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Abstract

To generate information about the monsoon onset and withdrawal we have to choose a monsoon definition and apply it to
data. One problem that arises is that false monsoon onsets can hamper our analysis, which is often alleviated by smoothing
the data in time or space. Another problem is that local communities or stakeholder groups may define the monsoon
differently. We therefore aim to develop a technique that reduces false onsets for high-resolution gridded data, while also
being flexible for different requirements that can be tailored to particular end-users. In this study, we explain how we
developed our technique and demonstrate how it successfully reduces false onsets and withdrawals. The presented results
yield improved information about the monsoon length and its interannual variability. Due to this improvement, we are able
to extract information from higher resolution data sets. This implies that we can potentially get a more detailed picture of
local climate variations that can be used in more local climate application projects such as community-based adaptations.

Citation: Stiller-Reeve MA, Spengler T, Chu P-S (2014) Testing a Flexible Method to Reduce False Monsoon Onsets. PLoS ONE 9(8): e104386. doi:10.1371/journal.
pone.0104386

Editor: Liping Zhu, Institute of Tibetan Plateau Research, China

Received May 26, 2014; Accepted July 13, 2014; Published August 8, 2014

Copyright: � 2014 Stiller-Reeve et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All the data used in this paper comes from the
APHRODITE data set that is freely available at the following url: http://www.chikyu.ac.jp/precip/.

Funding: This work was funded by the Norwegian Ministry of Foreign Affairs (www.regjeringen.no), internal funding at Uni Research AS (www.uni.no), and
student travel grants from the Norwegian Research School for Climate Dynamics (www.resclim.no). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* Email: Mathew.reeve@uni.no

Introduction

In this paper, we develop and test a novel method for identifying

monsoonal onsets and withdrawals in high-resolution gridded

data. The novelty of our method lies in our definition of the

transition between non-monsoon and monsoon seasons with the

aim to reduce the need for spatial and temporal smoothing of the

data, or for manual corrections of the results. Thus, we argue that

our method can be used to extract time series from individual grid

points or small regions to give accurate information of local

climates. This more local information can thereafter be applied to

local-scale climate applications.

Community based adaptation projects provide good examples

of local-scale strategies aimed at individuals, families, villages, or

districts (e.g. [1]). For such projects, we ideally need reliable

information about past, present and future local climate [2]. In

monsoon regions, one particular interest lies in the onset and

withdrawal date of the monsoon, and in how much these dates

vary interannually. After all, the timing of the monsoon onset is

extremely significant, as ays can have large negative economical

consequences especially for the poorest farming communities

[3,4]. The farmers in these communities are interested in

information about the monsoon onset at their locality. For

example, different agricultural communities in Bangladesh define

the monsoon and it’s onset in different ways [5]. Even though the

monsoon is often considered as an essentially large-scale phenom-

enon, small regional-scale variations are clear.

We illustrate these spatial variations by looking at the trends in

total yearly rainfall within a single monsoon region between 1978–

2007 as shown in Figure 1. We calculated the trends from the

Asian Precipitation - Highly-Resolved Observational Data Inte-

gration Towards Evaluation of Water Resources (APHRODITE,

V1101R1) rainfall data set [6,7]. We calculated statistical

significance using a bootstrapping method. We rejected our null

hypothesis that the trend was non-zero if the trend lay outside the

5% and 95% percentiles of trends taken from 1000 random

permutations of the time series at each grid point. The average

trend over the whole region is +1.47 mm/year/year, which is not

statistically significant. However, if we focus on local climate, then

trends can become more significant. For example, in Bariyarpur,

Madhya Pradesh, India, the trend was 214.7 mm/year/year, at

the 10% significance test level. In Maniknagar, Bangladesh, the

trend was +16.7 mm/year/year, at the 10% significance test level.

This shows that we cannot apply information about the large-scale

trend at locations where the local climate behaves very differently.

We clearly need a local focus, if we aim to produce climate

information that is useable [8] by people in places like Bariyarpur

and Maniknagar, regional planners or other end users.

