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ABSTRACT: Trends of annual maximum 1-day precipitation in three major Hawaiian Islands are investigated using
a nonparametric Mann-Kendall method and Sen’s test (MKS). The records are from 24 stations on Oahu, Maui, and
Hawaii, and the period of analysis ranges from 1960 to 2009. To complement the MKS method, a non-stationary three-
parameter generalized extreme value (GEV) distribution is also used to detect trends in precipitation extremes. Both
methods demonstrate that negative trends prevail for Oahu and Maui but positive trends dominate the Island of Hawaii.
The influence of the location and the scale parameter in the GEV model on different return levels (2-year, 20-year, and
100-year) are explicitly described. The return-level threshold values are found to change with time considerably. As a
result, a rare storm with daily precipitation of 300 mm (20-year return period) in 1960 has become a rather common storm
event (3–5-year return period) in 2009 on the Island of Hawaii. The opposite trend behavior in extreme events is observed
on Oahu and Maui, where rainfall extremes have become less frequent in the last five decades. A positive relationship is
found between the precipitation extremes and Southern Oscillation Index (SOI), implying greater extreme events during
La Niña years and the opposite for El Niño years.
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1. Introduction
The changes in extreme events such as heavy precipita-
tion and associated floods, heat waves, and hurricanes
attract a lot of attention because of their devastating
consequences on societies and their economies. Studies
on changes in climate extremes using observations have
been performed on both a global and regional scale. An
increase in the number of warm summer nights, decrease
in the annual number of frost days, and significant
increase in the total wet day rainfall were noted by Frich
et al. (2002), based upon global daily station observa-
tions. Alexander et al. (2006) also found a broad increase
in precipitation indices globally. On a regional or conti-
nental scale, Groisman et al. (2004) identified significant
positive trends in heavy and very heavy precipitation in
the eastern part of contiguous United States. Griffiths and
Bradley (2007) pointed out that in northeastern United
States precipitation extremes are increasing. Recently,
Chu et al. (2014) noted a prevailing upward trend in pre-
cipitation intensity (mm day−1) and 5-day precipitation
amounts during the typhoon season (July–October) over
the last 60 years in Taiwan.

* Correspondence to: P.-S. Chu, Department of Meteorology, Univer-
sity of Hawaii, 2525 Correa Road, Honolulu, HI 96822, USA. E-mail:
chu@hawaii.edu

Located in the subtropical marine region, Hawaii is
strongly influenced by the ocean climate, which provides
adequate moisture and temperature variation. Annual
temperature variation in Hawaii is small, about 5 ◦C
(Giambelluca and Schroeder, 1998). The characteristics
of precipitation, however, are highly spatially diverse due
to the influence of complex topography with external
forcings. The interaction of synoptic systems (e.g. upper
tropospheric troughs, cold fronts, Kona lows, and tropical
cyclones) with local topography results in flood-leading
heavy rainfall events in Hawaii that cause damage to
properties, agriculture, and public facilities (Schroeder,
1977; Chu et al., 1993; Kodama and Barnes, 1997;
Lyman et al., 2005; Chu et al., 2009). Pollutants carried
away by heavy stream flows are one of the major threats
to near-shores marine ecosystems, especially coastal coral
reefs. Accordingly, scientific understanding of the trends
of extreme precipitation events is of particular importance
in the inclusive perception of climate change in Hawaii
and relevant to policy concerns.

The statistics of extremes has been one of the research
focuses of meteorology and hydrology during the past
decade. Katz et al. (2002) examined some of the most
popular approaches to extreme statistics. Characteristics
of extreme events such as maximum precipitation, river
peak flow, and streamflow are described. Examples of the
application of the Generalized Pareto distribution (GPD)
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and the generalized extreme value (GEV) distribution to
those extreme events are given. Katz et al. (2002) also
demonstrated the use of GPD and GEV to downscaling of
extremes. The GEV distribution is based on the statistical
theory of extremes (Coles, 2001). Kharin and Zwiers
(2005) estimated the return values of annual temperature
and precipitation extremes in transient climate change
simulations using a non-stationary GEV distribution with
time-dependent location, scale, and shape parameters
by the maximum likelihood method. They found that
changes in precipitation extremes are due to changes
in both the location and scale parameters. Garcı́a et al.
(2007) also used a non-stationary GEV distribution with
time-dependent parameters to analyze the trends in block-
seasonal extreme rainfall over the Iberian Peninsula. They
discussed the influence of changes in location and scale
parameters to the return levels.

