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Abstract: The use of archival tags on fish gives information of individual behaviour with an unprecedented high reso-
lution in time. A central problem in the analysis of data from retrieved tags is the geolocation, namely the infererence
of movements of the fish by comparing the data from the tags with environmental observations like temperature, tide,
day length, etc. The result is usually represented as a track; however, the spatial and temporal variability in the preci-
sion is often substantial. In this article, the particle filter is applied to geolocate Atlantic cod (Gadus morhua) in the
Baltic Sea, leading to a representation of the results as probability distributions for each time step, thus giving an
explicit representation of uncertainty. Furthermore, the method is used to estimate the magnitude of the error in the
measurements by the tags and the swimming velocity of the fish. The average swimming velocity during a day was
estimated to be around 0.20 m·s–1 for fish of ~60 cm length. The method is general and the presentation is formulated
to facilitate implementation for different systems where other quantities are observed.

Résumé : L’utilisation d’étiquettes enregistreuses donne des renseignements sur les comportements individuels des
poissons avec une précision temporelle toute nouvelle. Un problème important dans l’analyse des données provenant
des étiquettes récupérées est celui de la géolocation, c’est-à-dire de la détermination des déplacements du poisson en
comparant les renseignements recueillis sur l’étiquette et les observations dans le milieu, par exemple de la tempéra-
ture, de la marée, de la longueur du jour etc. Les résultats se présentent souvent sous forme de trajectoire, mais la
variation de la précision dans l’espace et le temps est souvent considérable. Dans notre travail, nous utilisons un
filtrage particulaire pour déterminer le positionnement de morues franches (Gadus morhua) dans la Baltique, ce qui
représente les résultats comme des distributions de probabilité à chaque échelon temporel, donnant ainsi une
représentation explicite de l’incertitude. De plus, la méthode sert à estimer l’importance de l’erreur dans les mesures
des étiquettes et dans la vitesse de nage des poissons. Nous estimons la vitesse moyenne de nage durant le jour à
environ 0,20 m·s–1 chez des poissons de ~60 cm de longueur. La méthode est générale et elle est présentée de façon à
être utilisée facilement dans des systèmes différents où d’autres variables à mesurer sont envisagées.

[Traduit par la Rédaction] Andersen et al. 627

Introduction

Observation of the behaviour of individual fish in situ is
difficult and constrained to short periods of time. The under-
standing of the behaviour of fish is therefore much less de-
veloped than that for terrestrial animals, for example, for
many fish stocks, not even the spawning location is known.
The appearance of small electronic archival tags have there-
fore been a welcome new tool for obtaining information
about fish. An archival tag is a small container mounted on
the back of the fish or inserted into the body cavity that logs
the state of the environment, e.g., pressure (depth), light,
temperature, or salinity, on a regular basis. When the fish is
caught, the data from the tag are recovered and provide in-

formation about the detailed behaviour of the fish over long
time spans.

The data from the recovered tag contain information about
vertical behaviour that can be used to infer changes in diur-
nal behaviour (Righton et al. 2001) or tune models of adjust-
ments of the swimming bladder (Godø and Michalsen 2000).
Temperature has been used in relation to the movement of
fish across fronts (Stensholt 2001). Much effort is invested
into using data from tags to geolocate the fish, i.e., to esti-
mate the movement. The geographical variation in day
length and the timing of sunrise or sunset can be used for
fish travelling distances of oceanic scale, e.g., tuna (Sibert et
al. 2003). For demersal fish like cod and flatfish living in
seas with tidal movements, the amplitude and phase of the
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tide can be inferred from the pressure changes. If there is a
sufficient spatial variability in the tide, this can be used for
geolocation (Hunter et al. 2003a, 2003b). Finally, variation
in the fields of temperature or salinity can be used by com-
paring the recorded data from tags with circulation models
(Nielsen et al. 2006; Neuenfeldt et al. 2007). Common for
all the methods is the need to cope with large and spatial
variations in uncertainties, governed by variations in the gra-
dients in the observed fields (Hunter et al. 2003a). A proper
geolocation, therefore, not only determines the most proba-
ble position of the tagged fish, but also the uncertainty asso-
ciated with the geolocation. Explicit calculation of the
uncertainty is a major focus of this study. Information from
geolocated fish provide valuable information needed for spa-
tial explicit management of fish stock, like the closure of
specific areas for fishing (marine protected areas, MPAs). If
many fish are geolocated, the information can be used to
discriminate among different local stocks or analyze the use
of MPAs.