However, thinking local is fraught with challenges. In the

absence of local meteorological observations, we ideally need high-

resolution gridded numerical or reanalysis data to analyze local

monsoon climates and related driving processes. There are several

ongoing projects, which will provide high-resolution climate

simulations and projections [9]. We face a well-known complica-

tion if we want to extract information about local monsoon onsets/
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withdrawals from such data sets, then. Previously we have often

been unable to extract time series from grid points, due to the issue

of false onsets [10,11] Periods of unseasonal heavy rain or high

convective activity can also cause false or bogus onsets, which

usually happen long before the actual monsoon or rainy season

starts. These false onsets obviously influence the analysis results.

If we include false onsets in time series, we artificially inflate the

values of interannual variability. Previously, researchers have

applied artificial cut-off dates [12] or smoothing techniques to

reduce the effects of false onsets. For example, Zeng and Lu [13]

declare the monsoon onset at a grid point only when the chosen

criterion is exceeded at seven of the nine points centred at the grid

point in question. Since they used 161 degree data, their approach

yields representative results for the large-scale conditions, but not

the local-scale, as all local meteorological processes are smoothed

out. We emphasize that we are not criticizing previous method-

ologies. Previous studies have mostly been based on a basic

research framework and have undoubtedly advanced our knowl-

edge of the large-scale monsoon transitions. In a more applied

research framework, we want to avoid smoothing so that we can

create useable information about monsoon transitions at local

scales. This information should be more easily applied to local

decisions making processes. To achieve this, we have to reduce the

occurrence of false onsets at the grid point scale!

With the aim of reducing the occurrence of false onsets in a high

resolution data set, we extend the number of pentads (5-day

periods) used in a monsoon definition to six as opposed to three or

four that have previously been used [14,15]. We will show that

through the integration of background knowledge and a manual

testing phase, our approach reduces the occurrence of false onsets.

Because we integrate this background knowledge into the

definition through a test phase, we call the method the Integrated

Approach (IA). If the IA method reduces the occurrence of false

onsets, we therefore reduce the need for spatial and temporal

smoothing. In this case, we should be able to extract time series

from individual grid points. This means that we will be able to use

high-resolution information about the monsoon transitions in local

applications.

In the next section we develop the IA method and explain how

the algorithm identifies monsoonal onsets and withdrawals. We

will also explain how we integrate background knowledge into the

process. We complete the section by presenting a test case and the

data. In section 3, we analyze the results from the test case. We

analyse the results from separate grid points and a larger region

and investigate how the IA affects the results of interannual

variability. This indicates how successful the method is in reducing

false onsets in the data. We conclude in the section 4 and make

connotations about how we can apply this process to wider

applications in climate services and adaptation strategies.

Method

1. Background
Usually, when we define the monsoon onset/withdrawal, we

firstly choose one or more meteorological parameters. A multitude

of publications have defined the monsoon in various regions

according to different climatic parameters, such as wind, rainfall,

outgoing long wave radiation and atmospheric water content [12–

20]. Secondly, we apply a criterion or threshold to the chosen

parameter(s). The criterion identifies when a location –or

effectively a grid point- experiences monsoon-like conditions.

Thirdly, we allocate a seasonal transition to identify exactly when

the monsoon season starts and ends. For example, if three

consecutive pentad (5-day period) values of the specified param-

eter exceed the chosen threshold, then a monsoon transition is

declared [14,15,21,22]. Even though this process is usually applied

in a basic research setting, it has potential in applied research or a

climate application framework.

2. Algorithm
For our Integrated Approach (IA), we assume a monsoon

parameter and threshold has been previously chosen in accor-

dance with the requirements of the end-user or research aims. For

example, the parameter could be rainfall with a threshold pentad

value of 5 mm/day [19], or outgoing longwave radiation with a

threshold pentad value of below 240 W/m2 [23] or 180 W/m2

[24]. Firstly, the algorithm tests each grid point time series

separately and converts the pentad time series into a binary vector

for each year separately, where 1 signifies a ‘hit’ -threshold

exceeded- and 0 signifies a ‘miss’ -threshold not exceeded-. Thus,

the result is a binary vector of 73 Julian pentads (JP) in a single

year, e.g.,

½0 0 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0

0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 1 0

1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 1

1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0�

ð2:1Þ

Next, a 6-pentad moving window from the binary vector is

tested chronologically against each of the binary hit-and-miss

combinations stored in the Integrated-Onset-Matrix (IOM)