On the basis of a stationary GEV distribution, Chu
et al. (2009) estimated return periods of heavy rainfall
in Hawaii using annual maximum daily rainfall. Spatial
patterns of heavy rainfall events are mapped for each
island; however, there was no attempt to study trends in
precipitation extremes and return levels. Subsequently,
Chu et al. (2010) used a nonparametric Mann-Kendall
method and Sen’s test to investigate trends in precip-
itation extremes in Hawaii. The precipitation extremes
are derived from five of the 27 climate change indices
defined by the Climate Variability and Predictability
(CLIVAR) program, a component of the World Cli-
mate Research Program under the World Meteorological
Organization. These indices include, daily precipitation
intensity, annual number of days with daily precipitation
≥25.4 mm, annual maximum consecutive 5-day precip-
itation, and annual maximum consecutive dry days. In
Chu et al. (2010), parametric distributions are not used
to represent precipitation variability

Our current study focuses on extreme events using a
parametric, non-stationary GEV, which tacitly assumes
that extreme events are changing with time as the climate
changes. Instead of the climate change indices used in
Chu et al. (2010), the current study applies extreme pre-
cipitation values directly. Moreover, the non-stationary
GEV method is applied to investigate how the return
level of extreme precipitation in Hawaii changes with
time. Subsequently, the non-stationary GEV method is
also performed to examine the relationship between pre-
cipitation extremes and the El Niño-Southern Oscillation
(ENSO). The reminder of the paper is organized as fol-
lows: Sections 2 and 3 describe the dataset and methods
used in this study, respectively; results are presented in
Section 4; followed by a summary and conclusion in
Section 5.

2. Data

The National Weather Service (NWS) cooperative sta-
tions provided the daily rainfall dataset (TD3200) used
in this study. The station data can be obtained from

the National Climatic Data Center (NCDC) web site. In
Hawaii, the winter rainy season runs from November to
April. To keep the wet season data intact, the water year
is defined from July to June of the next year. The starting
year of a water year is chosen to represent that year or
season; e.g. 1960 means from July 1960 to June 1961.

A preliminary analysis of the TD3200 dataset reveals
that there are 294 stations with daily rainfall records in
the Hawaiian Islands. However, some gauges only have
short records and many of them have incomplete rainfall
records. Detection of trends in extreme rainfall events
using the parametric GEV distributions needs complete
records gathered over a long time period.

To fill in the missing records for a gauge, a simple
analysis is performed. If one month is missing from a
station’s records we compare that station with nearby
stations that have complete records, and check to see if
unusually large values exist. If abnormal precipitation
values do not exist during the missing period from the
neighbouring stations, which is the case here, the original
annual maximum daily value with a missing record is
retained and the station is considered as ‘complete’. For
those stations with incomplete records, the percentage of
missing observations is approximately 2–8% of the entire
records. This rate of missing gaps is quite small based
on a study by Zolina et al. (2005) who suggested that if
there is more than 25% missing in the data set, the trend
estimate in heavy precipitation indices from the incom-
plete series would differ from that in the complete series.
To further test whether the results of this study may be
influenced by missing observations, we selected a station
(Naalehu, Station number 22) with the most missing data
(7.8%) among all 24 gauges. Results of rainfall intensity
at various return periods are essentially the same between
the complete and incomplete series. By filling a small
portion of missing observations, we obtained 24 coopera-
tive stations with ‘complete’ records of daily precipitation
data from 1960 to 2009 (50-years) for three of the four
major Hawaiian Islands (Oahu, Maui, and the Island
of Hawaii). Kauai has only two long-term complete
stations. Because these two gauges are not representa-
tive for the entire island, Kauai is excluded from the
analysis.

The location and elevation information of the stations
are found in Table 1 and Figure 1. The majority of rain
gauges on Oahu are concentrated in the southeastern
part where population is dense (Stations 1–8). Seven of
the eight Oahu stations are located in the south-facing
leeward areas; the only gauge (Station 6) in windward
Oahu is in the eastern area. For Maui (Stations 9–16),
most stations are located in the central valley with two
gauges on the east island. The stations are more evenly
distributed on the Island of Hawaii and the eight stations
(Stations 17–24) are roughly evenly spaced. Due to
the limited availability of stations, caution should be
exercised when using the results discussed in Section 4
to represent island-wide or statewide characteristics.

In this study, the annual maximum daily precipitation
data are analyzed. Because only the largest value is
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Table 1. Locations and elevations of the cooperative stations. Island is also shown.

