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ABSTRACT

A statistical–dynamical model for predicting tropical cyclone (TC) intensity has been developed using a

track-pattern clustering (TPC) method and ocean-coupled potential predictors. Based on the fuzzy c-means

clustering method, TC tracks during 2004–12 in the western North Pacific were categorized into five clusters,

and their unique characteristics were investigated. The predictive model uses multiple linear regressions,

where the predictand or the dependent variable is the change in maximum wind speed relative to the initial

time. To consider TC-ocean coupling effects due to TC-induced vertical mixing and resultant surface cooling,

new potential predictors were also developed for maximum potential intensity (MPI) and intensification

potential (POT) using depth-averaged temperature (DAT) instead of sea surface temperature (SST). Alto-

gether, 6 static, 11 synoptic, and 3 DAT-based potential predictors were used. Results from a series of

experiments for the training period of 2004–12 using TPC and DAT-based predictors showed remarkably

improved TC intensity predictions. The model was tested on predictions of TC intensity for 2013 and 2014,

which are not used in the training samples. Relative to the nonclustering approach, the TPC and DAT-based

predictors reduced prediction errors about 12%–25% between 24- and 96-h lead time. The present model is

also compared with four operational dynamical forecast models. At short leads (up to 24 h) the present model

has the smallest mean absolute errors. After a 24-h lead time, the present model still shows skill that is

comparable with the best operational models.

1. Introduction

A tropical cyclone (TC) accompanied by strong winds,

storm surges, high waves, and flooding is among the most

dangerous natural hazards and can pose a great threat to a

global population of almost a billion people (Peduzzi et al.

2012). Accurate predictions of TC tracks and intensities

are required in order tomitigate TCdamage.Over the last

quarter of a century, TC track forecasts have been steadily

improving, while storm intensity prediction remains a

major challenge (DeMaria et al. 2014), because TC

intensification involves highly complex interactions be-

tween the atmosphere, ocean, and structure of the storm

(Rappaport et al. 2012), which make accurate predictions

difficult. With substantial improvement in computational

power, high-resolution dynamical modeling has become a

useful tool for predicting TC tracks and intensities. For

intensity predictions, however, traditional statistical ap-

proaches (Jarvinen and Neumann 1979; Knaff et al. 2003)

are still widely used in practice, which provide consistent

and basic information.

DeMaria and Kaplan (1994a) developed a Statistical

Hurricane Intensity Prediction Scheme (SHIPS) com-

bining statistical models and dynamical models. SHIPS,Corresponding author: Il-Ju Moon, ijmoon@jejunu.ac.kr
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which is based on a multiregression technique, uses

predictors estimated from a dynamical forecast model as

well as climatological and persistence predictors. The

scheme has been used for hurricane intensity guidance

in the North Atlantic (NA) and eastern North Pacific

(ENP) at the National Hurricane Center (NHC)

(DeMaria andKaplan 1994a, 1999; DeMaria et al. 2005),

and versions of SHIPS were developed for the western

North Pacific (WNP), Indian Ocean (IO), and Southern

Hemisphere (SH) for the operational guidance of the

Joint Typhoon Warning Center (JTWC) (Schumacher

et al. 2013). Knaff et al. (2005) and Knaff and Sampson

(2009) developed the SHIPS-based Statistical Typhoon

Intensity Prediction Schemes for WNP, IO and SH, and

the models were used as the TC intensity guidance at

JTWC. Until recently, most statistical–dynamical models

use regression equations, where the same predictors are

used at each lead time based on the assumption that TC

intensity is controlled by the same environmental pre-

dictors without taking TC tracks into account. Recent

studies, however, indicate that environmental predictors

related to TC activity are strongly dependent on TC track

patterns (Camargo et al. 2007a,b; Chu et al. 2010; Chu and

Zhao 2011; Kim et al. 2011), as discussed next.

Camargo et al. (2007a,b) developed a TC track clus-

tering technique based on a regression mixture model

and showed that each cluster has a unique correlation

with sea surface temperature (SST) and large-scale at-

mospheric circulation patterns. Chu and Zhao (2011)

also developed a mixture Gaussian model to cluster TC

tracks over the WNP into several types and investigated

long-term changes of the TC attributes (e.g., frequency,

lifespan) for each type. Based on a different clustering

method (i.e., the fuzzy c-means method), Kim et al.

(2011) showed that large-scale environment predictors

influence TCs in different ways depending on each

cluster. Chu et al. (2010) also used the fuzzy c-means

method to cluster TCs in the vicinity of Taiwan and

developed a statistical model for predicting the seasonal

TC frequency for each cluster using a Bayesian re-

gression scheme. Also based on track patterns, Kim

et al. (2012) developed a statistical–dynamical model for

predictions of seasonal TC activity, which predicts the

spatial distribution of TC track density using the corre-

lation between the seasonal TC frequency and envi-

ronmental predictors calculated from the dynamical

model. These studies strongly suggest that the relation-

ship between the TC and its environmental factors de-

pends on the track the TC takes and showed that

clustering methods can be used to improve statistical–

dynamical TC predictions. Most of these clustering-

based studies, however, focused on predictions of TC

frequency and track density, and less on TC intensity.

Independently, Chen et al. (2011) developed the West-

ern North Pacific Tropical Cyclone Intensity Prediction

Scheme (WIPS) using the stepwise regression, with the

WNP divided into three subregions according to latitude

and longitude: the region near the coast of east China,

the South China Sea region, and the far ocean region.

They suggested that using different predictors according

to subgroups could improve the TC intensity skill, but

they classified TCs by region, not by TC track pattern.

The primary source of energy for TCs comes from the

ocean surface (Palmen 1948; Riehl 1950). It is also

well known that the cooling of the upper ocean by

TC-induced mixing is one of the important factors

influencing TC intensity, which is mainly determined by

the upper-ocean thermal structure (Mainelli-Huber

2000; Shay et al. 2000; Lin et al. 2008, 2009a,b;Moon and

Kwon 2012). Leipper and Volgenau (1972) developed

the concept of ocean heat content (OHC), which is an

oceanic parameter representing the upper-ocean ther-

mal structure and is expressed as an integral of calories

of seawater with temperature above 268C:

OHC5C
p
r

ðd26
0

(T2 26) dz , (1)

where Cp is the seawater-specific heat capacity, r is the

water density, d26 is the 268C isothermal depth, and T is

the ocean temperature at a specific depth. Currently,

OHC is widely used as a predictor in TC intensity pre-

diction (Mainelli et al. 2008; DeMaria 2009; Goni

et al. 2009).

