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Abstract
Statistical and dynamical model simulations have been commonly used separately in El Niño–Southern Oscillation (ENSO) 
prediction. Current models are imperfect representations of ENSO and each of them has strength and weakness for cap-
turing different aspects in ENSO prediction. Thus, it is important to utilize the results from a variety of different models. 
The Bayesian model averaging (BMA) is an effective tool not only in describing uncertainties associated with each model 
simulation but also providing the forecast performance of different models. The BMA method was developed to combine the 
NCEP/CPC three statistical and one dynamical model forecasts of seasonal Ocean Niño Index (ONI) from 1982 to 2010. The 
BMA weights were derived directly from the predictive performance of the combined models. The highly efficient expecta-
tion–maximization (EM) algorithm was used to achieve numerical solutions. We show that the BMA method can be used 
to assess the performance of the individual models and assign greater weights to better performing models. The continuous 
ranked probability score is applied to evaluate the BMA probability forecasts. As an elaboration of the reliability diagram, 
the attributes diagram is used that includes the calibration function, refinement distribution, and reference lines. The combi-
nation of statistical and dynamical models is found to provide a more skillful prediction of ENSO than only using a suite of 
statistical models, a single bias-corrected dynamical model, or the equally weighted average forecasts from all four models. 
Probability forecasts of El Niño events based only on winter ONI values are reliable and exhibit sharpness. In contrast, an 
under-forecasting bias and less reliable forecasts are noted for La Niña.

1 Introduction

The El Niño–Southern Oscillation (ENSO) is a dominant 
large-scale coupled ocean–atmosphere phenomenon that 
strongly influences global climate and weather (e.g. Ras-
musson and Wallace 1983; Glantz 2001; McPhaden et al. 
2006; Sarachik and Cane 2010). As such, the predictabil-
ity of climate and weather systems throughout the globe 
highly depends on the accuracy of ENSO prediction. It is 
thus of great importance to improve understanding and make 
more skillful and reliable forecast of ENSO. Significant pro-
gress has been achieved in forecasting ENSO in the past 
(e.g., Chen et al. 1995; Barnston et al. 1999, 2012; Coe-
lho et al. 2004; Kirtman and Min 2009; Zhang et al. 2017). 

Traditionally, ENSO forecasts are obtained through dynami-
cal or statistical modeling.

Statistical models are produced by the statistical relation-
ships with the historical data. Over the last three decades, the 
National Centers for Environmental Prediction (NCEP)/Cli-
mate Prediction Center (CPC) of NOAA has developed some 
statistical tools for monthly and seasonal sea surface tem-
perature (SST) forecasts in the tropical Pacific that include: 
Constructed Analogues (CA) (van den Dool 1994), Canoni-
cal Correlation Analysis (CCA) (Barnston et al. 1994; He 
and Barnston 1996) and Markov Model (MKV) (Xue and 
Leetmaa 2000). We use the seasonal SST forecasts from 
these three statistical models. The skill of CA is competitive 
with other empirical as well as dynamical methods (Barn-
ston et al. 1994). An evaluation of the period 1996–1998 
(Barnston et al. 1999; Landsea and Knaff 2000) shows CA 
and CCA to be the clear frontrunners among the empirical 
methods. Statistical models are useful for the foreseeable 
future due to their reduced cost and simplicity to develop as 
compared to dynamical models, which add in the difficulty 
of dealing with the complexity of nature.
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Dynamical models are produced by the physical under-
standing of the atmosphere, land, ocean, and their interac-
tions. One of the advantages of dynamical models is that 
they attempt to capture nonlinear interactions of climate 
systems and are adaptable to shifts in climate regimes. The 
Climate Forecast System Version 2 (CFSv2) is one of the 
most widely used fully coupled dynamical models. It was 
made operational at the NCEP in 2011. The CFSv2 model 
greatly improves the global SST forecasts and creates a vast 
array of products for subseasonal and seasonal forecasting 
with an extensive set of retrospective forecasts (Saha et al. 
2014). Previous studies suggest that CFSv2 has a statisti-
cally significant improved and visibly better probabilistic 
reliability of ENSO prediction than CFSv1 model (Barnston 
and Tippett 2013).

Statistical and dynamical models have strengths and 
weaknesses in predicting ENSO which indicates that if only 
one type of model is considered and implemented, it can 
only provide a limited predictability of climate variables and 
may ignore and underestimate the uncertainty of the ENSO 
prediction. The strengths and weaknesses of individual mod-
els have led model evaluation studies to conclude that “no 
single model can be considered ‘best’ and it is important to 
utilize the results from a range of coupled models” (McA-
vaney et al., 2001). The above reasons inspired the current 
study of combining multiple models in Nino 3.4 SST fore-
casts. Use of multi-model averaging is a promising approach 
that takes the advantages of the statistical and dynamical 
information and therefore produces more skillful predic-
tions than a forecast derived from a single model simulation. 
Thus, a multi-model prediction system is of great impor-
tance to forecast the behavior of ENSO. There is a gen-
eral consensus in the seasonal forecasting community that 
probabilistic forecast information should be adopted (e.g., 
Kirtman and Pirani 2009). More specifically, Tebaldi et al. 
(2004) suggested that a Bayesian probabilistic approach is 
a useful platform from which to synthesize the information 
of simulation.

