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Many watersheds in Hawai‘i are flash flood prone due to their small contributing areas and frequent
intense rainfall. Motivated by the possibility of developing an operational flood forecasting system, this
study evaluated the performance of the National Weather Service (NWS) model, the Hydrology Labora-
tory Research Distributed Hydrologic Model (HL-RDHM) in simulating the hydrology of the flood-prone
Hanalei watershed in Kaua‘i, Hawai‘i. This rural watershed is very wet and has strong spatial rainfall gra-
dients. Application of HL-RDHM to Hanalei watershed required (i) modifying the Hydrologic Rainfall
Analysis Project (HRAP) coordinate system; (ii) generating precipitation grids from rain gauge data,
and (iii) generating parameters for Sacramento Soil Moisture Accounting Model (SAC-SMA) and routing
parameter grids for the modified HRAP coordinate system. Results were obtained for several spatial res-
olutions. Hourly basin-average rainfall calculated from one HRAP resolution grid (4 km � 4 km) was too
low and inaccurate. More realistic rainfall and more accurate streamflow predictions were obtained with
the ½ and 1=4 HRAP grids. For a one year period with the best precipitation data, the performance of HL-
RDHM was satisfactory even without calibration for basin-averaged and distributed a priori parameter
grids. Calibration and validation of HL-RDHM were conducted using four-year data set each. The model
reasonably matched the observed peak discharges and time to peak during calibration and validation
periods. The performance of model was assessed using the following three statistical measures: Root
Mean Square Error (RMSE), Nash–Sutcliffe efficiency (NSE) and Percent bias (PBIAS). Overall, HL-RDHM’s
performance was ‘‘very good (NSE > 0.75, PBIAS < ±10)’’ for the finer resolution grids (½ HRAP or 1=4

HRAP). The quality of flood forecasting capability of the model was accessed using four accuracy mea-
sures (probability of false detection, false alarm ratio, critical success index, and probability of detection)
for three return periods 1.005, 1.05 and 1.25. HL-RDHM is more accurate at the lower threshold discharge
(65 m3 s�1) than at the higher ones (140 and 248 m3 s�1) as indicated by lower values of probability of
detection and critical success index, and a higher value of the false alarm ratio. These results suggest that
HL-RDHM may be suitable for flood forecasting applications in watersheds with steep terrain and strong
spatio-temporal variability of precipitation, e.g. US Pacific North-West, and tropical islands.

� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Small island mountainous watersheds such as those in Hawai‘i
are subject to strong spatial variability of their hydrologic cycle
components, e.g. rainfall, evapotranspiration, and groundwater
recharge. This variability is a challenge to the accuracy of both
hydrologic measurements and predictive models. Spatial variabil-
ity coupled with non-linear processes demands that hydrologic
predictions utilize distributed models and finer resolution input
data. Flash flood forecasting is one arena where this is particularly
true, with the resolution of precipitation data being a limiting fac-
tor (Michaud and Sorooshian, 1994a,b). Most Hawaiian watersheds
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are flash flood prone due to their steep topography and frequent,
intense precipitation. Nevertheless, there is no operational flash
flood forecasting in Hawai‘i. A first step in remedying this situation
is to evaluate rainfall-runoff models that could be used in a fore-
casting system such as the U.S. National Weather Service (NWS)
Hydrology Laboratory Research Distributed Hydrologic Model
(HL-RDHM) which is nationally used by several River Forecast
Centers (RFCs) and Weather Forecast Offices (WFOs) for flood
prediction.

HL-RDHM is a complete and flexible tool for distributed hydro-
logic modeling research and development; it serves as a prototype
to validate techniques before being operational in NWS offices
(HL-RDHM user manual v. 3.0.0, 2009). It has been used in several
studies and operational applications (Moreda et al., 2006; Reed
et al., 2007). HL-RDHM has also been used in a number of studies
related to model identification, evaluation, and parameter estima-
tion (Yilmaz et al., 2008; Tang et al., 2007; van Werkhoven et al.,
2008; Wagener et al., 2009; Pokhrel et al., 2008). Reed et al.
(2004) summarized the results of the Distributed Modeling Inter-
comparison Project (DMIP). They reported that HL-RDHM was
one of the best among the tested distributed models; it reasonably
matched the observed streamflow including peak flow. There are
also well-defined procedures to derive a priori parameters for
HL-RDHM from soil and land use data (Koren et al., 2000, 2004)
which represent major advantages of this model compared to other
distributed models.

The main objective of this study is to evaluate the performance
of a model, developed for temperate continental settings, in a steep
small tropical watershed. This watershed, Hanalei watershed in
Kaua‘i, Hawai‘i, is flood-prone and has one of the highest rainfall
on the globe. This is the first time that such a study has been con-
ducted in Hawai‘i. From a logistical viewpoint, HL-RDM was devel-
oped for the continental U.S.; hence, there were several challenges
to its application in Hawai‘i. These include: (i) lack of a priori
parameter grids, (ii) absence of hourly and multi-sensor
WSR-88D (Weather Surveillance Radar – 1988 Doppler) based pre-
cipitation grids, and (iii) an internal coordinate system that is not
valid outside the continental US.
2. Materials and methods

2.1. Study basin

The study focuses on Hanalei watershed, which extends from
Mt. Wai‘ale‘ale (1570 m AMSL) to Hanalei Bay. Hanalei watershed
is located on the northern part of Kaua‘i Island, Hawai‘i. The simu-
lation work focused on the upper portion of the watershed located
above the USGS 16103000 stream gauge (latitude 22�10046.500N,
longitude 159�27059.000W) with an area of 48 km2 (Fig. 1). Below
the gage is a highway that is frequently inundated by flooding, iso-
lating rural residents and tourists from the rest of the island. The
watershed has steep mountain slopes and deep fluvial valleys
through which flows the upper 20 km of Hanalei River and its trib-
utaries. The lower portion of the river flows through a floodplain.

