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This study is to investigate changes in maximum 24-hr precipitation for 20 stations
during the typhoon season (July–October) and how the El Niño–Southern Oscilla-
tion (ENSO) may modulate precipitation extremes in Taiwan. Based on the non-
parametric Mann–Kendall method and Sens’s test, 15 out of 20 stations (three
fourth) exhibited an upward trend from 1958 to 2013. Results of the field signifi-
cance test suggest that the significant increasing trend is not caused by random
variability.
The method of the non-stationary generalized extreme value distribution (NGEV)
is then applied to determine temporal changes in return levels. Results show that a
large majority of stations are marked by an increasing trend in the three chosen
return levels (2, 20, and 100 years) over the last 56 years. Therefore, more intense
typhoon producing seasonal maximum 24-hr precipitation has been observed in
Taiwan. The waiting time for an extreme event to occur has shortened considerably
in recent years. For stations located in western/central Taiwan, an El Niño
(La Niña) event favours low (high) precipitation extremes. It is the opposite for sta-
tions in northern and eastern Taiwan. Thus, an east–west regional difference in pre-
cipitation extremes across Taiwan is noted. A NGEV model based on both time
and ENSO as covariates is also applied. Inter-annual variations influenced by
ENSO are more dominant than long-term trend in return levels for most stations in
western/central Taiwan.
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1 | INTRODUCTION

Extreme climatic events, such as heavy precipitation and
associated flooding, attract a lot of attention because of their
potential damage to human societies and their adverse eco-
nomic impacts. For instance, a heavy downpour in a short-
time span can trigger landslides and mudflows in mountain-
ous regions. This may result in property damage and loss of
human and animal life, along with severe environmental
degradation. Rainfall-frequency statistics are vital for a vari-
ety of hydro-meteorological and engineering designs, envi-
ronmental regulations, risk analysis, and disaster prevention
purposes. For instance, hydrologists need to know these sta-
tistics when designing storm drainage standards, in

determining streamflow peak discharges, and estimating
flood potential within watersheds expected from rainstorms.

Specifically, it is necessary to know the amount of rain-
fall that can be expected to occur in a given time interval
(e.g., 3 and 24 hr) for the average of a period of many years
(e.g., 20 and 100 years). The average “return periods” are
derived from quantiles of a particular probability distribution
on the basis of extreme value theory. The generalized
extreme value (GEV) distribution is often found to be a good
approximation for the statistics of the maxima of long
sequences of random variables (Coles, 2001; Wilks, 2011).
The GEV distribution is characterized by three parameters—
location, scale, and shape. The probability density function
of GEV can be integrated analytically to yield the
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cumulative distribution function (CDF), which can then be
inverted to yield an explicit formula for the quantile func-
tion. This makes GEV very appealing because once the three
distribution parameters are known, its extreme value
(e.g., 358 mm within 24 hr) corresponding to any desired
return period (e.g., 50 and 100 years) can be immediately
determined. This extreme value is also known as the return
level, which is expressed as the same unit as rainfall. The
data set used for the GEV distribution is often the annual
maximum daily rainfall. That is, the largest single 24-hr
value in each of n years, known as the block maximum
series, is chosen (Zwiers and Kharin, 1998; Kharin and
Zwiers, 2005; Garcia et al., 2007; Wilks, 2011). This
ensures that the data from year to year are independent of
each other.

The aforementioned GEV model can be viewed as a sta-
tionary process because the model parameters do not change
with time so the estimated return level is a constant. Because
the climate is changing, it is also reasonable to expect that
the return level should change with time. By allowing the
time-dependent change in the GEV parameters, the station-
ary model can be extended to a non-stationary model (Coles,
2001). Therefore, the statistical theory of extremes can be
applied in the context of climate change. Moreover, besides
examining changes in precipitation extremes with time, the
non-stationary GEV model can also be used to investigate
how extreme events will co-vary with external climate
drivers such as the El Niño–Southern Oscillation (ENSO)
phenomenon or others (Coles, 2001; Katz et al., 2002; Chen
and Chu, 2014; Villafuerte II et al., 2015; Lu et al., 2018).

It is well known that spring rainfall in Taiwan is posi-
tively correlated with the Niño3 sea surface temperature of
the preceding winter (Chen et al., 2003; Jiang et al., 2003).
During a strong El Niño event, a low-level anomalous anti-
cyclone tends to be established over the Philippine Sea
(Wang et al., 2000). This Philippine Sea anticyclone induces
moist southwesterly flows from the South China Sea to the
north, resulting in low-level moisture convergence and
heavy rainfall in Taiwan. However, by analysing the vari-
ability of spring rainfall in Taiwan from each individual
event, Chen et al. (2008) noted that not all El Niño events
lead to high spring rainfall and some may even bring below-
normal spring rainfall. Changes in the position of the anoma-
lous low-level anticyclone and the Pacific Walker circulation
are postulated to be the cause of the spring wet and dry con-
ditions in Taiwan associated with an El Niño event. It is not
known whether summer rainfall in Taiwan is modulated by
the antecedent El Niño event.

Tropical cyclone (TC) activity in the western North
Pacific is closely related to ENSO events. Many aspects of
TC’s are affected by ENSO including formation location,
intensity, track, lifetime, and landfall (e.g., Wang and Chan,
2000; Chu, 2004). One major source of extreme precipita-
tion in Taiwan is caused by typhoons. A case in point was

Typhoon Morakot, which made landfall in August 2009 and
killed more than 600 people. Typhoon Morakot’s movement
was very slow and resulted in one of the highest recorded
rainfall amounts in southern Taiwan for the past 50 years
(Chien and Kuo, 2011). The 3-day accumulated rainfall pro-
duced by this storm exceeded 2,000 mm at many gages.