The Bayesian model averaging (BMA) method was 
concisely presented by Raftery et al. (2005) as a statisti-
cal method for postprocessing the ensembles and producing 
probabilistic forecasts from ensembles in the form of predic-
tive probability density functions (PDF). BMA weights can 
be used to estimate the relative importance of each model 
and hence used as a basis for selecting models (Raftery et al. 
2005). In other words, the BMA weights of models can be 
considered as their relative contribution to predictive skill 
over the training period. Thus, BMA differs from other 
model averaging methods in that it not only describes the 
uncertainty associated with model simulations but also pro-
vides the diverse capabilities of different models (e.g. Fang 
and Li 2016). The BMA method has been widely applied to 
various scientific areas, including: soil moisture simulation 

(Tian et al. 2012), economic forecasting (Faust and Wright 
2013), meteorology and hydrology problems (Raftery et al. 
2005; Gneiting et al. 2005; Min et al.. 2007; Vrugt and Rob-
inson 2007; Bishop and Shanley 2008; Wang et al. 2012).

In this study, we apply the BMA method to multi-model 
SST forecasts over the Nino 3.4 region. The aim is to use 
BMA to weight a combination of statistical and dynami-
cal models so that the weighted estimate is a better pre-
dictor of ENSO than any single model. The BMA weights 
are derived directly from the predictive performance of the 
combined models. The maximum likelihood estimation 
of model parameters based on Expectation–Maximization 
(EM) algorithm (e.g. Chu and Zhao 2011) is used in this 
study. A prior that gives preference toward evenly distributed 
weights will be applied.

Section 2 describes the relevant information of the mod-
els and dataset that has been used in this study. The BMA 
methodology and verification tools are introduced in Sect. 3. 
In Sect. 4, the results are presented and analyzed. In Sect. 5, 
we conclude with a discussion of the strengths and weak-
nesses of BMA and what we consider promising directions 
of extending this work.

2  Data and description of four operational 
forecast models

The data used in this study are the seasonal sea surface tem-
perature (SST) forecasts in the Niño 3.4 region (5°N–5°S) 
(170°W–120°W) from 1982 to 2010 using four climate mod-
els managed by the Climate Prediction Center (CPC). The 
three statistical models are CA, CCA, and MKV, whereas 
the dynamical model is the CFS v2. The CA model pro-
duces a statistical forecast that is a linear combination of past 
observed anomaly patterns in the predictor fields such that 
the combination is as close as desired to the initial state (or 
‘base’). This can be expressed as Aα = b where α is deter-
mined by minimizing the distance between A (predictand) 
and b (predictor) (Van Den Dool 1994). This can be achieved 
by a least square fit using standard matrix inversion as mul-
tiple linear regression. The CCA model is a multivariate 
regression technique that relates patterns in the predictor 
fields to patterns in the predictand field (e.g., Yu et al. 1997). 
The Markov Model is a statistical model built in a reduced 
multivariate empirical orthogonal function (MEOF) space 
and represents the sea surface temperature anomaly, sea 
level and wind stress anomaly fields. In the MEOF calcula-
tions, the anomalous SST and sea level fields are normalized 
by the square root of the total variance and then combined 
to construct the covariance matrix. The Markov model is 
defined by  Xt+1 =  AXt + �t, where  Xt is the principle com-
ponents of MEOF at the tth month, A is the transition matrix 
and �t is the residual (Xue and Leetmaa 2000).
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The dynamical model used in this study is the CFSv2 
model. It was made operational at NCEP in March 2011 and 
provides retrospective forecasts (also known as hindcasts) 
from 1982 to 2010 and onward for real time subseasonal 
and seasonal predictions (Saha et al. 2014). The CFSv2 data 
have a negligible systematic error in the later years (after 
1998), whereas the earlier years have a modest cold bias. 
This occurs because in later years the models are initialized 
with much more data. Thus, the dynamical model (CFSv2) 
retrospective forecasts need to be calibrated. This was done 
by correcting the modest cold bias before 1998 and using 
linear regression on the bias corrected data. All the data 
used in this study are 3-month running averages of SST fore-
cast for Niño 3.4 from 1982 to 2010 (hindcast analysis time 
period) with lead times of one to 7 months. The observation 
data are available at the CPC website.

A hindcast is also known as historical re-forecast or ret-
rospective forecast and integrates the model forward in time. 
The difference between a forecast and hindcast is that the 
latter performs the forecast again using the information that 
was not available originally. That new information might be 
observations (for assimilation or for verification), assimila-
tion system, or forecast model. For example, let  t0 be the 
time instant of interest,  t−1 be some time before  t0, and  t+1 
be some instant in time after  t0. Initializing the model at 
 t−1 and runs through to  t+1. If a forecast system can make 
use of observations at  t0, then it would be used in the same 
way that it would with a forecast. Figure 1 illustrates the 
lead time structure for a forecast of the winter target season 
(December-January-February) of 1984/1985. Each of the 
four rows represents a different lead time. For a 1 month lead 
time, October is the latest observation available at the issued 

time for forecast of December-January-February (DJF). This 
works similarly for the other lead times. For convenience, 
the words “hindcast” and “forecast” are used interchange-
ably in this study.

