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ABSTRACT

Skillful predictions of the seasonal tropical cyclone (TC) activity are important in mitigating the potential

destruction from the TC approach/landfall in many coastal regions. In this study, a novel approach for the

prediction of the seasonal TC activity over the western North Pacific is developed to provide useful probabilistic

information on the seasonal characteristics of the TC tracks and vulnerable areas. The developed model,

which is termed the ‘‘track-pattern-based model,’’ is characterized by two features: 1) a hybrid statistical–

dynamical prediction of the seasonal activity of seven track patterns obtained by fuzzy c-means clustering

of historical TC tracks and 2) a technique that enables researchers to construct a forecasting map of the spatial

probability of the seasonal TC track density over the entire basin. The hybrid statistical–dynamical prediction

for each pattern is based on the statistical relationship between the seasonal TC frequency of the pattern and

the seasonal mean key predictors dynamically forecast by the National Centers for Environmental Prediction

Climate Forecast System in May. The leave-one-out cross validation shows good prediction skill, with the

correlation coefficients between the hindcasts and the observations ranging from 0.71 to 0.81. Using the

predicted frequency and the climatological probability for each pattern, the authors obtain the forecasting

map of the seasonal TC track density by combining the TC track densities of the seven patterns. The hindcasts

of the basinwide seasonal TC track density exhibit good skill in reproducing the observed pattern. The

El Niño–/La Niña–related years, in particular, tend to show a better skill than the neutral years.

1. Introduction

Every year, many coastal areas suffer from large social

and economic damage caused by tropical cyclone (TC)-

induced gusts and downpours. The seasonal prediction

of the TC activity has been an important issue for TC-

prone countries in their efforts to mitigate the potential

losses from TCs in the coming TC season, which, indeed,

is gradually becoming as important as real-time forecasts

of the track and intensity of TCs. Many pioneering

attempts were made to develop a seasonal prediction

model for the basinwide TC activity in various TC-prone

ocean basins, such as Nicholls (1979) in the Australian

region, Gray (1984) in the Atlantic basin, and Chan et al.

(1998) in the western North Pacific (WNP) basin. The

statistical prediction models were mostly developed us-

ing empirical relations between the target TC activity

and the preceding large-scale environments that are con-

sidered to be influential. The prototype statistical pre-

diction models have been improved by follow-up studies,

and some new models have been developed as well (e.g.,

Gray et al. 1992, 1993, 1994; Elsner and Schmertmann

1993; Hess et al. 1995; Chan et al. 2001; Klotzbach and
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Gray 2004; Chu and Zhao 2007). By virtue of these ef-

forts, the prediction of basinwide seasonal TC activity

has been continuously improved so that some of them

could be applied as operational prediction schemes.

There has been another development trend that con-

fines the forecasting target region to the near coastal

area for the purpose of providing more reliable infor-

mation about regional TC landfalls (e.g., Saunders and

Lea 2005; Elsner and Jagger 2006). With regard to the

WNP to which many TC-prone countries are adjacent,

there has been a thrust to develop seasonal prediction

models for the subbasin-scale TC activity—for exam-

ple, the South China Sea (Liu and Chan 2003), the East

China Sea (Ho et al. 2009a; H.-S. Kim et al. 2010),

Taiwan (Chu et al. 2007, 2010; Lu et al. 2010), and Korea

(Choi et al. 2009). These studies showed that skillful

forecasts of the regional TC activity are possible through

statistical relations with some antecedent large-scale en-

vironmental predictors. However, it should be noted that

the statistical relations applied to any statistical model

are exclusive with respect to the specific TC activity con-

cerned. Accordingly, the models must be independently

developed to make predictions for unexplored regions.

Apart from the statistical predictions, dynamical pre-

diction has also been attempted using numerical models

(e.g., Vitart et al. 2007; Camargo and Barnston 2009;

Zhao et al. 2010). The innovative dynamic core and

physics schemes with increasing horizontal and vertical

resolution in state-of-the-art dynamic models lead to

the dynamical prediction skill of basinwide TC activity

comparable to the statistical models. However, the dy-

namical seasonal prediction of regional TC activity or

TC landfall is still challenging because the simula-

tion of TC tracks is rather unreliable in climate models

(Camargo et al. 2006), which will very likely be improved

in the next-generation climate forecast systems.

The objective of this study is to develop a novel sea-

sonal prediction technique that aims at producing a

probabilistic map of seasonal TC occurrences for the

entire WNP basin. To accomplish this objective, a track-

pattern-based model is devised based on a finite num-

ber of representative patterns of WNP TC tracks. The

possibility of track-pattern-based prediction for the sea-

sonal TC activity was discussed in Camargo et al. (2007)

and Kim et al. (2011) in which the TC tracks were nu-

merically clustered into several patterns. Recently, Chu

et al. (2010) developed a track-pattern-based statistical

prediction model for the seasonal TC frequency near

Taiwan and argued that the track-pattern-based ap-

proach would provide a more physical understanding of

the forecasting skills. Extending from a purely statistical

track-pattern-based approach targeted for a limited do-

main (Chu et al. 2010), this study uses predictors from

a dynamical model for predicting the spatial distribution

of seasonal TC tracks over the entire WNP basin. The

proposed model can be classified as a hybrid statistical–

dynamical type (e.g., Wang et al. 2009; Kim and Webster

2010; Vecchi et al. 2011) because it is based on the sta-

tistical relations between the interannual variability of

the TC frequency in each track pattern and some physi-

cally relevant concurrent seasonal large-scale environ-

ments from the dynamical ensemble seasonal forecasts

of the National Centers for Environmental Prediction

(NCEP) Climate Forecast System (CFS). After the sta-

tistical predictions are made for each track pattern, the

seasonal TC track density map is constructed using a

reasonable combining technique.