According to the Central Weather Bureau (CWB), a total
of 383 typhoons made landfall in Taiwan between 1897 and
2003. The mean annual number of typhoons that make land-
fall in Taiwan is about 3.58. The typhoon season in Taiwan
is from July through October, where August has the highest
count of typhoons, followed by July and September
(Tu et al., 2009). The typhoon season is the main rainy sea-
son in Taiwan. Rainfall during this period is contributed by
TCs, mesoscale convective disturbances, or local thunder-
storms associated with the diurnal heating patterns embed-
ded in the prevailing southwesterly monsoon (Chen and
Chen, 2003; Chen et al., 2007). Chen et al. (2004) noted that
the contribution of typhoon rainfall overwhelms that from
convective systems over eastern and northern Taiwan at the
height of summer. For southwestern Taiwan, which is
located on the windwards side of the southwesterly flows,
typhoon rainfall is comparable to that of convective rainfall.
Based on a Bayesian change-point analysis, Tu et al. (2009)
noted an abrupt increase of typhoon activity in the vicinity
of Taiwan since 2000. Chu et al. (2014) found an increase in
precipitation intensity during the typhoon season over the
last 60 years in Taiwan which can be attributed to both an
increase in typhoon rainfall and the monsoon rainfall. How-
ever, the data used in Tu et al. (2009) are seasonal typhoon
counts and those in Chu et al. (2014) are climate change
indices, not the block maximum series employed in the cur-
rent study. Moreover, these two studies (Tu et al., 2009;
Chu et al., 2014) do not use the GEV distribution.

The objective for this study is to (a) investigate the long-
term trends for the 24-hr maximum precipitation as induced
by typhoons during the typhoon season using data from
20 long-term stations in Taiwan; (b) investigate the spatial
patterns of trends for the 2, 20, and 100-year return levels;
and (c) examine the change in return levels with external cli-
mate forcing. The study is organized as follows. Sections 2
and 3 describe the data and methods used in this study,
respectively. Section 4 presents the results, and the summary
and discussion are in section 5.

2 | DATA

Long-term hourly rainfall data from 1958 to 2013 (56 years)
are available from the CWB. The extreme-value data used in
this study are the maximum 24-hr precipitation values during
the typhoon season. Therefore, a moving window covering
the true maximum 24-hr event is chosen, not precipitation
accumulated for a fixed 24-hr interval in each year. Figure 1
shows the location of these 20 stations across Taiwan. The
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station names are listed in Table 1 along with their station
number and elevation. The data have been quality-controlled
and the percentage of missing observations is very low. On
average, less than 2% of hourly precipitation is missing dur-
ing the study period. They are either filled by the kriging
method or from adjacent stations, not necessarily from this
list of stations. Out of 20 stations, changing locations occur
only for Taipei and Tainan. Upon checking the major statis-
tical properties before and after station relocation for these
two stations, there is no apparent difference. The stations
cover varying geographic locations and can be broadly
divided into three groups: sites located in low-elevation
areas, stations in elevated terrains, and three offshore sta-
tions. The stations at low elevations are mainly located in
the western plain and along the east coast of Taiwan. The
stations at higher elevations are found in the Central Moun-
tain Range (CMR) and Yang-Ming-Shan in northern
Taiwan.

We chose to focus on the season from July to October
when Taiwan receives the most precipitation from typhoons.
To ensure the precipitation extremes selected are only asso-
ciated with typhoons, we independently examined the offi-
cial typhoon warnings from the CWB. The CWB issued
their first typhoon warning in 1958. There are two types of

warnings issued by the CWB. The sea warning is issued
when a TC with sustainable winds of 34 knots or greater is
within the 100 km sea area of Taiwan in 24 h, and is
updated every 3 hr after the initial warning (http://photino.
cwb.gov.tw/tyweb/typhoon_eye/forcastuse_strong01.htm).
The land warning is issued when a TC with sustained winds
of 34 knots or more is projected to hit Taiwan, the offshore
islands, and Matsu (not shown in Figure 1) in 18 hr. The
warnings are updated every 3 hr while the centre of the
typhoon is located every hour. Only precipitation data asso-
ciated with these warnings are used and precipitation
extremes in this study are referred to as “typhoon-induced
seasonal 24-hr maximum precipitation.”

This study performed the non-stationary generalized
extreme value distribution (NGEV) analysis with time as a
covariate from 1958 to 2013. In addition, the Oceanic Niño
Index (ONI) is used as another independent covariate. The
ONI is a 3-month running mean of the Extended Recon-
structed Sea Surface Temperature version 4 (ERSSTv4) data
set in the Niño3.4 region (5�N–5�S, 120�–170�W). For each
3-month data, they are constructed independently. The ONI
is available from the National Weather Service’s Climate
Prediction Center website (http://www.cpc.noaa.gov/
products/analysis_monitoring/). The anomalies are centred
on 30-year base periods and updated every 5 years. A year is
classified as El Niño (La Niña) if the December–February
ONI anomalies are >1.0 �C (<−1.0 �C), which represents
the peak phase of the episode. For this study we emphasize

FIGURE 1 Map showing Taiwan and its elevation. Stations are indicated
by numbered codes that are listed in Table 1. Note that the first two (46)
and last (0) digits of station ID codes are omitted here.