3  Methodology and verification tools

3.1  Bayes’ Theorem

Bayesian theorem can be expressed as

where θ represents the parameter(s) of the distribution (for 
example, the mean and variance for a Gaussian distribu-
tion or a Poisson intensity rate), and y is the available data. 
The prior information regarding θ is quantified by the prior 
distribution f(θ) . The likelihood function p(y|θ) represents 
the data-generation process and the quantitative influence 
of different values of θ . The likelihood function p(y|θ) also 
expresses the relative “likelihood” of the data at hand as 
a function of different possible values for θ . The Bayesian 
approach combines the likelihood with the prior distribu-
tion to obtain the posterior distribution of θ, p(θ|y), which is 
the probability density function for the parameters θ charac-
terizing the current best information regarding uncertainty 
about θ.

3.2  Bayesian model averaging

Bayesian model averaging can be used for deriving the rela-
tive weights and variances of the normal conditional PDFs 
of the individual model. For different climate models, k = 1, 
2, …, K, the joint PDF of y conditional on  yk is given by a 
weighted average of the individual model predictive density 
as

where y is the observation (i.e., SSTs),  yk is the correspond-
ing forecast SST value from the model k,  wk is the BMA 
weight for model k and is a nonnegative value that satisfies ∑K

k=1
wk = 1 . The weights  wk are estimated by maximum 

likelihood based on the model k’s performance in the train-
ing data set. The simulation skill of the model during the 
training period relative to other models can be represented 
by the weights as well. The conditional PDF for the observa-
tion given the corresponding simulated variable for model 
k is fk

(
y|yk

)
 . It is assumed that fk

(
y|yk

)
∼ N

(
ȳk, 𝜎k

)
 is a 

Gaussian distribution and centered on the model forecast 

(1)P(�|y) = P(y|�)f (�)
∫

�
P(y|�)f (�)d�

(2)f (y|yk, k = 1, ...,K) =

K∑

k=1

wk ⋅ fk(y|yk)

Fig. 1  An example of the timing of the seasonal forecasts for 4 lead 
times in months. An arrow denotes the latest observation available for 
forecast
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SST values ȳk , with a standard deviation of �k . Note that ȳk 
and �k vary with different seasons and lead times. The BMA 
deterministic forecast results are computed as 

∑K

k=1
wkyk and 

this can be compared with each model forecast and the multi 
model ensemble average method.

The weights  wk and variances �2
k
 are estimated by maxi-

mum likelihood method (Raftery et al. 2005). The maxi-
mum-likelihood method is used to estimate the most prob-
able values for the parameters, given the observed data. 
Instead of maximizing the likelihood function itself, the 
logarithm of the likelihood function (or log-likelihood func-
tion) was used to get the maximum likelihood because of its 
simplicity and stability. For the forecast distribution of fk , 
the log-likelihood function,  is computed as

where the summation is over all k = 1… K models and 
t = 1…T observations of the training data set. In this study, 
the expectation–maximization (EM) algorithm is used 
to derive the maximum likelihood estimation for model 
parameters. The EM algorithm has advantages in this study 
because it is relatively easy to implement and computation-
ally efficient. As indicated in the following Eqs. (4) and (5), 
the EM algorithm has two steps: In the expectation step, the 
values of zt,(j+1)

k
 are calculated given the current values of the 

BMA weights and variances. The E step is given by Eq. (4) 
where the function fk returns the density of a normal distri-
bution with mean yt|yt

k
 and standard deviation �(j)

k
 , and the 

superscript j signifies iteration counter. In the maximization 
step, the values of wk and �2

k
 are updated using the current 

estimates of zt,(j+1)
k

:

The maximization step starts with an initial guess for the 
weights. In this study, a uniform distribution is given to all 
weights in iteration “0” so that the initial weight for each 
of the model is  K−1. The EM algorithm alternates between 
an expectation and a maximization step. The BMA weights 
are then estimated iteratively with Eqs. (4) and (5) until 
the algorithm reaches a convergence of the log-likelihood 

(3)(w1,… ,wk, �
2
k

)
=

T∑

t=1

log

K∑

k=1

wk ⋅ fk(y
t|yt

k
, �2

k
)

(4)z
t,(j+1)

k
=

w
(j)

k
fk(y

t�yt
k
, �2

k

(j)
)

∑K

k=1
w
(j)

k
fk(y

t�yt
k
, �

2
k

(j)
)

w
(j+1)

k
=

1

T

T∑

t=1

z
t,(j+1)

k

(5)�
2(j+1)

k
=

∑T

t=1
z
t,(j+1)

k

�
yt − yt

k

�2

T
∑T

t=1
z
t,(j+1)

k

function in Eq. (3). The convergence is defined as the change 
of  between two consecutive iterations is no longer greater 
than a predefined small tolerance  (10−8). In this study, BMA 
is developed for each season independently.