The methods used for geolocation can roughly be parti-
tioned into heuristic and state–space-based methods. In the
heuristic methods, all the possible positions of a tag at a
given time is determined from the environmental observa-
tions. From these, the position with the best fit is selected
inside a range close to the current position of the tag, deter-
mined by the maximum velocity of the fish (e.g., Domeier et
al. 2005; Neuenfeldt et al. 2007). State–space-based methods
(most prominently the Kalman filter) are well known statisti-
cal methods used for tracking objects on radar (Harvey
1989). They have been used for wildlife telemetry (Ander-
son-Sprecher and Ledolter 1991), for geolocating simulated
turtles using Markov chain Monte Carlo (MCMC) (Jonsen et
al. 2003), and for geolocating tuna using the Kalman filter
(Sibert et al. 2003). Roughly speaking, they estimate the
most probable track that behaves according to a basic move-
ment model, typically a random walk, and corresponds to
the environmental observations from the tag. The simplest
state–space-based method is the Kalman filter, which as-
sumes that the errors, e.g., the differences between the ob-
servations from the tag and the modelled data (e.g., day
length), are Gaussian distributed and yield a Gaussian proba-
bility density function (pdf) for the position. This may be a
reasonable approximation for light- or tidal-based methods
far from land, but when the tag is close to land or the fields
that the tag is compared with are complex, this assumption
is no longer reasonable. This assumption can be relaxed by
using the particle filter (Ristic et al. 2004), which has been
used for geolocation on synthetic data (Nielsen 2004; Royer
et al. 2005). A strong feature of the state–space-based meth-
ods is that it is possible to estimate the parameters entering
into the movement models (Jonsen et al. 2003; Sibert et al.
2003). In the case of a random walk model, this would be
the effective diffusivity of the fish.

In this work, we will use the particle filter to geolocate
Atlantic cod (Gadus morhua) in the Baltic Sea based on sa-
linity, bathymetry, and recatch location. Moreover we will
demonstrate how not only the most probable value of the
parameters can be estimated, but their whole posterior distri-
bution. We will also show how a proper assessment of
uncertainty in the geolocation is made by combining the
uncertainty on the geolocation method itself with the uncer-

tainty with which the parameters are estimated. The method-
ology is general and can be applied to geolocate fish using
any available observations: light, tides, bathymetry, hydro-
graphy, recatch location, etc. Finally, we will show how the
geolocations can be used to infer the usage of a MPA by the
tagged fish.

Materials and methods

The aim of this methodological description is to provide a
readily useable recipe for using the particle filter for geo-
location and estimate model parameters. Therefore, rigor
will in some cases be sacrificed for clarity. For a more strin-
gent introduction to the particle filter for geolocation, see
Royer et al. (2005).

The result of the geolocation is a pdf describing the possi-
ble positions of the tagged fish for each time pn(x), where the
superscript n refers to the discrete time step, and x is the posi-
tion vector (in the horizontal plane: x = (xlongitude, xlatitude)). In
the application of a state-based method, the calculation of p
is done in two steps: (i) a forward in time estimation, where
the pdf at time n is based on the pdf from the previous step
and on measurements at the current step yn. Effectively the
pdf is therefore calculated on the basis of all previous mea-
surements: pn(x | y0…yn) and (ii) a smoothing step where in-
formation from the whole time series is taken into account at
each time step pn(x | y0…yN), where N is the number of steps.
The pdf during the forward estimation is constructed by
Monte Carlo simulation, such that it is the sum of a large
number of delta distributions or particles. The particles are
simulated based on a movement model and resampled using
weights calculated from the measurements yn. This basically
constitutes a standard particle filter (Doucet et al. 2001). The
smoothing step is a backward calculation where the particles
are also resampled backwards in the calculation. The pdf of
the tag positions depends on a number of parameters �. By
defining a likelihood of the whole pdf as a function of the
parameters �(�), the value of the parameters can be estimated
by maximizing the likelihood. Finally, the error estimates of
the tag position from the pdf is corrected by taking the pre-
cision of the estimation of the parameters into account,
thereby increasing the error estimate.