On the other hand, Price (2009) suggested that depth-

averaged temperature (DAT) is a better indicator for

TC intensity change than the widely used OHC:

DAT
d
5

1

d

ð0
2d

T(z) dz , (2)

where d is the depth of TC-induced vertical mixing. This

is because DAT can realistically characterize the oce-

anic response to TCs, that is, the effect of the TC-

induced sea surface cooling for shallow continental shelf

and very low OHC regions where the application of

OHC was limited (Price 2009). Lin et al. (2013) also

argued that DAT is a better index than SSTs in esti-

mating the maximum potential intensity (MPI), which is

an upper bound of TC intensity widely used as a key

predictor. Therefore, it would be interesting to examine

the effect of the use of DAT on statistical predictions of

TC intensity since no such attempt has been made in the

literature. Particularly, it is worthwhile to explore the

role ofDAT in classified TC groups because the strength

of the cooling effect depends on the ocean subsurface
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thermal and haline/saline structure as well as various

factors such as the storm translation speed, size, and

intensity, which are related to TC tracks.

The aim of the current study, therefore, is to

develop a statistical–dynamical typhoon intensity pre-

diction scheme for the WNP using a track-pattern clus-

tering method and DAT-based potential predictors.

This new scheme is then used to investigate how much

the clustering and the ocean-coupling effect may con-

tribute to the improvement of TC intensity predictions.

To test the performance of our new scheme, a series of

experiments were conducted to predict the intensity of

WNPTCs for the training period (2004–12) and the real-

time prediction period (2013 and 2014).

Section 2 provides a description of the dataset and

clustering method. Section 3 discusses the characteris-

tics of classified clusters and the effect of clustering. This

section also explains the static and synoptic potential

predictors, including DAT-based potential predictors

followed by the final predictors selected. The model

performance is discussed in section 4, and our conclu-

sions are given in section 5.

2. Data and clustering method

a. Data

The present statistical–dynamical Typhoon Intensity Pre-

diction Scheme (hereafter STIPS) is developed based on a

perfect-prognosis approach (Kalnay 2003). The model is

trained for the period of 2004–12 using 203 TC best-track

data records andenvironmental reanalysis/analysis fields and

is tested independentlywith 54TCs in 2013and2014 for real-

time prediction using predicted tracks and dynamical model

prediction fields. The TC data for the training and test pe-

riodswere obtained from thebest-trackdata providedby the

Regional Specialized Meteorological Center (RSMC) in

Tokyo, Japan, and the operational 5-day track prediction

results from the Korea Meteorological Administration

(KMA). The intensity of the best-track data is estimated to

the nearest 5kt (2.514ms21) at 6-h intervals. For this reason,

model formulation as well as any discussion of intensity in

this paper is conducted in terms of knots (kt; 1kt 5
0.51ms21) instead of meters per second (Knaff et al. 2005).

Oceanic potential predictors were calculated using

three-dimensional ocean data derived from the Hybrid

Coordinate Ocean Model (HyCOM) Navy Coupled

Ocean Data Assimilation (NCODA) nowcast/forecast

system provided by the Naval Research Laboratory

(NRL). HyCOM is a global ocean circulationmodel that

uses a Mercator projection and a hybrid coordi-

nate system combining isopycnic, terrain-following

(sigma layers), and z-level coordinates (Bleck 2002).

FIG. 1. Spatial distributions of (a) climatological vertical wind

shear (m s21; dashed lines), (b) SSTs (8C; dashed lines), and

(c) MPI (kt) for typhoon season (June–November) in the WNP.

Black curves represent the mean tracks of five clusters. For cluster

classification, individual TC tracks were equally spaced into 21

location points, and the mean track is calculated by averaging the

values at same point using all tracks belonging to a specific cluster.

TABLE 1.Meanmaximumwind speed (kt) ofTCs for five clusters at

each lead time. Examples set in boldface and boldface with an asterisk

represent that the differences in themean values between each cluster

and all TCs are statistically significant at the 95% and 99% confidence

level based on a two-tailed t test, respectively.

Cluster

Forecast time (h) C1 C2 C3 C4 C5 All TCs

24 58.1* 69.9* 68.5* 67.0* 57.5* 64.4

48 59.4* 79.1* 67.2 68.0 57.9* 67.0

72 58.6* 83.4* 63.9* 66.3 57.4* 67.7

96 57.5* 81.6* 59.8* 62.2* 57.5* 66.9

120 54.9* 77.0* 53.5* 57.3* 59.7 64.9
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Atmospheric potential predictors for the training (test)

period were calculated using Global Forecast System

(GFS) analysis (forecast) data with 18 3 18 horizontal
resolution and at 6-h intervals provided by the National

Centers for Environmental Prediction (NCEP); this

dataset has been available since 2004.

In the present STIPS model, the intensity change is

predicted from the initial forecast time. For predictor

selection, we used forward selection, which is the most

common screening procedure in selecting a good set of

predictors from a pool of potential predictors. To

avoid multicollinearity, we selected the potential pre-

dictors that are not significantly correlated with each

other (Aczel 1989; Fitzpatrick 1997). During the com-

bined regression process, if the sign of each individual

regression coefficient for independent predictors is

changed, it is removed from the list of candidates. If the

regression fitting using a combination of predictors is

worse compared with an individual predictor, the single

best predictor is retained. From this process, one or two

predictors were finally selected.

b. Clustering method

A fuzzy c-means clustering method (Bezdek 1981) was

used to classify TC tracks (Kim et al. 2011). The fuzzy

clustering is an extension of the k-mean clusteringmethod.

This algorithm allows objects to belong to several clusters

with different degrees of membership. Following the

method of Kim et al. (2011), here we determined the op-

timal number of clusters to be five, based on four scalar

validity measures (partition coefficient, partition index,

separation index, and the Dunn index).