Figure 1. The trend in total yearly rainfall between 1978–2007 using the APHRODITE rainfall data set. The purpose of the figure is solely
to illustrate the complexity in the monsoon system. For example, Bariyarpur experiences a negative trend of 214.7 mm/year/year, whereas
Maniknagar has experienced a positive trend of +16.7 mm/year/year.
doi:10.1371/journal.pone.0104386.g001
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(Figure 1). We describe the process of compiling these matrices in

the next section. If a six-pentad window matches a combination in

the IOM, the corresponding earliest JP in the window is stored in a

first-guess vector. For example, in (2.1) the binary combination

between JP 30-35 (i.e., 1 1 1 0 1 1) matches one of the

combinations in the IOM. JP 30 is then stored in the first-guess

vector. Thus, the binary vector (2.1) yields the following first-guess

vector of JP’s matching IOM combinations:

½11 27 30 31 34 37 38 39 40 41 42 43 44 45 52 53�
ð2:2Þ

In contrast to other publications, where the authors have used a

fixed cut-off date to avoid erroneously early onsets (e.g. May 10 in

IMD forecasting procedure [25]), we analyze the time between all

JP’s in the first-guess vector (2.2) before we declare the onset date.

We discard an entry as a false onset if the difference between two

adjacent entries is more than nine pentads (45 days). Hence, the

algorithm rejects JP 11 as the monsoon onset, because JP 11

occurs 16 pentads (80 days) before JP 27 in (2.2). The next two

entries, JP 27 and JP30, are only three pentads (15 days) apart.

Thus, JP27 is declared as the monsoon onset. We choose a

separation criterion of nine pentads, as it accounts for the chance

of break periods occurring shortly after the monsoon or rainy

season onset [26].

The process for the withdrawal identification is exactly the same

except we analyze in reverse order, from the end of the year (from

JP 73) and backwards (towards JP 1) using the Integrated-

Withdrawal-Matrix (IWM).

3. Compiling the Integrated Matrices
Compiling the Integrated-Onset-Matrix (IOM) and the Inte-

grated-Withdrawal-Matrix (IWM) is an essential part of the IA

process, where we integrate our understanding, knowledge and the

requirements of the end-users or local communities. We justify this

partly subjective input with a better feeling for the data and with

the fact that manual interventions are still the cornerstone for

some of the most well-known monsoon onset studies [12] and

forecasts. The Indian Meteorological Department still declares the

monsoon onset at Kerala when the duty forecasters decide that it

has begun ‘‘using a mixture of quantitative and qualitative
methodologies’’ [27,28].

We compiled the integrated matrices by randomly choosing

hundred grid points and years within the region of interest from

the APRHODITE data set (1978–2007). After applying the

definition to obtain the binary vectors, we manually allocated the

onset and withdrawal pentad based on our prior knowledge. The

algorithm then stores the 6-pentad combination starting at the

chosen onset pentad and adds these combinations to the IOM. As

the onset transition is more rapid compared to the withdrawal

[15,29], the IWM contains more combinations than the IOM. For

example the combination [1 1 1 1 1 1] indicates a very sudden

onset and is contained in both the IOM and the IWM. However,

the combination [1 0 1 0 1 0] is a more gradual transition and is

only contained in the IWM. The difference in transition speed is

also evident in Figure 2, which shows the average 9-pentad

running mean rainfall (mm/day) for a region in northern India.

During the onset, the rainfall increases from 0.5 mm/day to

6 mm/day, faster than it decreases during the withdrawal.

Thus, the compilation procedure is more elaborate than other

studies, but it allows us to adapt to the needs of the end-users and

to incorporate further understanding of the monsoon climate. This

process can be adjusted to different monsoon regions, where the

respective local knowledge and meteorology can be included in the

matrix compilation.

4. Test case set-up: domain, data and definition
To demonstrate the IA method, we focus on the region

stretching from Bangladesh and westward across Northern India.

