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ABSTRACT

Focusing on afternoon thunderstorms in Taiwan during the warm season (May–October) under weak synoptic

forcing, this study applied theTaiwanAuto-NowCaster (TANC) to produce 1-h likelihoodnowcasts of afternoon

convection initiation (ACI) using a fuzzy logic approach. The primary objective is to design more useful forecast

products with uncertainty regions of predicted thunderstorms to provide nowcast guidance of ACI for fore-

casters. Four sensitivity tests on forecast performance were conducted to improve the usefulness of nowcasts for

forecasters. The optimal likelihood threshold (Lt) forACIs, which is the likelihood value that best corresponds to

the observed ACIs, was determined to be 0.6. Because of the high uncertainty on the exact location or timing of

ACIs in nowcasts, location displacement and temporal shifting of ACIs should be considered in operational

applications. When a spatial window of 5 km and a temporal window of 18min are applied, the TANC displays

moderate accuracy and satisfactory discrimination with an acceptable degree of overforecasting. The non-

parametric Mann–Whitney test indicated that the performance of the TANC substantially surpasses the com-

peting Space and TimeMultiscaleAnalysis System–Weather Research and ForecastingModel, which serves as a

pertinent reference for short-range (0–6 h) forecasts at the Central Weather Bureau in Taiwan.

1. Introduction

For short-range (0–6 h) forecasts, one of the most

challenging tasks is to predict whether a convective

storm will occur, as well as when and where it will

happen. Relative to other convective systems, such as

stationary fronts and typhoons, forecasting afternoon

convective storms is more difficult because of their small

spatial scale and very short lifetime. Sea breezes and

anabatic winds play an important role in the initiation of

afternoon thunderstorms by moistening the boundary

layer (Lin et al. 2011). The convection is often enhanced

and new storms are generated when the outflows in-

teract with terrain, sea breezes, and other outflows from

adjacent storms (Szoke et al. 1985; Jou 1994). The af-

ternoon convective activity in Taiwan peaks along the

lower slope of the mountains rather than at higher ele-

vations farther inland (Johnson and Bresch 1991; Lin

and Kuo 1996; Chang 1997; Chen et al. 2001).

Wilson and Schreiber (1986) showed that the majority

of thunderstorms in the Denver, Colorado, area formed

along radar-detected convergence lines. As noted inCorresponding author: Pao-Shin Chu, chu@hawaii.edu
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previous studies (Mueller and Wilson 1989; Wilson and

Mueller 1993), forecasters can often anticipate thunder-

storm initiation bymonitoring radar-detected convergence

lines (boundaries) together with cloud development in

the vicinity of the convergence line. However, forecasters

often have difficulty in knowing the precise timing and

location of storm initiation. Another issue is that not all

convergence lines initiate storms, even when they collide

in conditionally unstable environments (Stensrud and

Maddox 1988). Wilson et al. (1998) showed that the initi-

ation of convective storms is often controlled by boundary

layer convergence features, environmental vertical wind

shear, and buoyancy. Accordingly, successful forecasts of

storm initiation depend on the accurate specification of the

initial thermodynamic and kinematic fields with particular

attention paid to convergence lines. Wilson et al. (2004)

demonstrated that convective initiation (CI) can be pre-

dicted up to 1h in advance by adopting a set of predictor

fields and manually entering the location of boundary

layer convergence lines in NCAR’s Auto-Nowcaster

(ANC) (Mueller et al. 2003).

Rapidly intensifying afternoon thunderstorms can

lead to lightning strikes and heavy downpours, which

may cause problems such as power failures, traffic jams,

flooding, and aviation hazards. Accurate nowcasts pro-

vide disaster management agencies with valuable addi-

tional lead time to implement appropriate preventive

actions against severe weather. Improving nowcasts of

afternoon thunderstorms is one of the research priorities

of the Central Weather Bureau (CWB) in Taiwan.

Currently, nowcasts of afternoon convective storms

using numerical models are challenging. One reason for

this is the crude representations of the model physics

and convective schemes (Roberts et al. 2012). Another

reason is that crucial characteristics of mesoscale

boundaries, such as the frontal edges of land or sea

breezes and anabatic or katabatic winds, cannot be ad-

equately resolved by operationally available radar ob-

servations (when the boundaries are too far away from

the radar, or too shallow for the radar to detect) or

surface observations (generally sparsely spaced) used to

initialize model fields in Taiwan. Therefore, mesoscale

boundary information is unavailable in model initial

fields (Benjamin et al. 2004; Stensrud et al. 2009).

However, such information is critical for producing ac-

curate forecasts of afternoon convection initiations

(ACIs) using dynamical models. One way to mitigate

this problem is to apply a statistical forecasting tech-

nique such as a fuzzy logic algorithm to mesoscale pre-

dictors that can be observed or forecast.

To provide objective guidance for afternoon thun-

derstorm predictions in northern Taiwan, Lin et al.

(2012) developed a fuzzy logic algorithm using 277 cases

during the warm season (May–October) from 2005 to

2008 in the presence of dominant thermal forcing. Lin

et al. (2012) found that the best predictors of afternoon

thunderstorms were vapor pressure, humidity, wind di-

rection, and wind speed of the boundary layer in

the morning, as well as CAPE, dewpoint depression

(T 2 Td), wind direction, and wind speed in the lower–

middle layer of the troposphere (1000–500hPa) from

sounding data at 0800 local standard time (LST).

The use of high-resolution ensemble forecasts to

predict CI is currently still being tested. In the Spring

Forecasting Experiment in 2011 (SFE 2011), the po-

tential utility of high-resolution (4 km) ensemble fore-

casts in providing guidance for CI forecasts was

examined (Kain et al. 2013). The evaluation results in-

dicate that when CI occurred in both models and radar

observations, there was no systematic ensemble bias but

considerable variance in the timing of the CI events. In

addition, the default CI algorithms often overpredicted

the frequency of CI events and sometimes totally missed

convective events (Kain et al. 2013).