Hawai‘i’s precipitation is highly spatially and temporally vari-
able; its average over the ocean around the Islands is about
650 mm yr�1. However, some locations, especially on the higher
windward slopes (e.g. Mt. Wai‘ale‘ale), receive rainfall ten times
greater than the open ocean surrounding the islands. This is mainly
caused by orographic precipitation, which forms within the moist
trade winds air as they move in the north-east direction over the
steep and high terrain of the Hawaiian Islands. The average rainfall
during 2001–2010 was 8893 mm yr�1 and 2992 mm yr�1 on Mt.
Wai‘ale‘ale and at the watershed outlet, respectively. The stream-
flow in Hanalei River is extremely variable; its average daily
discharge is 5.6 m3 s�1, its daily minimum discharge is
1.5 m3 s�1, and its daily maximum discharge is 149 m3 s�1 for the
2001–2010 period. The mean monthly temperature near sea level
varies between 21.5 �C in January and 24.5 �C in July.

The entire Hanalei River basin supports an array of land uses,
including recreational and conservation areas, and traditional
wet taro farming in the lower floodplains. It was also designated
as an American Heritage River by President Bill Clinton among
14 rivers or river systems in 1998. It is a multi-jurisdictional area,
comprising the Hanalei National Wildlife Refuge, Halele‘a State
Forest Reserve, Kaua‘i County beach parks, and private land
holdings.

2.2. Hydrology laboratory research distributed hydrologic model

HL-RDHM can be run in lumped, semi-distributed, or fully dis-
tributed modes. The model structure is based on regular rectangu-
lar grids represented in the Hydrologic Rainfall Analysis Project
(HRAP) projection. Use of the HRAP grids facilitates operational
forecasting. The HRAP grid is defined by a 4 km � 4 km resolution
that corresponds directly to the NWS WSR-88D precipitation prod-
ucts. The model can also use finer resolution grids, i.e.,
2 km � 2 km (1/2 HRAP), and 1 km � 1 km (1=4 HRAP).

The model predicts soil moisture, actual evapotranspiration at
each grid cell by tracking its water balance using the Sacramento
Soil Moisture Accounting Model (SAC-SMA) (Burnash et al.,
1973), and includes hillslope and a channel routing components
for each cell. Fast model responses such as overland flow and direct
runoff on impervious area are routed from the hillslope and
drained into a conceptual channel. The slow model responses such
as interflow and baseflow go straight into the conceptual channel
without going through hillslope routing. The inter-cell channel
routing is conducted using a connectivity file which reflects the
surface flow directions. Parameters of the HL-RDHM include water
balance and routing parameters, which are assumed to be constant
within a cell but vary among cells. A priori SAC-SMA parameters are
used to account for spatial variability over a basin. The three main
parameters of hillslope routing are drainage density, hillslope
slope, and roughness. There are two channel routing parameters
relating the channel discharge to its cross-section.

Calibration of distributed models is more complicated than that
of lumped models. Typically, the value of scale factors that are
multiplied across each grid is adjusted during calibration. HL-
RDHM uses the Stepwise Line Search (SLS) technique and the
multi-scale objective function (MSOF) to auto-optimize the scalar
multipliers of all the gridded parameters (SAC-SMA and routing).
More details on calibration techniques used for HL-RDHM can be
found in HL-RDHM User Manual (HL-RDHM user manual v. 3.0.0,
2009) and more details on HL-RDHM can be found in Koren et al.
(2004).

Some of the major challenges of using HL-RDHM in Hawai’i are:
(i) lack of a priori SAC-SMA parameter grids, (ii) Hawai‘i lies outside
the HRAP coordinate system of the continental US (CONUS), and
(iii) absence of hourly and multi-sensor WSR-88D based
precipitation grids.

Coordinates of Hawai‘i in the HRAP coordinate system are
negative. Thus, the programs which automatically derive flow
direction, channel slopes, and overland slope grids were re-coded.
The value of HRAPXOR (=401 in original HRAP coordinate system)
was changed to 2357.41553 (=2 � 978.207765 + 401). This modifi-
cation was incorporated in all programs and subroutines used to
run the model, e.g. the two subroutines used (i) to determine the
cell-to-cell connectivity, and (ii) to generate morphological
parameters as a function of cell drainage areas.

The following sections explain the process followed to derive
routing parameter grids, a priori SAC-SMA parameter grids, and



Fig. 1. Hanalei watershed and rain gauges located in the northern part of Kaua‘i Island, Hawai‘i (Rain gauges within and close to Hanalei watershed: 1. Keanaawi Ridge, 2.
Middle Powerline, 3. Upper Hanalei, 4. Upper Powerline, 5. Middle Hanalei, 6. Mt. Wai‘ale‘ale and 7. Hanalei).