We applied the algorithm to calculate the membership

coefficients for five clusters using a given track, in which

the sum of the five membership coefficients equals one,

and the track is finally classified into the cluster with the

highest membership coefficient. For clustering, 5-day TC

tracks are used rather than the entire track of the lifetime

of a TC because the present version of STIPS is set to

predict a total of 5 days. Therefore, the tracks of all TCs

are cut into 5-day segments at 6-h intervals. TC tracks

with fewer than 5 days remaining after cutting are used

until the total length is 1 day. In this way, a total of 3495

track samples obtained from 203 TCs in the training pe-

riod were used for cluster classification. Because of this

reconstruction process of the TC track, the sample size

decreases as the lead time increases. The dissimilarity

between two tracks is defined as the Euclidean norm of

the difference of two vectors, which contain the latitudes

and longitudes for each TC track.

TABLE 2. As in Table 1, but for the change in mean maximum wind speed (kt).

Cluster

Forecast time (h) C1 C2 C3 C4 C5 All TCs

24 0.1* 12.2* 22.2* 0.6 21.6* 1.5

48 20.1* 21.1* 24.8* 0.7 22.4* 3.1

72 21.8* 25.1* 27.5* 20.9* 24.6* 3.8

96 24.5* 23.3* 210.3* 24.3* 27.3* 3.3

120 26.7* 18.3* 213.4* 210.2* 29.7* 2.1

TABLE 3. Comparisons of standard deviations sWNP of the predictand (intensity change) using the mean value for the entire sample

(i.e., nonclustering cases) with those sc using the mean of each cluster at each lead time. The reduction rates of sc relative to sWNP are

indicated in parentheses.

Cluster

Forecast time (h) C1 C2 C3 C4 C5 All TCs

24 sWNP 15.9 17.4 14.5 16.8 12.0 15.6

sc 15.8 (0.4%) 13.7 (21.0%) 14.0 (3.3%) 16.8 (0.1%) 11.6 (3.3%) 14.8 (5.3%)

48 sWNP 22.6 29.3 22.5 25.1 17.5 24.2

sc 22.4 (1.0%) 23.2 (20.8%) 21.1 (6.3%) 25.0 (0.4%) 16.7 (5.0%) 22.3 (7.9%)

72 sWNP 25.5 34.7 25.9 28.6 21.6 28.5

sc 24.9 (2.3%) 27.4 (21.1%) 23.4 (9.8%) 28.3 (1.2%) 19.9 (7.6%) 25.6 (10.5%)

96 sWNP 29.0 34.6 28.3 28.0 23.7 30.2

sc 27.9 (3.5%) 28.3 (18.2%) 24.8 (12.3%) 27.0 (3.6%) 21.3 (10.2%) 26.8 (11.5%)

120 sWNP 31.4 32.7 30.7 26.8 23.9 30.6

sc 30.2 (3.8%) 28.3 (13.2%) 26.6 (13.4%) 23.8 (11.0%) 20.9 (12.3%) 27.1 (11.3%)
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c. Characteristics of classified clusters

In this section, we examine the characteristics of the

five clusters, C1–C5, classified by the fuzzy c-means

clustering method. The largest cluster among the five

clusters is C3 (832, 23.6%). The TCs in C3 make landfall

over Japan or the Korean Peninsula (Fig. 1, solid line).

C1 is the second largest cluster (806, 23.2%) and in-

cludes many TCs heading westward toward Hainan Is-

land in China, after passing through the Philippines. C4

(758, 21.3%) includes TCs that make landfall in Taiwan

and along the eastern China coasts. TCs in C2 (616,

18.5%) mostly head northwestward from the eastern

Philippines Sea. Type C5 has the lowest frequency of

occurrence (483, 13.4%), and its TCs pass mainly over

the Kuroshio Extension, farther away from the East

Asian coast.

Each cluster exhibits distinctive features in mean in-

tensity (Table 1) and mean intensity change (Table 2).

TCs in C1 reside mainly in the South China Sea, where

the upper-ocean heat content is relatively low compared

to other tropical regions, and TCs are most likely to

make landfall over Hainan Island and Guangdong. C1,

alongwith C5, shows the lowestmean intensity (Table 1)

and a distinct weakening tendency (Table 2) over the

prediction lead time. TCs in C2 spend their lifetime in

the tropics where the vertical wind shear (VWS) is weak

(Fig. 1a) and SSTs are warmer (Fig. 1b), which are

favorable conditions for TC development. These con-

ditions result in the strongest mean intensity and no-

ticeable TC intensification compared to the other

clusters (Tables 1 and 2). Many TCs in C2 subsequently

evolve into typhoons in C3 (26%) and C4 (37%), re-

spectively. Most TCs in C3 experience the largest

weakening stage as forecast lead times increase mainly

because of lower SSTs and stronger VWS along the

track (Figs. 1a,b). The majority of these TCs finally

make landfall over the Korean Peninsula and Japan.

Statistics reveal that more than half of the TCs in C3

made landfall in the Korean Peninsula or Japan after

90-h lead time. Most TCs in C4 initially have relatively

strong intensities in the tropics and then rapidly weaken

after landfall across Taiwan and eastern China. C5

passes over the eastern ocean of Japan, where the VWS

is strong and the SST is low (Figs. 1a,b), leading to sig-

nificant weakening in intensity.

Note that in Table 1 the difference in mean values

between using each cluster and all TCs (nonclustering

cases) is mostly statistically significant (22 out of 25) at

the 5% level based on a two-tailed Student’s t test. These

differences in mean values become even more pro-

nounced when the change in maximum wind speed is

considered (Table 2), in which 24 out of 25 have statis-

tically significant differences. This simple comparison

suggests that introducing a clustering method to STIPS

can reduce the variability of TC intensity changes, which

will be discussed in the next section.

d. Benefits of cluster analysis

As seen in Tables 1 and 2, the classified clusters show

distinctive characteristics in terms of the mean intensity

and tendency of intensity change. To quantitatively

evaluate the effect of clustering, we compared the

standard deviations (SD) of the predictand for each

cluster before and after clustering at each lead time

(Table 3), that is, each cluster’s SD from the entire

sample mean sWNP and from the respective cluster’s

mean sc:

s
WNP

5

"
�(X

c
2X

WNP
)2

n
c

#1/2

and (3)

s
c
5

"
�(X

c
2X

c
)2

n
c

#1/2

. (4)

Here, Xc refers to the intensity change (i.e., predictand)

of an individual storm, Xc is the mean intensity change

for each cluster, XWNP is the mean intensity change for

the entire sample, and nc is the number of samples for

each cluster. Comparison of sc and sWNP reveals that

TABLE 4. List of static and synoptic potential predictors used in the

present model.