Focusing on ACIs in Taiwan under weak synoptic

forcing, we applied the Taiwan Auto-NowCaster

(TANC) to produce 1-h likelihood nowcasts of CI

based on a fuzzy logic approach. Eight predictors were

used in the study, and two of them were based on the

radar climatology constructed by Lin et al. (2012). In this

study we evaluate the forecast performance of the

TANC in order to establish a reference for its future

development and improvement. The ultimate goal is to

provide forecasters with more useful nowcast products

for guidance on ACIs in Taiwan.

This paper is organized as follows. The TANC and

study data are introduced in section 2. The verification

and analysis methodology are presented in section 3.

Section 4 describes the sensitivity experiments on verifi-

cation scores, including the sensitivity of scores to likeli-

hood thresholds, spatial and temporal windows, as well as

different combinations of spatial and temporal windows.

In section 5, theTANC is comparedwith a high-resolution

hot-start numerical weather prediction model, the Space

and Time Multiscale Analysis System (Xie et al. 2011)–

Weather Research and Forecasting (STMAS–WRF)

Model, to validate the benefits of the TANC over other

methods. A summary of the findings and suggestions for

future research is provided in section 6.

2. TANC and study data

TheTANCwas introduced to theCWBby theNational

Center for Atmospheric Research (NCAR) (Mueller

et al. 2003; Roberts and Rutledge 2003; Saxen et al. 2008)

and was created specifically to predict convective storms
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on a subtropical island with high mountains and complex

terrain. The TANC covers Taiwan and its adjacent seas

(Fig. 1a) with a 0.018 horizontal resolution; the system

estimates the 1-h likelihood of CI every 6min operation-

ally. CI is defined as new convection with reflectivity $

35dBZ. The value of 35dBZ is also the operational

threshold for convection at the CWB.

The TANC nowcasts the likelihood of CI using eight

predictors (Table 1) based on a fuzzy logic approach

(Berenguer et al. 2006; Lin et al. 2012). The eight pre-

dictors include radar climatology frequency, radar cli-

matology frequency trend, CAPE, CIN, average RH in

the 850–500-hPa layer, surface divergence, storm initia-

tion locations, and radar-based cumulus cloudiness. Sim-

ilar types of predictors are combined into one predictor

group in the upstreammodules (second row inFig. 2), and

the sum of the predictor weights for each upstream

module is 1. For example, the CAPE and CIN predictors

are combined into the stability upstreammodule, and the

likelihood value of thatmodule is obtained by summing the

weighted likelihood values of the CAPE and CIN predic-

tors (Lstability 5WCAPE 3LCAPE 1WCIN 3LCIN; WCAPE 5
0:4 and WCIN 5 0:6). Four upstream modules (entrain-

ment, small-scale convergence, CI proximity, and cumulus)

FIG. 1. (a) Terrain map of Taiwan. (b) TANC original nowcast product, showing the 1-h nowcast likelihoods of

ACIs in Taiwan and its adjacent seas. The nowcast is issued at 0800 UTC 14 Jun 2015.

TABLE 1. TANC predictors with a brief description of each predictor, its use, and references.

Predictor, shorthand

notation (units) Predictor description and use Reference

ClimoFreq (percent

frequency)

Frequency of reflectivity $ 40 dBZ based on four years’ worth of radar

data (2005–08)

Lin et al. (2011)

ClimoFreqTrend

(percent frequency

difference)

Based on the same data as above, this is the climatological trend in the

frequency of reflectivity $ 40 dBZ over the specific nowcast period

Lin et al. (2011)

CAPE (J kg21) Convective available potential energy obtained from the latest CWB–WRF

analysis fields; it is a measure of atmospheric stability

Lin et al. (2012);

Trier et al. (2011)

CIN (J kg21) Convective inhibition obtained from the latest CWB–WRF analysis field; it

is also a measure of atmospheric stability

Lin et al. (2012);

Trier et al. (2011)

RHavg (RH percentage) Average relative humidity in the 850–500-hPa layer obtained from the

latest CWB–WRF analysis fields; it is a measure of the amount of dry air

that may be entrained into convective updrafts

Trier et al. (2011)

SurfDiv (s21) Surface divergence obtained from surface station winds; it is used to help

identify localized regions of updraft

Mueller et al. (2003)

StormInitLoc

(dimensionless number)

Based on radar data, it is a measure of the closeness of storm initiation

locations to a given grid point

Wilson and Roberts

(2006)

RadarCu (dBZ) Based on radar reflectivity data, it identifies regions of early storm growth

aloft associated with cumulus clouds

Wilson and Mueller

(1993)
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have only one predictor; therefore, their likelihood value

is that of the single predictor. The outputs from the up-

stream modules are then ingested into three primary

modules (third row in Fig. 2) that represent forcing on

the synoptic, mesoscale, and storm scales. Similarly, the

sum of the upstream module weights for each primary

module is 1. Finally, the three primary modules are

combined to produce the likelihood of CI. Theweights of

the three modules are assigned based on their relative

contributions to forcing new convection and the sum of

the three weights is 1.

The TANC uses membership functions to determine

the degree of association between various predictors

and CI. Specifically, the predictor values are converted

into likelihood values through fuzzy membership func-

tions, which are derived from the statistics of prestorm

environmental characteristics, climatology of radar

reflectivity, and so on. ‘‘Fuzzy’’ indicates that the like-

lihood values range from21 to 1. Higher positive values

indicate an increased likelihood of CI in a region, lower

negative values indicate a decreased likelihood, and

0 indicates a neutral likelihood (Mueller et al. 2003).

The conceptual models of TANC are based on de-

termining the overlap of regions with a high climato-

logical frequency and trend of convective storms, high

instability, surface convergence, and other favorable

conditions for triggering convection. The overlapping

regions of the various predictors are also the expected

regions of CI (Mueller et al. 2003).