Station ID Station name Latitude (◦N) Longitude (◦W) Elevation (m) Island

1 Honolulu Observ 21.32 158.00 0.9 Oahu
2 Honolulu Intl AP 21.32 157.93 2.1 Oahu
3 Moanalua 770 21.35 157.88 11.3 Oahu
4 Punchbowl Crater 709 21.32 157.85 103.0 Oahu
5 Pauoa Flats 784 21.35 157.80 499.9 Oahu
6 Waimanalo Exp Farm 21.33 157.72 19.5 Oahu
7 Wilhelmina Rise 721 21.30 157.78 335.3 Oahu
8 Waialae Kahala 715 21.27 157.78 3.0 Oahu
9 Puunene 396 20.87 156.45 69.8 Maui
10 Kahului AP 20.90 156.43 15.5 Maui
11 Spreckelsville 400 20.90 156.42 27.4 Maui
12 Hamakuapoko 485 20.93 156.35 97.5 Maui
13 Keahua 410 20.87 156.38 146.3 Maui
14 Haleakala RS 338 20.77 156.25 2121.4 Maui
15 Kula Hospital 267 20.70 156.37 923.5 Maui
16 Kihei 311 20.80 156.45 48.8 Maui
17 Paauilo 221 20.05 155.37 243.8 Hawaii
18 Hilo Intl Ap 19.72 155.05 11.6 Hawaii
19 Waiakea SCD 88.2 19.67 155.13 320.0 Hawaii
20 Kulani Camp 79 19.60 155.30 1575.8 Hawaii
21 Hawaii Vol NP HQ 54 19.43 155.27 1210.4 Hawaii
22 Naalehu 14 19.07 155.60 243.8 Hawaii
23 Opihihale 2 24.1 19.27 155.88 414.5 Hawaii
24 Lanihau 68.2 19.67 155.97 466.3 Hawaii

Figure 1. Location of the cooperative stations used in this study. The dark circles represent stations and the numbers are the station IDs, which
correspond to those in Table 1.

chosen in each of n years, where n is the sample size,
there is concern over whether this selection of the block
maximum would cover the tail of an overall probability
distribution of a precipitation series. For this purpose,
histograms of daily precipitation and annual maximum
daily precipitation series for two stations, one from

Oahu and the other from the Island of Hawaii, are
examined in Figure 2. Looking at the figure, it is clear
that extreme precipitation data cover the right tail of
the overall distribution rather well, justifying the use
of the annual maximum daily precipitation to represent
the underlying extreme-value statistics. To ensure stable
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Precipitation frequency at HONOLULU OBSERV, Oahu
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Precipitation frequency at NAALEHU 14, Hawaii
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Figure 2. Histograms of precipitation frequency at (a) Honolulu Observatory, Oahu and (b) Naalehu Hawaii. Daily precipitation amounts are
shown in unfilled bars and the annual maximum daily precipitation values are in filled bars.

results, the original data sets are first standardized before
being analyzed. This transformation is also referred to
as normalization. Centering and rescaling the original
data (i.e. normalization) can improve the performance of
the numerical optimization technique (Katz et al., 2002).
Note that the data sets will not follow a Gaussian distribu-
tion after this transformation unless the original ones do
(Wilks, 2011).

Before performing trend-detection analysis, it is use-
ful to test the records for possible inhomogeneities in the
data such as abrupt shifts in the mean of the distribu-
tion (i.e. step-like changes in the mean of a time series).
For this purpose, a nonparametric Mann–Whitney-Pettitt
test (Pettitt, 1979) is used to examine possible inhomo-
geneities of the data sets. Results indicate that only two
out of 24 stations show significant change points based
on the annual maximum 1-day precipitation; therefore,
the effect of inhomogeneities is small.

3. Methodology

3.1. Trend analysis

The methods used in this paper are discussed below. First,
a nonparametric Mann-Kendall test and Sen’s method
(hereafter referred to as MKS) are applied to analyze
whether the long-term trends are statistically significant
(Mann, 1945; Kendall, 1970; Sen, 1968). The former
allows the detection of monotonic patterns (e.g. linear,
exponential) while the latter is basically a robust linear
regression. The basic assumption of the Mann-Kendall
test is that the data are independent. Because geophysical
data are usually measured in a consecutive manner, tem-
poral correlations are expected. When the test statistic
is evaluated for its significance, if the persistence is
strong the number of sample sizes that correspond to the
degrees of freedom should be corrected (i.e. the effective
sample size). A check of the autocorrelation functions of
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precipitation extremes exhibits small values at various
lags, reflecting a weak serial dependence in the block
maximum precipitation data sets. As such, the data
used can be considered as nearly independent. Subse-
quently, a non-stationary GEV distribution is fitted to
detect whether there are time-dependent changes of the
extremes.

3.2. A stationary GEV distribution

According to the description of the GEV theory (Coles,
2001; Wilks, 2011), for a large n the largest-of-n iden-
tically independent values follow a sample distribution
with a cumulative distribution function given by

G (z ) = exp

{
−

[
1 + ξ

(
z − μ

σ

)]−1/ξ
}

,

1 + ξ

(
z − μ

σ

)
> 0 (1)

where μ, σ , and ξ are the location, scale, and shape
parameter, respectively. The commonly used two-
parameter extreme-value distribution such as the Gumbel
distribution is a special case of the GEV where the GEV
shape parameter approaches zero.

Estimates of the extreme quantiles, known as the return
level zp, corresponding to the return period

τ = 1

p
(2)

where p is the probability of occurrence, can be obtained
by

zp = μ − σ

ξ

[
1 − {− log (1 − p)}−ξ

]
, ξ �= 0. (3)

As implied in Equation 3, the behavior of zp depends
on the location, scale, and shape parameters, and the
return period τ (Garcı́a et al., 2007). Accordingly, both
the location parameter μ and the scale parameter σ

(because a negative sign appears in the second term on the
right-hand-side of Equation 3) have a positive influence
on the return level zp. That is, the zp in Equation 3, which
is the return level corresponding to a return period τ ,
increases with increasing values of μ and σ . The shape
parameter ξ has a negative impact on the return level zp.
For example, an increase in the value of ξ will result in
a decrease in zp, and this effect becomes more important
when p in Equation 3 is smaller, which means a longer
return period τ .