Our original focus region was Bangladesh, but we wanted to test

the IA method over a larger region. We extended the domain

westward whilst keeping within Wang and LinHo’s (2002) Indian

Summer Monsoon region. Once we decided on the domain we

needed to choose a definition and a data set to apply it to. In this

test case, we apply the definition previously used by Matsumoto

[15] on a high-resolution rainfall data.

We use the APHRODITE data set version V1101, which

supplies daily precipitation values at 0.25u resolution over land

between 1951–2007 [6,7,30]. Following Matsumoto’s [15] set-up,

the threshold chosen for this study is the multi-year (in our case,

1978–2007) mean pentad precipitation, which is a static value for

each grid point. We apply our method to a region covering

northern India and Bangladesh. This corresponds to the northern

part of the Indian Summer Monsoon region as specified by Wang

and LinHo [14].

While many use rainfall amounts as a proxy to identify the

monsoon onset, Matsumoto [15] clearly states that his method

identifies the summer rainy season. In order to be true to the

original method, we emphasize that we identify the rainy season.

Even though rainfall is a good proxy for the monsoon, there is not

always a direct correspondence between the two concepts ([27]

p133).

In the following, we compare two techniques for identifying

seasonal transitions and verify the results against a purely manually

corrected time series. The two techniques are the conventional

three-pentad method, where three consecutive pentad ‘hits’ define

the onset [15,22], and the IA method. As there are over 2000 grid

points in the chosen domain, it is not feasible to verify the

techniques for all grid points in the entire domain.

If the IA reduces the occurrence of false onsets then this will, in

principle, also reduce an erroneous spread in interannual

variability. We therefore compare the standard deviations of the

monsoon lengths for the entire domain for the results obtained

with the IA and conventional method.

The main point of the test case is to investigate whether the 6-

pentad IA method can reduce the number of false onsets

compared to a more conventional approach. It is important to

note that this is a demonstration and that different parameters,

thresholds, and data sets might be more appropriate for other

applications.

Results and Discussion

We will assess how well the IA method performed at a single

grid point and also over a wider region. We will start by looking at

the time series from a single grid point and how the IA method

compares with the conventional method. We benchmark the

results against a purely manually corrected time series. Manual

corrections have been widely used previously and are an intricate

part of the IMD’s ‘reanalysis’ monsoon onset time series [28].

The time series in Figure 2a illustrates a general association

between the IA (red line) and conventional (black line) methods.

The IA results precisely match the manually corrected benchmark

time series (blue dots). This shows that the IA has clearly managed

to eliminate false onsets and withdrawals. However the results in

Figure 2a are from a single grid point and maybe not so

A Flexible Method for Defining the Monsoon
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convincing. We extended the test by manually identifying the

onset and withdrawal at a further 100 random grid points and

comparing to the IA and conventional method results. The IA

method matched the manually identified onsets and withdrawals

with 100% and 99%, respectively, whereas the conventional

method matched 67% and 52%, respectively.

The IA and conventional methods give different onsets and

withdrawals for several years. It is clear that we not only have a

problem with false onsets, but false withdrawals also. This becomes

evident when we compare individual years. Figure 2b shows that

in 1979, both the IA and conventional methods disagree on the

onset and withdrawal. The conventional method indicates a late

onset and considerably early withdrawal, resulting in an unrealistic

rainy season length of just four pentads. For 1986, both methods

agree on the onset. However, three consecutive wet pentads late in

the year resulted in the conventional method giving an erroneously

late withdrawal (JP 73). The conventional method allocates a false

onset in 1990. Three wet pentads from JP 25 caused the

conventional method to declare this as the rainy season onset

whereas the IA method gave an onset in JP 34. In 2000, the IA

method was able to allocate the onset at the beginning of a

reasonably wet period beginning JP 31, whereas the conventional

method failed to capture this, and yielded an onset eight pentads

later.

The differences shown in Figure 2 clearly influence calculations

of interannual variability. Table 1 shows that the IA method (for

the same grid point) gives standard deviations encouragingly

similar to previous publications [12,29,30,31]. The IA method

gives an earlier average onset and a later average withdrawal. This

translates to a 2-pentad longer rainy season when compared with

results from the conventional method.