This study focuses on well-organized afternoon con-

vective storms under weak synoptic forcing in warm sea-

sons (May–October). Well-organized convection cases

are defined as storms with 1) radar reflectivity $ 35dBZ

over areas $ 300km2 (i.e., at least over 1/120 Taiwan’s

land area), which 2) lasted $90min (the duration of a

convective event, not the lifetime of individual convective

cells) and 3) occurred between 0400 and 1200 UTC (i.e.,

between 1200 and 2000 LST). Nine days of afternoon

convective storms (Table 2) that occurred in Taiwan from

2014 to 2015 were chosen for evaluation and a total of 312

nowcasts of 1h were verified.

3. Verification methodology

a. Conversion from likelihood to Y/N forecasts

The TANC provides 1-h likelihood nowcasts of ACI

(Fig. 1b), which indicate the uncertainty information

associated with the forecasts. Note that a likelihood

nowcast is different from a probabilistic forecast, even if

both have a similar meaning: higher value represents

higher possibility. The likelihood values from the TANC

range from 21 to 1 while the probability is bounded

between 0 and 1. Because the TANC likelihood nowcast

FIG. 2. Flowchart for TANC 1-h nowcasts of ACI. (first row) Eight predictors, as defined in Table 1, are combined into the (second row)

upstreammodules, and then the upstreammodules are combined into the (third row) primarymodules. Finally, the three primarymodules

are combined to produce the (bottom row) nowcast. TheLi andWi are the likelihood and correspondingweight, respectively. See section 2

for further explanation.
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is not a probabilistic forecast, forecasters need to know

how to best use the TANC nowcasts. Another problem

is that the TANC frequently shows large areas of low

likelihood values (,0.3) for CI (e.g., Fig. 1b), which

results in forecasters mistakenly believing that CI may

occur everywhere. To provide guidance on the most

likely region for CI, we attempt to determine an optimal

likelihood threshold (Lt) that best corresponds to the

observed CI. Therefore, the likelihood forecasts are

converted into yes/no (Y/N) forecasts. Moreover, the

forecast uncertainty information is incorporated into the

final nowcast products using the relaxation method de-

scribed later. The conversion from likelihood to Y/N

forecasts is performed by first selecting a relevant Lt.

For example, if the Lt is 0.8, then if the likelihood ex-

ceeds this threshold it means that the TANC predicts

there will be new convection in the next hour. Other-

wise, the prediction is classified as a nonevent.

Currently, there is no direct observation that can un-

ambiguously indicate whether new convection has ini-

tiated within the past hour. However, we need such

information to determine whether the TANC nowcasts

are correct. Here, we adopt the same approach as

Lakshmanan et al. (2012). Two radar images 1 h apart

were examined to find where new convection has oc-

curred. The past observation was warped to best align it

with the current observation using a cross-correlation

optical flow method (Barron et al. 1994). This involves

finding a smooth motion field based on the two images

and then advecting the corresponding grid in the sec-

ond image backward to align it with the first one. Once

the two images have been aligned, a 5 3 5 neighbor-

hood (;5 km 3 5 km) of each pixel was searched to

determine the convective state within the past hour.

Each pixel of the radar image was then classified into

one of four categories: new, ongoing, decaying, and no

convection.

By using the aforementioned conversion, each grid

point was classified into one of four possible conditions

in a 2 3 2 contingency table (Table 3), consequently

enabling computation of the threat score (TS; Bermowitz

and Zurndorfer 1979), bias ratio (BIAS), probability of

detection (POD), false alarm ratio (FAR), Kuiper score

(KS;Murphy andDaan 1985), and equitable threat score

(ETS) for the forecast verification (Wilks 2011; Jolliffe

and Stephenson 2012). The aforementioned six verifi-

cation scores can be found in appendix A.

b. Relaxation method

Compared with forecasting other weather systems,

the uncertainty for ACI nowcasts is considerably higher.

All kinds of uncertainties during the forecast process

result in difficulty in predicting the exact location and

timing of ACIs. For example, the predictors in the

TANC, such as model-derived CAPE, CIN, RHavg, and

observed surface divergence, come with their own un-

certainties, which contribute to the nowcast uncertainty

represented by the fuzzy logic algorithm relying on a

fixed number of predictors. That is, there is an inherent

uncertainty in the statistical model even if the predictors

were perfectly known. Therefore, the location dis-

placement and temporal shift of the predicted storms

should be accounted for in operational applications.

What should the space–time tolerances be to achieve a

level of accuracy that is considered acceptable? This

question is addressed through the development of a re-

laxation method using a historical ACI dataset and

taking into account the operational needs of forecasters

in Taiwan. For example, a location displacement of 5 km

is almost the maximum tolerable range for predicted

storms given the small size of Taiwan.

1) Spatial relaxation

For location displacement, we relax restrictions

from a pixel-to-pixel verification to a verification of a

circle with a radius of N grid points. This spatial

relaxation method is similar to that of Lakshmanan

et al. (2012), but with a modification to render

uniform location displacement in all directions. In

Lakshmanan et al. (2012), the pixel-to-pixel verifica-

tion was relaxed to a verification of a square area

of (2N1 1)(2N1 1) grid points (Fig. 3). As a result,

the tolerable location displacement of a predicted

storm is larger in the diagonal than in the other radial

TABLE 3. The 2 3 2 contingency table.

Forecast

Yes No

Observation Yes Hit (h) Miss (m)

No False alarm ( f ) Correct rejection (c)

TABLE 2. Afternoon convection cases in 2014 and 2015.