Movement model
The motion of the individual particles is described by a

movement model that corresponds to the basic movement of
the individual fish. The usual assumption is that the basic
movement is a random walk with Gaussian increments. This
has the disadvantage that there is a finite probability for an
arbitrarily large movement in finite time. As fish typically
have an upper limit for their maximum velocity, a movement
model is proposed where the new position is given by an
uniform random distribution within a radius given by the
maximum velocity U of the fish. Thus, the predicted posi-
tion of the ith particle in the nth time step ~xi

n is given by

(1) ~ cos ( )

sin( )
x xi

n
i
n i

i
iU t= +









 =−1 ∆ ξ

ψ
ψ

ψ πζi iwhere 2

where ∆ t is the time step, and ξi and ζi are drawn from a
uniform distribution between 0 and 1. For times larger than
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∆ t, this movement model corresponds to a random walk. For
areas with strong currents, these could be added to the
movement model.

Error model
Particles are associated with a weight wi

n, calculated from
the likelihood of the observation vector from the tag yn,
given the predicted position ~xi

n of the particle. For Baltic
cod, the observation contains three pieces of information:
salinity (yn

sal ), depth (yz
n), and for some of the measurements

also an estimation of the bottom depth (yn
depth).

The tag used in this study contain a calibration bias,
which is well modelled by a linear dependence on the salin-
ity, such that the real salinity s is given by the measured one
ysal as s = Asal + Bsal ysal. The error from the hydrodynamic
model is harder to model, and it is therefore assumed to be
normally distributed, with zero mean and a standard devia-
tion σsal independent of time. Thus, the contribution to the
weight from the salinity is

(2) w si
n
,sal sal0,= φ( ; )∆ σ

where φ(x; µ, σ) is a Gaussian density with mean µ and stan-
dard deviation σ for the value x. ∆s is the difference between
the salinity measured by the tag, corrected for the calibration
and the salinity in the model at the position of the particle
and the depth recorded by the tag (∆s s yi

n
z
n= (~ , )x –

( )A B yn
sal sal sal+ ). In practice, it turned out to be more conve-

nient to use the bias in salinity at two fixed salinities instead
of the parameters Asal and Bsal, such that Asal = ∆5 – 5 psu
and Bsal = (∆20 – ∆5)/(15 psu), where ∆5 and ∆20 are the bi-
ases at 5 and 20 psu, respectively.

To calculate the contribution to the importance weights
from the location of the bottom, it is assumed that the error
on the bathymetry zb is normally distributed with standard
deviation σb. In the cases where the bottom depth yn

depth can
be inferred from the tag, this gives a weight

(3) w zi
n

b, ( ; )depth 0,= φ ∆ σ

where ∆z z yb
n= −(~ ) )xi

n
depth is the difference between the bot-

tom depth from the bathymetry and the distance below the
surface of the fish registered by the tag. At the times where
the bottom depth cannot be estimated, we still know that the
bottom must be below the fish, i.e., ∆z cannot be (very) neg-
ative. The weight should therefore be small if the depth of
the tag is below the bathymetry and large if it is above.
Using the same error model for the bathymetry as above, the
weight becomes

(4) w z zi
n y

b

n

, ( ; )depth
depth 0, d=

−∞∫N φ ∆ σ

with the normalization N being calculated such that the in-
tegral of w from –∞ to the surface is 1. This can be formu-
lated with error functions as

(5) w zi
n
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The total importance weight is the product of the different
contributions:

(6) w w wi
n

i
n

i
n= , ,sal depth

which is normalized to form

(7) � /w w wi
n

i
n

i
n

i

= ∑
The importance weights will be used to resample the parti-
cles, such that those with higher weights are preferred over
those with lower weights.

Particle filter
The procedure used for simulating the particles in the par-

ticle filter is the following:
Step 0: The filter is initialized by setting all the Np parti-

cles to the deployment point, which is assumed to
be known without error.

Step 1: Simulate the movement of each particle using eq. 1.
If the particle is on land, a new position is tried.

Step 2: Calculate the weights �wi
n for each particle using

eq. 7.
Step 3: Resample the particles with replacement with a

probability proportional to their weight.
Step 3a: Form an index I n, where each entry refers to a

particle number before resampling, with probabil-
ity

(8) P j wi
n

j
n( ) �I = =

In practice this is done by first forming the cumu-
lative sum of the weights Fj. Then, for each entry
of I n, choose a random number ξi between 0 and 1
and find the particle j for which

(9) Ii
n

j
j iF= ≥min{ }ξ

Step 3b: Resample the particles at the current and previous
time steps with replacement using the index I n

such that the position of the ith particle at time n
and resampling m: xi

n,m is

(10) x xi
n n n

i
n

, ~= I

(11) x xi
n l n n l n

i
n l− − −= ∈ −, , [ )]I

1 where 1...( 1n

This resampling of the particles effectively weeds out those
with lower weights and replaces them with particles with
higher weights.