3.3  Verification tools

3.3.1  Verification scores

In this study, the performance of the BMA deterministic 
forecasts is assessed through root mean square error (RMSE) 
and skill score. BMA probability forecasts are verified using 
continuous rank probability score (CRPS) and the attributes 
diagram. For each of the forecasts, a leave-two-out cross-
validation is applied to the models because the autocorrela-
tion of hindcasts remains rather large at the first two lags 
and decrease abruptly after lag 2. We first introduce the root 
mean square error, then move on to skill score, CRPS, and 
the attributes diagram.

Root mean square error (RMSE) is the standard deviation 
of the prediction errors. It can be expressed as follows.

Equation (6) shows the root average squared difference 
between the forecast  (yk) and observation  (ok) pairs. The 
RMSE increases from zero (perfect forecasts) to larger posi-
tive values as the discrepancies between forecasts and obser-
vations become increasingly large.

Forecast skill is usually presented as a skill score, which 
can be interpreted as a percentage improvement over the 
reference forecasts. The generic form of the skill score is 
shown as follows.

The skill score is represented as a particular measure of 
accuracy A with respect to the accuracy Aref of a set of ref-
erence forecasts. The value of the accuracy measure that 
would be achieved by perfect forecasts is characterized by 
Aperf. Equation (7) can be constructed by using the mean 
absolute error (MAE), mean square error (MSE) or RMSE 
as the underlying accuracy measure. In our study, MSE val-
ues are used as the accuracy statistic. The skill score can be 
expressed as

(6)RMSE =

√√√√1

n

n∑

k=1

(
yk − Ok

)2

(7)SSref =
A − Aref

Apref − Aref

× 100%

(8)Skill Score =
MSE −MSEclim

0 −MSEclim

= 1 −
MSE

MSEclim

(9)MSEclim =
1

n

n∑

k=1

(ō − ok)
2
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where perfect forecasts have MSE = 0 and MSEclim is the 
climatological mean square error values of the predictand. 
If MSE = MSEclim, the skill score attains 0%, indicating no 
improvement over the reference forecasts.

The Continuous Ranked Probability Score (CRPS) is 
used to evaluate the difference between the BMA probability 
forecast and the observed values. It differs from the RMSE 
and skill score in that it focuses on the probability distribu-
tion of the forecast. It is defined as

where F(xt) is the forecast probability cumulative distribu-
tion function (CDF) for the tth forecast case and O(xt) is the 
observation CDF. The CRPS has a negative orientation, so 
the smaller the value the better the forecast.

3.3.2  Attributes diagram

The simple forecast performance measure such as the 
RMSE is a convenient and quick view but a comprehensive 
understanding of forecast quality can be achieved through 
a graphical format such as reliability diagram or attributes 
diagram. The attributes diagram is an elaboration of the reli-
ability diagram that includes the calibration function, refine-
ment distribution, and reference lines related to the algebraic 
decomposition of the Brier score and the Brier skill score 
(Wilks 2011). Specifically, the attributes diagram provides 
a geometrical framework to compare the empirical curve 
with lines constituting sets of reference points with respect 
to specific attributes (Hsu and Murphy 1986) and is adopted 
in this study. The attributes contain the reliability, sharpness, 
resolution and the uncertainty of a probability forecast with 
respect to the observation. Reliability is measured by how 
closely the forecast probabilities correspond to the condi-
tional frequency of event occurrence. A perfect reliable fore-
cast would be indicated by a reliability line plotted along the 
1:1 line between the forecast probability and the observed 
relative frequency. For example, when a probability forecast 
of 0.10 is issued, we would expect the event to occur 10% 
of the time.

Note that a forecasting system that simply forecasts the 
climatological probabilities of events may be reliable, but 
is not useful. Thus, it is useful to acquire the sharpness of 
the forecast as well. Sharpness is the tendency to forecast 
extreme values (probabilities near 0 or 100%) rather than 
values clustered around the mean, e.g., a forecast of clima-
tology has no sharpness. It also indicates the variability in 

(10)CRPS =
1

T

T∑

t=1
∫

[
F
(
xt
)
− O

(
xt
)]2

dx

(11)O
(
xt
)
=

{
0, x < x0
1, x ≥ x0

x0 is observation

the forecasts. Forecast systems that are capable of predicting 
events with probabilities different from the observed event 
frequency are said to be ‘sharp’. A forecasting system that 
has sharpness but not reliable is indicative of an unrealistic 
confidence. Resolution indicates the ability of the forecast 
to distinguish situations with distinctly different frequen-
cies of occurrence. In other words, it measures how well 
the observations are “sorted” among the different forecasts.