Table 1
Coefficients for discharge–cross-section relationship and channel top width–depth
relationship.

qo qm a b nc

0.048 1.82 13.78 1.01 0.07
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different forcing data (rainfall grids and potential evapotranspira-
tion) for HL-RDHM model to simulate the hydrology of Hanalei
watershed.

2.3. Generation of different resolution routing parameter grids

Details of HL-RDHM’s mathematical formulation for hillslope
and channel routing and their numerical solutions are found in
Koren et al. (2004). They also describe algorithms used to derive
distributed hillslope and channel routing parameters. The model
uses the following relationship describing the relationship
between the average hillslope water depth (h) in each cell and
the flow discharge per unit area of hillslope (qh):

qh ¼ 2kqD
ffiffiffiffiffi
Sh
p

nh
h5=3 ð1Þ

where kq is the unit transformation coefficient, D (km�1) is the
stream channel density, Sh is the hillslope slope, and nh is the hill-
slope roughness coefficient.

The channel discharge, QC, for each cell is a function of the cross
sectional area (A); it is calculated as follows:

Q c ¼ qoAqm ð2Þ

where qo is a specific channel discharge per unit channel cross-sec-
tion area, and qm is the power value of Q–A relationship.

Shape and top width parameters are defined based on the fol-
lowing relationship between channel top width (B) and depth (H):

B ¼ aHb ð3Þ
where a and b are the channel-shape based routing parameters.
Routing parameter grids were generated according to HL-

RDHM’s user manual. First, routing parameters were determined
based on observed stream flow at the watershed gauging station.
The values of the coefficients of Eqs. (2) and (3) were determined
based on observed stream flow data (Table 1). Default values of
drainage density (D = 2.5) and Hillslope roughness (nh = 0.15) were
used to generate routing parameter grids. Based on all these
parameter grids, any of the routing techniques (rutpix7: channel
shape based or rutpix9: rating curve based) can be used. In this
study, we used rutpix9 routing technique. Flow direction grids
for different resolution grids are shown in Fig. 2.

2.4. Generation of SAC-SMA parameter grids at different resolutions

The SAC-SMA parameters were derived using the Soil Survey
Geographic Database (SSURGO) and algorithms developed by
Koren et al. (2000, 2003). SAC-SMA parameter grids for the ½ HRAP
and 1 HRAP resolutions were derived based on the modified 1=4

HRAP SAC-SMA grids. The range of SAC-SMA parameter ratios were
derived based on the minimum, maximum and mean values of a
priori SAC-SMA parameter grids (Table 2) at the 1=4 HRAP resolution



Fig. 2. 1 HRAP, ½ HRAP and 1=4 HRAP resolution flow direction grids within Hanalei watershed (Solid polygon – actual watershed, dashed polygon – watershed delineated in
HL-RDHM).

Table 2
Range of parameter ratios based on a priori SAC-SMA parameter of Hanalei watershed
(based on 1=4 HRAP resolution grids).

SAC-SMA parameter A priori values Multiplier boundaries

Min Max Mean Lowest Highest

UZTWM (mm) 1.495 116.667 43.891 0.03 2.66
UZFWM (mm) 0.766 50.916 21.133 0.04 2.41
UZK (day�1) 0.008 0.282 0.183 0.04 1.54
ZPERC 2.655 116.796 65.052 0.04 1.80
REXP 0.073 2.628 1.693 0.04 1.55
LZTWM (mm) 1.611 69.205 35.167 0.05 1.97
LZFSM (mm) 0.285 11.489 5.937 0.05 1.94
LZFPM (mm) 0.681 28.349 14.357 0.05 1.97
LZSK (day�1) 0.003 0.107 0.0712 0.04 1.50
LZPK (day�1) 0.000 0.004 0.00095 0.00 4.20
PFREE 0.009 0.404 0.223 0.04 1.81
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grids. The lowest and highest parameter ratios were determined by
dividing the minimum and maximum values by the mean,
respectively.

2.5. Generation of different resolution precipitation grids

In the U.S., flood forecasting is often conducted using hourly
multi-sensor WSR-88D-based precipitation grids. Because these
are not generated for Hawai‘i, we instead used hourly precipitation
estimated from hourly rain gage data (Fig. 1) for the 2001–2010
period.