Predictor Description

iWIND Initial max wind speed (kt)

DVMX 12-h change in intensity

LON Longitude

LAT Latitude

MOV Storm translational speed (m s21)

LAND Ratio of landmass within 200 km from center

SST Area-averaged (0–200 km) sea surface temperature

MPI Area-averaged (0–200 km) max potential intensity

based on empirical equation

POT MPI 2 iWIND

OHC Area-averaged (0–200 km) ocean heat content

RHHI Area-averaged (200–800 km) relative humidity at

500–300 hPa

RHLO Area-averaged (200–800 km) relative humidity at

850–700 hPa

SH200 Area-averaged (200–800 km) 200–850-hPa vertical

wind shear

SH500 Area-averaged (200–800 km) 500–850-hPa vertical

wind shear

T200 Area-averaged (200–800 km) air temp at 200 hPa

U200 Area-averaged (200–800 km) zonal wind at 200 hPa

RV850 Area-averaged (0–1000 km) relative vorticity at

850 hPa
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clustering reduces the variability of the predictand (i.e.,

intensity change) with reduction rates ranging from

0.1% to as high as 21.1% (see the values in parentheses

in Table 3). The largest reduction (21.1%) was observed

at 24- and 72-h lead times in C2. The significant re-

duction of SD suggests that the clustering-based STIPS

can reduce the variability in intensity change and thus

improve the TC intensity prediction skill. The clustering

effects on real TC predictions will be discussed in

section 3.

3. Statistical–dynamical typhoon intensity
prediction scheme

a. Static and synoptic potential predictors

The present STIPS model uses various potential static

and synoptic predictors, which have beenwidely employed

in many statistical TC intensity prediction models

(Elsberry et al. 1974; Jarvinen and Neumann 1979). In this

study, six potential static predictors are used for the model

development (Table 4): initial maximum wind speed

(iWIND), intensity changes within 12h (DVMX), the

longitude (LON) and latitude (LAT) of the TC center,

storm translation speed (MOV), and the ratio of land

within 200km of the TC center (LAND). They are ob-

tained from the TC best-track information. The potential

synoptic predictors, or environmental predictors, are esti-

mated from the prediction results of the dynamical model.

The present model uses 11 potential synoptic predictors

(Table 4): SST, MPI, intensification potential (POT),

OHC, the relative humidity of the upper and lower layers

(RHHI and RHLO), the vertical wind shear of the upper

and lower layers (SH200 and SH500), 200-hPa air tem-

perature (T200), 200-hPa zonal wind (U200), and 850-hPa

relative vorticity (RV850). The value averaged within

200-km radius from the stormcenter is used to estimate the

oceanic predictors such as OHC, SST,MPI, and POT. The

200-km radius is determined based on the fact that TC-

induced sea surface cooling generally occurs over strong

wind regions, with its maximum at a distance greater than

the maximum wind speed radius (RMW) from the TC

center. In the WNP, the mean radius of 34-kt winds is

about 248km (Sampson et al. 2017), and the increase of

inner SSTs within the range 2–3 times the RMW is

known to contribute greatly to the increase of TC in-

tensity (Sun et al. 2013). Atmospheric predictors such

as RHHI, RHLO, SH200, SH500, T200, and U200 are

estimated between 200 and 800 km from the storm

center, in which doughnut-shape averaging is used to

FIG. 2. The correlation coefficients between six static predictors (a) iWIND, (b) DVMX, (c) LON, (d) LAT, (e) MOV, and (f) LAND

and the change in TC intensity for five clusters and the nonclustering case using all TCs at each forecast time. The correlation coefficients

for individual predictors at each forecast lead time were calculated from the relation between intensity change and static information

obtained using all TC track samples during the training period.
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remove the TC effects included in the analysis dataset.

For RV850, it is averaged within a 1000-km radius

from the storm center.

The predictor iWIND is the most important factor in

the static predictor pool and has a strong negative cor-

relation with the intensity change for all five clusters at

FIG. 3. As in Fig. 2, but for 11 synoptic predictors: (a) SST, (b) MPI, (c) POT, (d) OHC, (e) RHHI, (f) RHLO, (g) SH200, (h) SH500,

(i) T200, (j) U200, and (k) RV850.
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longer leads (Fig. 2a). DeMaria and Kaplan (1994a)

noted that strong storms have less potential for further

intensification because their intensities are already closer

to the MPI. DVMX represents the persistence of in-

tensity change (Fig. 2b), which exhibits the highest cor-

relation with intensity change in 6-h forecast time for

most clusters (i.e., C3–C5), consistent with the results of

Knaff et al. (2005) and Chen et al. (2011). The relation-

ship between TC locations (longitude and latitude) and

intensity change is dependent on the track types (Figs. 2c,d).

TCs thatmove eastward after recurving (e.g., C5 in Fig. 1)

tend to weaken as a result of encountering low SSTs

and high westerly wind shear. This is reflected as a neg-

ative correlation between longitude and intensity change

in Fig. 2c. The intensification rates of C1 and C4, which

are affected by land as TCs move to the west, show a

strong positive correlation with LON (Fig. 2c). For LAT,

an overall negative correlation with intensity change is

dominant (Fig. 2d) since TCs, on average, become

weaker when they move northward because of unfavor-

able environmental conditions to TC development at

higher latitudes.

MOV is known to be an important factor for TC–

ocean interaction (Lin et al. 2008, 2009b). Slow-moving

TCs tend to cause a large cold wake that could limit TC

intensification. This relationship is only found in C1,

where most TCs experience a large cooling effect as a

result of the shallow-ocean mixed layer of the South

China Sea. For the other clusters (particularly for C3

and C5), a negative correlation between MOV and the

intensity change is clearly shown. As TCs encountered

the midlatitude jet stream (C3 and C5), MOV values

tend to increase, but the TC intensity weakens due to

strong wind shear (Fig. 2e).