4  Results

In this section we present results of the application of BMA 
to SST forecasts for the Nino 3.4 region using CA, CCA, 
MKV, and CFS forecast tools from 1982 to 2010. We will 
first distinguish the difference between BMA determinis-
tic and probabilistic forecasts. Changes of the weights for 
individual models in different lead times and target seasons 
will then be discussed, followed by the RMSE, skill score, 
CRPS and the attributes diagram based on the cross-vali-
dation results of BMA and individual models for various 
lead times and target seasons. In particular, the reliability of 
seasonal ONI forecasts will be assessed.

4.1  Example of BMA probability forecast 
and deterministic forecast

Sometimes BMA probability and deterministic forecasts 
can be confusing. Here, we will give an example to distin-
guish the difference between these two kinds of forecasts. 
Figure 2 shows the BMA predictive PDF, weighted PDFs 
for each of four models and BMA deterministic forecast for 
one-month lead of August-October (ASO) 2004. The BMA 
predictive PDF (solid curve) is the weighted sum of four 
individual PDFs (broken curve). In Fig. 2, the observation 
is 27.53 °C (solid vertical line) and BMA deterministic fore-
cast is 27.06 °C (a red cross). The observation in this case 
falls into the 90% BMA prediction interval (dashed vertical 
lines), although the BMA deterministic forecast is slightly 
different from the observation. It is obvious that the esti-
mated BMA PDF provides a more reliable description of the 
probability forecast than any of the individual models. This 
indicates that BMA can be used to describe the uncertainties 
associated with each model simulation and provides a prob-
ability forecast. Probability forecast verification also can be 
applied to evaluate whether the observations are within the 
spread of expected outcomes.

4.2  BMA weights, lead times and target seasons

Figure 3 shows the BMA weights in lead one month for 
different target seasons [DJF, March-April-May (MAM), 
June–July–August (JJA) and September-October-November 
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(SON)] in the form of box plots. The distribution of the 
weights among the models varies in different target seasons. 
The weights represent each individual forecast tools’ perfor-
mance relative to other tools. In DJF, CA and MKV exhibit 
relatively high weights while CFSv2 does not receive any 
noticeable weights (almost zero). The location of the median 
is in the upper end of the box for CA and MKV, suggesting 
a tendency towards negative skewness. In MAM, CFSv2 is 
the model with the highest weight and the weights for CA 
are close to zero. The weights are distributed mainly on CA 
and the minimum weights are associated with MKV in JJA. 
In SON, CFSv2 and MKV received higher weights than CA 
and CCA. Throughout these four seasons, there is not a sin-
gle model that consistently has the best weight.

From Fig. 3, the weight of each model seems to change 
from one running season to another. There are several rea-
sons for changes in the weight of each individual model 
for different target seasons. First, Bayesian model averag-
ing is developed for each season independently so there is 
no persistence carried through from one season to another. 
Second, there is collinearity among forecasts from different 
models. Indeed, some of the model forecasts are highly cor-
related and not independent. Peng et al. (2002) discussed the 
unstable weights from the multiple linear regression tech-
nique resulting from the collinearity among the predictors. 
Third, the sample size used is relatively small (n = 38) so 
the weights may change for different seasons. However, the 
weight of each model does not vary dramatically with leads. 
To illustrate this point, each of the four models was selected 
for the target season when their weights are relatively high. 

For example, for the target season of AMJ (Fig. 4), the 
weight of the CFSv2 (~ 0.7 to 0.8) is very high from lead 
one to seven (months). For CA, its weight remains high and 
stable from lead one to five for the target season DJF. This 
is also the case for the CCA for the JFM target season. For 
MKV, the weight drops gradually from lead one to four, 
probably because of the nature of the imposed multivari-
ate first-order autoregressive process (i.e., a simple Markov 
chain).

To understand the relationship between model perfor-
mance and their weights, we display the RMSE and skill 
score of each individual model for lead one month in differ-
ent overlapping target seasons. Figure 5 shows that CFSv2 
performed the poorest compared to other models in DJF with 
the highest RMSE and lowest skill score. However, from 
February-March-April (FMA) to May–June–July (MJJ), 
CFSv2 performed the best with the lowest RMSE and the 
highest skill score relative to all three statistical models. 
The results of the forecast performance and the weights 
(Fig. 3) are obviously in agreement, where higher weights 
correspond to better forecast performance. These results 
also show that the BMA method can take advantage of the 
diverse capabilities of the different models.

4.3  Combination of statistical‑dynamical BMA 
models and comparison with other models

In the following, BMA is applied to two groups of mod-
els: one group consists of purely statistical models (CA, 
CCA and MKV) and another group is the combination of 
all statistical and dynamical models (CA, CCA, MKV and 
CFSv2). Figure 6a shows the summary of RMSE values for 
statistical-dynamical BMA models in different target sea-
sons and lead times. The RMSE has a negative orientation, 
implying smaller values correspond to a better forecast. In 
general, RMSE values are larger for longer lead times. A 
typical issue of many of the models in ENSO predictions 
is the poor performance when forecasts go through boreal 
spring (e.g., Kirtman and Min 2009). This so-called spring 
predictability barrier is also reflected in Fig. 6a. For exam-
ple, the forecast for July-August-September (JAS) made in 
January (lead 5 month) has a RMSE value of 0.6–0.7. This 
RMSE is relatively high compared to other seasons (e.g., for 
the target season of JFM also for 5 months’ lead). The boreal 
spring is a transition season when the tropical ocean–atmos-
phere interaction in the Pacific is usually the weakest and the 
ENSO signal is relatively not well defined.