Hourly rain grids for the three resolutions (1, ½ and 1=4 HRAP)
were developed, following the ordinary kriging interpolation
method as recommended by Mair and Fares (2011), using rain data
from 20 rain gauges across north shore Kaua‘i. Five of these 20 rain
gauges (numbered from one through five) are located within the
study watershed (Fig. 1). These rain gauges were established during
2006. Based on the results of Mair and Fares (2010), the normal
ratio method was adopted to estimate missing hourly rainfall data
for these stations. Ordinary kriging method requires the definition
of a variogram characterizing the spatial variability of the precipita-
tion field. The variograms for each year were developed using
annual average of hourly precipitation. The optimum model param-
eters of the semi-variogram (sill and range) were derived for each
year (2001–2010) based on the annual average of the hourly rainfall
using the gstat R package (Pebesma and Wesseling, 1998). Gstat is a
computer program for variogram modeling, and geostatistical pre-
diction and simulation (Pebesma and Wesseling, 1998). Gstat mod-
els variograms using a two-step procedure of calculating the
sample variogram and then fitting a model to this sample vario-
gram (by estimating model parameters). According to Haberlandt
(2007) the impact of the semivariogram model on interpolation
performance is not very high, thus, we used spherical semivario-
gram (isotropic).
We tested the performance of the annual averaged variogram of
the year 2008 by temporarily removing one observation at a time
from the data set and re-estimating the removed value from the
remaining stations using the interpolation method. We followed
this procedure for the five stations within the watershed numbered
from one to five in Fig. 1. The summary of the results of variogram
parameters derived from annual average of hourly precipitation is
shown in Table 3 and scatter plots of observed and predicted
hourly rainfall for different stations within Hanalei watershed are
shown in Fig. 3. The r2 for the five stations varies from 0.48 to
0.79. Watershed-average precipitation (annual average of hourly)
increased with increase in the grid resolution (Fig. 4).

The estimated annual average potential evapotranspiration
(ETo) for Hanalei watershed based on annual pan evaporation data
is 758 mm yr�1. Thus, the daily average ETo was 2.08 mm.

2.6. Model performance measures

The performance of HL-RDHM was determined using three
commonly used statistical performance measures: Root Mean
Square Error (RMSE), Percent bias (PBIAS), and Nash–Sutcliffe effi-
ciency (NSE) (Nash and Sutcliffe, 1970). These performance mea-
sures have been used with data based on daily and/or monthly
time steps. The root-mean square error computes the standard
deviation of the model prediction error which is the difference
between measured (Qobs) and simulated values (Qsim). The smaller
the RMSE (m3 s�1) value, the better the model performance is. It is
computed as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

t¼1
ðQ simÞt � ðQobsÞt
� �2

� �r
ð4Þ

Percent bias measures the tendency of the simulated flows to be
larger or smaller than their observed counterparts; its optimal value
is 0.0, positive values indicate a tendency to overestimation, and
negative values indicate a tendency to underestimation. It is esti-
mated as follows:

PBIAS ¼
Pn

t¼1 ðQ simÞt � ðQ obsÞt
� �
Pn

t¼1ðQ obsÞt
� 100% ð5Þ

Nash–Sutcliffe efficiency measures the fraction of the variance of
the observed flows explained by the model in terms of the relative
magnitude of residual variance to the variance of the flows; the
optimal value is 1.0 and values should be larger than 0.0 to indicate
‘minimally acceptable’ performance. It is computed as follows:

NSE ¼ 1�
Pn

t¼1 ðQ simÞt � ðQ obsÞt
� �2

Pn
t¼1 ðQ obsÞt � ðQobsÞ
� �2 ð6Þ

The ranges of models’ performance ratings, RMSE, NSE and PBIAS
reported by Moriasi et al. (2007) were based on monthly time step
data. Models’ performances are poorer for shorter time steps than



Table 3
Semivariogram parameters.

Parameter 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

Sill (m2) 0.090 0.079 0.085 0.133 0.100 0.167 0.103 0.097 0.099 0.059
Range (m) 12284 19862 17383 13942 15408 19364 17416 16666 19371 17609

Fig. 3. Scatter plots of observed and predicted rainfall for different stations within Hanalei watershed (Variogram derived from annual average of hourly precipitation).

Fig. 4. Watershed wide annual average of hourly precipitation for different
resolutions.

Table 4
General Performance ratings for a monthly time step (Moriasi et al., 2007).

Performance rating NSE PBIAS (%)

Very good 0.75 < NSE 6 1.00 PBIAS < ±10
Good 0.65 < NSE 6 0.75 ±10 6 PBIAS < ±15
Satisfactory 0.50 < NSE 6 0.65 ±15 6 PBIAS < ±25
Unsatisfactory NSE 6 0.50 PBIAS > ±25
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for longer time steps (Engel et al., 2007). Ajami et al. (2004)
reported value of RMSE, PBIAS and NS of calibration and validation
of semi distributed model for an hourly data (Calibration:
RMSE = 21.88, PBIAS = 6.4, NS = 0.62 and Validation: RMSE = 27.8,
PBIAS = 1.42, NS = 0.76). There were no optimum ranges available
in the literature for these model’s performance parameters based
on daily or sub-monthly time steps. Thus, it was decided to use
Moriasi’s performance ratings for this work (Table 4). It is expected
that our model ratings, using hourly time steps, are strict due to the
use of hourly statistics along with rating categories based on
monthly statistics.

2.7. Accuracy measures

The hourly accuracy of HL-RDHM was accessed in its ability to
exceed certain flood thresholds (65, 140 and 248 m3 s�1) for three
return periods (1.005, 1.05, and 1.25). The number of flood events



Fig. 5. Performance ratings for different SAC-SMA parameter grids and resolutions
for input data of 2008 (Basin averaged, distributed and distributed with scaled).
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exceeding the 2-year return period flood is very small. Four flood
forecasting accuracy measures were calculated for peak floods
with three return periods, i.e. 1.005, 1.05 and 1.25. These accuracy
measures are defined as follows: probability of detection (POD)

POD ¼ hits
hitsþmisses

ð7Þ

probability of false detection (POFD),

POFD ¼ false alarms
correct negativesþ false alarms

ð8Þ

false alarm ratio (FAR)

FAR ¼ false alarms
hitsþ false alarms

ð9Þ

critical success index (CSI)

CSI ¼ hits
hitsþmissesþ false alarms

ð10Þ

The values of these accuracy measures range between 0 and 1. A
perfect forecast would have a POD of 1, a POFD of 0, a FAR of 0
and a CSI of 1.

