum of squared deviations 
between the observed frequencies and the weighted 
average of the priors and the observations (as suggested 
by Pella and Masuda [2001]). Our simulations suggest 
that this is a good rule of thumb for the turtle data as 
well. One can (and should) always test the method with 
a range of prior strengths, especially to see whether 
weakening the priors changes the answers. We find that 
it does not (Edwards 1996). 

Confidence limits 

MCMC gives consistently wider confidence limits 
than ML methods for the contributions of different 
rookeries to mixed populations of green and loggerhead 
turtles. We do not know the "correct" answers for the 

green turtle and loggerhead turtle contributions; it is 

possible that the new, wider confidence intervals are 

simply an overly pessimistic estimate of our ignorance. 
The results of simulations do give us some guidance, 
however: for small sample sizes (or large overall sam- 

ples thinly spread over many haplotypes and rookeries), 
MCMC's additional level of sampling uncertainty gen- 
erally predicts larger confidence intervals. When rare 
haplotypes and rookery contributions are truly absent, 
UML confidence intervals are appropriate and 
MCMC's wider confidence intervals are slightly too 

pessimistic. When rare haplotypes and rookery contri- 
butions are rare but not absent and, hence, subject to 

sampling uncertainty, MCMC's confidence intervals 
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are appropriate and UML confidence intervals can be 
badly overoptimistic, if considered on a rookery-by- 
rookery basis. 

As more detailed information on haplotypes becomes 
available, and as rookery areas are split into finer and 
finer geographic regions, the number of "rare" hap- 
lotypes will increase (our unpublished data suggest that 
this is already happening). The only ways to overcome 

sampling errors in this case are to throw away rare data 

entirely; to lump rookeries, or haplotypes, together in 
coarser groups; or, using Bayesian methods, to make 
some assumption that the underlying distribution of 

haplotypes is smoother than the apparent heterogeneity 
of rare haplotypes. Throwing away data entirely, or 

coarsening the level of description from the level pains- 
takingly sampled in the field, is always unpleasant; we 
should consider moving to new methods that can han- 
dle sparse data of this kind. 

Inference about rare and missing haplotypes 

The main conclusion from employing novel 
(MCMC) methods to estimation of turtle origins is that 
we must not rely too heavily on rare and missing hap- 
lotypes to estimate rookery contributions: Incorporat- 
ing an appropriate model of sampling error into the 
estimation procedure shows that apparent signals in the 

presence and absence of rare haplotypes can easily be 
caused by the process of sampling itself. Rare haplo- 
types will always be present: increasing numbers of 

sampled individuals will turn up new rare haplotypes 
that were previously below the detection threshold, and 
increasing sequencing resolution of existing haplotypes 
will distinguish more different haplotypes. Therefore, 
we need to use methods that weight this information 

appropriately. If common haplotypes are similar across 
rookeries, making inference difficult, we should still 
not rely solely on apparent differences in rare haplo- 
types to estimate the sources of mixed populations (Fig. 
3). 

CONCLUSIONS 

Using ML and MCMC methods to analyze published 
data sets on the distribution of turtle genotypes reveals 
important differences in the results, particularly for the 
confidence limits. MCMC suggests considerably wider 
confidence limits for the contributions from rookeries 
that contribute small amounts to the mixed pool. This 
means that we can rule out neither the possibility that 
these rookeries contribute nothing at all, nor the pos- 
sibility that their contributions are several times higher 
than currently estimated. Although these contributions 
would still be small in the context of the overall pop- 
ulation dynamics of the mixed population, they may 
have important implications both for recolonization 
and for the politics of conservation. 
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APPENDIX A 

A description of CML/UML methods is available in ESA's Electronic Data Archive: Ecological Archives A013-011-A1. 

APPENDIX B 

A description of Dirichlet distributions and shape parameters is available in ESA's Electronic Data Archive: Ecological 
Archives A013-011-A2. 
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