Steps 1 to 3 are iterated for all time steps (Fig. 1). At the
final time step information about the recatch position xcatch
can be included in the calculation of the weights:

(12) wi
N

i
N= −φ( | | ; )x xcatch catch0, σ

where σcatch is an approximate precision with which the
recatch position is known. This final step is important as it
contains much information, which is propagated back into
the track during resampling. It is also crucial information for
the estimation of parameters.

The particles xn,m represents the pdf of the position of the
tag at time n based on information from the times steps
1…m. This means that in the end we have x1…N,N, which is
the representation of the pdf of the location of the fish based
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on information from the whole time series. In this manner,
information is passed all the way back into the previous cal-
culated particles at each time step (Figs. 2a, 2b). In the pure
particle filter (Ristic et al. 2004), only the particles at the
current time step are resampled. The resampling of all the
time steps constitutes what in the milieu of the Kalman filter
is known as a smoothing step, during which information is
propagated all the way from the first time step to the last
and back again (Harvey 1989). It has been shown that the
particle filter parallel to the smoothing can be obtained ex-
actly by the resampling of the particles backwards in time
(Kitagawa and Sato 2001). The resampling is not without
consequences, as the number of different particles declines
during each resampling. This leads to a diluted representa-
tion of the pdf, in particular in the beginning of the track,
where the particles are resampled most times. This can be
compensated by having a large number of particles, but if
the track contains many time steps, this might not be feasi-
ble. In that case, the resampling in eq. 11 can be reduced to
a finite number of steps back in time, which usually resem-
bles the global estimate (Kitagawa and Sato 2001).

Estimation of parameters
The parameters of the model are the maximum velocity,

the standard deviation on the salinity, the two parameters for
the correction of the salinity, and the standard deviation on
the bathymetry: � = (U, σsal , ∆5, ∆20, σb). With the Kalman
filter, these parameters can be estimated from the tag data by
a maximum likelihood approach (Sibert et al. 2003). We use
another likelihood-based method, namely Bayesian maxi-

mum posterior probability, which has the advantage that we
not only calculate the most probable value of the parameters
but also the distribution of their values, and it is possible to
take prior information into account. Additionally, the tempo-
ral correlation of the measurements are taken into account.
Assuming that the measurements y are uncorrelated in time,
an approximation of the negative log-likelihood for an esti-
mated track given the parameters � is (Higuchi 2001;
Kitagawa and Sato 2001)

(13) � ( ) log ( | ) log� �= − = −
=
∑L y w
n

N
n

1

where wn is the average of the un-normalized weights of
each particle wi

n. The error on the measurements in eqs. 2
and 3 are assumed to be uncorrelated between measure-
ments, but in reality they are strongly correlated, e.g., a mea-
surement of salinity at one time step is quite similar to the
one at the next time step, as the movement of the fish and
the changes in salinity are typically slower than each mea-
surement. A measure of the correlation can be obtained by
assuming that the fish does not move, such that the auto-
correlation of, e.g., salinity in the area c(t) can be used. The
correlation time τ can then be calculated as τ = c t t

−∞

∞
∫ ( ) d . As

each observation is not independent of the previous one, this
should be reflected in the calculation of the likelihood. The
actual number of independent observations is equal to the
number of observations N divided by the estimated correla-
tion time τ. This is taken into account by dividing the nega-
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Fig. 1. Illustration of the steps in the particle filter: (a) The particles 3 days after release from the white star, without resampling.
(b) Contour plot of the weights calculated from the salinity and the bathymetry. At this point the tag is close to a bottom contour line.
(c) The particles left after resampling, based on the information at the current time step.