LAND is defined as the ratio of landmass within a

radius of 200 km from the TC center. When TCs ap-

proach land, a relatively dry and cold air mass entrains

into the outer circulation of the TCs and the friction

over land increases, leading to TC weakening (Kaplan

and DeMaria 1995, 2001; DeMaria et al. 2006).

Therefore, LAND and intensity changes are negatively

correlated in most of the clusters except the nonlanding

clusters (C2 and C5 in Fig. 2f). The highest negative

correlation is found in C4, where most TCs with rela-

tively strong intensity weaken rapidly during the

landfall period over mountainous Taiwan and the huge

landmass of eastern China (Fig. 2f).

We now turn our attention to the potential synoptic

predictors (Table 4). MPI is the upper bound of TC in-

tensity given the atmospheric vertical profile and pre-

cyclone SST (Emanuel 1988). The MPI is empirically

estimated according to DeMaria and Kaplan (1994a).

An exponential function is derived by fitting the upper

95th percentile SST per 0.58C interval in the scatterplot

between SST and TCmaximum intensity. Here, the SST

is extracted from the HyCOM–NCODA dataset for the

period of 2004–14 and averaged within a 200-km radius

from the center of each TC:

MPI5A1BeC(SST2T0) , (5)

where A 5 39.91 kt, B 5 96.0 kt, C 5 0.18378C21, and

T0 5 30.08C. In Fig. 3b, MPI is highly correlated with TC

intensity change for C3 but weakly correlated for C1

TABLE 5. List of three DAT-based potential predictors used in

the model.

Predictor Description

DATh,

h 5 10, 20, 30, . . . , 120

Ocean temp averaged from

the surface down to

various depths (10–120m,

10-m interval)

MPIh,

h 5 10, 20, 30, . . . , 120

DATh-based MPI

POTh,

h 5 10, 20, 30, . . . , 120

DATh-based POT

FIG. 4. The comparison of the correlation coefficients between three thermodynamical predictors (a) DAT, (b) POT, and (c) MPI and

the 24-h changes in TC intensity for three groups classified by iWIND. Open pentagrams represent the location of the maximum value for

the three groups. Sample sizes are indicated in parentheses in (c).
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(Fig. 3b). This is partly explained by the fact that the

MPI of C3 varies greatly along the TC track, but that of

C1 does not change much (Fig. 1c). This pattern in MPI

is very similar to that of SST (Fig. 3a).

POT is the TC potential future intensity change

(DeMaria and Kaplan 1994b), defined as the difference

between MPI and maximum wind at the initial time:

POT5MPI2 iWIND. (6)

POT is considered the most important predictor in

SHIPS (DeMaria and Kaplan 1994a, 1999) and WIPS

(Chen et al. 2011). Indeed, our analysis also shows that

POT has the highest correlations with the predictand for

lead times after 24 h, and this high correlation is main-

tained for all five clusters (Fig. 3c).

Lin et al. (2009a,b) suggested that warm eddies and

ocean warm currents could make a critical contribution

to the rapid intensification of TCs. These warm features

are characterized by high OHC and can effectively

mitigate the TC-induced negative feedback due to sea

surface cooling. Analysis reveals that OHC is highly

correlated with the predictand in most clusters except

for C1 (Fig. 3d). For C1, three thermodynamic pre-

dictors (SST, OHC, and MPI) are not significantly cor-

related with the predictand. This is probably because the

South China Sea has spatially homogenous thermal

conditions and is surrounded by land (see Fig. 1b), and

thus the TC intensity in this region is mainly controlled

by factors other than thermodynamic predictors.

Relative humidity is known to affect convective

buoyancy, which is a direct source of TC energy (Wu

et al. 2012; Bogner et al. 2000; Knaff et al. 2005). In this

FIG. 5. Correlation coefficients between the various DATs (SST, DAT30, DAT60, DAT90, and DAT120) and TC intensity change for

five clusters (a) C1, (b) C2, (c) C3, (d) C4), and (e) C5 and (f) the nonclustering case using all TCs at each lead time. Sample sizes are

indicated in parentheses.

TABLE 6. Experimental designs for investigating the effects of

using clustering and DAT-based predictors. The open circle

and the cross indicate the methods applied and not applied,

respectively.

Model Clustering DAT-based predictor

STIPS-SST 3 3
STIPS-DAT 3 Ο
CSTIPS-SST Ο 3
CSTIPS-DAT Ο Ο

FEBRUARY 2018 K IM ET AL . 355



study, the relative humidity was divided into RHLO and

RHHI based on Knaff et al. (2005). RHLO (RHHI) is

calculated in the atmospheric layer from 850 to 700 hPa

(500–300 hPa), within an annulus of 200–800-km radius

(donut shape) from the center of the TC. Knaff et al.

(2005) reported that RHHI is statistically important at

all forecast lead times, but RHLO is not. However, our

results for C2 reveal that both RHHI and RHLO have a

moderate positive correlation with intensity change

(Figs. 3e,f). This result is an example of how a previously

unrecognized predictor could be potentially useful for a

particular cluster.

Many studies have shown that VWS is an important

predictor for TC intensity change (Jones 2000; DeMaria

1996; Wang and Holland 1996; Frank and Ritchie 2001;

Corbosiero and Molinari 2002; Knaff et al. 2004). The

VWS is defined by the magnitude of the vector differ-

ence between the two different layers, 200–850 hPa

(SH200) and 500–850hPa (SH500):

SH2005
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(U

200
2U

850
)2 1 (V

200
2V

850
)2

q
and (7)

SH5005
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(U

500
2U

850
)2 1 (V

500
2V

850
)2

q
, (8)

where U200 (V200) is the 200-hPa zonal (meridional)

wind,U500 (V500) is the 500-hPa zonal (meridional) wind,

and U850 (V850) is the 850-hPa zonal (meridional) wind.