We display the RMSE values of statistical-dynamical 
BMA minus the RMSE values of statistical BMA model in 
Fig. 6b. For most of the target seasons and lead times, the 
values are negative which indicates that the overall fore-
cast performance of statistical-dynamical BMA model is 
better than purely statistical BMA models. Therefore, the 

Fig. 2  An example of the BMA probability forecast (solid pdf), 
weighted individual model probability forecasts (CA, CFSv2, CCA, 
MKV), deterministic forecast of each model (circle) and BMA deter-
ministic forecast (red cross) for one-month lead of August-Septem-
ber-October 2004. The vertical solid line represents the observed 
value. BMA probability forecast is a weighted  sum of each model 
PDF. Dashed vertical lines are BMA 90% prediction interval
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Fig. 3  Box-plots of BMA weights in cross validation for lead 1 month and seasons DJF, MAM, JJA and SON. The box represents the interquar-
tile range of the weights and the thick line is the median. The outliers are characterized as the open circles
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statistical-dynamical BMA models outperform statistical 
BMA models in predicting the Nino 3.4 SST, especially 
through the spring predictability barrier due to the better 
performance of the dynamical model. Statistical models 
are developed on monthly or seasonally averaged data and 
receive inputs that are relatively older. In contrast, dynamical 
models run more frequently using the most recent observed 
data as input. Moreover, dynamical models ingest much 
more observations (such as the subsurface ocean conditions) 
using complex data assimilation schemes (Barnston et al. 
2012). These advantages allow dynamical models to forecast 

better and predict the important changes more accurately. 
Figure 6b also shows that the difference between statistical-
dynamical BMA models and statistical BMA models has 
become larger at longer lead times. Similar to Fig. 6b, a 
comparison is also made between the statistical-dynamical 
BMA model and the single dynamical model. Again, the 
optimal combination of a suite of models has a smaller 
RMSE than the CFSv2 for most leads and target seasons 
(not shown).

Figure 7 is the same as Fig. 6 but for skill score. The skill 
score has a positive orientation, so the larger the values the 
better the forecast. The spring predictability barrier of ENSO 
and the dependence of skill score on lead times are also 
indicated. In Fig. 7b, the differences are positive for most 
of the target seasons and lead months which indicate that 
statistical-dynamical BMA models outperform the statistical 

Fig. 4  BMA weights as a function of leads (months) for four selected 
models with different target seasons

Fig. 5  RMSE and skill score of each model at lead one month for dif-
ferent target seasons

(a)

(b)

Fig. 6  a RMSE of statistical-dynamical BMA models, b the differ-
ence of RMSE between the statistical-dynamical models and statisti-
cal BMA models for various leads (months) and target seasons
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BMA models. The skill score results are consistent with 
the RMSE results. The CRPS results are also displayed to 
validate BMA probability forecasts. Figure 8 shows similar 
results as the RMSE. Overall, the forecast skills have been 
improved by taking the advantage of the relative strengths of 
statistical and dynamical models through BMA, particularly 
during the ENSO spring predictability barrier.

4.4  A comparison of the BMA and multi model 
ensemble average (MMEA) methods

It is also of interest to compare the BMA forecasts with that 
of the multi model ensemble average (MMEA) forecasts, 
while the latter is a common approach for averaging multi 
model outputs by assuming an equal weight for each model 
conditional on the fact that the sum of model weights equal 
to one. Results of the difference between BMA and MMEA 

method in terms of RMSE values are shown in Fig. 9. This 
is calculated with the RMSE values of BMA determinis-
tic forecast (mean of the mixture density) minus the RMSE 
values of MMEA forecast (simply average the four model’s 
deterministic forecasts). In Fig. 9, the majority of RMSE 
values are negative (about 67% of all the lead months and 
target seasons), indicating that the BMA forecasts outper-
form MMEA forecasts for most of the target seasons and 
lead months, especially during spring and summer seasons. 
For some seasons such as DJF to FMA, MMEA is better 
than BMA but the differences of RMSE values between 
these two methods are very small (~ 0.00–0.05). Note that 
because hindcasts are used and the CFSv2 model has been 
calibrated to remove cold bias, the difference between hind-
casts from each model and the corresponding observation 
is small. Therefore, the difference in RMSE between the 
BMA and MMEA is also small, although a majority of the 

(a)

(b)

Fig. 7  Same as Fig. 6 but for skill score

(a)

(b)

Fig. 8  Same as Fig. 6 but for CRPS
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BMA hindcasts has a smaller RMSE than the MMEA hind-
casts. Moreover, BMA also considers the uncertainty of each 
model’s forecasts and uses this uncertainty to construct a 
predictive distribution instead of only a deterministic fore-
cast. In other words, the main advantage of the BMA method 
is that it provides a forecast distribution that can be used for 
probabilistic analysis and prediction.