This paper is organized as follows. Section 2 describes

the datasets used in this study. Section 3 presents the

technical procedure of the track-pattern-based hybrid

statistical–dynamical prediction model. Section 4 dis-

cusses the validation of the prediction model. Finally,

the concluding remarks are given in section 5.

2. Data

The information on the TC locations is taken from

the best-track dataset archived by the Regional Special-

ized Meteorological Centers Tokyo-Typhoon Center.

This dataset contains 6-hourly latitude and longitude lo-

cations, minimum central pressure, maximum sustained

wind speed, etc. Here, we used only the TC locations with

maximum sustained wind speed greater than 17 m s21.

The analysis is targeted at the TCs formed during June–

October (JJASO, the TC season) covering approximately

80% of the annual TCs over the WNP.

The NCEP CFS retrospective forecasts (Saha et al.

2006) are used to provide seasonal large-scale informa-

tion for developing the hybrid statistical–dynamical

model based on the track patterns. The NCEP CFS,

which is a fully coupled dynamical prediction system,

provides 9-month atmospheric/oceanic forecast fields

for every month since 1981.1 The model diagnostics

of the atmospheric model, such as wind fields, are pro-

vided with a horizontal resolution of 2.58 3 2.58 (latitude–

longitude) whereas those of the oceanic model, such as

sea surface temperature (SST), have a horizontal reso-

lution of 18 3 28. These data were used in the hybrid

1 The initial conditions for 1981–90 CFS retrospective forecast

version 1 in the NCEP Climate Prediction Center (CPC) Web site

contained a treatment that was inconsistent with that after 1990.

The CPC reran the hindcasts with corrected initial condition for

1981–90, primarily for real-time operational forecast calibration

(W. Wang 2011, personal communication). This study utilizes the

updated data.
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statistical–dynamical model for predicting the seasonal

Atlantic hurricane frequency (Wang et al. 2009). To ob-

tain the dynamic forecasts during JJASO, we use 15 en-

semble members of the NCEP CFS forecasts, which were

run using different initial conditions prior to the TC

season. The 15 initial conditions can be classified into

three groups, each of which consists of 5 consecutive

days centered on 11 and 21 April and 1 May.

This study also utilizes the monthly mean atmospheric

fields from the NCEP Reanalysis-2 (Kanamitsu et al.

2002) and the monthly mean SST from the NOAA op-

timum interpolation SST version 2 (Reynolds et al. 2002).

The NCEP Reanalysis-2 and the NOAA SST are pro-

vided with horizontal resolution of 2.58 3 2.58 and 28 3 28,

respectively. The NCEP atmospheric fields used in-

clude the 850-hPa relative vorticity, 850-hPa and 200-hPa

horizontal winds, and 50-hPa zonal wind. All of these

observational datasets are applied to validate the NCEP

CFS forecasts and to verify the potential predictors from

the NCEP CFS forecasts.

3. Model description

Figure 1 illustrates the process of the seasonal pre-

diction model developed in this study. As a first step, the

representative TC track patterns are required so as to

proceed to the next step because they are the primary

basis of this track-pattern-based model. In the second

step, the seasonal TC frequencies of each track pattern

are separately predicted using an empirical statistical

prediction method in which dynamic environmental pre-

dictors are incorporated. Owing to this step, the model is

classified as a hybrid statistical–dynamical type of model.

The final step is to construct the forecasting map of TC

track density by combining the prediction results of

each cluster. During this step, the spatial probability of

each track pattern obtained from the climatology is ap-

plied as the base, which is required to create the fore-

casting map.

a. TC track patterns

To obtain the basic patterns of TC tracks, the fuzzy

c-means clustering method is adopted as a numerical

clustering technique (Kim et al. 2011). The fuzzy c-means

clustering method can yield reasonable clusters even

with a complex input dataset such as TC tracks in which

the cluster boundaries are not distinct. Kim et al. (2011)

introduced a straightforward method to incorporate the

entire shapes of all TC tracks into the fuzzy c-means

clustering algorithm by interpolating all tracks into equal

number of segments. With several cluster validity mea-

sures to determine the optimal number of clusters, seven

representative patterns of TC tracks were obtained using

the TCs during JJASO for the period 1965–2006.2 The

fuzzy clustering algorithm allows each TC track to be-

long to all clusters with different membership degrees.

In this study, however, the tracks are allocated into one

cluster in which membership degree is the largest (i.e.,

hard partitioning). Chu et al. (2010) also applied the

fuzzy c-means clustering method to the JJASO TCs

during 1979–2006 and obtained the similar seven pat-

terns. These patterns were also obtained by Camargo

et al. (2007), though the clustered patterns were some-

what different from those of Kim et al. (2011) because

the annual TCs during 1950–2002 were used. All of

these studies indicate that seven could be a character-

istic number of track patterns over the WNP.