Strong VWS disrupts the organized deep convection,

which inhibits TC intensification. The wind-related

predictors such as VWS (Figs. 3g,h), RV850 (Fig. 3k),

and U200 (Fig. 3j) are highly correlated with the in-

tensity change in C3 in whichmany TCs pass through the

subtropical region where the VWS is strong (Fig. 1a). In

contrast, a low correlation is found in C1 because most

TCs in C1 move to the northwest, parallel to the vertical

wind shear gradients. These results are consistent with

those of Chen et al. (2011), in which VWS is an impor-

tant predictor in the eastern China Sea region (corre-

sponding to C3) and not in the South China Sea region

(corresponding to C1).

b. DAT-based potential predictors

TC-induced vertical mixing is affected by various

factors such as TC intensity, storm translation speed, the

FIG. 6. Pie charts representing the ratio of the final selected predictors for (a) STIPS-SST, (b) STIPS-DAT, (c) CSTIPS-SST, and

(d) CSTIPS-DAT. Predictor 1 represents the first selected predictor with the highest correlation coefficients with the predictand (intensity

change). Predictor 2 represents the second selected predictor in the regression equation. Colors indicate the type of predictor (i.e., static is

green, synoptic is orange, DAT based is blue, and the others are gray). If only one predictor is selected, it is marked as blank in predictor 2.
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Coriolis parameter, and upper-ocean structure. The depth

of the vertical mixing is known to be typically 60–100m in

major tropical cyclones (Price 2009). In this study, when

considering the effect of theTC-induced verticalmixing on

the intensity predictions, new MPIs and POTs are addi-

tionally calculated using DATs based on various mixing

depths from the surface to 120m (10-m interval) instead of

using the SST (Table 5). As the storm intensity increases,

DAT using deeper mixing depths is more correlated with

TC intensity changes (Lin et al. 2008). To investigate the

relationship between TC intensity and mixing depth, we

classified TCs into three groups according to iWIND (less

than 50kt, 50–80kt, and over 80kt) and examined the

variations of correlation coefficients between thermody-

namic predictors and 24-h intensity changes as a function

of different mixing depths (Fig. 4). It is shown that initially

intense TCs tend to have higher correlations with the three

thermodynamic predictors for deeper mixing depths.

It is interesting to ask whether this feature is also

shown when TC tracks are clustered. Figure 5 presents

the correlation coefficients between the DAT-based

predictors and TC intensity change for five clusters

and nonclustering cases at various lead times. C1 and

C5, with relatively weak intensity (see Table 1), have the

highest correlation coefficients up to 72-h leads when

mixing depths are shallow. C4 with strong intensity has

the highest correlations when mixing depths are deep

(Fig. 5). The tendency of C2 and C3 with medium in-

tensity is similar to that of C1 and C5, probably as a

result of a thick mixed layer in this region leading to a

small temperature change with mixing depth.

c. Effects of using clustering and DAT-based
predictors

To investigate further the effect of using clustering

and DAT-based predictors on statistical–dynamical TC

FIG. 7. As in Fig. 6, but for five clusters of CSTIPS-DAT: (a) C1,

(b) C2, (c) C3, (d) C4, and (e) C5.
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intensity predictions, four sets of experiments were

conducted for the training period (Table 6): a run

without the use of both clustering and DAT-based pre-

dictors (hereafter referred to as the STIPS-SST), a run

using clustering only (CSTIPS-SST), a run using DAT-

based predictors only (STIPS-DAT), and a run using

both clustering and DAT-based predictors (CSTIPS-

DAT). We first examined the predictors selected for

each experiment (Fig. 6). For nonclustered models,

multiple regression equations are developed for each

prediction time, yielding a total of 20 equations. How-

ever, clustered models have 100 equations because five

clusters are also considered. Given the large number of

equations, we present the ratio of selected final pre-

dictors for each model. Here, it should be noted that the

present multiple regression model allows the combina-

tion of up to five predictors to avoid overfitting, but only

one or two predictors were finally selected because of

multicollinearity constraints. Figure 6 shows the ratio of

the final selected predictors for each set of four experi-

ments. The first and second predictors selected from the

screening procedure for each prediction time are termed

predictor 1 and predictor 2, respectively.

The most frequently selected predictor 1 was POT

(including DAT-based POT) for all experiments. For

STIPS-DAT, in particular, POTwas selected 95%of the

time as the predictor 1. The iWIND, SST, MPI, and

OHC parameters, which had high correlations with in-

tensity change (Fig. 2a), were selected less frequently.

This is because, when POT was selected, the afore-

mentioned four other predictors were excluded due to

their high correlations with POT. DVMX had a partic-

ularly good performance in the short-term prediction

(Fig. 2b), and this intensity-change predictor is com-

monly selected as the first and second predictors for two

nonclustering experiments (Figs. 6a,b). LAND was also

one of the main predictors selected in all four experi-

ments. In addition, LON, OHC, RHLO, and T200 are

important second predictors.

The types of selected predictors for each cluster reflect

the unique characteristics of the clusters such as the ten-

dency of mean TC intensity (or the changes), landfalls,

FIG. 8. Comparisons of MAEs of the maximum intensity (kt) for five clusters (a) C1, (b) C2, (c) C3, (d) C4, and (e) C5 and (f) the

nonclustering cases using all TCs at each lead time during the training period (2004–12). For the five clusters in (a)–(e), two results from

CSTIPS-DAT and CSTIPS-SST are compared. For the nonclustering case in (f), the results from all experiments in Table 6 are compared.

Sample sizes are indicated in parentheses.
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upper-ocean thermal structure, and TC-induced mixing

layer depth. For example, for C1 POTs using relatively

shallow DAT (POT, POT10, POT20, POT30, and

POT50 with depths ranging from 0 to 50m) and LAND

were chosen as major predictors (Fig. 7a). This is due to

the fact that many cases of C1 experience a rapid

weakening due to landfall and inadequate ocean ther-

mal conditions with a thin mixed layer, leading to a

shallow vertical mixing caused by TCs. In C2, a large

percentage of the selected predictors for predictor 1

were the single POT-type predictor (95%). This arises as

most TCs in C2 spend their lifetime in the tropical open

ocean where oceanic thermal conditions are the most

important factors. In this case, land effect and static

predictors are minor. C3, which is characterized by

strong weakening tendencies with lead times (Table 2),

showed that T200 was the most dominant in predictor 2.

This is possible because many TCs in C3 travel to the

north and are influenced by a large gradient of T200

along the track. Many TCs in C4 make landfall over the

East Asian region (eastern coast of China and Taiwan),

and LON and LANDwere selected as major predictors.

Finally, for C5, in which most TCs typically decayed

over the cold open ocean, POTs with DATs of relatively

shallow to medium depth (20–80m) were important

predictors. Because TCs in C5 pass through the open

ocean where a large gradient of wind shear along the

mean track of TC exists (Fig. 1a), vertical wind shear

(SH500) was also selected. The performance of four

models presented in Table 6 will be shown in the next

section.