Year

Event date (No. of

validation times)

Time period

(UTC)

2014 30 Jun (35) 0606–0930

1 Jul (24) 0730–0948

27 Aug (33) 0618–0930

29 Aug (33) 0718–1030

9 Sep (21) 0730–0930

2015 2 Jun (30) 0624–0918

14 Jun (39) 0630–1018

28 Jul (45) 0536–1000

17 Sep (52) 0554–1100

Total: 312 nowcasts of 1 h
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directions. To overcome this issue, the area of tol-

erable location displacement was modified to a circle

with radius of N grid points.

Figure 3 illustrates the spatial relaxation method

with N 5 1, which means only one grid point of lo-

cation displacement is an acceptable tolerance for

the CI nowcasts. Suppose that the TANC predicted a

certain grid point as CI. If a pixel-to-pixel verification

was applied, this grid point would be classified as a

‘‘hit’’ h only when new convection was observed at

the same grid point in the verification field. However,

if one grid point of location displacement was

allowed (N 5 1), this verifying grid point would be

regarded as h when new convection was observed

within a circle with radius of one grid point. There-

fore, allowing for location displacement increases the

frequency of h. A ‘‘false alarm’’ f requires the now-

cast to predict CI but without new convection

observed at the same grid point through a pixel-to-

pixel verification; however, under the N 5 1 re-

laxation, this grid point would be classified as f if no

new convection was observed within a circle with

radius of one grid point. Therefore, allowing for

location displacement reduces the frequency of f.

2) A ‘‘miss’’ m requires new convection to be observed

but no CI to be predicted at the same grid point

FIG. 3. Spatial relaxation method with N 5 1, which means one grid of storm location dis-

placement is allowed. The circle area is based on this study and the square one is from

Lakshmanan et al. (2012).
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using a pixel-to-pixel verification; however, under

the N 5 1 relaxation, this grid point would be

classified as m if no CI was predicted within a circle

with radius of one grid point. Therefore, allowing for

location displacement reduces the frequency of m.

None of the aforementioned categories would be

classified as a ‘‘correct rejection’’ c in the contingency

table (Table 3). The spatial relaxation works favor-

ably because the horizontal resolution of the TANC

is high (approximately 1 km). The smoothed fore-

casts will generally have better verification scores

than the unsmoothed forecasts.

Temporal relaxation is also accounted for in the ver-

ification of CI nowcasts. Suppose a temporal window

(T5 12min) is considered, whichmeans a temporal shift

of less than 12min is an acceptable tolerance for the

CI nowcasts. That is, if the TANC 1-h nowcast predicts

CI, the new convection is expected to occur in the next

48–72min (1 h 6 12min). If the initial time of the 1-h

CI nowcast was 0630 UTC, the predicted new convec-

tion would likely occur between 0718 and 0742 UTC

(0730 UTC 6 12min) under the T 5 12min relaxa-

tion. In other words, the new convection predicted

by the TANC nowcasts between 0618 and 0642 UTC

(0630 UTC 6 12min) would probably occur at

0730 UTC. The temporal relaxation works well because

the temporal resolution of the TANC is high (6min).

Temporal relaxation is similar to a time-lagged en-

semble TANC and the idea of temporal relaxation

comes from time-lagged ensembles. For time-lagged

ensembles, previous forecasts initialized at different

times were used to construct members for the ensemble

forecasts. Applying a similar concept to the TANC, we

use the previous nowcasts initialized at different times to

predict CI at a specific validation time. The TANC

nowcasts with temporal relaxation can be regarded as

time-lagged ensemble nowcasts. The difference between

time-lagged ensembles and temporal relaxation is

that time-lagged ensembles produce a mean forecast or

a probabilistic forecast, but temporal relaxation produces

aY/N forecast. That is, as longas there is a previousnowcast

predicting a grid point as CI, this grid will be regarded as CI

for temporal relaxation.

The main reason to adopt the time-lagged ensemble

concept in the TANC nowcast is that a short-range

forecast generally possesses a relatively strong de-

pendency on the initial conditions. Forecast errors in a

very short range may be strongly correlated to un-

certainties in the initial analysis (Lu et al. 2007). The

time-lagged ensembles can be interpreted as the fore-

casts obtained from a set of perturbed initial conditions

(Van den Dool and Rukhovets 1994).

In section 4, which focuses on sensitivity experiments,

we apply the spatial and temporal relaxation methods to

evaluate the forecast performance of the TANC under

different spatial and temporal windows. Based on the

evaluation results, we determine the most likely regions

and the less likely, but still possible, areas for CI for

TANC nowcast products.

c. Confidence interval

Confidence intervals are used to describe the un-

certainty associated with a sample estimate of a pop-

ulation parameter. To construct a confidence interval, a

confidence level (e.g., 95%) must first be selected. The

confidence level indicates the probability that the con-

fidence interval captures the true population parameter

given a distribution of samples. Therefore, confidence

intervals provide more meaningful information about

forecast performance, and enable credible comparisons

of nowcast performance among different spatial or

temporal window settings when sample size is limited

(312 nowcasts in this study). In this study, we applied the

bootstrap method (Chu 2002; Wilks 2011) to construct

the 95% confidence interval of median TS, BIAS, KS,

and ETS based on 10 000 bootstrap samples. There was

very little autocorrelation in the verification statistics so

they could be considered nearly independent.