TABLE 1 Signs of the slope of Mann–Kendall method for the 24-hr
maximum precipitation series are denoted by data, and non-stationary GEV
parameters for each station. Data period is 1958–2013

Station ID Station name Height (m) Data GEV μ1 GEV σ1

466900 Danshui 19 + + +

466910 Anbu 826 − − +

466920 Taipei 7 − − +

466930 Zhuzihu 608 − − +

466940 Keelung 27 − − +

466950 Pengjia Islet 102 + − +

466990 Hualien 16 +a +a +a

467080 Ilan 8 + − +

467350 Penghu 11 + + +

467410 Tainan 41 + + +

467440 Kaohsiung 3 + + +

467490 Taichung 85 + + +

467530 Alishan 2,414 + − +

467540 Dawu 9 + + +

467550 Yushan 3,845 + +a +a

467590 Hengchun 23 +a + +

467610 Chenggong 34 − − −

467620 Lanyu 324 +a + +

467650 Riyuetan 1,018 + + +

467660 Taitung 9 + + +

a 10% significance level.
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strong episodes. According to this definition, eight El Niño
(or warm) events (1957/1958, 1965/1966, 1972/1973,
1982/1983, 1986/1987, 1991/1992, 1997/1998, 2009/2010)
and eight La Niña (or cold) events (1970/1971, 1973/1974,
1975/1976, 1988/1989, 1998/1999, 1999/2000, 2007/2008,
and 2010/2011) are identified during 1958–2013. For exam-
ple, the 1982/1983 warm event means that ONI anomalies
are used from December 1982 to February 1983.

3 | METHODS

3.1 | Trend analysis

The trends of the precipitation extremes are estimated by the
nonparametric rank-based, Mann–Kendall tests and Sen’s
method under the null hypothesis of no trends. These two
methods do not make any assumptions about the distribution
of the data (i.e., nonparametric). The former approach tests
whether the trend is monotonically increasing or decreasing.
This test also estimates the significance of the trend, while
the Sen’s method quantifies the slope of the trend (Mann,
1945; Sen, 1968). The slopes of all data pairs are calculated
and the median of these slopes is the Sen’s estimator of
slope. The advantage of these two methods is that missing
observations are allowed, the data do not need to conform to
any parametric distribution, and the test is robust against
skewed distributions and outliers. For simplicity, these two
methods are called the Mann-Kendall and Sen (MKS) test in
this study. Details for these two methods can be found in
Chu et al. (2010) and Garza et al. (2012).

3.2 | Statistical field significance

We evaluate the significant increasing and significant
decreasing trend using the MKS test based on a 10% two-
sided significance level. This level implies that approxi-
mately 5% of the stations show significant increasing and
significant decreasing trends by random chance. For a given
data set, it is reasonable to expect a certain number of sta-
tions to pass a random local significance test. At the speci-
fied test level, 10% of all stations might be significant by
chance even if the true slopes are zero. Because of the spatial
correlation of the underlying geophysical data, it is also nec-
essary to address the collective significance of a finite set of
individual hypothesis tests for the entire field (Wilks, 2011;
Chen and Chu, 2014).

The field significance of trends is evaluated by Monte
Carlo simulations (e.g., Chu et al., 2010; Westra et al.,
2013). The statistical inference of “field significance” is
approached using the following steps. First, a matrix “M” of
the seasonal maximum daily rainfall is created with T rows
and S columns, where T denotes time and S denotes spatial
location of stations. Second, the rows of T are resampled
1,000 times with replacement to form new random matrices
M1, M2, …, M1000. By doing so, the time order in the origi-
nal data is scrambled while the spatial dependence is pre-
served. Third, the MKS test, described in section 3.1, is then
conducted to count the percentage of stations showing sig-
nificant positive or negative trends separately. This proce-
dure is then repeated for all resampled matrices. Fourth, the
empirical distribution of the percentage of stations with sig-
nificant trends from the random samples is established.
Lastly, the observed percentage of trends is compared to
those simulated by the Monte Carlo experiment. The field is
considered to be significant if the observed percentage of
significant positive or negative trend lies outside the central
95% region of the random statistics.

3.3 | Stationary GEV distribution (GEV_STN)

The stationary GEV distribution is often found to be a good
approximation of the statistics of the maxima of long
sequences of random variables. The CDF of the stationary
GEV distribution is given by

F zð Þ= exp − 1+ξ
z−μ

σ

� �h i−1=ξ
� �

,1+ξ
z−μ

σ

� �
>0, ð1Þ

where μ, σ, and ξ are the location, scale, and shape parame-
ter, respectively. The location parameter specifies the centre
of the distribution, while the scale parameter determines the
size of deviations about the location parameter and the shape
parameter governs how rapidly the upper tail decays (Katz,
2010). The distribution of hydrometeorological variables is
often heavy tailed to the right. The introduction of a shape
parameter in a GEV distribution generally improves the fit
to the right tail of the distribution (i.e., extremely large
values).