4. Comparisons of model performance

a. Training period

In the present statistical models based on the perfect-

prognosis approach, the relationship between the pre-

dictand and predictors is first established during the

training period using the best-track, GFS analysis, and

HyCOM–NCODA reanalysis data. This relationship is

then applied to evaluating the performance of real-time

intensity predictions using the predicted track and

dynamical models prediction data. Figures 8 and 9

compare the prediction skills among CSTIPS-DAT,

CSTIPS-SST, STIPS-DAT, and STIPS-SST for the

training period. The forecast error differences between

the CSTIPS-SST and CSTIPS-DAT at various leads are

small for all clusters (Figs. 8a–e). The comparisons re-

veal that CSTIPS-DAT, which uses both clustering and

DAT-based predictors, generally outperformed the other

FIG. 9. Schematic of the real-time prediction procedure using

CSTIPS-DAT.

FIG. 10. Comparisons of (a) MAEs, (b) bias, and (c) R2 for the real-time TC intensity prediction. Here, the results from all experiments in

Table 6 are compared. Sample sizes are indicated in parentheses.
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three models. Applying the clustering approach between

24- and 96-h lead time (CSTIPS-SST vs STIPS-SST, and

CSTIPS-DAT versus STIPS-DAT in Fig. 8f) resulted in

the most significant improvement. The improvement is

most remarkable at 72-h lead time. The mean absolute

errors (MAEs) are reduced by 3.6kt (25% improvement)

and 1.9kt (15%) for CSTIPS-DAT and CSTIPS-SST, re-

spectively, compared to nonclustering settings. A similar

tendency is also found in the results of R2 (not shown).

The overall improvement in theCSTIP-DATmodel is due

to the enhanced improvement in some individual clusters.

In particular, C5 showed the best prediction skills among

the five clusters and contributes most to the model im-

provement (Fig. 8e). We found that the performance of

each cluster is related to the magnitude of sc (Table 3).

That is, smaller sc leads to more skillful predictions. This

reaffirms that the clustering approach reduces the vari-

ability of the predictand, which ultimately results in the

improvement of TC intensity prediction.

The impacts of DAT-based predictors on TC intensity

prediction can be realized by comparing STIPS-DATwith

STIPS-SST, andCSTIPS-DATwithCSTIPS-SST (Fig. 8f).

The effects of DAT-based predictors are not as large as

those of clustering, but they still further improved the

performance. The largest improvement (14%) in MAE

was found in the comparison with nonclustering experi-

ments (STIPS-DAT and STIPS-SST in Fig. 8f) at lead

times between 48 and 96h.

b. Real-time predictions for 2013 and 2014

The model developed during the training period is

tested with real-time predictions for two years: 2013 and

2014. Figure 9 illustrates a schematic of the real-time

prediction systems. The systems were implemented

through the following procedure: obtain the 5-day track

forecast information from KMA and atmospheric and

oceanic fields at each forecast lead time from NCEP and

NRL; calculate various static, synoptic, and DAT-based

predictors and membership coefficients for each TC; de-

termine the cluster to which the TC track belongs based on

the highest membership coefficient; and predict the TC

intensity using the regressionmodel of the selected cluster.

The next question is, how well will the models de-

veloped in this study perform for an independent data-

set? A comparison of MAE, bias, and R2 among the

four models shows that the two clustered models out-

performed the two nonclustered models at most lead

times (Fig. 10) and that CSTIPS-DAT is slightly better

thanCSTIPS-SST. This feature is similar to the results of

the model training. However, the overall mean MAEs

for all real-time predictions (Fig. 10a) were a little larger

(about 1.5 kt) than those for the training periods, likely

because of the inaccuracies in real-time track pre-

dictions (Knaff et al. 2005) and the fact that the model

parameters were fit for the training period, not during

the independent period. To investigate the effect of the

inaccurate track on the intensity errors, we compared

the intensity errors for TCs having the upper 90th per-

centile track error with those for the remaining TCs. The

comparison reveals that the errors of the former were

larger than the latter by 1 kt at 24 h, 2.6 kt at 48 h, 1.6 kt at

72 h, 0.3 kt at 96 h, and 0.5 kt at 120 h. This explains that

most differences in the intensity error between the

training and test periods are due to the errors associated

with track prediction and implies that the improvement

of track prediction can lead to the reduction of intensity

FIG. 11. The reduction rates (a) inMAEs of STIPS-DAT, CSTIPS-SST, and CSTIPS-DAT relative to the control

experiment (STIPS-SST) for the test period and (b) their p values based on the two-sample t test. Sample sizes are

indicated in parentheses.
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error. It also should be noted that the intensity errors in

the independent experiments are also influenced by

the inaccuracy in the environmental fields predicted

from the numerical models (i.e., GFS and HYCOM),

which is a limitation of the present perfect-prognosis-

based model.

To quantify the effects of the use of clustering

and DAT-based predictors, the reduction rates in MAE

[i.e., relative error (RE)]were computed for STIPS-DAT,

CSTIPS-SST, and CSTIPS-DAT relative to the control

experiment (STIPS-SST):

RE5
100(E2E

STIPS2SST
)

E
STIPS2SST

, (9)

where E is the MAE for each model, and ESTIPS2SST is

the MAE of STIPS-SST. Results indicate that the use of

clustering was the main contributor to the reduction in

MAE (red and black solid lines in Fig. 11). For the

clustered models, a large and significant reduction of

about 12%–25% between 24- and 96-h lead times was

found, but not after 96-h lead time (Figs. 11a,b). This

seems to be related to the lack of statistical confidence

due to insufficient sample size after 96 h.