4. Sensitivity experiments

In this section, we discuss sensitivity tests for various

Lts that were conducted to determine an optimal Lt to

provide guidance on the most likely region for CI. In

addition, sensitivities of verification scores to different

spatial (61–10km) and temporal (66–30min) windows

were also investigated to determine acceptable spatial

and temporal uncertainty ranges for the purpose of

displaying the less likely, but still possible, regions

for CI.

a. Sensitivity of scores to different Lts

The forecast performance for no relaxation at different

Lts (Fig. 4) shows that the median TS and FAR values do

not greatly vary when Lt is between 0.3 and 0.6; however,

the median BIAS and POD values exhibit a clear de-

crease with increasing Lt. The optimal Lt is selected using

the following arguments: a lower Lt produces a higher

POD, but also leads to overforecasting (i.e., a larger

BIAS). Therefore, the POD alone should not be used for

determining the optimal Lt.With a focus on theBIAS, the

ratio is too large when Lt is between 0.3 and 0.5. When Lt

equals 0.6, the TANC displays an acceptable degree of

overforecasting. If Lt is increased to 0.7, the TANC ex-

hibits underforecasting (BIAS, 1) and the TS decreases
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considerably. Thus, an Lt of 0.6 is selected as the optimal

value for 1-h nowcasts of ACIs.

b. Sensitivity of scores to different spatial windows

A boxplot analysis (Fig. 4) revealed that the dis-

tributions of verification scores are asymmetrical;

therefore, we selected the median as the test statistic to

represent the central tendency of forecast performance

rather than the mean. Additionally, considering the

uncertainty associated with sampling variability and

the limitations in sample size, 95% confidence inter-

vals of the score median were constructed through

bootstrapping.

Figure 5 displays the score median with a 95% confi-

dence interval associated with different spatial windows

when the optimal Lt (0.6) was applied. When the spatial

window N equals zero, the verification results were de-

termined using a pixel-to-pixel verification.WhenNwas

extended out to five grid points, the median TS, BIAS,

KS, and ETS values were approximately 0.33, 1.87, 0.84,

and 0.33, respectively. In this case the TANC displayed

moderate accuracy and satisfactory discrimination but

also an acceptable degree of overforecasting. As men-

tioned in appendix A, the values of the ETS and TS are

similar because ACIs can be regarded as ‘‘rare events’’

in the TANC domain and the chance of random hits

is very low for the TS. For this reason we only show the

TS in the latter analysis. In addition, the KS approaches

the POD for rare events; thus, we use the KS together

with the BIAS to evaluate the forecast quality of TANC

to ensure that the high value of KS does not result from

serious overforecasting. The 95% confidence intervals

were narrow, indicating that the uncertainty caused by

sampling variability or limitations in sample size is

very small.

Regarding the aforementioned two sensitivity tests,

the CWB provides one formulation of the operational

TANC nowcast product with an optimal Lt of 0.6 and a

spatial window of five grid points (Fig. 6a). Figure 6b

shows the same nowcast product using the spatial re-

laxation from Lakshmanan et al. (2012) for compari-

son. When adopting a square of (2N 1 1) 3 (2N 1 1)

grid points as the area of tolerable location displace-

ment, the boundary of the uncertainty area of ACI will

have a zigzag or square shape. In other words, the

tolerable location displacement is not identical in all

directions. Therefore, we opt to use a circle with a

radius of N grid points as the area of tolerable location

displacement.

Five grid points were selected as the spatial win-

dow for the TANC for two reasons: 1) the KS be-

comes saturated with this setting (Fig. 5), and 2) a

location displacement of five grid points (;5 km) is the

maximum tolerable range considered by forecasters

FIG. 4. Boxplots of verification scores at different Lts from TANC, including TS, BIAS, POD, and FAR.
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due to the small size of Taiwan. This nowcast product

serves as a critical reference for ACI warnings at

the CWB.

c. Sensitivity of scores to different temporal windows

Figure 7 is similar to Fig. 5, but for different temporal

windows. For a temporal window of 0min (i.e., a point-

to-point verification), the forecast was verified with only

the observation at the validation time. The verification

scores improved substantially when the restrictions were

relaxed from point-to-point verification to verification

over a temporal window T of 66min. When T was

extended to 618min (when the KS tends to become

saturated), the TS, BIAS, and KS values reached 0.36,

2.01, and 0.86, respectively. Similar to the results from

spatial relaxation, the TANC displayed moderate ac-

curacy and satisfactory discrimination but also an ac-

ceptable degree of overforecasting; we are confident in

these verification results because of the narrow 95%

confidence intervals.

FIG. 5. Score median values and 95% confidence intervals for different spatial windows (grid points) from TANC,

including TS, BIAS, KS, and ETS.

FIG. 6. TANC nowcast product design based on sensitivity tests of scores to different spatial windows using the

spatial relaxation of (a) this study and (b) Lakshmanan et al. (2012). The pink shading shows themost likely regions

for CI (i.e., the areas with likelihood$ 0.6). The blue shading shows the less likely but still possible areas of CI. The

dark blue contours of observed CI are also overlaid for verification. The 1-h TANC nowcast for northern Taiwan

was issued at 0648 UTC 14 Jun 2015.
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The timing of the temporal window also needs to take

into account the operational needs of the forecasters to

have the latest information at the time that they must

produce their forecasts. Therefore, the next topic

addressed pertains to how to set the temporal window

on the basis of the operational needs of the forecasters.

As mentioned in section 3b, a temporal window of

6T min means that the convective storms predicted by

the nowcasts during the period of the issue time

6T min are likely to occur 1 h after the issue time. An

example of this is illustrated in Fig. 8a, where T 5 18.

Based on the viewpoint of operational applications, only

the forecasts that have already been generated (i.e., the

forecasts issued earlier than 0930 LST) can be used to

provide additional information for the latest 1-h nowcast

(i.e., the forecast issued at 0930 LST). Therefore, it is

important to consider whether the forecast performance

will be severely affected if the nowcast is set at the

ending point of the temporal window (Fig. 8b) given the

same window size.

Figure 9 is similar to Fig. 7; however, in Fig. 7 the

nowcast is set at the center of the temporal window, as

shown in Fig. 8a (temporal window setting I). In con-

trast, in Fig. 9 the nowcast is set at the ending point of

FIG. 7. As in Fig. 5, but for different temporal win-

dows from the TANC. In addition, ETS was removed

because the ETS and TS values are nearly the same.

These are plots for the temporal window setting I, as

shown in Fig. 8a.