The GEV parameters can be fitted by maximum likeli-
hood estimation (MLE), which maximizes the likelihood
function. An alternative fitting method is the L-moments,
which can be seen as a modification of the probability-
weighted moments (Hosking and Wallis, 2005; Chu et al.,

TABLE 2 The GEV and NGEV models used in this study

Model GEV/NGEV

Parameters

Location μ Scale σ Shape ξ

GEV_STN GEV (μ, σ, ξ) Constant Constant Constant

NGEV_TIME NGEV (μt, σt, ξ) Time varying Time varying Constant

NGEV_ENSO NGEV (μONI, σONI, ξ) ENSO varying ENSO varying Constant

NGEV_TIMEENSO NGEV (μt, μONI, σt, σONI, ξ) Both time and ENSO varying Both time and ENSO varying Constant
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2009). L-moment statistics rely on ordered samples and yield
robust estimates when the training sample size is small or
when outliers exist (Hosking et al., 1985). Because the
L-moment method is not available to the non-stationary
GEV models, the MLE is used.

Estimates of the extreme quantiles, known as the return
level zp, corresponding to the return period (τ),

τ=1=p, ð2Þ
where p is the probability of annual occurrence, can be
obtained by

zp=μ−
σ

ξ
1− − log 1−pð Þf g−ξ
h i

,ξ 6¼ 0: ð3Þ

The return level is expressed as the same unit as rainfall,
also in millimetre, and is exceeded by the annual maximum
value in any particular year with probability p. As implied in
Equation (3), the behaviour of zp depends on the location,
scale, and shape parameters, and the return period τ. The distri-
bution will have a heavy tail when the shape parameter is greater
than zero, which implies a higher probability of the presence of
extreme values. That is, the probability density function
decreases very slowly in the upper tail. The shape parameter is
usually greater than zero for precipitation data. For convenience,
the stationary GEV model is hereafter referred to as GEV_STN.

3.4 | Non-stationary GEV distribution (NGEV)

Now we extend the stationary GEV model to the non-
stationary one by allowing the GEV parameters to vary with
time or through other climate drivers. Because the variability of
the shape (ζ) parameter is small (Hosking et al., 1985) and
allowing the shape parameter to vary would likely cause
numerical problems (R. Katz, personal communication, January
6, 2012), the assumptions of the two other parameters are

μt=μ0+μ1t,

logσt=σ0+σ1t,ξ is constant , ð4Þ
where t stands for a time index. The exponential expression for
the scale parameter σ is used to guarantee a positive value for
σt. The coefficients μ0 and σ0 are the intercept values of the
NGEV parameters. The slope coefficients μ1 and σ1 specify the
rate of change in the parameters. Substituting Equation (4) into
Equation (3), the return level zp of a NGEV becomes

zp tð Þ=μ0+μ1t−
exp σ0 +σ1t½ �

ξ
1− − log 1−pð Þf g−ξ
h i

,ξ 6¼ 0:

ð5Þ
Besides the location and scale parameters and p, it is

now obvious that the return level zp is also a function of
time. For p = 0.63, corresponding to return level periods
greater than 1.59 year, the term

1
ξ

1− − log 1−pð Þf g−ξ
h i

FIGURE 2 Percentage of stations showing (a) significant positive and
(b) significant negative trends for maximum 24-hr precipitation during the
typhoon season (JASO) based on the Mann–Kendall and Sen’s test. The
histogram is obtained from resampling with 1,000 replicates and the vertical
broken lines denote the 95% of the resampled distribution. The dot is from
observations
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is negative for any sign of the shape parameter ξ (Garcia
et al., 2007). Because of the negative sign in front of this
term in Equation (5), it implies increasing (decreasing)
return levels with time when the scale parameter σ is char-
acterized by a positive (negative) slope. This term becomes
more negative as p decreases. That is, the increasing
(decreasing) return level with time becomes more distinct
as p decreases, say, from 0.5 (2-year return period) to 0.01
(100-year return period). The same effect of this term is
also realized when the time index is replaced by the ENSO
index. The relative role of a positive (or negative) slope of
the location and scale parameters in shaping the trend of
return levels is described in details in Chen and
Chu (2014).

The model shown in Equation (5), with both time-
varying location and scale parameters, is referred to as
NGEV_TIME. The parameters of the non-stationary GEV
distribution are estimated by the Extreme Toolkit using the
R statistical programming language developed by Univer-
sity Corporation for Atmospheric Research (UCAR), which
is available online (http://www.isse.ucar.edu/extremevalues/
evtk.html) and in a short article (Gilleland and
Katz, 2011).

In addition to estimating changes in extreme precipita-
tion with time, t in Equation (4) can be replaced by a time-
varying Niño indicator (e.g., ONIt). Thus, another set of
location and scale parameters can be estimated to show the
relationship between the precipitation extremes in Taiwan
and the El Niño conditions. This third model, with both
location and scale parameters dependent on the ENSO con-
dition, is known as NGEV_ENSO. Taking one step further,
it is also of interest to include both the time index and pre-
cursory ENSO conditions in the NGEV model. For this bi-
covariate NGEV model, the location and scale parameters
are follows:

μt,ONIt = 1, t,ONIt½ �
μ0
μ1
μ2

2
4

3
5,

logσt,ONIt = 1, t,ONIt½ �
σ0
σ1
σ2

2
4

3
5: ð6Þ

The return level zp is now governed jointly by both time
index and the state of ENSO as

zp t,ONItð Þ=μ0+μ1t+μ2ONIt

−
exp σ0+σ1t+σ2ONIt½ �

ξ
1− − log 1−pð Þf g−ξ
h i

,ξ 6¼ 0:

ð7Þ
This fourth model, with both time-dependent and ENSO-

dependent location and scale parameters, is referred to as
NGEV_TIMEENSO. The stationary GEV and three non-
stationary GEV models are summarized in Table 2.