These results show that false onsets and withdrawals can swing

both ways, and give erroneously early and late results. Conse-

quently, the conventional method gives higher values of interan-

nual variability.

Figure 2. The figure shows that average rainfall (mm/day) for an area 80–90 E 22–25 N, with a 9-pentad running mean smoothing to
illustrate the seasonal transitions. The figure shows that the increase in rainfall at the beginning is more rapid than the decrease at the end of
the monsoon/rainy season. The slower transition is reflected in the Integrated-Withdrawal-Matrix (IWM), which contains more combinations than the
Integrated-Onset-Matrix (IOM). The IOM and IWM contain all combinations of binary numbers used in the automatic identification process.
doi:10.1371/journal.pone.0104386.g002
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The IA method seems to work at a selected single grid point, but

how about over a larger region? Even if we have designed this

method to be applied at local levels, we still want to know how the

same monsoon definition performs over larger regions. Only then

can we discuss the seasonal transitions in relation to large-scale

processes and circulations.

We start our overview of the larger region by taking a look at

the average onset and withdrawals for the IA and conventional

methods. Then we will take a look at whether or not the IA has

managed to reduce false onsets and withdrawals.

From the multi-year averages, we can determine the onset

progression and withdrawal regression over the whole region of

interest. The onset progression looks similar when comparing

results from the two methods (Figure 3) with a general direction

from east to west, and a more north-easterly direction over North

India. However, the IA method yields an earlier onset (roughly 1–

2 pentads) over much of the region.

We observe particularly early onsets (around JP 25,May 1)

over northern Bangladesh and further north into the Brahmaputra

Valley using both methods. This departs from most other

monsoon onset climatological analyses [13,16,32,33]. Despite

others calling such early onsets ‘spatial discontinuities’ [13], we feel

that these may illustrate subtle nuances in the monsoon or rainy

season progression, that may have important implications for local

community vulnerability.

The average withdrawal patterns from the two methods are also

similar (Fig. 4), but the IA method features a later withdrawal over

much of North India and Bangladesh, with a delay of about 1–2

pentads. Generally, the IA method gives a slightly earlier onset and

later withdrawal, with obvious implications on season length.

We want to examine if the IA manages to reduce false onsets

and withdrawals. We cannot repeat the same grid point analysis as

above because the whole domain contains over 2000 grid points.

We have to find a different way to analyse the IA’s effect. We

discussed that if we reduce the occurrence of false onsets/

withdrawals, then values of interannual variability would also

decrease (shown by the decrease in standard deviation). We

therefore look at the difference in standard deviation between the

IA method results and the conventional method to indicate

whether the IA reduces false onset/withdrawals.

The IA method reduces the standard deviation of onset and

withdrawal by up to 5 pentads in some regions (Figure 5a). For the

onset, large differences in standard deviation are observed over the

Pradesh region of northeast India (Figure 5a). For the withdrawal,

consistently lower standard deviations are shown over most of

Table 1. Statistical values for the onset and withdrawal time series (1978–2007) for the grid point at 23.875 N, 83.875 E.

Mean onset Mean withdrawal Mean length Standard deviation onset Standard deviation withdrawal

Conventional method 35.7 52.3 16.6 3.5 4.9

IA method 35.1 53.8 18.7 2.4 2.0

doi:10.1371/journal.pone.0104386.t001

Figure 3. Comparison of the Integrated Approach (IA) and 3-pentad (conventional) methods (Matsumoto, 1997) for 23.875 N,
83.875 E. (a) The red line shows the IOM/IWM onset and withdrawal pentads for 1978–2007, where as the black line shows the results from the 3-
pentad method. The blue dots show the purely manual corrected time series. (b) The blue bars show pentads where the threshold is exceeded. The
grey arrows show onset/withdrawal pentad according to conventional method and the blue arrows show the IA method. Black arrows represent
coincident onset/withdrawal pentads between the two methods.
doi:10.1371/journal.pone.0104386.g003
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Bangladesh for example (Figure 5b). Few regions show increases in

interannual variability with the application of the IA methodology.