FIG. 8. Schematic diagram of the temporal forecasting window. (a) A temporal window of

618min (i.e., 36min). The nowcast is set at the center of the temporal window (temporal

window setting I), and (b) the temporal window size (36min) is the same as in (a), but the

nowcast is set at the ending point of the temporal window (temporal window setting II).
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the temporal window, as shown in Fig. 8b (temporal

window setting II). If we compare Figs. 7 and 9, we see

that the forecast performance is sensitive both to the

window length and the ending point of the temporal

window (Table 4). The forecast performance of setting I

with a window of 66/612min slightly exceeds that of

setting II with a window of 12/24min, but is comparable

to that of setting II with a window of 18/30min, except

for the BIAS. Note that temporal window setting II

possesses better BIAS given the same window size. We

did not compare the larger temporal windows because a

temporal shift of 30min is the maximum tolerable range

considered by forecasters at the CWB.

These results indicate that the forecast performance

of TANC is more sensitive to the window length than to

the ending point of the temporal window. The forecast

performance will not be severely affected if the nowcast

is set at the ending point of the temporal window, given

the same window size. Therefore, for operational con-

siderations, we adopt the window setting II to determine

the most adequate temporal shift of predicted storms.

One advantage of setting II is that it has a more rea-

sonable value for the BIAS given the same temporal

window length.

d. Sensitivity of scores to different combinations of
spatial and temporal windows

The results of sensitivity tests when spatial and tem-

poral windows are combined (Fig. 10) showed that both

expanding spatial windows and lengthening temporal

FIG. 9. As in Fig. 7, but these are plots for temporal

window setting II, as shown in Fig. 8b.

TABLE 4. Comparison of verification scores between temporal window settings I and II. The nowcast is set at the center of the temporal

window in setting I, but at the ending point of the temporal window in setting II.

Temporal window (min) Setting I 66 612

Setting II 12 18 24 30

TS Setting I 0.22 0.30

Setting II 0.20 0.23 0.28 0.31

BIAS Setting I 2.45 2.21

Setting II 2.25 2.12 1.97 1.88

KS Setting I 0.70 0.79

Setting II 0.65 0.71 0.75 0.77

ETS Setting I 0.22 0.30

Setting II 0.19 0.23 0.27 0.31
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windows would yield better verification scores. Focusing

on the KS, the saturation point is almost at the spatial

window of five grid points and the temporal window of

18min. Adopting this window setting as the forecast

guidance for the ACIs, the TS, BIAS, and KS values are

0.43, 1.81, and 0.94, respectively. That is, the TANC

displayed moderate accuracy and satisfactory discrimi-

nation, but also an acceptable degree of overforecasting.

According to the results from the four aforementioned

sensitivity tests, the CWB provides a TANC nowcast

product for ACIs with an optimal Lt of 0.6, spatial

window of five grid points, and temporal window of

18min (Fig. 11).

5. Comparison with high-resolution hot-start
model STMAS–WRF

The next topic we address is whether the TANC can

surpass other short-range forecast models currently

available.We compared the TANCwith a high-resolution

hot-start numerical weather prediction model, the

STMAS–WRF, to validate its value. The STMAS–WRF,

which is also called variational Local Analysis and Pre-

diction System–WRF (LAPS–WRF), applies diabatic

data assimilation to mitigate the ‘‘spinup’’ problem and,

thus, can producemore accurate forecasts during the early

prediction stage (0–6h) (Chang et al. 2012, 2015). Cur-

rently, the STMAS–WRF serves as a crucial reference for

short-range (0–6h) forecasts at the CWB in Taiwan.

The STMAS–WRF domain covers the island of Tai-

wan and its nearby sea areas with a horizontal resolution

of 3 km. It runs hourly with a forecast length of 12 h.

Accordingly, we compared only the hourly TANC

nowcasts with the corresponding STMAS–WRF 1-h

forecasts. To make a fair comparison, all the results

below are from pixel-to-pixel verification without any

spatial and temporal relaxation for the TANC and

STMAS–WRF. For the TANC, we considered 0.6 as the

Lt, which means the TANC is considered to be ‘‘pre-

dicting CI’’ if its likelihood value exceeds 0.6. For the

STMAS–WRF, we chose 35dBZ as the threshold for the

vertical maximum reflectivity tomatch with the TANC’s

operational definition of convection, which means the

STAMS–WRF is regarded as ‘‘predicting a convection’’

if its vertical maximum reflectivity exceeds 35 dBZ in the

1-h forecast.

Because the input data for the STMAS–WRF, such as

model background, radar reflectivity, and surface ob-

servation data, were not archived in 2014, we could not

rerun the STMAS–WRF for the five cases in 2014 in

Table 2. Therefore, in addition to the four cases in 2015,

we chose four additional cases in 2016 as verification

cases to compare the forecast performance of these two

systems. A total of 26 forecasts of 1 h from the eight

cases were verified.

Here, we use the performance diagram (Roebber

2009) to discern differences in the forecast perfor-

mance of the TANC and STMAS–WRF (Fig. 12). The

FIG. 10. Score median values for different combina-

tions of spatial and temporal windows (different curves)

from the TANC, including TS, BIAS, and KS. T00 de-

notes the temporal point-to-point verification, and T06,

T12, . . . , T36 represent temporal windows of 6, 12, . . . ,
36min, respectively (temporal window setting II).
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performance diagram is based on the fact that TS, BIAS,

POD, and the success ratio (SR; SR 5 1 2 FAR) are

functionally related to each other. The point repre-

senting the scores for a perfect forecast (POD, SR, bias

score, and TS equal unity) lies in the top-right corner of

the diagram and deviations in a particular direction in-

dicate the relative differences in the POD and SR and,

consequently, the BIAS and TS. Figure 12 shows that,

overall, the TANC had higher prediction accuracy than

the STMAS–WRF did for the TS. A total of 17 of the

26 runs from the TANC had TS values greater than

0.1, whereas the STMAS–WRF had only two runs with

TS higher than 0.1. Both systems displayed over-

forecasting but the STMAS–WRF displayed more pro-

nounced overforecasting. The TANC had most parts of

runs with BIAS between 1 and 3; by contrast, most of the

STMAS–WRF runs had BIAS greater than 3. Gener-

ally, the SR values of the TANC were higher than those

of the STMAS–WRF. According to these samples of

afternoon convective storms, the TANC outperformed

the STMAS–WRF. These results also exemplify the

difficulties in predicting ACIs by using short-range nu-

merical models, even with a hot-start model.