3. Simulation results

In the beginning, we tested performance of the model using dif-
ferent SAC-SMA parameter grids (watershed wide averaged, distrib-
uted without calibration and distributed with calibration) of
different resolutions (1 HARAP, ½ HARAP and 1=4 HARAP) with
2008 data to select the appropriate spatial resolution of the model
calibration. We also derived applicable range of SAC-SMA parameter
ratios for use during calibration. Then, the model was calibrated and
validated using four-year data sets (2003–2006) and (2007–2010),
respectively.

3.1. HL-RDHM performance for different SAC-SMA parameter grids
and resolutions

Average watershed grids of a priori SAC-SMA parameters for all
resolutions were produced and HL-RDHM was tested in a lumped
mode using average watershed precipitation grids for 2008 data.
The model was also tested using distributed a priori SAC-SMA
parameters with and without calibration. The model’s performance
in the lumped mode was the poorest among averaged, distributed,
and distributed with scaled a priori SAC-SMA parameters (Fig. 5).
However, the model’s performance was very good based on NSE
(NSE > 0.75) for all three SAC-SMA parameter grids of different res-
olutions. This is a practical indicator of the potential applicability
of a priori SAC-SMA parameter grids for rainfall-runoff simulation
of tropical watersheds. Based on these results, we used grids of
all three resolutions (1 HARAP, ½ HARAP and 1=4 HARAP) in model’s
calibration and validation.

3.2. Applicable range of SAC-SMA parameter ratios

HL-RDHM’s performance was tested for different ranges of SAC-
SMA parameter ratios to determine the practical ranges of their
values for small island tropical watersheds. Initially, SAC-SMA
parameter ratios were optimized using values of the original
SAC-SMA parameter ratios (Lower ratio = minimum value/average
value, Upper ratio = maximum value/average value). SAC-SMA
parameter ratios were then optimized based on expanded ranges
of a priori grids. Four new ranges of a priori parameters were estab-
lished by expanding lower and upper boundaries of the original
ranges by 20%, 40%, 60% and 80%. SAC-SMA parameters were
optimized using these four new ranges with four-year (2003–
2006), two-year (2005–2006) and one-year (2008) data sets. In
other words, a ±20% expansion of the original range of a given a pri-
ori SAC-SMA parameter means, the lower range of this parameter
was decreased by 20% and the value of the upper range of the same
parameter was increased by 20%. The model’s performance
improved as the range of the values of a priori parameters
expanded for all resolution grids (Fig. 6). Based on PBIAS, the mod-
el’s performance was less sensitive to the expansion of the values
of SAC-SMA parameter ratios. The magnitudes of improvement in
the performance ratings were not significant if the range of SAC-
SMA parameter was expanded beyond ±60%. The performance of
the 1=4 HRAP resolution was clearly better than that of the other
two resolutions (1 and ½ HRAP) based on RMSE and NSE (Fig. 6).
The same results are even clearer based on PBIAS. The poor perfor-
mance of 1 HRAP resolution is mainly due to the poor delineation
of the watershed at that resolution (see Fig. 2a). Based on these
results, ±80% expanded SAC-SMA parameter ratios were used in
model’s calibration exercise.

3.3. Model calibration

Four years (2002, 2007, 2009 and 2010) had incomplete stream-
flow data. Therefore, HL-RDHM was calibrated with four-year



Fig. 6. Performance ratings for expanded range of parameter ratios.

Fig. 7. Comparison of observed and simulated outflow hydrograph at the USGS Hanalei river stream gauge (Range of parameter ratios = ±80% of a priori grid based range of
Hanalei watershed for period 2003–2006).
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streamflow data set (2003–2006). The model closely simulated the
observed streamflow during the entire simulation period (Fig. 7)
for all the resolutions as reflected by the high correlation coeffi-
cient between simulated and observed data (Fig. 8). However, the
model tended to overestimate streamflow in all resolutions for
observed streamflow higher than 300 m3 s�1 (Fig. 8) except for
one event. Based on NSE, the model performance was very good
for all resolutions (Table 5); whereas, based on PBIAS, the model’s
performance was very good for the ½ and 1=4 HRAP resolution and
even surprisingly good for the 1 HRAP resolutions. HL-RDHM
underestimates the observed streamflow for the 1 HRAP resolution
as indicated by the negative value of PBIAS.