From the test case, we can see that the problem of false early

onsets is extended to withdrawals and can be both erroneously

early and late. We have seen that the IA method seems to match a

purely manually corrected time series of onsets and withdrawals.

This means that during the test phase the IOM and IWM

managed to collate all the pertinent combinations of hits and

misses. Over a larger region the IA method predominantly

decreases the values of interannual variability. This is a good

indication that the IA method manages to reduce the affect of false

onsets and withdrawals in the resulting grid point time series.

Conclusions

We applied the Integrated Approach (IA) and a conventional

method to identify the monsoon onset and withdrawal dates in a

gridded data set. We used the APRHODITE rainfall data as the

gridded data, and analyzed the data between 1978–2007 over

northern India and Bangladesh. Yearly precipitation data for each

grid point was converted to pentad values and we applied the 30-

year pentad mean as a threshold. Then the algorithm identified

the monsoon onsets and withdrawal according to the transitions

that the IA and conventional methods stipulated. We compared

the results from the two methods to see if the IA method managed

to achieve our first objective to reduce false onsets.

First, we investigated a single grid point to see how the IA

affected false onsets. The IA reduced false onsets, and thereby also

the interannual variability to levels similar to previous research.

The IA also reduced erroneous withdrawals considerably. Hence,

the standard deviation of withdrawal dates decreased by almost 3

pentads for the grid point we investigated. We extended the

analysis over a larger region, showing that the IA method

managed to reduce false onset and erroneous withdrawals over

much of northern India and Bangladesh.

Secondly, we wanted to develop the IA to be flexible so that it

could be adapted to different monsoon definitions. Due to the

multitude of monsoon definitions, it is important to apply one that

is relevant to the requirements of different stakeholders or users,

whether they be other scientists, policy-makers or subsistence

farmers. Our test case here demonstrates how we can use the

approach and adapt it. If we responsibly choose relevant

parameters, indices and thresholds, we should be able to apply

the IA method to any monsoon definition. However, the flexibility

and reductions in false onsets came at a price, as we invested

significantly more time in designing and adjusting the IA.

We increased the preparation time needed the IA by extending

the length of the windows to 6 pentads. With 6-pentad windows

we needed to manually choose all the 6-pentad combinations that

signify a monsoon onset or withdrawal. To do this responsibly, we

applied prior knowledge and a manual testing phase. In our case,

we knew that the monsoon onset starts more abruptly than the

withdrawal. This knowledge influenced which 6-pentad transitions

we choose during the manual testing phase, which is what took

time. However, the more time we used, the better we understood

our data. This understanding was not based on large-scale

averages, or smoothed data. It was grounded in the raw grid

point data. The IA basically forces us to consider the data at the

local scale. This is valuable knowledge, especially if we wish to

communicate with local communities, which is often the aim of

project such as community-based climate adaptation.

However, if we want to communicate science responsibly to a

local community, we should consider several issues. For example,

if the local people of Bariyarpur and Maniknagar have to be

informed about the monsoon onset, we pinpointed that reliable

higher resolution data can be beneficial. To reap these benefits we

must be able to apply these different definitions to our data. The

fact that the IA approach reduces some problems when using

Figure 4. Multi-year mean onset pentads for (a) the Integrated Approach (IA) method and (b) the 3-pentad (conventional) method,
across Northern India and Bangladesh. Also shown are the multi-year mean withdrawal pentads for (c) the Integrated Approach (IA) method
and (d) the 3-pentad (conventional) method.
doi:10.1371/journal.pone.0104386.g004

Figure 5. Differences in multi-year standard deviation between
the IA and conventional methods for a). onset and b).
withdrawal.
doi:10.1371/journal.pone.0104386.g005
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high-resolution data and that it can be set-up according to

different definitions means that it can ingest the opinions or

requirements of a variety of stakeholders.

We will continue to work with stakeholders in northeast

Bangladesh in a new international collaboration with researchers

from Norway, Bangladesh and USA (including all the authors).

Our main motivation is to provide climate information that is

indeed relevant to and useable by the local agricultural commu-

nicates in northeast Bangladesh. The work we present in this paper

is a step towards providing climate information about the

monsoon that is relevant to its intended users.
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