Figure 2 illustrates the seven patterns (C1–C7) of TC

tracks during JJASO of 1965–2006.3 While the TCs in

C1 form over the northwest Philippine Sea and move to

Korea and Japan (Fig. 2a), those in C2 develop over

the southeast WNP and move mostly to Japan with long

FIG. 1. Schematic for the track-pattern-based prediction model.

2 The power of the fuzziness coefficient is set to 2, and the Eu-

clidean norm is used for the dissimilarity of the fuzzy objects.

Detail description of fuzzy clustering for the TC tracks is given in

Kim et al. (2011).
3 Fig. 2 is identical to Fig. 4 in Kim et al. (2011).
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FIG. 2. (a)–(g) Seven track patterns and (h) all the tracks of TCs over the WNP and their frequencies during the TC

seasons for the period 1965–2006.
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trajectories (Fig. 2b). These two patterns are represen-

tative of typical modulation of the El Niño–Southern

Oscillation (ENSO) (Wang and Chan 2002; Ho and Kim

2011). Most TCs in C3 strike Taiwan and East China

with west-oriented tracks (Fig. 2c) and those in C4 pass

east of Japan with early recurving tracks (Fig. 2d). It has

been suggested that the C3- and C4-type TCs are pos-

sibly related to the central Pacific (CP)–El Niño (also

known as El Niño Modoki) and the stratospheric quasi-

biennial oscillation (QBO), respectively (e.g., Ho et al.

2009b; J.-H. Kim et al. 2010; Kim et al. 2011). C5 con-

tains TCs traveling the easternmost oceanic area with

irregular shapes (Fig. 2e). C6 consists of TCs formed over

the South China Sea (Fig. 2f), whereas C7 represents

straight-moving TCs across the Philippines (Fig. 2g).

The latter three patterns were classified as those reflect-

ing the effect of local environments such as SST and

steering flows (Kim et al. 2011).

As mentioned above, C1, C2, C3, and C4 reflect the

influences of La Niña, El Niño, El Niño Modoki, and

QBO, respectively. To confirm these relations, the cor-

relations of TC frequency and relevant oscillation in-

dices during the TC season are examined with regard to

each pattern. The correlation analysis uses the period

1981–2006, which is the main analysis period of this

study. The correlation coefficients for C1 and C2 with

the Niño-3.4 index during JJASO are 20.43 and 0.74,

respectively. On the other hand, the correlation coef-

ficient for C3 with the El Niño Modoki index (Ashok

et al. 2007) during JJASO is 0.5 and that for C4 with the

50-hPa QBO index during JJASO reaches 20.70. All

correlation coefficients are statistically significant at the

95% confidence level, as shown by a two-tailed t test,

suggesting the feasibility of seasonal prediction of these

track patterns based on large-scale environments. It

should be noted that the relations are simultaneous

rather than time lagged. We checked the time-lagged

correlation coefficients with the preseason indices (i.e.,

December to May) but only found low and insignificant

values. The larger simultaneous correlation values justify

the use of the NCEP CFS large-scale environments dur-

ing JJASO as potential predictors.

b. Hybrid statistical–dynamical prediction model

The hybrid statistical–dynamical technique is employed

for the seasonal prediction of each track pattern. The

hybrid statistical–dynamical prediction model is devel-

oped on the basis of the empirical relationship between

the observed TC frequency and the dynamically pre-

dicted large-scale environments during the same pe-

riod (Wang et al. 2009; Kim and Webster 2010), unlike

the statistical prediction models that adopt the relevant

antecedent large-scale environments as predictors (Gray

et al. 1992; Chan et al. 2001; Chu and Zhao 2007; and

many others). Because the simultaneous large-scale en-

vironments are better correlated with the track patterns,

the hybrid statistical–dynamical prediction method may,

in principle, yield more skillful prediction. If the dynamic

model forecasts provide realistic large-scale environ-

ments during the target season, the hybrid-type approach

can give a more reliable prediction; otherwise, its fore-

cast skill may degrade.

To select the potential predictors for each pattern,

we analyze the correlations between the seasonal TC

frequency of each pattern and several large-scale envi-

ronments from observations and NCEP CFS forecasts.

Candidate variables for potential predictors are mostly

limited to SST, magnitude of the vertical wind shear

(VWS) between 200 and 850 hPa, 850-hPa relative vor-

ticity (VOR850), and 200-hPa zonal wind (U200); how-

ever, the 50-hPa zonal wind (U50) appears to be amenable

for C4, which is inversely correlated with the QBO

(Ho et al. 2009b; Kim et al. 2011). Except for SST and

U50, the critical regions, which approximately enclose

areas with significant correlations between TC frequen-

cies and environmental predictors, is confined in and

around the WNP basin (108S–408N, 908E–1508W). All

variables are averaged for JJASO.