4.5  Reliability in probability forecasts of large 
seasonal ONI values

To assess the overall statistical-dynamical BMA forecast 
reliability of ONI, the attributes diagram (Hsu and Mur-
phy 1986) for forecast probabilities of seasonal ONI larger 
than 0.5 (Fig. 10) are displayed. The CPC uses the ONI 
values in excess of + 0.5 °C (less than − 0.5 °C) for at least 
five overlapping seasons (3-month average) as criteria of El 
Niño (La Niña) episodes. Here, the attributes diagrams are 
made by pooling all the target seasons, lead times and years 
together (more than 2000 events). This approach is also used 
in Schepen et al. (2014) for verifying seasonal forecasts of 
Australian rainfall.

In Fig. 10, the points show observed relative frequency 
of ONI > 0.5, conditional on each of the i = 11 (i = 0.1, 0.2, 
0.3…1) possible forecast bins. The forecast probability bin 
width is 0.1. It is noticeable that the points are very close to 
the perfect forecast line (45° line) which indicates that the 
overall statistical-dynamical BMA probability forecasts are 
consistent with the observed ONI > 0.5 frequency and are 
reliable. No resolution means that a forecast of climatology 
does not discriminate between events and non-events at all. 
In this case, no points fall on the no-resolution line, and 
the forecast exhibit a substantial degree of resolution. The 

numbers next to the points (sharpness) express the relative 
frequency with which the event has been predicted (over 
the reference period and at all events) with different levels 
of probability.

Note that forecast systems that are capable of predicting 
extreme events (e.g., probability near 0 or 100%) are said 
to have “sharpness,” meaning it measures the specificity of 
the probabilistic forecast. Given two reliable forecast sys-
tems, the one producing the sharper forecasts is preferable. 
In Fig. 10, the majority of forecasts predict low probabilities. 
In other words, there is a tendency for forecast probabilities 
to be near zero (0.31) or at low forecast probabilities (e.g., 
0.19). Therefore, the forecasts in this case exhibit sharpness. 
The forecast system is also capable of predicting relatively 
high probabilities but such forecasts are less common (e.g., 
0.01). Points in the shaded area bounded by the lines of “no 
skill” and the overall sample climatology (i.e., the vertical 
solid line) indicate the positive contribution to forecast skill. 
In this case, all the points are located inside the shaded area.

The attributes diagram for the probability of ONI < − 0.5 
is shown in Fig. 11. In this diagram, the reliability curve 
lies mainly above the 45° line especially for higher forecast 
probabilities. This indicates that the statistical-dynamical 
BMA model slightly under-forecasts the probability of ONI 
< − 0.5 for higher forecast probabilities (forecast proba-
bilities too low). Nevertheless, the overall probability fore-
cast still contribute positively to the prediction skill. The 

Fig. 9  Difference of RMSE between the BMA and multi model 
ensemble average (MMEA) Fig. 10  Attributes diagram for forecasts probability of seasonal ONI 

larger than 0.5. This was made by pooling all target seasons, lead 
months and years together with 0.1 forecast bin width. The relative 
frequency of each of the forecast values is shown in the numbers. The 
45° solid line indicates perfect reliability. The no-resolution line is 
plotted at the same level of the sample climatological probability. The 
no-skill line is halfway between the perfect reliability and no-resolu-
tion lines



3383Improving the CPC’s ENSO Forecasts using Bayesian model averaging  

1 3

probability forecast of ONI < − 0.5 also exhibit sharpness. 
As a comparison, the reliability of forecasting ONI > 0.5 
is higher than forecasting ONI < − 0.5 using the BMA 
model (Figs. 10 and 11). Overall, statistical-dynamical BMA 
presents a reliable probability forecasts of ONI. Therefore, 
BMA can be applied not only to improve the forecast skill, 
but also provide a reliable probability forecast for ONI.

4.6  Reliability in probability forecast conditional 
on DJF ONI

Now we consider only the DJF ONI equals to or greater than 
(smaller than) 0.5 °C (− 0.5 °C) while ignoring ONI values 
in other seasons. This is motivated by the fact that ENSO 
usually reaches its peak phase in boreal winter. By doing so, 
our sample size is drastically reduced. Note that reliability or 
attributes diagrams are very sensitive to small sample sizes 
so the results presented here should be exercised in cau-
tion (e.g., Kirtman and Min 2009). Figure 12 shows that the 
probability forecasts of large and positive winter ONI values 
are reliable and all the points are inside the shaded area, 
indicating that the forecasts contribute positively to the pre-
diction skill. The forecasts also exhibit sharpness. However, 
compared to Fig. 10, the probability forecasts of large DJF 
ONI values have less reliability than that based on all the 
seasonal ONI. For example, when the forecast probability is 
equal to 0.5, the actual chance of observing the December-
January-February ONI equals to or larger than 0.5 is closer 
to 0.7. This is probably due to the smaller sample size used 
in forecasting winter ONI.