The sample median TS of the TANC was markedly

higher than that of the STMAS–WRF (Fig. 13); how-

ever, the sampling variability of the TANC was larger

(i.e., the 95% confidence interval was broader). In

addition, the median TS difference (paired results)

between these two systems showed that the TANC

outperformed the STMAS–WRF when applying the

median TS as an index of forecast ability.

To test for significant differences in the median

TS values between both systems, a Mann–Whitney test

(also referred to as a two-sample rank test) was used

for hypothesis testing. Although the Mann–Whitney

test does not require normally distributed data, a

key assumption underlying the test is that the indi-

vidual samples are independent. A check of the auto-

correlation functions of the TS for both systems

exhibited small values at various lags, reflecting a weak

serial dependence (i.e., nearly independent) in the

sample data. Subsequently, the Mann–Whitney test

(Mann 1945; Larson 1982) was conducted at a specified

level of significance (a 5 0.01) with the following

hypotheses:

H0, median TS1 5 median TS2; and

HA, median TS1 6¼ median TS2,

where the subscripts 1 and 2 for TS refer to the STMAS–

WRF and TANC, respectively. Based on the eight

cases during 2015 and 2016, the p value is 0.000 08 for a

FIG. 11. TANC 1-h nowcast guidance for ACI issued at

0824 UTC 14 Jun 2015. The pink shading shows the most likely

regions for ACI (i.e., the areas with likelihood $ 0.6). The blue

shading shows the tolerable areas of forecast errors (i.e., storm

displacement or time shifting). The dark blue contours of observed

ACI are also overlaid for verification.

FIG. 12. Performance diagram showing the forecast verification

results for the TANC (red dots) and STMAS–WRF (blue dots)

based on eight afternoon thunderstorm cases in 2015 and 2016.

Curved lines show TS and straight dotted lines represent BIAS.
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two-sided test (6Zw) and a normal approximation. This

result indicates that the probability of no differences

existing in forecast ability between both systems was

0.008%. In other words, a statistically significant dif-

ference exists between both systems. Please refer to

appendix B for a more detailed description of the

Mann–Whitney test.

Strictly speaking, the STMAS–WRF forecasts should be

regarded as convective storm nowcasts, which involve

nowcasts of storm initiation, growth, and dissipation.

Among these three attributes, storm initiation is the most

difficult to predict in practice.Although theTANC focuses

only on storm initiation, it offers better forecast perfor-

mance than the STMAS–WRF for these cases.

6. Conclusions and future work

Focusing on nine days’ worth of afternoon thunder-

storms under weak synoptic forcing in 2014 and 2015, we

apply the TANC to generate 1-h likelihood nowcasts of

ACIs based on a fuzzy logic approach. The primary

purpose is to provide more useful nowcast guidance of

ACIs for forecasters.

Sensitivity experiments for various Lts were con-

ducted to determine the optimal Lt for indicating ACI.

The criterion of threshold selection is optimized to

balance the hits against false alarms (or POD against

BIAS) in the ACI forecasts. A higher POD, which

indicates a greater chance of ACI being detected, is not

necessarily the best choice. The optimal value of Lt

for ACI is suggested to be 0.6. The sensitivity

experiments on spatial and temporal windows showed

that a combination of a spatial window of 5 km and a

temporal window of 18min is preferred as the accept-

able uncertainty range of forecast errors when opera-

tional needs are taken into account. Under these

conditions, the TANC displays moderate accuracy and

satisfactory discrimination with an acceptable degree

of overforecasting.

Based on the results from sensitivity experiments, we

designed a new nowcast product that only displays the

most likely regions (Fig. 11, in pink) for ACIs (i.e., the

areas with Lt $ 0.6) instead of likelihood contours. In

addition, the tolerable areas of storm displacement

(5 km) and temporal shift (18min) are also shown to

indicate the less likely, but still possible, areas of ACIs

(Fig. 11, in blue). The TANCwas also compared with an

operational high-resolution hot-start model (STMAS–

WRF) to validate its nowcast value. Verification results

and a Mann–Whitney test suggest that the TANC sig-

nificantly surpasses the competing STMAS–WRF model

with a very low p value.

Based on the 2014 and 2015 cases in this study, about

90% of the samples had likelihood values between

0 and 0.2, few had negative likelihood values, and no

samples had a likelihood value greater than 0.95. In the

beginning, we disregarded the few negative likelihood

values, reset the negative likelihood values to zero, and

treated likelihood nowcasts as probabilistic forecasts.

Analysis of the reliability diagram showed that the

TANC was obviously overforecasting and the likeli-

hoods were not statistically reliable. We also tried to

incorporate spatial and temporal windows into the

likelihood nowcasts by averaging the likelihood values

or taking the median values within the spatial and

temporal windows to make them more statistically re-

liable. Improvement is very limited, however, because

the TANC likelihood nowcasts were seriously over-

forecasting with poor resolution. We think the funda-

mental reason for the statistical unreliability, even

though spatial and temporal windows were incorpo-

rated into the likelihood nowcasts, lies in the fact that

the likelihood forecasts should not be regarded as

probabilistic forecasts.