Figure 3 illustrates the correlation maps between

the seasonal TC frequency in C1 and the four predictor

candidates from the observations (Figs. 3a–d) and the en-

semble mean of the 15 NCEP CFS forecasts (Figs. 3e–h)

during the period 1981–2006. For a sample size of 26

years, 60.31 is the 90% significance level of the cor-

relation coefficient with the two-tailed t test. With re-

gard to the SST, negative correlations prevail over the

tropical central and eastern Pacific, while positive corre-

lations exist over the tropical western South Pacific and

extratropical North and South Pacific (Fig. 3a), indicat-

ing that C1 is active during La Niña. In association with

La Niña, the TC genesis region shifts toward the north-

west Philippines Sea because of the anomalous low-

level anticyclonic vorticity and the large vertical wind

shear over the tropics associated with the weaker mon-

soon trough (Wang and Chan 2002). The local atmo-

spheric responses to La Niña are well reflected in the

correlation maps for VOR850, U200, and VWS (Figs. 3b–d).

For C1 the significantly correlated regions in the ob-

servations appear consistently in the ensemble mean

of the NCEP CFS forecasts (Figs. 3e–h). Not only does

this indicate that the NCEP CFS has substantial skill

in predicting the characteristic large-scale environments

influencing the interannual variability of the observed

TC activity, but it also confirms the feasibility of the

hybrid statistical–dynamical prediction for the TC track

patterns using the NCEP CFS forecasts. According to
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the two correlation patterns obtained from the en-

semble mean of the NCEP CFS forecasts and actual

observations, we select the critical regions wherein the

key parameters are used for the final predictor sets (boxes

in Figs. 3e–h). We also check the correlation between the

NCEP CFS ensemble forecasts and the observation to

understand how well the NCEP CFS predicts the envi-

ronmental parameters over the selected region (Fig. 4).

The mean correlation coefficients are 0.65 for SST, 0.68

for U200, 0.63 for VWS, and 0.73 for VOR, respectively.

All coefficients are significant at the 95% confidence

level, suggesting that the NCEP CFS has good pre-

dictability of the ENSO-related environments. This also

ensures that the NCEP CFS can serve the environmental

predictors during the TC season for the hybrid statistical–

dynamical model.

FIG. 3. Correlation coefficients between the TC frequency in C1 and the SST, 850-hPa vorticity (VOR850), 200-hPa

zonal wind (U200), and absolute vertical wind ashear (VWS) in (a)–(d) the observations and (e)–(f) NCEP CFS

forecasts during June–October for the period 1981–2006. The light (dark) shadings represent the positively (nega-

tively) significantly correlated regions. The significance at the 95% confidence level is darker than that at the 90%

confidence level. The boxes in the right panels denote the critical regions.
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The procedure used to determine critical regions for

C2 is exactly the same as C1 but with an opposite sign,

indicating mirrorlike patterns between La Niña and

El Niño (not shown). The critical regions for C3, as shown

in Fig. 5 (right column), are slightly different from those

for C1 and C2 because C3 is related to the warming over

the CP (Kim et al. 2011). For C1–C3 all of the candidate

variables are kept as potential predictors. This is ex-

pected because El Niño and La Niña are known to have

seasonally persistent influences on large-scale environ-

ments over the WNP. Accordingly, the critical regions

for C1–C3 are relatively large. For C4, VOR850 is left as

the only predictor among the four common variables

(Fig. 6). However, because C4 is negatively correlated

with the stratospheric QBO phase (Ho et al. 2009b; Kim

et al. 2011), tropical U50 is selected as a special predictor

variable. Due to the quasiperiodic nature of the QBO,

the inclusion of U50 greatly enhances the predictability

of C4 pattern (see Table 1). For the sake of simplicity,

correlation patterns for C5–C7 will not be presented.

Suffice to say that each one of them has its own critical

regions.

Figure 7 summarizes the critical regions for each pre-

dictor according to track pattern from C1 to C7. Although

the critical regions are defined using the ensemble mean

of the NCEP CFS forecasts, the predictors are picked

from the individual NCEP CFS ensemble members.

Time series are obtained as final predictors by area av-

eraging over the significantly correlated area for each

ensemble member. Consequently, 15 predictor sets are

obtained from the individual NCEP CFS forecasts. With

these predictor sets, the hybrid statistical–dynamical

model can provide 15 ensemble forecast members.

It is noted that the predictors for the ENSO-related

clusters (i.e., C1, C2, and C3) are correlated with each

other. Owing to the substantial influence of ENSO, it is

difficult to find the chosen predictors that are entirely

and physically independent of each other. To verify the

use of the partly dependent predictors, we examine a var-

iance inflation factor (VIF) for each ensemble predictor

sets (Davis et al. 1986). The larger VIF means the higher

multicollinearity. Generally, a value of 10 is used as the

criteria (e.g., Davis et al. 1986; O’Brien 2007; Villarini

et al. 2011). Among the VIFs for the predictors for the

seven patterns, the maximum VIF value is found to be

7.01 for VWS for C1, suggesting that the predictors se-

lected are acceptable for the model.

The statistical prediction technique adopted for the

hybrid statistical–dynamical model is based on a Pois-

son regression, which has shown a skill for the prediction

FIG. 4. Correlation coefficients between the observation and the NCEP CFS ensemble forecasts

over the selected critical regions in Fig. 3.
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of the TC activity (e.g., Elsner and Schmertmann 1993;

McDonnell and Holbrook 2004; Chu and Zhao 2007;

H.-S. Kim et al. 2010). In the Poisson regression, the

expected number of events (i.e., the predictand) is as-

sumed as the exponential function of a linear combina-

tion of predictors, expressed as

~y 5 exp �
k

j51

bjxj 1 b0

 !
, (1)

where ~y is the predictand (i.e., seasonal TC count), k is

the number of predictors, xj represents the predictors,

bj is the corresponding regression coefficients, and b0 is

the regression constant. The regression coefficients and

constant are estimated by maximizing the likelihood

of the Poisson distribution using iteration for a training

period (Wilks 2006).