Fig. 2. Illustration of the distribution of particles at day 145 for tag 2 at different stages in the algorithm. (a) All 216 particles at day
145. (b) The particles at day 145 at the end of the calculation, when the particles have been resampled by the time steps from day 146
and onwards. (c) Particles from 50 realizations with random parameters. Note how the particles are clustered around the 45 m contour
line, which is the estimated bottom depth at this day.



tive log-likelihood with the correlation time τ, measured in
number of time steps:

(14) � ( ) log( )/� = −
=
∑
n

N
nw

1

τ

This solution to the problem is not a fully correct way of in-
cluding correlated errors. However, in this situation we do
not know what the exact correlation structure is, nor can we
estimate it. What we do know is that correlated errors will
degrade the performance of the estimators. The solution the
we have employed is motivated by the problem of estimating
a parameter µ based on noisy observations Xi = µ + Ei,
where Ei are correlated, with a correlation time that is small
compared with the number of measurements. For this situa-
tion, the estimator itself does not change with the auto-
correlation, but its variance is proportional to the correlation
time, so that the likelihood is inversely proportional to the
correlation time, just as we have done in eq. 14. Regarding
the form of the autocorrelation function of the error, the
most important contribution is model error in the circulation
model. Within the field of circulation modelling, little is
known about the correlation structure of model errors. In
this situation, equating the correlation time of the error with
that of the signal is to be seen as a first estimate. The best
argument supporting it is really that we have no other char-
acteristic time scales at hand, and neglecting the auto-
correlation will result in a grossly over-optimistic picture of
the uncertainty of the estimates.

Estimating the parameters � by optimizing the likelihood
with a standard Newton-type optimizer turned out to be dif-
ficult and unstable. Furthermore, the standard approximation
of the covariance matrix based on the curvature of the likeli-
hood turned out to be useless. This is because the likelihood
function itself is estimated from a number of simulated par-
ticles. The usual trick for optimizing likelihood functions
based on simulations is to fix the random seed, or in other
words, reuse the random numbers that the likelihood relies
on every time the likelihood is calculated. This is not suffi-
cient in our case, as the resampling in step 3 depends on the
parameter values. These two steps introduce small disconti-
nuities in the likelihood function, because even an infinitesi-
mal small change in the parameter values can cause a finite
jump in the likelihood. These discontinuities are reduced if
the number of particles are increased, but it would require a

huge amount of particles (and computation time) to reduce
the size of these discontinuities below the level of the nu-
merical precision required to reliably approximate the curva-
ture of the likelihood by a finite difference approximation.
Instead the following MCMC approach is suggested (Niel-
sen 2004). The algorithm is the Random Walk Metropolis–
Hastings (RWMH) (Gilks et al. 1996). In this algorithm, an
estimated parameter vector � makes a random walk in pa-
rameter space. For each new step, the likelihood of the pro-
posed step is tested, and if it is sufficiently better than the
current estimate, this step is accepted. In this way, the ran-
dom walker is being confined to the part of parameter space
with highest likelihood.

RWMH step 0: Initialize the parameters.

(15) �0
sal 5 20= ( , , , , )U zσ σ∆ ∆

(16) = ⋅ −(0.25 m s , 0.5 psu, 0 psu, 0 psu, 5 m)1

RWMH step 1: Sample a proposal parameter vector at iter-
ation step l: �′l from a normal distribution,
with mean �l−1 and fixed variances, speci-
fied as σ = 0.04 m·s–1, 0.2 psu, 0.4 psu, 0.4
psu, 0.2 m.

RWMH step 2: Calculate the likelihood �(�′l) using the par-
ticle filter and eq. 14. Note that in step 3b it
is only necessary to resample the particles
at the current time step.

RWMH step 3: Preferably accept the new proposal if the
calculated likelihood is smaller than the
previous ones. Specifically use

(17) �
� � �

�

�
�

l = ′ ≤ − ′ ′−
−

−

l l l
l

l

l

i
P

P
f (

o

U ( , ) exp[ ) ( )]
( )

0 1 1
1

1

� �

therwise







where P(�′l) is a prior distribution incorpo-
rating other known information about the
possible value of the parameters.

RWMH step 4: Increase the iterator l and go to step 1, until
L iterations.

An important practical note is that the negative log-
likelihood values in step 3 can not be reused, which implies
that �(�) must be recalculated every time it is needed. If the
values are reused, then the resulting chain tends to get stuck
for very long periods at the same values. This is due to the
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Fig. 3. (a) Contours of the bathymetry in the study area with 20 m equidistance. The island in the middle is Bornholm. The white star
just east of Bornholm is the tagging station. (b) Salinity at four different depths along the white line in the panel a, at the day when
the fish were tagged.



fact that � is simulated. Once in a while �(�) randomly hits a
very low value, and if not re-evaluated, this low value will
reject new proposals for a long time. When the calculation is
finished, a pdf of the value of the parameters can be con-
structed from the series �. Prior information was used in the
case of the calibration error on the salinity, which was re-
stricted to be in the interval [–5:5] psu. The values of the
other parameters were restricted to be only positive.