3.5 | Model selection

For each station, four candidate models are considered. In
keeping up with the principle of parsimony, the simplest
model that can explain most variations in the block maxi-
mum series should be adopted (Coles, 2001). One common
way to select the best fitting model among the four is to use
the Akaike information criterion (AIC). It is expressed math-
ematically as

AIC=−2L bð Þ+2K, ð8Þ
where L(b) is the log-likelihood for a fitted model, b the
parameters, and K the total number of parameters required
to be estimated for each model. The first term on the right-
hand side of Equation (8) represents the model perfor-
mance and the second term is a penalty function for the
K parameters that need to be estimated when an extreme
value distribution model is fit to the data. As more parame-
ters are brought into the model, the first term will usually
decrease but the second term will necessarily increase. In
general, a model with the minimum AIC value is preferred
to others.

FIGURE 3 Percentage of stations showing positive trends for maximum
24-hr precipitation during the typhoon season (JASO) based on the Mann–
Kendall and Sen’s test. The histogram is obtained from resampling with
1,000 replicates and the vertical lines denote the 95% of the resampled
distribution. The dot is from observations
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4 | RESULTS

4.1 | Trend analysis

As listed in Table 1 (fourth column), the majority of stations
in Taiwan experienced an upward trend in precipitation
extremes induced by typhoons since 1958. Specifically,
15 out of all 20 stations (75%) exhibit an upward trend and
three of these stations are statistically significant at the 10%
level of a two-sided test. This significance level implies that
about 5% of stations would show significant increasing
(extreme right tail) and significant decreasing (extreme left
tail) trends by random chance. On the other hand, 5 out of
20 stations show a downwards trend and none of them are
statistically significant. Interestingly, except for Chenggong,
four stations with a downwards trend are located in northern
Taiwan (Keelung, Anbu, Zhuzihu, and Taipei). In summary,
long-term upwards trends in the block maximum series
induced by typhoons during the typhoon season prevail in

Taiwan over the last 56 years and downward trends are
found only in a few stations, mainly in northern Taiwan.

The next question is whether the significant positive
trend at 3 stations out of 15 in Table 1 could have occurred
by random chance. The percentage of stations with a signifi-
cant positive trend falls outside the empirical distribution
based on 1,000 replicates, suggesting that the observed field
is significant (Figure 2a). In contrast, because no stations
show significant negative trends in Table 1, the resampling
test also reflects this fact (Figure 2b). That is, the field signif-
icance cannot be reached if there is not a single station exhi-
biting significant negative trend. Because there are
increasing trends at 15 stations and such a trend is prevail-
ing, we extend the field significance test by evaluating the
distribution of the increasing trend under the null hypothesis
of no trend. Again, the observed percentage of stations with
a positive trend lies outside the empirical distribution
(Figure 3). This result suggests that the collection of positive
trends observed at three quarters of all stations during the

FIGURE 4 Time series of return levels for maximum 24-hr precipitation at (a) Taipei and (b) Taichung according to the non-stationary, time-varying GEV
model (NGEV_TIME). The dotted, solid, and dashed curves denote the 2-, 20-, and 100-year return levels, respectively. Solid thin line at the bottom
represents observation data
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typhoon season in Taiwan is quite unique and is not due to
random variability.

4.2 | Regional changes in return levels as a function of
time (NGEV_TIME)

Now let us turn our attention to the fifth and sixth columns
in Table 1, which show the sign of the slope of the location
and scale parameters, respectively, from the NGEV model
with time as a covariate. As shown in Equation (5), the trend
of the return level, zp, is determined by three components—
location parameter, scale parameter, and probability, p. The
value of the probability is inversely related to return period,
as τ = 1/p. Note that 12 stations (60%) in Table 1 are
marked by positive trend in both location and scale parame-
ters. Seven stations see a negative trend in location but a
positive trend in scale parameter. Only one station
(Chenggong) is marked by a negative trend in both location
and scale parameters.

In this section, we will show the time series plots of
24-hr precipitation extremes and the three return levels
(2, 20, and 100 years) for six stations representative of the

region of Taiwan. The main island of Taiwan is convention-
ally divided into the northern, central, southern, and eastern
regions. Therefore, we will adopt stations Taipei, Taichung,
Tainan, and Taitung to represent these four regions, respec-
tively. Because of the presence of the CMR which runs from
the north of the island to the south with its tallest peak at
Yushan (3,952 m), we also select one station, Alishan, to
represent the high mountain region in central Taiwan, which
is different from Taichung at a lower elevation (Table 1).
For the off island stations, we chose Penghu because it has
the largest population. In all, six stations are selected for the
following analysis.

According to Equation (5), a positive slope of the loca-
tion parameter will result in an increase in the return level
and vice versa. If the scale parameter also shows a positive
trend, the trend of return level zp will increase as
p decreases, which means an increase in return periods. For
Taipei, a negative trend in the location parameter is embed-
ded in a positive trend in scale parameter (Table 1). As such,
the trend in return levels become more complicated. From
Equation (5), a negative trend for the location parameter
alone will inherently induce a negative trend for the return

FIGURE 5 Same as Figure 4 but for (a) Tainan and (b) Taitung
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level, if other components remain unchanged. However, for
a positive trend in the scale parameter alone, the return levels
tend to increase. Therefore, when these two opposing trends
are considered jointly, there is a possibility that the trend in
return levels will be gently upward such as Taipei
(Figure 4a) or downward (Anbu not shown). Noted that
changes in scale parameter dominate changes in location
parameter for more extreme events (Katz and Brown, 1992).
Therefore, for low probability (i.e., 20- or 100-year return
levels), the positive trend of scale parameter overwhelms the
negative trend in location parameter, yielding a positive
trend in return levels.