The variance of the Poisson distribution is fixed to

the same value as its mean. In practice, the variability

of target events sometimes becomes higher than the

restriction of the Poisson distribution, which is called

overdispersion. The overdispersion can be quantified by

the dispersion parameter that measures the ratio of the

variance to the mean (Tippett et al. 2011). The Poisson

regression is overdispersed when the parameter is greater

than 1. We check the dispersion parameters of the

FIG. 5. As in Fig. 3, but for the TC frequency in C3.
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Poisson regressions for the seven patterns using the

ensemble predictor sets (not shown). The results show

slight overdispersion of only three ensemble cases for C2

(the dispersion parameters are 1.1 for these three cases),

whereas most of the other cases do not. This ensures that

the Poisson regression is suitable for the statistical pre-

diction scheme in the hybrid statistical–dynamical model.

c. Construction of the forecasting map of seasonal
TC tracks

The seasonal TC track density for a particular year is

represented by the probability of TC tracks (P) at each

grid point defined as

Pl(lat, lon) 5
Nwithin 58 from a grid point(lat, lon),l

NTotal,l

, (2)

where l denotes the year index, lat and lon are the de-

grees of latitude and longitude, and N indicates the

number of TCs (e.g., NTotal,l is the total number of TCs

for a TC season of year l): Pl can be calculated using the

observed TC tracks for all WNP grid points in year l. We

can convert Pl into two probability terms using the re-

lation based on the seven track patterns as follows:

Nwithin 58 from a grid point(lat, lon),l

5 �
C

i51

NCi within 58 from a grid point(lat, lon),l, (3)

where Ci denotes the ith pattern, and C is the number of

patterns (i.e., 7). Then, the converted Pl becomes

Pl(lat, lon) 5 �
C

i51

NCi,l

NTotal,l

3
NCi within 58 from grid point(lat, lon),l

NCi,l

5 �
C

i51

NCi,l

NTotal,l

3 PCi,l(lat, lon). (4)

Here NCi,l is the predictand of the hybrid statistical–

dynamical model for Ci in year l, and NTotal,l is calcu-

lated by summing the predictands of the seven patterns;

that is, NTotal,l 5 �C
i51NCi,l. In Eq. (4), however, PCi,l re-

mains unknown because we do not know the observed

probability of the year prior to the TC season. There-

fore, an alternative is adopted where the climatological

probabilities of the seven patterns (PCi) are substituted

for PCi,l (Fig. 8). Using the TC tracks of each pattern

(Fig. 2), the seven PCi are calculated at a grid size of

18 3 18 and applied as the basis for creating the basin-

wide map of TC track density. Using Eq. (4) the spatial

distribution of the TC track density for a forecasting

year l ( ~Pl) results from the sum of the climatological

probability (PCi) weighted by the predicted number of

TCs for the seven patterns [i.e., ~y
i,l

in Eq. (1)], which is

~Pl 5 �
C

i51

~yi,lPCi �
C

i51

~yi,l.

,
(5)

To verify this construction method using the clima-

tological probabilities as the basis, the mean and stan-

dard deviation of the seasonal total TC track density

are compared between the observed probability and the

probability derived from Eq. (5) (Fig. 9). The observed

FIG. 6. As in Fig. 3, but for correlation coefficients between the TC frequency in C4 and VOR850 and U50 in (a),(b) the

observations and (c),(d) NCEP CFS forecasts.
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mean (mobs, Fig. 9a) and standard deviation (sobs, Fig. 9b)

are calculated using the probability of the observed sea-

sonal TC track density during 1981–2006, whereas the

model-constructed mean (mmodel, Fig. 9c) and standard

deviation (smodel, Fig. 9d) are derived from Eq. (5) by

applying the observed number of seasonal TCs for Ci

into ~yi,l. It is shown that this construction method re-

produces the climatological probability of the TC track

density quite well, though it has a slight low bias against

the observation (Fig. 9a versus Fig. 9c). On the other

hand, the standard deviation of the model-constructed

probability is much lower than the observed probability

(Fig. 9b versus Fig. 9d), which is because the method is

not based on the probabilities of the target year but in-

stead is based on the climatological probabilities. This

indicates that the developed model produces a weaker

interannual variation than the observation. Therefore,

it is essential to construct the final forecasting map with

bias corrections for both the mean and variation. Fol-

lowing the correction method of Saha (2008), the stan-

dardized forecast anomaly is calculated by subtracting

the model climatology from the forecasting map and then

dividing it by the model standard deviation. The final

forecasting map is generated by multiplying the ob-

served standard deviation on the standardized forecast

anomaly and then adding the observed mean. This pro-

cedure is summarized as

~Pl ffi
~Pl 2 mmodel

smodel

 !
sobs 1 mobs. (6)

4. Validation

a. Cross-validation test for the hybrid
statistical–dynamical models

A common method of verifying the prediction method

is to apply a cross-validation test for the dataset in hand.