Error on track
An estimate of the uncertainty of the geolocation at a

given time can be found from the distribution of particles for
a given set of the parameters �: pn(x, �). If the parameters
are estimated with great accuracy, it would be sufficient to
consider the pdf for the most probable values of the parame-
ters. Since there is uncertainty in the estimation of the pa-
rameters, that has to be taken into account as well. This is
accomplished by making a large number of simulations for
random values of the parameters, taken from the RWMH se-
ries � l. For each of the randomly chosen parameter values �,
the pdf pn(x, �) for the position of the tag is calculated. The
final pdf is constructed by averaging all the pdfs:
p pn n= ( , )x � . This corresponds to the standard way of
generating confidence intervals for predictions based on esti-
mated regression models and also has a Bayesian interpreta-
tion in terms of the posterior distribution of the position
given the measurements. The effect of including the error on
the estimated parameters in the final pdf is that the particles
from many different runs with different parameters values
cover a much larger area than the run with just one set of pa-
rameter values (Fig. 2).

Results

To demonstrate the applicability of the particle filter for
geolocation of tagged fish, it will be applied to two data sets
obtained from tagged cod in the Baltic Sea. Information of
the salinities are obtained from a hydrodynamic model on a
5 km × 5 km grid every day and at 3 m depth intervals
(Neuenfeldt et al. 2007).

Tagging experiments
The cod were tagged in April 2003, just east of the island

Bornholm (Fig. 3a). The average length of the tagged fish
was 56 cm, and the two examples shown here were 59.5 and
57.6 cm. East of the tagging station is the Bornholm Basin, a
circular basin with a maximum depth of ~100 m. Further
east, at ~16.5°E longitude, is the Stolpe Trench, forming a
sill into the Gdansk Basin, located to the east of the map.
The driving part of the geolocation is the gradients in salin-
ity, which are most pronounced in the deeper waters
(Fig. 3b).

The tags measure pressure, salinity, and temperature, with
a temporal resolution between 5 and 15 min. To simplify the
example, information from the temperature has been disre-
garded. As temperature is highly correlated to salinity in the
deep water, the temperature does not contain much addi-
tional information.

To estimate the correlation time τ, the autocorrelation of
salinity in the centre of the Bornholm Basin has been calcu-
lated at different depths (Fig. 4). It is seen that correlation is
roughly exponential, c = e–t/T, with a time constant T of
~12.5 days. The correlation time can be estimated as

τ = =
−∞

∞
∫ c t Td 2 or ~25 days.

The time step used in the calculation was 1 day. The cal-
culation of the most likely set of parameters was done using
212 particles and 15 000 iterations, discarding the first 1000
iterations. For the final calculation of the pdfs, 216 particles
were used for each of 50 runs with random parameter val-
ues. The algorithm was programmed in MATLAB (The
MathWorks, Inc., Natick, Massachusetts) and run on a
3 GHz standard PC. A run with 200 days takes ~12 h for es-
timating the parameters and 2 h for the 50 realizations.

Ten tags that have been out from 54–158 days have been
geolocated and the parameters estimated (Table 1). The
maximum movement velocity varied between 0.04 and
0.33 m·s–1, with a mean of 0.20 ± 0.15 m·s–1.

Track 1
Just after the release, the fish seeks a depth of a little less

than 40 m and seems to stay in the same position without
much vertical activity for a fortnight (Fig. 5). At day 138, it
moves deeper in the water column. This continues until it
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Fig. 4. Autocorrelation of the salinity in the centre of the Born-
holm Basin (15.5°E, 55.3°N) has been calculated at depths from
20 to 90 m. The broken line corresponds to an exponential cor-
relation with a time constant of 12.5 days. Tag No. Days out Velocity (m·s–1) σz (m) σsal (psu)