For Taichung (Figure 4b), Tainan (Figure 5a), Taitung
(Figure 5b), and Penghu (Figure 6b), both the location and
scale parameters exhibit a positive trend (Table 1). There-
fore, the slope of return levels tends to increase with time.
Take Taichung as an example. The 20-year return level was
381 mm in 1958 and increased to 585 mm by 2013. This
amounts to a sizable 54% increase in 20-year return level
over a span of 56 years. Another way to interpret this result
is that an event with a 20-yrar return–interval threshold value

in 1958 occurred on average once every 13 years by 2013.
Therefore, the waiting time for an extreme event that usually
occurred on an average once in 20 years has shortened con-
siderably to only once in 13 years in recent years. Also note
that the slope of return levels becomes steeper as return
periods increase from 2 to 100 years (as the probability of
annual occurrence decreases from Equation (5)). For
Alishan, the signs of these two parameters are opposite
(Table 1) and a positive trend in return levels for 20 and
100 years is noted (Figure 6a). Being located in the CMR
and because of topographically enhanced precipitation by
typhoons, the block maximum series at Alishan show an
increasing values since the mid-1990s and punctured by two
extraordinarily large peaks in 1996 (1,749 mm) and 2009
(1,623 mm). The highest recorded 24-hr value in 1996 was
due to Typhoon Herb, which made landfall in Taiwan on
July 31. The second highest amount in 2009 was also caused
by a typhoon-terrain enhancement when Morakot devastated
Taiwan in August 2009. The 20-year return level at Alishan
goes from nearly 972 mm in 1958 to 1,372 mm in 2013,
corresponding to a considerable 41% increase in maximum

FIGURE 6 Same as Figure 4 but for (a) Alishan and (b) Penghu
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FIGURE 7 Spatial patterns of trends for return levels from a NGEV model with time as covariate (NGEV_TIME) for maximum 24-hr precipitation, (a) 2,
(b) 20, and (c) 100 years. Triangles denote the location of the individual stations. Upwards (downwards) triangles indicate positive (negative) trend, and their
size corresponds to the magnitude of the trend in the legend. Note that all stations are significant at the 5% level
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24-hr rainfall over the last 56 years. One of the stations with
the lowest recorded 24-hr maximum rainfall (6.5 mm in
1983) is Penghu, which is located on the offshore island
west of Taiwan (Figures 1 and 6b). Even though Penghu is
very dry, the return levels of 20 and 100 years still exhibit
an increasing trend over time, and the percentage of increase
from 1958 to 2013 is substantial (Figure 6b).

The spatial patterns of the trends in the three return
levels of the 24-hr maximum precipitation during the
typhoon season for the NGEV with time as a covariate for
all 20 stations are found in Figure 7. The return periods
(2, 20, and 100 years) in Figure 7 represent the annual prob-
abilities of 0.5, 0.05, and 0.01, respectively. Figure 7a shows
that a large majority of the stations, denoted by triangles
pointing upwards, have a positive slope in 2-year return
level except for three stations. Figure 7b,c shows that the 20-
and 100-year return levels for all stations are positive except
for two stations (Anbu and Chenggong) which are character-
ized by a downward trend. Trends at all stations are signifi-
cant at the 5% level. As expected, the slope of the 100-year

return level is larger than the corresponding 20- and 2-year
value. In short, an increase in return levels is observed for all
three return periods at a majority of stations in Taiwan over
the last 56 years and this increase in rainfall extremes is
associated with typhoon-induced activity. Tables for 20-yr
(S1), 50-yr (S2) and 100-yr (S3) return levels for each sta-
tion are listed in the Supporting Information section.

4.3 | Changes in return levels as a covariate of the
ENSO phenomenon (NGEV_ENSO)

The NGEV model was fitted with the ONI of the preceding
winter (DJF) as a covariate. The winter index is chosen
because ENSO events usually reach their peak in the boreal
winter. Because the ONI changes from winter to winter and
this change is not monotonically increasing or decreasing as
in time, the return level values are arranged according to
ONI values, not according to years. The influence of the
winter ONI on precipitation extremes in the following
typhoon season across Taiwan is not uniform. For example,
13 stations experience a positive influence while 7 stations
show a negative relationship. For the positive influence, it
means that a large and positive ONI, corresponding to an El
Niño event, would favour extremely high rainfall. By the

FIGURE 9 Same as Figure 8 but for (a) Tainan and (b) Taitung

FIGURE 8 Relationship between return levels of maximum 24-hr
precipitation and ONI at (a) Taipei and (b) Taichung according to the non-
stationary, ENSO-varying GEV model (NGEV_ENSO). The short dashed,
solid, and dashed curves denote the 2-, 20-, and 100-year return levels,
respectively. Open circles denote observation data
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same token, a large and negative ONI, corresponding to a La
Niña event, results in extremely low rainfall. For stations
under the positive influence of ONI, the representative sta-
tions include Taipei (Figure 8a) and Taitung (Figure 9b). For
stations that show a negative relationship with ONI, the rep-
resentative stations are Taichung (Figure 8b), Tainan
(Figure 9a), Alishan (Figure 10a), and Penghu (Figure 10b).
Based only on a time-varying location parameter, Villafuerte
II et al. (2015) studied changes in extreme rainfall
(i.e., annual maximum daily rainfall) in the Philippines and
linked such changes to ENSO and global mean temperature
separately. They also noted a non-uniform response of
ENSO on extreme rainfall in Philippines, with a positive
association in northern Philippines and a negative associa-
tion in central Philippines.