Because the interannual variation of the seasonal TC

frequency in each cluster is almost independent from

year to year, it is appropriate to apply the leave-one-out

cross-validation method (e.g., Gray et al. 1992; Chu et al.

2007). Once the forecasting target year is specified, the

regression models for the track patterns are developed

using the remaining years of the data as the training

dataset. Then, the predictors for the target year from

each track pattern serve as inputs for the regression

models to yield the predicted TC frequencies for the

target year. This process is repeated from 1981 to 2006.

Figure 10 shows the hindcasts for the seven patterns

from the leave-one-out cross validations that were per-

formed using the 15 NCEP CFS ensemble forecasts. The

15 ensemble members (gray lines) generally fluctuate in

accordance with the observed variations (dashed lines)

for all the patterns, though significant errors are found

in many years. This causes the ensemble means (solid

black lines) to be better correlated with the observa-

tions with much lower errors compared to the individual

members, supporting the better skill of the ensemble

mean in the statistical prediction (Kwon et al. 2007). For

the purpose of the quantitative assessment of the en-

semble means of 15 hindcasts, Table 1 lists their corre-

lation coefficients (COR), rms errors (RMSE), and the

mean square skill scores (MSSS) with the observed fre-

quencies and their ranges (i.e., maximum and minimum

values). The RMSE and MSSS are defined from the

mean square error (MSE) as follows:

RMSE 5 MSEmodel

� �
1/2 5

�
1

n
�
n

l51

(yobs
l 2 ~yl)

2

�1/2

, (7)

and

TABLE 1. (a) Correlation coefficients (COR), (b) rms errors

(RMSE), and (c) mean square skill scores (MSSS) between the

ensemble mean of the hindcasts and their range (maximum and

minimum) for the 15 ensemble members in each cluster.

Pattern Ensemble mean Ensemble members

(a) COR

Max Min

C1 0.75 0.69 0.33

C2 0.74 0.74 0.44

C3 0.72 0.65 0.23

C4 0.81 0.80 0.62

C5 0.74 0.66 0.21

C6 0.77 0.67 0.37

C7 0.71 0.68 0.49

(b) RMSE

Max Min

C1 1.30 2.01 1.46

C2 1.44 3.20 1.45

C3 1.21 1.90 1.34

C4 0.85 1.33 0.84

C5 0.96 1.71 1.05

C6 1.28 1.75 1.37

C7 1.11 1.39 1.13

(c) MSSS

Max Min

C1 0.54 0.42 20.10

C2 0.53 0.53 21.31

C3 0.51 0.38 20.23

C4 0.63 0.65 0.18

C5 0.51 0.41 20.56

C6 0.50 0.45 0.11

C7 0.49 0.46 0.19
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MSSS 5 1 2
MSEmodel

MSEobs

5 1 2

1

n
�
n

l51

(yobs
l 2 ~yl)

2

1

n
�
n

l51

(yobs
l 2 yobs)2

,

(8)

where n is the number of years, yobs
l and ~y

l
are the ob-

served TC frequency and the ensemble mean of the

hindcast TC frequencies for an lth year, respectively,

and yobs
l is the observational mean. The MSSS represents

the ratio between the reduction in the MSE of the pre-

dictions of the model and the MSE of the references

from the climatology (World Meteorological Organi-

zation 2002). The COR for ensemble mean are moder-

ately high ranging from 0.71 to 0.81, and the RMSEs are

around one (0.85 to 1.44). The MSSS are higher than

0.49, indicating a skill improvement of at least 50% for

the models over the climatology-based reference fore-

casts. The indices for the ensemble mean show more

skillful predictability, which is obviously because the

prediction uncertainty becomes smaller in the ensemble

forecast compared to the single prediction (Kwon et al.

2007). All of these statistics indicate good skill of the

hybrid statistical–dynamical model. Among the seven

models, the model for C4 shows the most skillful hindcasts

FIG. 7. Critical regions for the seven track patterns.
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despite the fact that it is based on only two predictors

(Fig. 10d). This implies that the QBO is a key predictor

for C4 in the WNP (Ho et al. 2009b). However, for the

basinwide TC frequency, the QBO is not deemed as

a necessary predictor (Camargo and Sobel 2010).

b. Validation for final forecasting map:
The best and the worst hindcast years

Using the ensemble mean of the 15 hindcast members,

the spatial probability of seasonal TC track density is

FIG. 8. Climatological TC track densities for the seven

patterns: unit of measure is percent.
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produced for the TC season of each year based on the

construction method described in section 3c. Among

these, the 5 years that show the best (worst) hindcast are

presented in Fig. 11 (Fig. 12). These years are selected

based on the anomaly pattern correlation (shown in the

bottom-right corner of each panel) between the observed

track density (left column in Figs. 11 and 12) and model-

constructed track density (middle column in Figs. 11 and

12). Also shown are the TC track densities produced

using the observed TC frequencies in the seven clusters.

This assumes that the hybrid statistical–dynamical model

perfectly predicts the observed TC frequencies of the

seven patterns (hereafter ‘‘perfect reconstruction.’’ right

column in Figs. 11 and 12). The perfect reconstruction

provides the upper limit of the track-pattern-based

model. In these figures, the total fields of the seasonal

probability are displayed with contours and their anom-

alies are overlapped with shading.