1 144 0.035±0.051 0.87±0.37 0.84±0.78
2 105 0.26±0.30 1.3±0.77 3.9±1.2
3 126 0.054±0.048 1.2±0.45 0.60±0.91
4 108 0.13±0.12 5.3±3.8 2.4±1.1
5 144 0.34±0.36 5.1±4.6 4.0±2.5
6 77 0.29±0.13 5.9±4.0 2.6±3.2
7 154 0.20±0.087 5.7±4.6 3.3±1.2
8 67 0.21±0.14 13±7.8 10±7.7
9 54 0.24±0.14 9.4±5.5 3.0±2.0

10 158 0.21±0.14 7.8±4.0 1.9±0.84

Mean — 0.20±0.15 3.3±2.1 5.6±3.6

Table 1. Summary of estimated parameters from the tags, shown
as the mean ± 1 standard deviation.



reaches a depth of 90 m. Here it stays for longer than a
month, after which it moves to even lower depths, until it is
eventually caught. A typical observation from the time series
of the depth is that the fish frequently go to a fixed depth
level and then make excursions upwards in the water col-
umn. A likely interpretation is that the fish dwells at the bot-
tom and then feeds up in the water column. This fits well
with cod being a predominantly demersal species, often
feeding on pelagic species, in this case herring and sprat.
This is used to estimate the position of the bottom in the pe-
riods when the fish displays this behaviour. For each mea-
surement point, a guess of the possible location of the
bottom was made by finding the deepest point among the
measurements in the range ±12 h. If a large part of the mea-
surements is close to this depth, this depth can be assumed
to be the bottom. In practice, the histogram of the measure-
ments in the range was generated, and if more than 15% of
the measurements were within 10% of the depth range to the
deepest point, it was assumed that this point was the location
of the bottom. This criterion was chosen conservatively,
such that it did not make any erroneous identifications of the
bottom (Fig. 5).

The pdfs of the parameters show an interesting bimodal
distribution, most prominently in the errors on the depth σz
and salinity σs , with small secondary peaks at high values of
the errors (Fig. 6). These show up in the plot of the final dis-
tributions of possible locations as a finite probability that the
fish is going to the eastern basin (Fig. 6). An error in the
hydrographic model on the salinity of 10 psu and on the
bathymetry of 10 m is unlikely, and we can therefore ex-
clude this possibility. This could also have been achieved by
constraining the values of these parameters by further priors
in eq. 17.

Track 2
The calculations for this track were performed as for track

1 (Fig. 7). This example is more straightforward and predicts

that the fish stay close to the release position, probably with
a short southwards migration.

Population consequences
Having an explicit representation of the movement of a

representative number of fish from a population, it is possi-
ble to calculate the habitat use of the population as a whole.
However, having tagged fish in only one position, as in the
current case, does not provide a representative sample of the
population. Rather, it is a sample of the part of the popula-
tion, which at the time of tagging was residing in the area
where the tagging took place. Keeping that in mind, a
relevant question for Atlantic cod in the Baltic Sea is what
effect an enforced MPA had on the population. We have cal-
culated the pdf of all the M = 10 fish as

(18) p
M

p t tj
j

M

MPA
1

d( ) ( , )x x= ∫∑
=1

where the time integral is over the time period when the
MPA was enforced. This shows that on average, the MPA
was protecting around 10% of the tagged population
(Fig. 8). To be more efficient, the MPA should be increased
in the southerly direction, and the time period should be
shifted to later in the season.

Discussion

With the introduction of the particle filter into the toolbox
for analysis of data from electronic tags, the ability to make
accurate geolocation has been greatly improved. We have
made a practical introduction on how to apply the particle
filter, with particular focus on making a correct estimation of
the error on the geolocation. This is particularly important
for cases where the error structure is not simple, e.g., when
the tags are geolocated using hydrographic data, when the
tags are close to land, or when there are substantial uncer-
tainty in the parameters entering into the geolocation. Apart
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Fig. 5. The depth recorded by the tag over the period from the release of the fish till it was caught. The light-shaded area indicates the
estimation of the minimum bottom depth. The areas with the darker shading is when it was assumed that the minimum depth was equal
to the bottom depth. Also shown are the initiation of migration (b) and examples of activity at night and inactivity during daytime (c).



from the evaluation of the error, we have shown how to take
information from the bathymetry into account. This is valu-
able information, in particular when the bottom depth can be
confidently estimated. This will be of particular importance
for geolocation of demersal species like flounder, rays, and
skates. The method for determining the bottom depth pre-
sented here is fairly heuristic, and therefore the parameters
were chosen conservatively, to avoid false estimations. In
tidal regions, the sinusoidal tidal signal will be evident in
the pressure signal when the fish is at the bottom (Metcalfe
and Arnold 1997). In these cases, the bottom depth can be
confidently determined, rendering the method more power-
ful. In areas with strong tidal currents, fish have been shown
to utilize these for transport by changing their vertical posi-
tion in the water column in phase with the tidal cycle
(Harden Jones et al. 1979). In that case, information about
the current should be taken into account in the movement
model.