3.3. A non-stationary GEV distribution

Because this study is intended to analyze the time-
dependent change in extreme precipitation, the GEV
parameters mentioned previously are allowed to vary with
time (t0 stands for the initial time). Because the location
and scale parameters play major roles in shaping the
trend in precipitation extremes (e.g. Kharin and Zwiers,
2005; Garcia et al., 2007) and the variability of the

shape parameter is small (Hosking et al., 1985), the
assumptions of the parameters are

μt = μ0 + μ1 (t − t0) ,

log σt = σ0 + σ1 (t − t0) , ξ is constant. (4)

The exponential expression (i.e. the inverse of exp is
the logarithm function) for the scale parameter ensures a
positive value for σ t. For the shape parameter, it is kept
constant in this study. Allowing the shape parameter to
vary would likely cause numerical problems (R. Katz,
personal communication). Also note that because both the
location and scale parameters are expressed as a function
of time, these parameters are not a fixed value and change
with time. This is in contrast to the stationary GEV model
described in Equation 1. If we substitute Equation 4 into
Equation 3 the return level zp becomes

zp = μ0 + μ1 (t − t0) − exp [σ0 + σ1 (t − t0)]

ξ

× [
1 − {− log (1 − p)}−ξ

]
, ξ �= 0. (5)

It is now obvious that the return level zp is also a
function of time. Therefore, the two non-stationary GEV
model parameters and the associated return levels are
not fixed in time, but are time dependent. Note that a
stationary GEV model provides a fixed estimate of the
return level for the entire time period. A non-stationary
GEV, on the other hand, allows the return levels to
change with time. This is perhaps more realistic in a
changing climate.

Accordingly, a positive slope of the location parameter
μ (i.e. μ1 > 0) will result in an increase in the return
level, and vice versa. With a positive trend in the
scale parameter (i.e. σ 1 > 0), the trend of return level
zp will increase as p decreases, or return period τ

increases. The opposite is true for a negative trend in
the scales parameter, (i.e. σ 1 < 0). This implies that
the scale parameter σ has a special influence on return
levels, which will be discussed later. The precipitation
amounts for the 2-, 20-, and 100-year return periods,
which correspond to probabilities 0.5, 0.05, and 0.01, are
calculated for annual maximum 1-day precipitation.

The parameters of the non-stationary GEV distri-
bution are estimated by the Extreme Toolkit using
the R statistical programming language developed
by University Corporation for Atmospheric Research
(UCAR), which is available on the UCAR web
page (http://www.isse.ucar.edu/extremevalues/evtk.html).
The statistical significance of the parameters from a
non-stationary model, where both location and shape
parameters are time-dependent (M 1), can be assessed
by the likelihood ratio test (Wilks, 2011) through
comparison with a stationary model (M2)

D = 2 {l (M1) − l (M2)} (6)

where l (M 1) and l (M 2) are the maximized log like-
lihood function of models M 1 and M 2, respectively.
The statistic D is distributed according to a chi-square
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distribution, with the degree-of-freedom parameter being
the difference in the number of parameters between mod-
els M 1 and M 2. A large value for D indicates that M 1

explains more data variance than M 2; therefore M 1 is a
better model than M 2.

3.4. A non-stationary GEV model with a covariate

In addition to estimating changes in extreme precipitation
with time, non-stationary GEV can also be used to
analyze whether the extreme precipitation is co-varying
with another climate variable, such as the Southern
Oscillation Index (SOI) which is commonly used to
monitor the behavior of the El Niño and La Niña. In
this case, t and t0 in Equation 5 are replaced by time-
variant SOI indicators (e.g. SOI(t) and SOI(t0)). Thus,
another set of time-variant location and scale parameters
can be estimated to show the relationship between the
precipitation extremes and SOI values.

3.5. Statistical field significance

For a given data set, it is reasonable to expect a certain
number of stations or grids to pass a random local
significance test. We assume that N out of the M stations
(N < M) reach local significance at the 5% level from
a trend analysis. At this test level, 5% of M stations
might be significant by chance even if the true slope
were zero. If the actual number of total stations showing
local significance (N) exceeds that by random chance
the spatial pattern may be considered ‘field significant.’
However, because of spatial correlation in geophysical
data, the percentage of the field showing significant
results should be far greater than that by chance. It is
thus necessary to address the collective significance of
a finite set of individual hypothesis tests for the entire
field (Livezey and Chen, 1983).