The hindcast maps for the skillfully predicted years

show the feasibility of the track-pattern-based model to

predict the anomalous spatial pattern of the seasonal TC

tracks (Fig. 11). Although the microscopic view on the

gridpoint values discloses the discrepancies between the

estimated values and the observed values, the hindcast

maps reproduce the key anomalous patterns well—that

is, the west concentration pattern (i.e., high activity in

the South China Sea) in 1983 (Figs. 11a and 11f) and

1995 (Figs. 11c and 11h), the bifurcate pattern (i.e., one

to the South China Sea and another to the east ocean of

Japan) in 1984 (Figs. 11b and 11g), the east concentra-

tion pattern (i.e., high activity east of 1308E) in 1997

(Figs. 11d and 11i), and the centralized pattern (i.e.,

toward East Asia through the East China Sea) in 2004

(Figs. 11e and 11j). The maps of the perfect reconstruc-

tion show the upper skill limit of the model (Figs. 11k–o).

The perfect reconstruction generally shows better skill

than the hindcasts. This suggests that a better skill can be

achieved provided the prediction of the TC frequency is

more accurate. For example, the low skill of the anom-

alous TC track density in the vicinity of the Philippines

(Figs. 11f, 11h, and 11j) can be improved by enhancing

the forecasting skill for each pattern (Fig. 11k, 11m, and

11o). It must be noted that the TC track density cannot

be perfectly predicted even if the seasonal TC counts in

the seven clusters are perfectly predicted. This limita-

tion is inevitable because the final map is constructed

using the climatological TC track density.

The track-pattern-based model shows poor perfor-

mance in predicting the anomalous TC track density for

some years (Fig. 12). There are two sources for this poor

prediction. While the first source comes from the pre-

diction based on the finite number of patterns, the second

FIG. 9. Mean and standard deviation of the observed and constructed probability of the seasonal TC track density

during the period 1981–2006: units of measure are percent.
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source comes from the innate limitation of the statistical–

dynamical prediction technique itself. Although the two

sources always appear together when the model pre-

diction fails, we may classify the worst hindcast years

into two types: type-1 error, which is related more to the

first source, and type-2 error, which is related more to

the second source. The type-1 error may include 1989,

1990, and 1993 in that even the perfect reconstruction

barely produces the observed anomalous TC track

density (Figs. 12k–m).4 After careful checks of the sea-

sonal TC tracks, we notice that most tracks in those

years travel along the boundary of the seven patterns,

which accordingly results in the degradation of the model

based only on the seven patterns.5 The climatology-

based seven patterns are not always sufficient to cluster

the seasonal tracks of individual years and outliers do

exist; therefore, the prediction based on the fixed pat-

terns can fail in those years. In contrast, years 2000 and

2002 can be classified as type-2 error because the perfect

model substantially enhances the anomaly pattern cor-

relation (Figs. 12n and 12o). In case of a type-2 error,

it is no wonder that the improvement of the hybrid

statistical–dynamical model may lead to a better skill in

the final forecasting map. In addition to the perfect re-

construction test, we try producing the hindcast using

the predictors from the reanalysis datasets to examine

what happens if the dynamical model forecasts are per-

fect, that is, identical to the observation (not shown).

Interestingly, the results do not show significant skill

improvement of final forecasting map. This suggests

that the type-2 error mainly originates from the sta-

tistical regression rather than the dynamic forecasts.

c. Comparison with the ENSO–reference
forecast model

To confirm the superiority of the track-pattern-based

model, we compare the forecasts by the track-pattern-

based model with the reference forecasts based on the

respective climatological TC track densities of different

ENSO phases. That is, this ENSO-reference forecast

model issues the climatology of track pattern for El Niño

(La Niña) as the reference forecast for the target years if

the NCEP CFS predicts the target years to be El Niño

(La Niña). The ENSO-related years are selected based

on the Niño-3.4 index during the TC season. El-Niño

years are 1982, 1987, 1991, 1994, 1997, 2002, and 2004;

La Niña years are 1984, 1985, 1988, 1995, 1998, 1999,

and 2000; and the remaining years are neutral.

Figure 13 shows the mean and standard deviation of

the anomaly pattern correlation coefficients between

the observations and the hindcasts of the track-pattern-

based model and the ENSO-reference model for all

years: El Niño, La Niña, and neutral years. It is shown

that the track-pattern-based model improves predict-

ability compared to the ENSO–reference forecast based

on the climatology. The mean correlation of the hind-

casts by the track-pattern-based model is 0.44, while it

is only 0.22 for those by the ENSO-reference model.

This skill improvement relative to the reference model

can be obtained for El Niño and neutral years rather

FIG. 10. Observations (dark dashed line), 15 ensemble members

(gray lines), and the ensemble mean (dark solid line) of the hind-

cast of the hybrid dynamical prediction model for the period 1981–

2006.

4 The perfect reconstruction forcibly removes the second source.

5 In other words, many data objects (i.e., TC tracks) in these

years show low membership coefficients (a belongingness measure

of an object into a cluster yielded by the fuzzy c-means clustering;

Kim et al. 2011) in any of the seven clusters.
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than La Niña years. In fact, the TC track density shows

large interannual variations even in a same ENSO phase

(not shown, though it is seen in Fig. 11, which presents

two El Niño years of 1997 and 2004 and two La Niña

years of 1984 and 1995). As the track-pattern-based

model uses the seven bases to construct the TC track

density, it is skillful in reproducing the various spatial

patterns of TC track density compared to the ENSO-

reference forecast model.