The observed peak flow during 2003 was 1.4–2.6 times higher
than that during the other years (Table 6). The model’s simulation
of July 26 2003 flood event was very poor irrespective of resolution
grids (Figs. 7 and 8).
Model performance was also evaluated by examining whether
or not the model could predict flow above a given flood threshold.
Seventy to 74% of the observed streamflow at or above a threshold
of 65 m3 s�1 (recurrence interval of 1.005 years) are accurately
simulated using the three resolution grids (Table 7). However,
the value of the detection probability of 140 and 248 m3 s�1

threshold discharges are lower than that of 65 m3 s�1. The proba-
bility of false detection is less than 0.002 for all threshold dis-
charges. This indicates that only 0.2% of the simulated discharges
were less than the observed discharges. One-quarter of all simu-
lated discharges equal or higher than 65 m3 s�1 were false as indi-
cated by a value of FAR equals to 0.25 (Table 7). In other words, 25%
of the simulated peak discharges of at least 65 m3 s�1 were falsely
simulated. The level of FAR increases with increase of the threshold
discharges. The critical success index is higher than 0.5 for the 65
and 140 m3 s�1 threshold discharges; however it is lower than



Fig. 8. Scatter plot of observed and simulated flow at the USGS Hanalei river stream gauge (Range of parameter ratios = ±80% of a priori grid based range of Hanalei watershed
for period 2003–2006).

Table 5
Performance ratings for calibration of four year data (2003–2006).

Performance measures Input grid resolution Performance rating (Moriasi et al., 2007)

1 HRAP ½ HRAP 1=4 HRAP

RMSE (m3/s) 5.969 6.060 5.851
PBIAS �10.201 0.800 0.664 Good (1 HRAP) & very good (1/2 and 1/4 HRAP)
NSE 0.783 0.776 0.791 Very good

Table 6
Maximum discharge for different years (hourly averaged).

Year 2001 2003 2004 2005 2006 2008

Maximum discharge – hourly (m3/s) 250.67 550.76 206.36 310.35 373.78 277.79

Table 7
Accuracy measures of simulated flow based on different threshold peak discharge (Calibration, 2003–2006).

Recurrence interval (n-year flood) 1.005 1.05 1.25
Threshold peak discharge values (m3/s) 65 140 248
Number of floods higher than threshold peak discharge 245 62 13

Grid resolution 1 HRAP 1/2 HRAP 1/4 HRAP 1 HRAP 1/2 HRAP 1/4 HRAP 1 HRAP 1/2 HRAP 1/4 HRAP

POD 0.718 0.739 0.702 0.613 0.645 0.613 0.538 0.538 0.538
POFD 0.001 0.002 0.001 0.000 0.001 0.000 0.000 0.000 0.000
FAR 0.174 0.249 0.204 0.224 0.322 0.208 0.417 0.500 0.417
CSI 0.624 0.593 0.595 0.521 0.494 0.528 0.389 0.350 0.389

Note: POD = probability of detection, POFD = probability of false detection, FAR = false alarm ratio, and CSI = critical success index.
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0.5 for threshold discharge of 248 m3 s�1. This indicates that
slightly more than half of 65 and 140 m3 s�1 discharges were cor-
rectly simulated; however, more than half of the 248 m3 s�1

threshold discharges were not accurately simulated indicating a
decline in the accuracy of the model with an increase in the thresh-
old discharge level.

3.4. Model validation

The model was validated with four-year stream flow data
(2007–2010) using optimized parameters from the 2003–2006
period. There is no continuous streamflow data for 2007, 2009
and 2010; the total number of missing data was 3077 h for
2007–2010 period. The maximum observed peak flow was less
than 290 m3 s�1 even though 2009 was a wet year compared to
some other years, i.e. 2001, 2003, 2007, 2008, and 2010 (Fig. 4).
This suggests that there might be missing peaks in this four-year
data.
We also tested the performance of the model using optimized
parameter ratios based on a priori SAC-SMA grids. Expanding the
range of the a priori SAC-SMA grid did not improve the perfor-
mance of HL-RDHM during the validation period (2007–2010). In
fact, the model’s performance was better with the original range
than with that of the expanded range (Table 8). The four-year
2003–2006 period was wetter than the 2007–2010 period.

The simulated hydrograph seems to reasonably match the
observed data (Fig. 9). There is a strong correlation between mea-
sured and simulated data irrespective of the resolution of the grids
(Fig. 10); although the model seems to slightly under estimate the
observed data especially during low flows.

Model performance was also evaluated by examining whether
the model could predict the flow above a given flood threshold.
Fifty-eight to 62% of the observed flows with a magnitude of at
least 65 or 140 m3 s�1 were correctly simulated with different res-
olution grids, respectively (Table 9). However, for threshold dis-
charge higher or equal to 248 m3 s�1, POD reached 0.5 at best.



Table 8
Performance of HL-RDHM during validation period (2007–2010) using optimized parameter ratios for period 2003–2006.

S.
no.

Simulation option Performance
measures

Input grid resolution Performance rating (Moriasi et al.,
2007)

1
HRAP

½
HRAP

1=4

HRAP

1 Optimized parameter ratios based on a priori grids of Hanalei RMSE (m3/s) 3.884 3.993 3.759
PBIAS �7.037 2.959 3.737 Very good
NSE 0.845 0.836 0.855 Very Good

2 Optimized parameter ratios based on a priori grids of
Hanalei ± 80%

RMSE (m3/s) 3.945 4.156 3.929
PBIAS �6.196 3.769 4.288 Very good
NSE 0.840 0.823 0.842 Very Good

Fig. 9. Outflow hydrograph (Validation for period 2007–2010 using optimized SAC-SMA parameter ratios for period 2003–2006 derived by ±80% expansion of a priori grid
based range of Hanalei watershed).