To examine the results of individual predictions in

each cluster, we selected six typhoons for study: Pewa

(2013), Fitow (2013), Pabuk (2013), Faxai (2014),

Kalmaegi (2014), and Phanfone (2014). We analyzed

their tracks (Fig. 12a),membership coefficients (Fig. 12b),

and intensity prediction results using the CSTIPS-DAT

model (Fig. 13). Here, the membership coefficient is an

index that indicates the similarity of the individual TC

track (colored lines in Fig. 12a) to the mean track of the

membership cluster (black lines in Fig. 12a), that is, a

larger membership coefficient implies a higher similarity

of a particular TC track to its respective mean track. The

cluster number assigned at each prediction time (6-h

interval) is given above the x axis in Fig. 13. For exam-

ple, Typhoon Phanfone started as C2 in the beginning,

but its membership gradually changed to C3 with its

northward movement (Fig. 12a). The comparison of

predicted intensities (thin lines in Fig. 13) with the

RSMC best-track data (thick lines) presents an overall

good level of performance for Fitow, Pabuk, Kalmaegi,

and Phanfone. For Typhoons Pewa and Faxai, how-

ever, the predicted intensities were largely over-

estimated. We found that the inaccurate predictions of

these two typhoons are associated with their low

membership coefficients (see Fig. 12b). In fact, Pewa

and Faxai belonged to C5 and C2, respectively, but

their tracks were far from the mean track of their re-

spective clusters (Fig. 12a). The result suggests that an

increase in the number of clusters might allow for more

accurate predictions if enough samples were available.

It also reconfirms the potential of cluster analysis of

track patterns to improve statistical TC intensity

prediction skills.

It is also interesting to compare the CSTIPS-DAT

model with the latest operational dynamical models

such as the Hurricane Weather Research and Fore-

casting Model (HWRF), the Regional Unified Model

(UMR) of the KMA, the Japan Meteorological

Agency’s Global Spectral Model (JGSM), and the U.S.

GFS. These data are obtained from the National Ty-

phoon Center (NTC) operating system of the KMA,

and the evaluation was only made to the cases when

the prediction results of all models were transferred to

the NTC. As shown in Fig. 14a, for lead times up to 24h,

the CSTIPS-DATmodel shows the smallest MAEs with

prediction errors less than 8kt relative to operational

dynamical models for the independent test period. After

24-h leads, the CSTIPS-DATmodel shows a remarkably

good degree of skill and is comparable with GFS, which

FIG. 12. (a) Tracks (colored lines) of Typhoon Pewa (2013),

Fitow (2013), Pabuk (2013), Faxai (2014), Kalmaegi (2014), and

Phanfone (2014) along with the mean track for five clusters (thick

black lines). (b) Temporal evolution of the membership coefficient

of the cluster assigned every 6 h for six TCs.
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has the lowest MAEs among the other three operational

models. The differences in MAEs between CSTIPS-

DAT and GFS are not significant at most lead times

except 0–18h, but the forecast performance of CSTIPS-

DAT is significantly better than that of HWRF, JGSM,

and UMR at all leads (Figs. 14a,b).

5. Summary and conclusions

A statistical–dynamical typhoon intensity prediction

model (CSTIPS-DAT) in theWNPwas developed using

track-pattern clustering and DAT-based potential pre-

dictors. In this model system, the tracks of TCs were

classified into five clusters based on the fuzzy c-means

clustering method, and the distinctive characteristics of

each cluster were examined. The present model uses 6

static and 11 synoptic potential predictors as well as 3

new DAT-based ocean-coupling predictors that con-

sider TC-induced vertical mixing effects.

To investigate the effects of using clustering and

DAT-based predictors in TC intensity prediction, four

experiments were conducted for the training period of

2004–12 and real-time predictions in 2013 and 2014. Our

results suggest that the use of clustering significantly

reduced the MAEs relative to the nonclustered experi-

ments in both training and real-time experiments, by

about 25% (72-h lead time; CSTIPS-SST) and 12%–25%

(24–96h; clustered models), respectively. We found that

the classified clusters had unique characteristics in terms

of the tendency of intensity change, which reduced the

variability sc of the predictand and ultimately led to the

improvement of TC intensity prediction. The effect of

DAT-based predictors was not as significant as that of

clustering; however, performance was further improved.

By using both clustering and DAT-based predictors, var-

ious sets of predictors could be skillfully selected de-

pending on each cluster and its unique characteristics

related to mean TC intensity, landfalls, upper-ocean

thermal structure, and TC-induced mixing depth along

the TC tracks. The test performance of the present model

for 2013 and 2014 was more skillful than operational

dynamical models up to 24-h lead time. After 24h, the

FIG. 13. Results of individual intensity predictions from CSTIPS-DAT for Typhoons (a) Pewa (2013), (b) Fitow (2013), (c) Pabuk

(2013), (d) Faxai (2014), (e) Kalmaegi (2014), and (f) Phanfone (2014). The thick line denotes observations (RSMC best-track data),

and the colored lines are individual CSTIPS-DAT predictions. The numbers above the x axis denote the assigned cluster number.

362 WEATHER AND FORECAST ING VOLUME 33



CSTIPS-DAT model still shows skill comparable with or

superior to operational dynamical models.

The introduction of DAT-based predictors in STIPS

has less impact on the improvement of intensity pre-

diction than that of the clustering approach; however,

it was found that DAT-based predictors, which in-

corporate the storm-induced mixing effect, were more

correlated with intensity changes than SST-based pre-

dictors, particularly for strong TCs (more than 50 kt)

(Fig. 4). It also revealed that stronger TCs tend to

have a higher correlation with DAT-based thermody-

namic predictors with deeper mixing depth. Among the

final thermodynamic predictors selected in most clus-

ters, the number of DAT-based predictors was much

higher than the SST-based predictors (Fig. 7). These

results suggest that DAT is a more physically and

practically meaningful predictor related to TC in-

tensity changes than SST, as reported in previous

studies (Lin et al. 2013; Price 2009), and the inclusion of

DAT-based predictors to the present model can con-

tribute to further improvement in intensity predictions,

although the effect of the DAT is not so significant

when used with other predictors in the track-pattern

clustering model.

The present model has limitations in the improve-

ment it offers, particularly after 96-h lead time. This

seems to be related both to the limitation of the

perfect-prognosis approach and overfitting due to in-

sufficient sample size. Also, the performance of the

present model was not good for TCs with low mem-

bership coefficients, indicating the low similarity of the

individual TC tracks to themean tracks of clusters. This

implies that an increase in the number of clusters might

be needed to allow for higher membership coefficients.

If the sample size and the number of clusters increase in

the future as more TC data are collected, it is expected

that the problem of overfitting and low membership

coefficients will be resolved.
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