The use of the particle filter for geolocation has been
demonstrated on synthetic data previously (Royer et al.
2005). In this case, only a forward estimation was demon-
strated, which mean that the method is not global in time.

By also applying a smoothing step (step 3b), we have made
a global estimation of the track. This weeds out dead ends in
the estimated track, but more importantly it ensures that in-
formation from the catch location is propagated backwards
through the time series, thus substantially improving the ac-
curacy of the geolocation.

The method was demonstrated on tag data from Atlantic
cod in the Baltic Sea, used previously for geolocation with a
simpler method (Neuenfeldt et al. 2007). The particle filter
specifically identified periods where the geolocation was
very uncertain and periods where the position of the fish can
be well established. A particular feature of this example is
the use of the estimate of the bottom depth at times when it
is available. In the Central Baltic Sea, there are frequent pe-
riods of anoxic conditions near the bottom in the deep basin,
such that cod are unable to reach the bottom, and conse-
quently no information about the bottom depth can be ob-
tained. The two examples were from a year with favourable
oxygen conditions, such that cod could reach the bottom at
all times; however, still in that case, reliable estimates of the
bottom depth were only found in less than half the time pe-
riod. The calculated confidence intervals are rather large,
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Fig. 6. The estimated parameters and probability density function (pdf) of track 1. The pdf is formed by assembling the particles from
50 realizations of the particle filter with random parameter values taken from the calculated distribution, including cross correlations.
The light and dark grey contours are 95% and 66% confidence intervals, respectively. The stars are the catch–release positions, and the
black dot is at the point with highest probability.
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Fig. 7. The estimated parameters and probability density function (pdf) of track 2. The pdf is formed by assembling the particles from
50 realizations of the particle filter with random parameter values taken from the calculated distribution, including cross correlations.
The light and dark grey contours are 95% and 66% confidence intervals, respectively.. The stars are the catch–release positions, and
the black dot is at the point with highest probability.

Fig. 8. (a) The probability density function (pdf) of all the tags in the period from Julian day 135 to 240 as calulated from eq. 18.
The hatched area is the marine protected area (MPA), where fishing was prohibited during that period. (b) The probability that a given
fish was inside the MPA as a function of time for each fish (broken lines) and average (thick line). The shaded area is the time period
when the MPA was enforced.



showing that it is not possible to geolocate fish accurately.
However, it is clearly possible to identify in which basin the
fish resides and also indicate in which part of the basin it is.

The estimated maximum daily average velocities were
around 0.20 ± 0.15 m·s–1. These velocities are similar to the
theoretically estimated migration velocity, which is around
0.3 m·s–1 for this size of fish (Ware 1978). However, some
fish had smaller estimated movement rates. This indicates
that either the fish do not migrate in a straight line or they
do not migrate uninterrupted during a whole day. This also
points to a possible weakness in the random walk movement
model. In this model, it is most probable that the fish does
not move at all. Within the scale of accuracy of the geo-
location, this is probably true in periods where the cod are
foraging in a limited area. As foraging may very well be the
preferred mode of activity, the estimation of the movement
velocity is dominated by this. A more accurate movement
model would split the possible movement into two different
modes: foraging and migration. The foraging mode is de-
scribed by a random walk, whereas migration is a movement
with a preferred direction and a higher mean velocity. This
could be taken into account in the particle filter in a similar
way as when aircrafts with different manoeuvring modes are
tracked (Ristic et al. 2004). This was also done by Morales
et al. (2004), however, without considering measurement er-
ror. Making the movement more advanced also means intro-
ducing more parameters. With the current data set, there is
simply insufficient information available to reliably estimate
more than one parameter in the movement model. It may be
possible to apply such a model where the basic information
is more accurate, i.e., fish geolocated using tides, eventually
in combination with temperature (Nielsen et al. 2006).
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