Fig. 10. Scatter plot of observed and simulated flow (Validation for period 2007–2010 using optimized SAC-SMA parameter ratios for period 2003–2006 derived by ±80%
expansion of a priori grid based range of Hanalei watershed).
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There were fewer flood events at three threshold peak discharge
(65, 140 and 248 m3 s�1) during the validation period (2007–
2010) than during the calibration period (2003–2006) (Tables 7
and 9). This might be due to the missing streamflow data during
validation period. It is difficult to access the accuracy of the model
for events equal or higher than 248 m3 s�1 because there were only
4 events that met that criterion during the validation period. The
probability of false detection is equal to 0.1% indicating a reason-
able detection of threshold discharges by the model. One quarter
of the simulated peak flow events above 65 m3 s�1 were false
alarms (FAR < 0.25). False alarm ratio for peak flow events of 140
was less than that of 65 m3 s�1. False alarm ratio varied as a func-
tion of simulation resolution for the 248 m3 s�1 threshold dis-
charge; there is no false alarm at 1=4 HRAP resolution; however,
FAR reached 0.66 for the 1 HRAP resolution. The model was more
than 50% of the time successful (CSI > 0.5) in simulating 65 and
140 m3 s�1 threshold discharges; however, this success decreased
(CSI < 0.5) for the 248 m3 s�1 threshold discharge. These results
indicate that the accuracy of simulation decreases as threshold dis-
charge increases; thus, the model is more accurate in simulating
lower discharges than higher discharges.
4. Results and discussions

4.1. Precipitation grids of different resolutions

The watershed averaged precipitation based on 1=4 HRAP grid is
higher than those of the other grid resolutions. The difference
between 1=4 HRAP and ½ HRAP is about 1.1–2.7% whereas the dif-



Fig. 11. Part of simulated and observed hydrograph for different resolution grids (From 12/12/2008 16:00 PM to 12/13/2008 10:00 AM).

Table 9
Accuracy measures of simulated flow based on different threshold peak discharge (Validation, 2007–2010).

Recurrence interval (n-year flood) 1.005 1.05 1.25
Threshold peak discharge values (m3/s) 65 140 248
Number of floods higher than threshold peak discharge 147 34 4

Grid resolution 1 HRAP 1/2 HRAP 1/4 HRAP 1 HRAP 1/2 HRAP 1/4 HRAP 1 HRAP 1/2 HRAP 1/4 HRAP

POD 0.585 0.599 0.578 0.588 0.618 0.588 0.250 0.500 0.500
POFD 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
FAR 0.173 0.241 0.183 0.130 0.160 0.091 0.667 0.333 0.000
CSI 0.521 0.503 0.512 0.541 0.553 0.556 0.167 0.400 0.500

Note: POD = probability of detection, POFD = probability of false detection, FAR = false alarm ratio, and CSI = critical success index.
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ference between 1=4 HRAP and 1 HRAP is about 7.8–12.1% based on
the yearly comparison of watershed averaged precipitation from
2001 to 2010. The main reason for the higher rainfall difference
between that of 1 HRAP and 1=4 HRAP resolution grids is the inaccu-
rate watershed delineation based on the grid resolution of the for-
mer. The delineated watershed based on the 1 HRAP covers six
grids of 4 km � 4 km. The resulting area of the watershed is
96 km2 which is double its actual size. As a result, an area of the
lower part of the watershed, 16 km2 (4 � 4 km), with relatively
low rainfall is part of the watershed; this does not represent the
actual watershed. However, a similar area in the top part of the
watershed with a rainfall much higher than that at the lower part
was not included. This would explain the consistently lower aver-
age rainfall based on 1 HRAP as compared to ½ and 1=4 HRAP reso-
lutions. The 4 km � 4 km grid resolution does not accurately
represent the watershed and consequently will result in substan-
tial errors if used with a distributed hydrological model to simulate
the hydrology of this watershed.

4.2. Applicable range of SAC-SMA parameter ratio

The performance of HL-RDHM using the expanded range of a
priori parameters was better than that with the original, non-
expanded range; the model’s performance improved by up to
4.6% and 2.8% based on NSE and RMSE, respectively, for the four-
year data (2003–2006) (Fig. 6a). However, during the validation
period (2007–2010), the model’s performance worsened when
the extended a priori range based optimized parameter ratios were
used instead of the original range based optimized parameter
ratios (Table 8).

4.3. Applicability of a priori SAC-SMA parameter grids

A priori SAC-SMA parameter grids were derived using SSURGO
soils data. The performance rating is ‘‘very good’’ for both watershed
averaged a priori grids and distributed a priori grids of Hanalei
watershed for input data of 2008 (Fig. 5). Input data of 2008 was
used because it had the least missing precipitation data from rain
gauges within the watershed. This shows the possibility of using
HL-RDHM without calibration. However, the result may be different
with data from other years, so we need to test it with data for longer
periods. We can improve the performance of the model by fine tun-
ing some of the values of its parameters during calibration.

4.4. Hydrograph comparison

The model reasonably simulated the observed magnitudes of
peaks and time to peak during calibration (2003–2006) and valida-
tion period (2007–2010). However, the model was unable to repro-
duce the maximum peak of 2003 during calibration (Figs. 7 and 8).
The main reason for the poor performance is due to the uncertainty
in the rainfall data as a result of the missing data from a number of
rain gauge stations. Before 2006, there were only two operating
rain gauges within the watershed, one at Mt. Wai‘ale‘ale (top of
the watershed) and the second one at the USGS streamflow gauge.
The other gauges were established during 2006.