To produce more accurate ACI nowcasts, some pre-

dictors of the TANC should be changed. Among the

eight predictors, three predictors (CAPE, CIN, and

RHavg) come from the analysis field of the regional

CWB–WRF model, which is updated every 6h with a

horizontal resolution of 15 km. Additionally, the surface

divergence (SurfDiv) predictor is calculated from wind

observations at stations with a spacing of approximately

9–10km. The temporal and spatial resolutions of these

four predictors are too low to resolve the atmospheric

FIG. 13. Sample median TS for TANC and STMAS–WRF, as

well as the median TS difference between these two systems with

a 95% confidence interval on the basis of a 10 000 bootstrap re-

sampling process.
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characteristics required for ACI nowcasts. In the future,

analysis fields of the STMAS–WRF model should be

considered as replacements for their equivalents in the

CWB–WRF model to provide higher temporal and

spatial resolution information on wind, thermal, and

humidity fields.

Apart from the predictors listed in Table 1, we will

also take into account other predictors. For example,

satellite cumulus cloud IR temperature change (Roberts

and Rutledge 2003) and onset time of the sea breeze

from the coast or the time of sea-breeze passage at key

surface stations (Lin et al. 2012) are relevant variables to

be considered. Information on the previous day’s con-

vective storms would also be beneficial for forecasting

the current day’s event because of the nature of the

persistence of thunderstorm activity. In addition, we

plan to track convective cells to determine their move-

ment speed and direction in the future. This capability

would provide information on the propagation of pre-

dicted storms. By doing so, the regions of spatial forecast

uncertainty could be narrowed down by simply per-

forming spatial relaxation along the propagation di-

rection of a storm, instead of searching in all directions

in our present study.
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APPENDIX A

Dichotomous Verification Scores

The six verification scores used in this study are de-

fined as follows:

TS5
h

h1 f 1m
, (A1)

BIAS5
h1 f

h1m
, (A2)

POD5
h

h1m
, (A3)

FAR5
f

h1 f
, (A4)

KS5hit rate H2 false alarm rate F

5
h

h1m
2

f

f 1 c
, and (A5)

ETS5
h2 h

rdm

h1 f 1m2 h
rdm

,

h
rdm

5
(h1m)(h1 f )

h1m1 f 1 c
, (A6)

where h, m, f, and c are the four elements in a 2 3 2

contingency table (Table 3).

The TS is also named the critical success index (CSI;

Donaldson et al. 1975) or the Gilbert score. We adopted

the TS as the index of forecast ability in this study be-

cause it was commonly used in various previous studies

in assessing the accuracy of thunderstorm forecasts

(Huntrieser et al. 1997; Mitchell et al. 1998; Mueller

et al. 2003; Mazur et al. 2009), despite having some

shortcomings. For example, the TS depends on the cli-

matological frequency of events because some hits can

occur purely as a result of random chance. That is, the

TS is prone to lower values for rare events and higher

values for frequent events. Therefore, a higher TS does

not necessarily indicate more accurate forecasting abil-

ity. For the evaluation of ACIs in this study, however,

the TS value approximated the ETS value because af-

ternoon thunderstorms can be regarded as rare events in

the TANC domain.

The ETS is also called the Gilbert skill score (GSS;

Gilbert 1884), which is constructed using the Gilbert

score (i.e., the TS) as the accuracy measure in the defini-

tion of a skill score. That is, GSS5 (TS2 TSref)/(TSperf2
TSref), where TSref is the TS value from reference fore-

casts (i.e., random forecasts) and TSperf 5 1 is the TS

value from perfect forecasts. If one needs to compare

forecast performance between different samples, the ETS

is a better choice than the TS because the ETS could

adjust for the effects of differences in the climatological

frequencies of the event between samples.

The KS is also known as the Hanssen–Kuipers dis-

criminant score (HKS; Hanssen and Kuipers 1965;

Woodcock 1976) or the true skill statistic (TSS; Flueck

1987) and is equal to the hit rateHminus the false alarm

rate F. TheH (5 POD) and F values are conditioned on

OCTOBER 2017 CHANG ET AL . 1815



observations. The KS describes how effectively the

forecast separates events from nonevents. In other

words, the KS measures the discrimination ability of a

forecast system. The KS ranges from21 to 1. A positive

KS indicates a forecast with positive discrimination

ability, with the perfect score of 1. The KS approaches

the POD whenever forecasting is dominated by correct

forecasts of nonoccurrence (e.g., forecasts of rare events

like severe local storms). A forecaster can maximize the

KS by overforecasting rare events; therefore, using the

KS alone to evaluate the forecast success of rare events

is not strictly proper (Doswell et al. 1990). To avoid this,

we adopted other scores (TS, BIAS, and FAR) together

with the KS to give a more complete picture of the

forecast quality of afternoon convection, which can be

regarded as a rare event in the TANC domain. Details

for the KS can be found in Gandin and Murphy (1992).

APPENDIX B

The Mann–Whitney Test

The Mann–Whitney test (Mann 1945; Larson 1982)

determines p values to assess the significance of differ-

ences between two samples by using a normal approxi-

mation, which is calculated as follows:

Z
w
5

���W2
n(m1 n1 1)

2

����2 0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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6664(m1 n1 1)2
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i51

(t3i 2 t
i
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(m1 n)(m1 n2 1)

3
7775

vuuuuuut

,

where W is the test statistics; n and m are the size of

sample 1 (STMAS–WRF) and sample 2 (TANC), re-

spectively; K is the number of sets of ties (i.e., pairs with

the same values); and ti is the number of tied values in the

ith set of ties. The W value can be calculated using the

following four steps: 1) pool the data from the two sam-

ples into one batch, 2) rank all the TS values in ascending

order, 3) calculate and assign the average rank for the

samples that are tied, and 4) calculate the sum of the

ranks of the first sample (i.e.,W value). After the value of

Zw is calculated, it can be translated into a p value using a

normal approximation and a two-sided test in this study.
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