The field significance of trend patterns is evaluated by
Monte Carlo simulations (Chu and Wang, 1997; Douglas
et al., 2000). Time series of extreme precipitation series
at each station for the period 1960–2009 are concurrently
shuffled using a random number generator. Trends in
GEV parameters and return levels are estimated at each
station. The total number of stations showing significance
at the 5% test level are counted and denoted as N i

mc,
where the superscript i denotes the i th trial and the
subscript mc denotes the Monte Carlo experiment. This
procedure is repeated for a large number of trials (5000
times) by resampling the original data. The field is
considered to be significant at the 5% level when N
exceeds N ∗

mc, where N ∗
mc is the 95th percentile of a locally

significant trend from 5000 trials.

4. Results

4.1. Trends of 1-day maximum precipitation using a
nonparametric Mann-Kendall and Sen’s method

One of the major purposes of this research is to investi-
gate whether the precipitation extremes in Hawaii have

Table 2. Signs of the slopes of Mann-Kendall and Sen’s method
(MKS) and non-stationary GEV parameters from 1960 to 2009.
Stations 1–8 are on Oahu, 9–6 on Maui, and 17–24 on the

Island of Hawaii.

Station ID 1-day maximum precipitation

MKS GEV μ1 GEV σ 1

1 − − −
2 − − +
3 − (*) − (*) − (*)
4 − (*) − −
5 − (*) − (*) − (*)
6 − − +
7 − − −
8 − (*) − (*) − (*)
9 − − −
10 − − −
11 − − −
12 − − (*) − (*)
13 − + −
14 − − −
15 − − −
16 − − −
17 + + −
18 + + +
19 + + +
20 + + +
21 + + +
22 + + +
23 + + +
24 + + +
+, positive trend; −, negative trend; *, 5% significant level.

changed with time. Accordingly, we first estimated the
trends of the 1-day precipitation amounts using the MKS
method. Results are given in Table 2. Because we are
interested in determining whether there are upward or
downward trends and the significance of the trends, only
the sign of the slope and their significance are provided.

As illustrated in Table 2, a high island-wide consis-
tency in the sign of the slopes is noted (under MKS).
The most dominant features are the negative trends for
Oahu and Maui. That is, pronounced downward trends
are displayed at all of the eight stations on Oahu (Sta-
tions 1–8) and eight stations on Maui (Stations 9–16).
Specifically, trends at gauges 3, 4, 5, and 8 on Oahu show
significance at the 5% level based on the MKS method. In
projecting future precipitation changes for Oahu, Norton
et al. (2011) used nonlinear neural networks to downscale
daily extreme precipitation events from general circula-
tion model outputs. They noted a prevailing downward
trend in heavy precipitation intensity for the southern
shoreline of Oahu during the next 30 years (2011–2040).
Therefore, the projected decrease in storm precipitation
intensity appears to be in line with the observed trend
during the past 50 years.

Because the majority of gauges on Oahu are concen-
trated in the southeastern portion of the island where
population is dense, there is concern over whether urban-
ization would affect trend results. For Oahu, there is a
single gauge (Station 6) on the windward side where

© 2014 Royal Meteorological Society Int. J. Climatol. 34: 3913–3925 (2014)
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Figure 3. Spatial pattern of trends for (a) location parameter μ1 and (b) scale parameter σ 1 for 1-day maximum precipitation according to non-
stationary GEV distribution. Triangles denote the locations of the individual stations. Upward (downward) triangles indicate positive (negative)
direction of change, and their size corresponds to the magnitude of trends. Black triangles indicate trends significant at the 5% level. Field

significance is reached for Oahu in both (a) and (b).

population is less dense. This gauge also shows a down-
ward trend in maximum precipitation since 1960, con-
sistent with seven other leeward stations. Note that all
eight stations on Maui, whose population is compara-
tively lower than Oahu, also display a downward trend.
This includes even the high elevations gauges such as
Haleakala (2121 m) and Kula Hospital (924 m) with very
few inhabitants. Results from Maui and Oahu support
the fact that the urbanization is not likely to cause an
island-wide downward trend in precipitation extremes.
In contrast to Oahu and Maui, positive trends prevail
on the Island of Hawaii (Stations 17–24) although none
of them are significant. In summary, since 1960 precip-
itation extremes follow a downward trend on Oahu and
Maui and positive trends for the Island of Hawaii.

4.2. Trends of 1-day maximum rainfall using a
non-stationary GEV distribution

4.2.1. Trends of the non-stationary GEV parameters

Apart from the statistical results from the aforementioned
nonparametric method, the trends of two non-stationary
GEV parameters (i.e. μ1 and σ 1 in Equation 5) are given

in Table 2. The stars in Table 2 indicate that the fit of
the non-stationary GEV is significantly better than its
stationary counterpart through Equation 6.