Figure 13 is the same as Fig. 12 but for the forecast prob-
ability of DJF ONI being smaller than − 0.5. This forecast 

is less reliable, for example, the forecast probability is equal 
to 0.3 but the actual observed frequency is close to 0.8. This 
is an indication of a substantial underforecasting bias. How-
ever, the majority of the points are inside the shaded area. It 
is interesting to note that the probability forecasts of large 

Fig. 11  Same as Fig. 10 but for the forecasts probability of seasonal 
ONI smaller than − 0.5

Fig. 12  Attributes diagram of the forecasts probability for December–
January–February ONI equal to or larger than 0.5. This was made 
by pooling all lead months and years together with 0.1 forecast bin 
width. The relative frequency of each of the forecast values is shown 
in the numbers. The 45° solid line indicates perfect reliability. The 
no-resolution line is plotted at the same level of the sample climato-
logical probability. The no-skill line is halfway between the perfect 
reliability and no-resolution lines

Fig. 13  Same as Fig. 12 but for the forecasts probability for Decem-
ber-January-February. ONI equal to or smaller than − 0.5
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and positive DJF ONI values are more reliable than forecasts 
of large and negative DJF values.

5  Summary and discussion

This study aims for applying the BMA approach to dynami-
cal and statistical models in forecasting SST over Nino 
3.4 region. The forecast validation was assessed by using 
leave-two-out cross-validation which provides an estimate of 
skill for forecasting independent events. Our results clearly 
indicated a couple of important findings. One of them is 
that BMA, a statistical postprocessing method, can provide 
deterministic and probability results of ENSO prediction by 
assigning weights to different models. The BMA estimated 
PDF was better adjusted than any of the individual models 
and the 90% prediction interval of the BMA PDF contains 
almost the entire observations. This occurs for up to 95% of 
the cases in the study (not shown).

Perhaps the most interesting result is that the BMA 
method can be used to assess the relative performance of the 
statistical and dynamical models in different target seasons 
and lead times and take the advantage of the strength of the 
models by assigning the weights. In other words, it gives 
greater weights to better performing models. Our results also 
indicate that the BMA weights change with target seasons 
for each individual model which implies that model perfor-
mance varies with target seasons.

BMA can be used to combine statistical and dynami-
cal models, with the weighted estimates shown to have a 
lower RMSE, lower CRPS, and higher skill score than only 
using a combination of three statistical models, a single 
bias-corrected dynamical model, or a simple multimodel 
ensemble average. The overall reliability and sharpness of 
the ONI forecasts from the statistical and dynamical mod-
els are assessed using the attributes diagram. The forecast 
probabilities are rather consistent with the observed relative 
probabilities, suggesting that the forecast probabilities are 
reliable and they also exhibit sharpness. We also restrict the 
analysis to only the large positive and negative winter ONI 
values. For large and positive ONI, there is a small degree of 
overforecasting at low forecast probabilities and some under-
forecasting bias at high forecast probabilities. For large and 
negative DJF ONI forecasts, a substantial underforecasting 
occurs across a broad range of forecast probabilities. If a DJF 
ONI attains 0.5 or beyond can be simply regarded as an El 
Niño event and a value smaller than − 0.5 as a La Niña event, 
El Niño forecasts seem to be more reliable than La Niña.

The bias-corrected CFSv2 model outperformed the sta-
tistical models with a higher skill score and lower RMSE 
during the spring predictability barrier due to the incorpora-
tion of the most recent changes in the observational evolu-
tion. Thus, combining with the CFSv2 model improves the 

forecast skill of ENSO, especially during the spring predict-
ability barrier. CFSv2 also makes more skillful predictions 
for longer lead times than the statistical models. Indeed, at 
longer leads (4–7 months), the weight of the CFSv2 is higher 
relative to three statistical models and this occurs nine to 
ten times out of the twelve running seasons (not shown). 
Dynamical models are capable of capturing nonlinear com-
pounding effects of anomaly growth in the climate system 
due to their time-marching design using small time steps, 
enabling faster evolution than statistical models. Trenberth 
(1998) also suggested that dynamical model forecasts show 
more skillful and reliable ENSO forecast in longer lead 
times.

Previous studies have shown that the model averaging 
method can be used to improve the skill of multi-model 
ensembles (Madigan and Raftery 1994). In this study, we 
use the BMA method to combine the statistical and dynami-
cal model and yield a more reliable and accurate forecast of 
ONI. This is due to the fact that BMA takes the strength of 
individual models to optimize a combined weighted-average 
forecast and to make more skillful predictions. Moreover, it 
allows us to determine which models are the most important 
in various target seasons and lead times. This method can be 
applied in other climate variables and models as well. The 
original BMA approach introduced by Raftery et al. (2005) 
assumes that the conditional probability density function of 
each individual model is adequately described by Gauss-
ian or Gamma statistical distribution. However, recent work 
(Rings et al. 2012) presented a variant of BMA with a flex-
ible representation of the conditional forecast distribution. 
The BMA method developed here, based on previous work 
(Sloughter et al. 2010; Wang et al. 2012), is thus applicable 
to a large fraction of research in atmospheric sciences and 
highly suitable for weather forecasting.
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