The simulated flow based on the 1 HRAP grids was lower than
those based on ½ HRAP and 1=4 HRAP grids (Fig. 11, peak flow at
12/13/2008 9:00 AM) when the rainfall was higher in the upper
part of the watershed (Fig. 12b). However, the simulated flow
was higher (Fig. 11, peak flow at 12/13/2008 4:00 AM) when the
precipitation in the lower basin was higher (Fig. 12a). The
watershed represented by 1 HRAP resolution grid is not reason-
able. The delineated basin covers a larger area at the lower part
of the watershed. The rainfall intensity at the upper part of the
watershed is higher than that of the lower part in most of the flood
generating rainfall events; thus, the simulated result using 1 HRAP
is not so poor compared to those of the ½ HRAP and 1=4 HRAP grid
resolution even though the watershed delineated in the 1 HRAP
grid covers a larger area in the lower part of the watershed.



Fig. 12. (a) Precipitation grid (1 HRAP) – 1 h before first peak (12/13/2008 3:00 AM), (b) Precipitation grid (1/4 HRAP) – 1 h before second peak (12/13/2008 8:00 AM). (In this
figure, solid polygon is the watershed delineated in 1=4 HRAP resolution grid and dashed polygon is the watershed delineated in 1 HRAP resolution grid).
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4.5. Performance measures

The modeling performance measures (RMSE, PBIAS and NSE)
were used to evaluate the performance of HL-RDHM during calibra-
tion and validation periods. During calibration and based on PBIAS,
the performance ratings of HL-RDHM are lower for 1 HRAP resolu-
tion grids resulting in a relatively higher underestimation of stream
flow. However, based on PBIAS, the model’s performance with the
½ HRAP and 1=4 HRAP grid resolutions is ‘‘very good’’. The perfor-
mance of HL-RDHM, based on NSE, is ‘‘very good’’ for all resolution
grids. During model validation, the performance of the model is
‘‘very good’’ for all resolution grids based on PBIAS and NSE. Overall,
the model’s performance is ‘‘good’’ to ‘‘very good’’ if we use input
data of finer grids including precipitation grids derived from high
resolution rain gauges data within the watershed.

5. Conclusions and recommendations

In this study, we assessed the performance of HL-RDHM in a
Hawaiian watershed. We modified the HRAP coordinate system,
generated input data of precipitation grids for different resolutions
using data from rain gauges, and generated SAC-SMA parameter
grids and routing parameter grids for the modified HRAP coordi-
nate system. Overall, the comparison of simulated and observed
hydrographs shows reasonably accurate simulation of peak flows
and time to peak during calibration and validation periods. The
exception was for results based on 1 HRAP resolution grids. Simu-
lations using 1 HRAP precipitation grids were not accurate. The
resolution was too coarse in comparison to the spatial scale of pre-
cipitation variability; 1 HRAP precipitation values were lower than
those from ½ HRAP and 1=4 HRAP grids.

The performance of HL-RDHM for basin-averaged a priori grids
and distributed a priori grids was evaluated without calibration for
one year (2008). Relatively, favorable results for the distributed
case indicate the possibility of using HL-RDHM without calibration.
This would be a definite advantage for flash flood forecasting appli-
cations since most stream basins and flood-prone areas do not
have operational gauges for data collection.

With calibration, the performance of HL-RDHM was ‘‘very
good’’ during calibration and validation for finer resolution grids
(½ HRAP or 1=4 HRAP) and precipitation grids derived from interpo-
lation with sufficient number of rain gauges.

The above results show the potential of using HL-RDHM in small
islands environment such as Hawai‘i. It should be noted, however,
that Hanalei watershed is exceptional in its rugged topography
and extreme rainfall. Hence, further studies should focus on other
Hawaiian watersheds representing other land use conditions,
topography, and degrees of orographic forcing of precipitation.
Tentatively, however, results are promising for both flash flood
forecasting applications and other uses such as flood studies. In
either case discharges from HL-RDHM could be used as input data
for hydraulic modeling. Hydraulic modeling would be necessary
to predict details of flood extent, flood depth and duration of flood-
ing which will help in disaster anticipation, preparation, and miti-
gation. Streamflow response to rainfall events in small islands
tropical watersheds is short. The time of concentration for the
watershed of this study is only 1.5 h based on empirical equation
(Kirpich, 1940). Extending the lead-time for flood forecasts for
these watersheds requires accurate rainfall prediction. Thus, fur-
ther efforts are needed to evaluate the performance of HL-RDHM
using the Quantitative Precipitation Forecasts (QPFs) grids. Devel-
opment of operational flood forecasting systems would require, in
addition to a rainfall-runoff model, investments in staffing and
operational precipitation products. There is a particular need for
Hawaiian HRAP quantitative precipitation estimates (QPEs) grids.
The size and coordinate system of quantitative precipitation fore-
casts (QPFs) grids for Hawai‘i are different from those for the
CONUS; hence, further work should focus on generating QPE grids
and incorporating QPF grids into the HL-RDHM model.
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