To quantify the effect of ENSO on rainfall extremes, the
difference in the 20-year return level between El Niño and La
Niña events is divided by La Niña events
(i.e., [RLNiño – RLNiña]/RLNiña; Figure 11). An east–west con-
trast is seen in the spatial distribution of return level difference
across Taiwan depending on the state of the preceding winter
ENSO conditions. Stations in northern and eastern Taiwan
exhibit an increasing percentage, ranging from 10 to 50%, in

FIGURE 10 Same as Figure 8 but for (a) Alishan and (b) Penghu

FIGURE 12 Box plots of (a) negative percentage difference and
(a) positive percentage difference of 20-year return level (RL20) during the
typhoon season between El Niño and La Niña events divided by La Niña
events ([RL20El Niño – RL20La Niña]/RL20La Niña). Note that the season
refers to the second year of an El Niño (La Niña) episode

FIGURE 11 Spatial pattern of percentage difference of 20-year return levels
(RL20) during the typhoon season between El Niño and La Niña events divided
by La Niña events ([RL20El Niño − RL20La Niña]/RL20La Niña). Note that
the season refers to the second year of an El Niño (La Niña) episode. Upward
triangles denote higher rainfall extremes following an El Niño event and
downward triangles denote lower rainfall extremes following an El Niño event

5118 CHU ET AL.



return levels in JASO after an El Niño occurred, relative to a
La Niña event. In the meantime, a decrease in rainfall extremes
is even more pronounced by as much as 60–70% in western-
central Taiwan. For stations in northern and eastern Taiwan,
the median of the 20-year return level difference between El
Niño and La Niña events is 23%, while the median for
western-central Taiwan is −39%. In other words, an El Niño
event tends to favour extremely high rainfall in the following
typhoon season in northern and eastern Taiwan and extremely
low rainfall in western Taiwan, including the CMR. Results for
the 100-year return levels between two climate extremes are
similar to that shown in Figure 11.

Figure 12 presents the boxplot, also known as the box-
and-whisker plot, of the percentage changes in 20-year
return level between two climate extremes for (a) western
Taiwan and (b) northern/eastern Taiwan. Variability in
return levels for stations in western Taiwan is greater than
for stations in northern and eastern Taiwan. The location of

the median in Figure 12b (northern and eastern Taiwan) is
closer to the upper end of the box, suggesting a tendency
towards negative skewness. This is also consistent with the
inequality of the two whisker lengths. For western Taiwan
(Figure 12a), the difference in return levels between two cli-
mate extremes appears to be reasonably symmetrical as the
median is located near the centre of the box and two whis-
kers are approximately of equal length.

4.4 | Changes in return levels driven by both time and
ENSO (NGEV_TIMEENSO)

The previous two subsections focused on the changes in
return levels when either time or ENSO was used as a covari-
ate. Now we extend the NGEV analysis by considering both
time and ONI as covariates and show changes in return
levels as a function of time. By doing this, we can see how
high-frequency inter-annual variability is embedded within

FIGURE 13 Time series of return levels for maximum 24-hr precipitation at (a) Taipei and (b) Taichung according to the non-stationary, bi-covariate GEV
model (NGEV_TIMEENSO). The short dashed, solid, and dashed curves denote the 2-, 20-, and 100-year return levels, respectively. Thin solid line at the
bottom denotes observations. Solid (broken) arrows along the abscissa indicate the second year of a La Niña (El Niño) episode
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the low-frequency long-term slower variations in return
levels. Figure 13a displays the changes in three return levels
in Taipei from 1958 to 2013. Take the 20-year return level
from the bi-covariate model as an example. Instead of a
rather smooth and rising line as seen in Figure 4a, the return
level fluctuates at an inter-annual timescale confounded by a
slow-varying long-term rising trend in Figure 13a. These fea-
tures are also seen for Tainan (Figure 14a), particularly prior
to 1980. The high-frequency inter-annual variations in return
levels are more distinguished for Taichung (Figure 13b),
Alishan (Figure 15a), and Penghu (Figure 15b). They are
exemplified by the high return levels in the second year of a
La Niña event (e.g., 2000 and 2008) and low return levels in
the second year of an El Niño event (e.g., 1998 and 2010).
They are consistent with the difference in percentage map
between El Niño and La Niña events as seen in Figure 11.
The results presented in Figures 13–15 suggest that the
short-term inter-annual variations influenced by ENSO are
more dominant than long-term time trend in return levels for

Taichung, Alishan, and Penghu. For Taitung (Figure 14b),
relatively higher return level occurs in the second year of an
El Niño event (e.g., 1998 and 2010).