Spatial patterns of the trends of the two parameters of
1-day maximum precipitation are provided in Figure 3.
There are prevailing negative trends on Oahu and Maui
but positive trends on the Island of Hawaii for the location
parameter μ1 (Figure 3(a)). These highly resemble the
trends of the extremes based on the MKS method (i.e.
Table 2). According to the likelihood ratio test, the non-
stationary GEV is significant at the 5% level at Stations
3, 5, 8, and 12 (Figure 3(a)). The trends of the scale
parameter σ 1 are not always in the same direction as
those of location parameter μ1 (Figure 3(a) and (b)), and
their effect will be discussed later. Results also show that
the negative trends on Oahu in Figure 3(a) and (b) are
field significant.

4.2.2. Trends of the return levels

After calculating the parameters of a non-stationary
GEV distribution, the return levels (zp) corresponding
to different return periods can be estimated according
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to Equation 5. The trends of the return levels are also
determined using the MKS method.

Before looking at the details of the spatial patterns of
the trends of return levels, it is instructive to understand
the influence of the trends for location parameter μ and
scale parameter σ . As shown in Equation 5, assuming
the shape parameter ξ remains constant, the trend of
a certain return level zp is mainly determined by three
components – the trend of the location parameter (μ1),
scale parameter (σ 1), and value of probability p, which
is inversely related to return period τ via Equation 2. A
positive trend for the location parameter μ (i.e. μ1 > 0)
will inherently induce a positive trend for the return level.
For the third term on the right-hand-side of Equation 5,
the effect is more complicated. As discussed in Section
3.3, when there is a positive trend of the scale parameter
σ (i.e. σ 1 > 0), the return level tends to increase when
p decreases, which means a greater return period τ (i.e.
20-year, 50-year, 100-year or longer). However, when the
scale parameter shows a negative trend (i.e. σ 1 < 0), the
return level tends to decrease when p decreases, which
means a greater return period τ (i.e. 20-year, 50-year,
100-year, or others). That is to say, the trends of 2-, 20-
and 100-year return levels are different from each other
due to the influence of the scale parameter σ . When
a positive (negative) trend in the location parameter μ

(i.e. positive trend of 2-year return level at a station)
is embedded with a positive (negative) trend of scale
parameter σ , then the trends of 20- and 100-year return
level will be steeper than that of the 2-year return level.
On the other hand, when the trend of the scale parameter
σ acts to counteract that of the location parameter μ,
the slope of the 20- and 100-year return level tends to
become gentler than that of the 2-year return level or the
sign may change.

To further explain the complex relationships among
these three components in shaping the direction of trends,
we look at the return levels at three stations as examples.
Figure 4 shows the time series of return levels of 1-day
maximum precipitation at Moanalua, Hawaii Volcanoes
National Park , and Paauilo, which are Stations 3, 21, and
17, respectively (Table 1). Note that results presented in
Figure 4 are obtained after transforming the standardized
data back to the original space. This is accomplished
by multiplying the standard deviation to the transformed
data and then adding back the mean value at each
station. It also should be noted that the variance of 1-day
precipitation extremes is not constant for Moanalua, Oahu
and Hawaii Volcano National Park, Hawaii (Figure 4(a)
and (b)); it decreases or increases with time. This implies
a non-stationary feature in the data. For Paauilo, Hawaii
(Figure 4(c)), the series is characterized by quasi-periodic
cycles mixed with a long-term decrease in precipitation
extremes. Other stations also exhibit behavior suggestive
of nonstationarity, justifying the use of the non-stationary
GEV model to describe the data.

According to results presented in Table 2, the first
station in Figure 4 has negative trends in both the
location parameter μ1 and the scale parameter σ 1. This

Figure 4. Time series of return levels for 1-day maximum precipitation
at (a) Moanalua, Oahu, (b) Hawaii Volcanoes National Park HQ 54,
Hawaii, and (c) Paauilo, Hawaii according to non-stationary GEV. The
solid, dashed, and dash-dot lines represent the 2-year, 20-year, and
100-year return levels, respectively. The circles stand for observation

data.

combination leads to decreasing trends in the three return
levels, and the negative trend associated with 20- and
100-year return levels drops more dramatically than that
of the 2-year return level (Figure 4(a)). Specifically, the
quantiles corresponding to 2, 20, and 100 years return
periods dropped from 107 mm in 1960 to 59 mm in 2009,
from 230 mm in 1960 to 102 mm in 2009, and from
298 mm in 1960 to 126 mm in 2009, respectively. On the
other hand, for Hawaii Volcanoes National Park, there are
positive trends in both the location parameter μ1 and the
scale parameter σ 1 (Table 2). As a result, the three return
levels all increase, and 20- and 100-year return levels
increase more considerably (Figure 4(b)). For instance, an
event with a 20-year recurrence interval in 1960 is about
300 mm. By 2009, it is about 420 mm; alternatively, an
event with a 20-year recurrence-interval threshold values
in 1960 has occurred on average once every 3 to 4 years
by 2009. For Paauilo, however, a positive trend is found
in the location parameter (μ1) and negative trend in the
scale parameter (σ 1) (Station 17 in Table 2). Due to the
combination of these opposite signs, the 2-year return
level increases slightly, while both 20- and 100-year
return levels decrease more significantly (Figure 4(c)).
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Figure 5. Spatial pattern of trends for non-stationary GEV return level for 1-day maximum precipitation, (a) 2-year, (b) 20-year, and (c) 100-year.
Triangles denote the locations of individual stations. Upward (downward) triangles indicate positive (negative) direction of change, and their

size corresponds to the magnitude of trends. All the trends are significant at 5% level. Field significance is reached in (a), (b), and (c).