It is also notable that the forecast skills for the ENSO-

related years are higher than those for the neutral years.

It should be noted that all of the skillful hindcast years

shown in Fig. 11 are the ENSO-related years, whereas

three of the 5 worst hindcast years in Fig. 11 are the

FIG. 11. Selected cases for the final forecasting map of the TC track density for 5 years with the most skillful hindcasts: (left column)

Observation, (middle column) maps constructed from the hindcast results of the hybrid statistical–dynamical model, and (right column)

maps constructed using the observed TC frequency in the seven patterns. Also shown are the seasonal means of the probability of the TC

tracks (contours) and their anomalies (shading). Unit of measure is percent, contour interval is 5%, and the zero line is omitted. The

pattern correlation coefficient with the observation is shown in the bottom-right corners.
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neutral years. Relative to El Niño, the La Niña years

show a slightly higher skill, although their standard de-

viation is correspondingly larger. The prediction skill

in the perfect model also shows more improvement for

the ENSO-related years. Meanwhile, the mean of the

anomaly pattern correlations for the neutral years shows

relatively low values and that for the perfect reconstruc-

tion is still low, suggesting that many of the neutral years

may be included in the type-1 error. These differences in

the prediction skill between the ENSO and the neutral

years likely originate from the characteristics of the

basic track patterns. As mentioned in section 3c, the

ENSO-related variations are most strongly reflected in

C1–C3, which result in the better performance of the

model during the El Niño or La Niña years.

5. Concluding remarks

This study has introduced a novel hybrid statistical–

dynamical model to predict the spatial distribution of

the TC track density over the entire WNP basin. This

model consists of two main steps. In the first step, the TC

FIG. 12. As in Fig. 10, but for 5 years among the worst hindcasts.
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frequencies of seven track patterns are predicted sepa-

rately. Next, the final forecasting map is constructed by

combining the prediction results of each pattern. Based

on these procedures (Fig. 1), this model is named the

‘‘track-pattern-based model.’’

The prerequisite of the track-pattern-based model is

classified track patterns; therefore, the basic seven track

patterns were obtained by applying the fuzzy c-means

clustering algorithm to the historical TC tracks over

the WNP (Kim et al. 2011; Fig. 2). Then, the hybrid

statistical–dynamical models for predicting the seasonal

TC frequency of each pattern were developed using the

NCEP CFS retrospective forecasts. Through correlation

analyses between the seasonal TC frequencies for each

pattern and concurrent seasonal environmental param-

eters obtained from the NCEP CFS forecasts for the

period 1981–2006, the critical regions were identified

as the predictors (Figs. 3, 5, 6 and 7). Thereafter, the

Poisson regression models for each pattern were devel-

oped using the predictors obtained from the 15 NCEP

CFS ensemble forecasts. Next, the seasonal TC track

density was obtained by assembling the climatological

probability of the TC tracks for the seven patterns

weighted by the predicted number of TCs for each pat-

tern [Eq. (6)]. Finally, biases in the mean and standard

deviation of forecast TC track density are corrected to

yield more reliable forecast [Eq. (7)].

Using 15 ensemble predictor sets for each pattern, we

computed the hindcasts for the period 1981–2006 through

leave-one-out cross validations. The results show that the

predictions using each ensemble member have large er-

rors but their ensemble means have skillful predictability

FIG. 13. Mean (solid dot) and standard deviation (range bar) of the anomaly pattern correlation coefficients be-

tween the observed and the model-constructed TC track density for (a) all years, (b) El Niña, (c) La Niña, and

(d) neutral years.
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(Fig. 10 and Table 1). The model-constructed TC track

density using the hindcasts for the seven patterns rea-

sonably reproduces the seasonal distribution of the TC

tracks in some years (Fig. 11), but not in others (Fig. 12).

The reproduction of the seasonal TC track density was

more skillful during the ENSO-related seasons because

the basic track patterns used in the model capture the

ENSO-related anomalous track patterns well (Fig. 13).

The track-pattern-based can predict the TC track

density covering the entire WNP basin. This is advan-

tageous over the previous studies that make predictions

over limited areas of the basin or treat TC variations

over the vast WNP basin by a single number. Recently,

several studies attempted to predict the seasonal TC

activity using high-resolution dynamic models (e.g.,

Camargo and Barnston 2009). However, dynamical

prediction for TC tracks on a seasonal time scale still

represents a challenge. The present study shows that the

spatial distribution of the seasonal TC tracks can be

predicted using a statistical technique without a high-

resolution model that resolves the TC trajectory. The

developed track-pattern-based model can compete with

the high-resolution dynamic forecast of the seasonal TC

tracks. Moreover, the NCEP CFS provides operational

seasonal forecasts on a daily basis via an Internet ftp

site (ftp://ftpprd.ncep.noaa.gov/pub/data1/nccf/com/cfs/

prod/). With this data, the model can be directly applied

as an operational seasonal prediction tool. We anticipate

that the developed model can be used as an operational

tool for forecasting tasks in TC-prone countries over

the WNP.
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