4.5 | Model selection results and uncertainty estimates

The AIC values for four candidate models in Table 2 at each
individual station are tallied. Seven stations with a non-
stationary model are identified to be the best fitting model
while the other 13 stations indicate stationary characteristics
(Figure 16). Out of these seven stations with non-stationary
features, one station is identified as NGEV_TIME
(Keelung), three stations as NGEV_ENSO (Penghu, Tai-
chung, and Riyuetan), and three stations as NGEV_TI-
MEENSO (Hualien, Tainan, and Yushan). The ratio of
stations with NGEV models to the total number of stations
entertained is approximately one third (7/20), similar to what
is found in Philippines (Villafuerte II et al., 2015) and in the
Yangtze River basin of China (Lu et al., 2018). One caution-
ary note is that the difference in AIC values among four

FIGURE 14 Same as Figure 13 but for (a) Tainan and (b) Taitung
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candidate models for each station is rather small. On aver-
age, the ratio of the difference from the minimum to the
maximum AIC values divided by the mean values among
the four models is only 0.7%. Therefore, the candidate sta-
tionary and a variety of non-stationary GEV models consid-
ered are almost equally likely to be the “best” fitting model
for each station and the minimum AIC criterion should not
be rigidly followed.

It is also interesting to provide uncertainty estimates of
return levels for all stations. Here we choose the 20- and
100-year return levels based on the bi-covariate model and
use the 95% confidence interval (CI) in 2013 as uncertainty
estimates (Figures 17 and 18). For a majority of stations
along the east coast and southernmost tip of Taiwan as well
as Penghu, the 95% CI of these two return levels is relatively
low, implying lower uncertainty in estimating the return
levels. The 95% CI is wider for Riyuetan, Alisan, Taichung,
Kaohsiung, and Ilan. Therefore, the uncertainty for the

return levels is relatively large for those stations in which the
background return level is high (Figures 13b and 15a).

5 | SUMMARY

Climate information about heavy rainfall events, including
their frequency, intensity, and trends, is useful for decision
makers in many fields. For this information to be useful, an
analysis of climate risks, which involves extreme weather
events and return periods, is applied. The return period sta-
tistics are commonly used for urban and highway drainage
design, for potential flood risks within a watershed, and for
environmental regulation. Historically, these statistics are
time-invariant. Because the climate is changing, the conven-
tional wisdom of fixed return levels used in various engi-
neering design is questionable and should be revised by
taking climate change into account. With this goal in mind, a
novel non-stationary GEV model is applied to investigate

FIGURE 15 Same as Figure 13 but for (a) Alishan and (b) Penghu
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how (a) return levels will change in time during the typhoon
season in Taiwan, and (b) how return levels will be influ-
enced by a climate driver such as ENSO events.

The MKS trend analysis on the 24-hr precipitation
extremes shows that 15 out of 20 stations have a positive
trend, which implies that there is a prevailing increasing
trend in precipitation extremes from 1958 to 2013 in Tai-
wan. The percentage of positive trends is predominant and
could not have occurred by random chance based on a field
significant test. This result is consistent with Chu et al.
(2014) who used a different data set and method to demon-
strate a prevailing upward trend in rainfall intensity during
the typhoon season since 1950.

The extreme precipitation data were then fitted with the
NGEV model where the location and scale parameters are
allowed to vary with time while the shape parameter is held
constant. The 20- and 100-year return level results from the
NGEV model with time show that 18 stations have a posi-
tive trend, and only two stations have a negative trend
(Figure 7b,c). This means that an increasing trend in return
levels associated with heavy precipitation events induced by
typhoons is prevalent. Therefore, more intense typhoon pro-
ducing seasonal maximum 24-hr precipitation has been
observed in Taiwan since 1958. Alternatively, the return-
interval threshold values have shortened considerably
throughout the last 56 years. That is, the frequency of

FIGURE 17 The 95% CI (mm) for 20-year return level in 2013 based on a
bi-covariate NGEV model (NGEV_TIMEENSO)

FIGURE 18 The 95% CI (mm) for 100-year return level in 2013 based on
a bi-covariate NGEV model (NGEV_TIMEENSO)

FIGURE 16 The best fitting model for the typhoon producing seasonal
maximum 24-hr precipitation according to the AIC criterion. The
description for four candidate models is provided in Table 2
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typhoon-induced extreme precipitation has occurred more
often in recent years.

Independently, the extreme precipitation data were also
fitted with ONI as a covariate. The return level plots show
13 stations with a positive relationship with the preceding
winter ONI and seven stations with a negative relationship
with the same index. Specifically, the El Niño event favours
extremely high rainfall in northern and eastern coastal Taiwan
in the following typhoon season. For the 20-year return level,
the increase varies from 10 to 50% during a warm event rela-
tive to a cold event. In the meantime, western Taiwan and the
CMR may experience extremely low rainfall during the
typhoon season following an El Niño episode. This decrease
in return level of rainfall extremes in western Taiwan is more
pronounced than the corresponding increase seen in northern
and eastern Taiwan. Conversely, a La Niña event may result
in extremely high rainfall for western Taiwan and the CMR.
Therefore, an east–west regional contrast in extreme rainfall
depending on state of ENSO is expected across Taiwan.

A NGEV model based on both time and ENSO as covari-
ates is also applied in this study and changes in return levels
are presented as a function of time. For most stations in the
western Taiwan including the CMR and Penghu, changes in
return levels are very sensitive to the ENSO phenomenon and
less so to the slowly varying time trend. Specifically, higher
(lower) return levels are observed in the second year of a La
Niña (El Niño) event for the aforementioned areas. The results
presented here may benefit many water related agencies in
Taiwan (e.g., Soil and Water Conservation Bureau, Director-
ate General of Highways) who are concerned with recurrent
flooding and the relevant policy making. Information from
this study may provide important guidance to those agencies
about changing characteristics of return levels so that proper
hydrologic planning and management can ensue.
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