The spatial patterns of the trends in the three return
levels of 1-day maximum precipitation are given in
Figure 5. The three return levels are for return periods
2-year, 20-year, and 100-year and they correspond to
probabilities 0.5, 0.05, and 0.01, respectively. The most

salient feature of the three return levels is the prevailing
negative trends on Oahu and Maui and positive trends
on the Island of Hawaii. Field significance is reached
for all panels in Figure 5. Comparing the spatial patterns
of return levels (Figure 5) with those of the parameters
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(Figure 3), it is obvious that the trend of the location
parameter μ1 reflects the major features of that of 2-
year return level. This is because when p = 0.63, zp is
governed mainly by μ in Equation 3 and τ is close to
2 years via Equation 2. As such, the trend of return level
is mainly determined by the location parameter (μ1) for
the 2-year return level. The trends of 20-year return level,
however, begin to be influenced more and more by the
trend of scale parameter (σ 1).

According to Table 2, the trends of the two non-
stationary parameters (μ1 and σ 1) have identical signs
at 20 of 24 stations. As a consequence, the trends of the
return levels corresponding to longer return periods are
in the same direction as that of 2-year return level and
their slopes become steeper (e.g. Figure 4(b)). There is
also island-wide consistency where both parameters have
negative trends on Oahu and Maui and positive trends
on the Island of Hawaii (Table 2). This is exemplified
in Figure 5. When the signs of μ1 and σ 1 are opposite,
such as Stations 2 and 6 on Oahu, and Station 17 on
the Island of Hawaii, the slopes become gentle and even
change sign. One of the most noteworthy cases is the
Station 17, Paauilo, which is located in the northern part
of the Island of Hawaii. It has a positive trend in 2-year
return level (Figure 5(a)), but a negative trend in 20-
year and 100-year return level (Figure 5(b) and (c)). The
time series of return levels at this station is shown in
Figure 4(c).

4.3. Relationship between precipitation extremes and
ENSO

As mentioned in Section 3.4, another usage of the non-
stationary GEV distribution is to analyze the relation-
ship between precipitation extremes and time-variant
indicators. Chu and Chen (2005) showed that Hawai-
ian winter precipitation is sensitive to the ENSO phe-
nomenon, which operates on an interannual time scale.
More recently, Chu et al. (2010) suggested there are sim-
ilar relationships between climate change indices of pre-
cipitation extremes and ENSO. As described in Section
1, these indices are different from what are applied in
this study. Moreover, besides examining changes in pre-
cipitation extremes solely with time, the non-stationary
GEV distribution can also be used to investigate how
extreme events will co-vary with an external climate forc-
ing. Here, the relationship between extreme precipitation
and SOI will be analyzed using the non-stationary GEV
distribution.

The signs of the slopes of GEV parameters (μ1 and σ 1)
according to SOI values are given in Table 3, and those
that are significant at the 5% level are highlighted with
stars. The positive relationship between extremes and the
location parameter μ1 is overwhelming; this means that
when SOI is large and positive, which is indicative of
a La Niña event, those stations listed in Table 3 tend
to receive heavier precipitation. Conversely, when the
SOI is large and negative (i.e. El Niño years), there are
moderate extreme events. As shown in Table 3, the signs

Table 3. Signs of the slopes of non-stationary GEV parameters
according to the SOI values. Field significance is reached only

for the Island of Hawaii.

Station ID 1-day

GEV μ1 GEV σ 1

1 + +
2 + +
3 + +
4 + −
5 + (*) + (*)
6 + +
7 + +
8 + +
9 + +
10 + +
11 + +
12 + +
13 + +
14 + −
15 + (*) + (*)
16 + +
17 + (*) + (*)
18 + (*) − (*)
19 + (*) + (*)
20 + (*) + (*)
21 + (*) + (*)
22 + (*) + (*)
23 + −
24 + (*) + (*)

of the scale parameter σ 1 are not always in the same
direction as those of the location parameter μ1. This
phenomenon, similar to those results according to time,
shows the influence of the scale parameter σ 1 on the
trends of 20- and 100-year return levels. That is to say,
when the sign of the slope of the scale parameter is in
the same direction as those of the location parameter, the
relationship between extremes and SOI are enhanced for
20- and 100-year return levels. The reverse is true if these
two parameters vary in an opposite manner.

The spatial patterns of the GEV parameters for 1-day
maximum precipitation as co-variant with SOI values are
shown in Figure 6. Out of the three major islands studied,
it appears that the trends of non-stationary parameters are
most clear on the Island of Hawaii. Because the Island of
Hawaii is located closer to the anomalous heating center
in the equatorial central Pacific, its connection to the
equatorial ENSO phenomenon is perhaps stronger than
more northern islands such as Oahu.

Figure 7 shows the relationship between return levels
of 1-day maximum precipitation and SOI at Stations 20
(Kulani Camp) and 18 (Hilo). Again, these results are
obtained after transforming the precipitation data back to
the original amounts. The relationship between extremes
and SOI are all significant at the 5% level at these two
stations (Table 3); however, the signs of the location
parameter μ1 and the scale parameter σ 1 are in the
same direction at Station 20, but opposite at Station
18. As a result, relative to the 2-year return level, the
20- and 100-year return levels strongly increase when
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Figure 6. Spatial pattern of trends for (a) location parameter μ1 and (b) scale parameter σ 1 for 1-day maximum precipitation according to SOI
value using non-stationary GEV distribution. Triangles denote the locations of the individual stations. Upward (downward) triangles indicate
positive (negative) direction of change, and their size corresponds to the magnitude of relationship. Black triangles indicate trends significant at

the 5% level. Field significance is reached for the Island of Hawaii in (a) and (b).

SOI values increase at Kulani Camp. On the other hand,
the increasing tendencies of the 20- and 100-year return
levels are milder at Hilo International Airport than that of
the 2-year return level. The dependence of precipitation
extremes on the SOI is assessed through the goodness-of-
fit for these two stations. By incorporating a covariate into
the parameters of the GEV, the standardized variables
will then have a standard Gumbel distribution (Coles,
2001, p. 110). The quantile-quantile plot (not shown)
indicates that the fitted distribution corresponds well
to the empirical data, with a R2 of 99.2% for Kulani
Camp and 98.5% for Hilo International Airport. Although
other research has also indicated the relationship between
Hawaii precipitation and Pacific Decadal Oscillation
(PDO; Chu and Chen, 2005 and Chu et al., 2010; Elison
Timm et al., 2011), the current study focused on the
ENSO related variability as the most dominant climate
mode in the tropical Pacific. Our preliminary analysis
suggests that relationship between precipitation extremes
in Hawaii and PDO is not as strong as that between
precipitation extremes and SOI.

5. Conclusions

In this study, changes in annual maximum 1-day pre-
cipitation amounts at 24 stations in Oahu, Maui, and
the Island of Hawaii are analyzed. First, a nonparamet-
ric Mann-Kendall test and Sen’s method were applied
to detect trends of precipitation extremes. The most out-
standing feature is the prevalence of negative trends on
Oahu and Maui and positive trends on the Island of
Hawaii (Table 2). Therefore, the trend patterns in precip-
itation extremes are not necessarily the same across the
Hawaiian Islands over the last 50 years. This is followed
by a non-stationary GEV distribution fitted into the data
sets and the trends of the location and scale parameters,
and trends of 2-, 20, and 100-year return levels were
calculated while holding the shape parameter constant.
The results bear a close resemblance to the nonparametric
trend-detection methods in the sense that negative trends
dominate on Oahu and Maui but positive trends prevail
on the Island of Hawaii. We also examine the contribu-
tion of changes in the location parameter μ1 and scale
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Figure 7. Relationship between return levels of 1-day maximum pre-
cipitation and SOI at (a) Kulani Camp (station 20) and (b) Hilo Inter-
national Airport (station 18), Hawaii according to non-stationary GEV.
The solid, dashed, and dash-dot lines represent the 2-year, 20-year, and
100-year return levels, respectively. The circles stand for observation

data.

parameter σ 1 to the return levels. The former variable is
more important for the 2-year return level, and the latter
is more influential for the 20- and 100-year return levels.

The relationship between precipitation extremes and
SOI are analyzed using a non-stationary GEV distribu-
tion. A positive association is found, which implies that
there are intense extreme events during La Niña years
but moderate extreme events (low precipitation extremes)
during El Niño years. This phenomenon is more evident
on the Island of Hawaii.

Perica et al. (2009) and Chu et al. (2009) indepen-
dently used a stationary GEV model to produce the
statistics of extreme precipitation values in Hawaii. For
engineering design (e.g. urban drainage) and environmen-
tal regulations in Hawaii, return-period rainfall amounts
are assumed to be constant at a given threshold level (e.g.
100-year return level). Because the climate is changing,
the assumption of stationary precipitation climatology is
questionable and needs to be reconsidered. The return-
level threshold periods have changed considerably for
many stations in Hawaii. As a result, a rare storm with
daily precipitation of 300 mm, which is regarded as a
20-year return period in 1960, has become a rather com-
mon storm event with a return period of 3–5-year in
2009 on the Island of Hawaii. Put in a different way,
heavy rainfall events have become more frequent over
the last 50 years on the Island of Hawaii, and this change

has repercussions on property, human life, transportation,
health, and ecological systems. Based on a non-stationary
GEV model, our study provides new information con-
cerning changes in precipitation extremes and recurrence
times.
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